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Abstract: Harmful algal species are present in the Mediterranean Sea and are often associated with 

toxic events affecting the nearby coastal zones. The presence of 18 marine microalgae, at genus level, 

associated with potentially harmful characteristics was predicted using a number of machine learning 

techniques based exclusively on a small set of abiotic variables, already identified as drivers of 

blooms. Random Forest (RF) algorithm achieved the best predictive performance by correctly 

identifying the presence of most genera with a mean of 89.2% of total samples. Although, RF has 

shown lower predictive performance for genera present in a low number of samples, its predictive 

power remains at least “fair’ in these cases. The main tree-based advantage of RF was thereafter used 

to assess the importance of the input variables in predicting the presence of the algal genera. 

Temperature had the most powerful effect on genera’s presences, although this effect varies among 

genera. Finally, the genera were clustered based on their response to the considered abiotic variables 

and common trends in an ecological context were identified. 

 

Keywords: harmful algal; machine learning; Random Forest; abiotic parameters; Eastern 

Mediterranean 

 

1. Introduction  

Machine Learning (ML) algorithms are considered as powerful and reliable tools for prediction, 

applied so far in many scientific disciplines [1]. ML is a collection of algorithms of different types 

that improve prediction by gaining knowledge from data [2]. The main advantage of ML techniques 
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is their ability to model multidimensional interactions between nonlinear, noisy, correlated or partly 

missing data. The field of marine ecology, characterized by complex interactions among a large 

number of variables, is a specific field counting several applications of ML algorithms [3].  

Phytoplankton communities usually follow a rather typical annual pattern on biomass variations 

and species succession [4]. However, under a combination of forcing factors, it is possible that a 

regime shift in the system may be established. These factors can be the hydrodynamic conditions in 

the area [5], the buffering capacity of the system [6], salinity, temperature, nutrients, organic 

compounds [7], the presence of zooplankton and bacterial populations as well as species 

interactions [8]. However, work on those aspects [9], has shown that regime shifts are closely 

connected with the presence of nutrients; high sensitivity was also found in temperature fluctuations. 

These regime shifts in the case of phytoplankton are expressed as algal blooms. In many cases these 

blooms are due to exponential growth and dominance of toxic species of phytoplankton [10]. As the 

shift from the pristine conditions to an undesirable bloom does not follow a linear pattern, is of 

utmost importance to develop a probabilistic approach so that possible harmful effects on shellfish 

and fish culture as well as on human health can be indicated. 

Algal blooms seem to be a problem of great concern among scientists due to the considerable 

economic, health and ecological effects on the neighboring coastal zones [11,12]. Τhe various causes 

of blooms, often linked with eutrophication in coastal ecosystems, is a matter under 

consideration [13,14]. Many methods have therefore been applied aiming at associating different 

parameters expressing land use [15], human activities, nutrient loadings, climate changes or other 

environmental processes with excessive algal growth [13,16,17]. These include the use of ML 

algorithms. In most cases, ML was applied to model and predict primary production (in terms of 

chlorophyll-α or biomass) using physical and chemical variables, as temperature, salinity, inorganic 

nitrogen and phosphorus concentrations [18–20]. In addition, there are studies that have modelled 

different dimensions of primary production such as diversity [21,22] or algal growth time [23]. A 

recent attempt has been made by Yu et al. (2021) [24] to predict phytoplankton blooms, using 

Machine Learning algorithms. Their argument is that “when planktonic algae proliferate over certain 

limits, harmful algal blooms (HABs) will occur”. This is not necessarily the case [25]; increased 

concentrations of toxic algae can occur without a bloom and vice versa: not all blooms end to be 

toxic. Although algal blooms are entirely natural phenomena and have appeared throughout historical 

times [10], the frequency of occurrence has increased at an alarming level, over the last few decades. 

Land based sources of eutrophication, even when they are not the main drivers for triggering 

mechanisms for bloom formation, it is beyond any doubt that input of nutrients into the marine 

environment supports bloom formation. However, the principal question remains: will toxic 

microalgae grow? The answer can be given only if any predictions based on Machine Learning 

techniques, are targeted towards the exponential growth of toxic species, already recorded in the 

areas under study. 

HABs are being considered as a specific form of coastal eutrophication, causing serious impact 

including death of organisms, toxins production, hypoxia and often human poisoning due to the 

consumption of infected fish or shellfish [14,26,27]. ML algorithms have been used to assess the 

formation of HABs in both fresh and marine waters [28]. Abundance as well as presence/absence of 

specific harmful algal species have been studied aiming to reveal possible associations with several 

biotic and abiotic variables. HAB forming species recently studied with selected ML techniques 

include Karenia brevis [29], Planktothrix rubescens [30] and Dinophysis acuminata [31], while 
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Bourel et al. [32] have used ensembles i.e., combinations of classifiers to predict the 

presence-absence of 8 harmful marine phytoplankton species. Considering the various ML 

algorithms, special attention has been given to Neural Networks (NNs) and Random Forests (RFs), 

two commonly used algorithms with great performance even when dealing with complex ecological 

processes as HAB formation [33–35]. Some applications of NNs include the assessment of algal 

population dynamics [36–38], the classification of different algal types [39,40] and detection of 

HABs from satellite images [41,42]. On the other hand, the increased effectiveness of RFs has been 

denoted on the assessment of the distribution of phytoplankton cell size [43] and on the efficient 

prediction of chlorophyll-a concentration [44,45], of the abundance of some toxic genotypes [46] and 

of the presence of some toxic algal species [47]. 

Variables used as drivers in the application of ML algorithms for the prediction of the 

abundance or presence/absence of HAB forming microalgae, include both biotic and abiotic 

variables. Abiotic variables used so far include site, season, calendar day, distance from the coast, 

meteorological variables (air temperature, wind speed and direction, cloud cover), physical variables 

of seawater (temperature, salinity, conductivity, turbidity, oxygen saturation, pH, Secchi depth, 

photosynthetic radiation, remote sensing reflectance) and nutrients in both dissolved and particulate 

forms [29,32,38,46]. Considering biotic variables, chl-a is often used [24,29,47], as well as the 

abundances of microcrustaceans, ciliates, tintinids, microheterotrophs, cladocerans or copepodes 

[29,36]. It seems that the selection of cause variables in the existing literature mainly aims to 

improving the prediction of HABs, although not necessarily exploring a cause-and-effect relationship 

from the ecological point of view.  

In the present study, a screening of several ML algorithms and ensembles is performed aiming 

to detect the presence/absence of 18 harmful or potentially harmful microalgae at genus level, using 

existing data collected from six coastal areas in the Aegean Sea, Greece, representing different 

productivity levels. The overall performance of each algorithm is assessed considering all the 18 

studied microalgae. The cause variables include physical variables (temperature and salinity) as well 

as nutrients, already established in previous studies [16,20] as drivers of algal growth. The objectives 

of the study are: (a) to identify the most efficient algorithms or ensembles based on the overall 

prediction of presence/absence of the 18 microalgae, (b) to quantify the effect of cause variables on 

microalgal growth and (c) to attempt possible grouping of the studied HAB forming microalgae, 

considering their response to the abiotic drivers. Since all cause variables are easily measured on a 

routine basis, the results of this study can form the basis of an operational system for the prediction 

of HABs in coastal waters, eliminating possible adverse effects on ecosystem and human health. 

2. Materials and methods 

2.1. Study area and sources of data 

The data set used in the present work was set up by compilation of six sets collected from 42 

sampling sites in three different areas of the Aegean Sea, Greece. Five out of six sets originate from 

coastal waters whereas one set (Rhodes offshore) is characteristic of pelagic waters (Figure 1). The 

sampling areas are: (a) Kalloni Gulf (Island of Lesbos): eight sampling stations K1-K8 [48] (b) Gulf 

of Gera (Island of Lesbos): Sampling sites G1-G8 [49] (c) the coastal area of the city of Mytilini: 

sampling sites M1 and M2 [50] (d) Saronikos Gulf (near Athens): sampling sites S1-S9 [51] 
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(e) offshore waters NW of the city of Rhodes R1-R5 [52] and (f) coastal waters of the city of Rhodes: 

ten sampling sites RH1-RH10 [51]. 

 

Figure 1. Map of the six sampling areas. 

2.2. Variables used 

The variables included in the dataset are: (a) temperature (T) and salinity (S) [20], also 

expressing seasonality and (b) nutrient concentrations, namely dissolved inorganic nitrogen (DIN), 

phosphates (PO4
3−) and silicates (SiO2), often recognized as drivers of algal growth and increased 

primary productivity in coastal waters [53]. These variables are used as inputs (cause variables) in 

the ML algorithms. The target variable trying to estimate is the presence or absence of 18 genera of 

harmful or potentially harmful algae estimated by the list of toxic microalgae of IOC-UNESCO [54], 

shown in Table 1. The number of occurrences of each genus in the 889 samples, the sites where 

found and summary statistics of the abiotic conditions under which each genus appeared, are shown 

in Table 1. Redfield’ s ratio, i.e., nitrogen to phosphorus ratio (N:P), a characteristic proxy of the 

nutrient limiting primary productivity, is also shown in Table 1.  
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Table 1. The studied HAB forming microalgae, their occurrence and summary statistics 

(mean and range) of the corresponding abiotic variables related to each particular genus. 

Genus Occurrences Sampling 

Areas 

T (oC) S (psu) DIN (μM) PO4
3- (μΜ) SiO2 (μΜ) N:P 

Alexandrium 25 K,R1 14.76 

(9.8-23.9) 

37.81 

(34.0-40.1) 

5.78 

(0.5-39.8) 

0.12 

(0.0-1.5) 

15.97 

(3.4-86.6) 

196.64 

(7.8-1217.5) 

Amphidinium 71 K,S,R1, 

R2 

17.04 

(9.8-23.9) 

38.26 

(34.0-40.2) 

4.78 

(0.5-39.8) 

0.13 

(0.0-1.5) 

14.34 

(2.4-86.6) 

232.41 

(1.7-6020.0) 

Cryptomonas 168 K 17.10 

(9.5-27.7) 

38.57 

(34.0-41.1) 

4.13 

(0.5-45.2) 

0.09 

(0.0-1.6) 

14.36 

(1.7-94.0) 

180.16 

(6.81-6020.0) 

Dictyocha 48 K 13.93 

(9.4-23.3) 

38.29 

(34.8-40.7) 

4.46 

(0.6-33.2) 

0.10 

(0.0-1.3) 

16.22 

(4.3-70.9) 

102.69 

(7.4-692.2) 

Dinophysis 228 K,G,M, 

S,R1,R2 

18.27 

(9.7-28.2) 

38.29 

(28.3-40.6) 

2.70 

(0.1-38.0) 

0.16 

(0.0-1.8) 

8.85 

(0.4-80.7) 

43.76 

(2.8-1712.0) 

Goniodoma 21 G,M, 

S,R1,R2 

19.20 

(13.4-27.4) 

38.35 

(37.3-39.1) 

2.84 

(0.4-11.7) 

0.45 

(0.0-6.0) 

9.20 

(0.8-15.1) 

25.41 

(1.5-116.7) 

Gonyaulax 37 K,G,M, 

S,R1,R2 

18.41 

(14.37-22.11) 

38.82 

(36.4-40.6) 

1.66 

(0.3-4.1) 

0.19 

(0.0-0.85) 

7.19 

(2.1-20.9) 

30.05 

(2.7-379.0) 

Gymnodinium 279 K,M, 

S,R1,R2 

19.58 

(9.6-27.7) 

38.83 

(28.0-40.2) 

1.76 

(0.1-27.8) 

0.07 

(0.0-4.1) 

9.66 

(1.6-53.9) 

68.13 

(0.2-1660.0) 

Gyrodinium 177 K,G,M, 

S,R1,R2 

18.23 

(9.7-27.7) 

38.51 

(34.7-40.3) 

2.78 

(0.4-45.2) 

0.16 

(0.0-1.8) 

8.63 

(1.5-94.0) 

70.01 

(1.7-1660.0) 

Karenia 394 S,R1,R2 20.00 

(13.1-27.6) 

38.55 

(28.0-39.7) 

2.01 

(0.1-38.0) 

0.15 

(0.0-6.0) 

8.02 

(0.4-53.9) 

33.04 

(1.4-1643.0) 

Karlodinium 133 K 17.20 

(9.9-27.7) 

38.68 

(34.8-40.7) 

3.51 

(0.5-33.2) 

0.07 

(0.0-1.3) 

12.64 

(1.7-70.9) 

180.74 

(6.8-6020.0) 

Lingulodinium 23 K,R1 14.81 

(9.9-25.6) 

37.67 

(34.8-40.0) 

6.00 

(1.4-33.2) 

0.10 

(0.0-1.3) 

11.81 

(2.4-68.7) 

282.78 

(9.6-1660.0) 

Navicula 165 G,M, 

S,R1,R2 

19.27 

(10.0-26.5) 

39.00 

(37.1-40.3) 

2.22 

(0.3-23.8) 

0.14 

(0.0-4.1) 

9.22 

(1.1-53.9) 

44.78 

(0.2-1643.0) 

Peridinium 301 K,G,M, 

S,R1,R2 

18.92 

(9.6-27.7) 

38.62 

(28.0-40.3) 

2.60 

(0.1-39.8) 

0.11 

(0.0-2.3) 

9.87 

(1.2-86.6) 

71.58 

(1.7-1712.0) 

Phaeocystis 71 S,R1 16.4 

(13.1-26.7) 

38.27 

(37.6-39.1) 

2.98 

(0.5-14.1) 

0.36 

(0.0-6.0) 

5.44 

(0.4-17.2) 

16.24 

(1.4-72.5) 

Polykrikos 38 K,M,R1 14.88 

(10.0-25.6) 

38.7 

(34.9-40.4) 

3.77 

(0.6-22.8) 

0.06 

(0.0-0.9) 

9.56 

(1.1-70.9) 

346.81 

(11.9-6020.0) 

Prorocentrum 777 K,G,M, 

S,R1,R2 

19.10 

(9.4-28.2) 

38.61 

(28.0-41.1) 

2.26 

(0.1-38.0) 

0.13 

(0.0-6.0) 

8.43 

(0.4-83.0) 

51.69 

(1.4-1660.0) 

Pseudo-nitzschia 491 K,G,M, 

S,R1,R2 

17.39 

(9.4-27.7) 

38.5 

(28.3-41.1) 

2.89 

(0.4-45.2) 

0.14 

(0.0-6.0) 

8.92 

(0.4-94.0) 

78.51 

(1.4-1712.0) 
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2.3. Machine learning algorithms 

A variety of ML algorithms was used to classify the presence or absence of the 18 genera of 

HAB forming microalgae (Table 2). The selected classifiers cover all basic supervised ML categories 

i.e., rules, trees, lazy, functions and bayes, whereas classic ensemble methods, already used in marine 

ecology [3], were also applied. In order to optimize the performance of the basic classifiers, different 

values of the crucial (hyper) parameters of each algorithm were tested during training. Thus, the 

training included at least four different versions of each basic algorithm (Table 2, last column) 

eliminating the relation of the parameters’ selection to the final algorithm performance. Random 

Forest (RF) was considered as an ensemble, since it uses a set of decision trees to provide 

classification. For some ensembles (e.g., Voting), which use techniques trained by the combination 

of the results of basic classifiers, the number of combined classifiers was limited to three in order to 

avoid ties. The selected three classifiers were the three best performing basic classifiers, as 

previously defined. 

2.4. Algorithm evaluation and selection of abiotic parameters 

The efficiency of algorithms was evaluated using the 10-fold cross validation (10-fold CV) 

procedure [55]. The RWeka interface written in R [56], of Weka ML techniques [57], was used to 

run and test the algorithms. The number of correctly classified instances of either the presence or 

absence of each genus as labels of the target class over the total number of water samples (i.e., 

accuracy), was used to determine the performance effectiveness of each algorithm. Additionally, 

some other measures of predictive performance were used in order to better evaluate the algorithms’ 

predictions [58]. More precisely, sensitivity (or recall) expressing algorithm completeness, is the 

fraction of the correct genus presences over the total number of predicted presences (true presences 

plus false absences) in the total samples. A similar measure for the prediction of absences was used 

as a second measure of completeness, since the conditions related to the absence of a genus in a 

sample are also considered crucial [59]. This measure is specificity which is the same fraction 

calculated on absences (number of correct predicted absences over the sum of true absences plus 

false presences). Moreover, precision was used, expressing the power of algorithm’s correctness as it 

measures in how many instances that the algorithm predicted as “genus present”, the genus was 

actually present. The classic measure of kappa statistic that represents the degree of accuracy and 

reliability in classification problems, was also included [60]. Kappa statistic ranges from -1 (total 

disagreement) through 0 (random classification) to 1 (perfect agreement). Finally, due to the 

existence of imbalanced data, i.e., low number of appearances for eight genera (i.e., Alexandrium, 

Amphidinium, Dictyocha, Goniodoma, Gonyaulax, Lingulodinium, Phaeocystis and Polykrikos) in 

the dataset (see Table 1), one more specialized evaluation measure was used; the discriminant power 

is a measure that combines sensitivity and specificity and evaluates how well an algorithm 

distinguishes the presences and absences of a rare genus in case of imbalanced data [59]. The 

thresholds for this measure are: “poor” for values less than 1, “limited” for values between 1 and 2, 

“fair” for values between 2 and 3 and “good” for values higher than 3 [61].  
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Table 2. ML algorithms used in the current study: category, abbreviation, short 

description and hyper parameter values.  

Category Abbreviation Algorithm Description Hyper parameter values 

Rules Jrip 

 

Repeated incremental pruning to produce 

error reduction (RIPPER) 

Batch size = 50, 100 

Min total weight = 2, 5 

 Part PART decision list Batch size = 50, 100 

Min number of instances per rule = 2, 5 

Trees J48 C4 pruned decision tree Batch size = 50, 100 

Min number of instances per leaf = 2, 5 

Number of folds = 3, 5 

 Rep Decision tree using reduced error pruning 

with backfiting 

Batch size = 50, 100 

Min number of instances per leaf = 2, 5 

Lazy IBk The k-nearest neighbors using Euclidean 

distance 

Number of neighbors = 1, 5, 10, 20 

 KStar Nearest neighbor with entropic distance Global blend = 5, 10, 20, 50 

Functions Log Multinomial logistic regression  

 MLP Multilayer Perceptron using 

backpropagation 

Number of neurons = 2, 5, 7, 10 

Bayes NB Naïve Bayes using estimator classes Batch size = 50, 100 

 BN Bayes network Batch size = 50, 100 

Ensembles RF Forest of random decision trees Batch size = 50, 100 

Number of iterations = 20, 50, 100 

 Bagging Bagging classifiers to reduce variance Classifiers: The best basic one 

Number of iterations = 10 

 Boosting Boosting classifiers using Adaboost M1 

method 

Classifier: The best basic one 

 CVR Classification using regression methods Classifier: M5 model tree 

 RC Randomizabling classifiers (Random 

Committee) 

Classifier: Random tree 

 Stacking Combining classifiers using stacking 

method 

Classifiers: The 3 best basic ones 

Number of folds = 10 

 Voting Combining classifiers using votes Classifiers: The 3 best basic ones 

Combination rule: Average of Probabilities 

The performance of an algorithm can be crucially affected by the variables included in the input 

dataset [24]. In order to select the optimal subset of the input abiotic variables offering the higher 

predictive performance to each trained algorithm, an exhaustive search was implemented. All 

possible subsets of the five available abiotic variables containing 5 (all input variables), 4 out of 5 (5 

subsets), 3 out of 5 (10 subsets) and 2 out of 5 (10 subsets) variables were used to find the best 

combination.  
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2.5. Estimation of the importance of the cause variables 

Some ML algorithms estimate directly the importance of the input variables (e.g., most rules or 

trees). Especially for tree algorithms, applying the split-criterion in each node, the relative 

importance of each input variable can be easily determined. The most common method to measure a 

node’s effectiveness in trees is the Gini Impurity which measures the probability of misclassification 

for a new instance (i.e., sample) by its specific tree node. A related measure for RFs is the Mean 

Decrease of Impurity (MDI) which weighs the impact of each input variable to the final prediction 

(presence of a genus) by measuring the effectiveness of each variable at reducing the uncertainty 

during tree induction [62]. In this study the MDI measure was used to assess the importance of each 

abiotic variable to the presence or absence of the potentially harmful algae genera. Furthermore, this 

measure was also used for grouping genera affected by similar abiotic conditions. Hierarchical 

clustering was applied using Euclidean distance and Ward’s minimum variance method. 

3. Results  

3.1. Performance of basic classifiers and ensembles 

The performance of the ML algorithms measured by the accuracy of correctly classified 

presences/absences in the 889 seawater samples is presented in Table 3 while Table 4 contains the 

best performing algorithm along with the optimal values of hyper parameters and the optimal subset 

of the abiotic variables. The predictive performance for all genera is above 70%, being over 90% for 

10 out of 18 genera. The higher percentage of correctly classified instances was for Lingulodinium 

(98.1%) and the lowest for Peridinium (72.2%). The performance of the various algorithms did not 

vary significantly within each genus, but mainly among genera. Indeed, the range of predictive 

performance among different algorithms for the same genus ranged from 32.2% for Gymnodinium to 

1.4% for Goniodoma (9.1% the mean difference for all genera), while the corresponding range 

among genera for the same algorithm ranged from 44.2% for Naïve Bayes to 25.8% for RF technique 

(30.6% mean difference for all algorithms).  

Among the basic algorithms, Jrip showed the best performance with mean predictive percentage 

for all genera equal to 87.7%. Part rule algorithm, both trees, KStar, MLP and BN also showed high 

performance exceeding 86%. Although IBK and MLP are the best performing algorithms regarding 6, 

and 3 genera respectively, they achieve lower overall performance compared to other basic 

algorithms. Finally, the classical statistical procedure of Logistic function and NB give predictions of 

rather low quality. 

As expected, the ensembles generally exceed the performance of single classifiers, with four 

ensembles (RF, Bagging, Boosting, and Voting) achieving higher performances than the best basic, 

when considering means for all genera. The most efficient ensemble is RF with 89.2% mean 

predictive performance (1.5% higher than Jrip), providing the highest prediction for 9 genera 

(Amphidinium, Dictyocha, Gonyaulax, Gymnodinium, Gyrodinium, Karenia, Karlodinium, 

Peridinium and Pseudo-nitzschia). The second-best performing ensemble is voting with almost 0.7% 

lower mean predictive percentage (88.5%) compared to RF, offering the most successful prediction 

for Phaeocystis. Both Bagging and Boosting also performed sufficiently well, the former achieving 
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Table 3. Predictive performance (best performing single and ensemble in bold) of different ML techniques in terms of accuracy in 

HA genera presence/absence prediction as evaluated by 10-CV . 

 Rules Trees Lazy Functions Bayes Ensembles 

HA genus Jrip Part J48 Rep IBK KStar 

Logisti

c MLP NB BN 

RF 

Bagging Boosting CVR RC 

Stackin

g Voting 

Alexandrium 0.970 0.973 0.972 0.972 0.976 0.968 0.971 0.972 0.957 0.965 0.973 0.972 0.968 0.972 0.972 0.972 0.972 

Amphidinium 0.918 0.919 0.916 0.917 0.916 0.917 0.919 0.916 0.907 0.910 0.925 0.921 0.917 0.919 0.922 0.920 0.917 

Cryptomonas 0.925 0.885 0.899 0.873 0.749 0.907 0.858 0.894 0.838 0.910 0.936 0.936 0.942 0.882 0.904 0.811 0.940 

Dictyocha 0.954 0.943 0.947 0.943 0.955 0.953 0.943 0.943 0.936 0.948 0.965 0.946 0.946 0.940 0.943 0.946 0.937 

Dinophysis 0.759 0.771 0.756 0.748 0.741 0.727 0.727 0.744 0.731 0.780 0.769 0.760 0.780 0.767 0.736 0.744 0.770 

Goniodoma 0.976 0.976 0.976 0.976 0.979 0.970 0.975 0.975 0.965 0.976 0.976 0.978 0.979 0.977 0.970 0.976 0.976 

Gonyaulax 0.957 0.955 0.958 0.958 0.955 0.954 0.956 0.958 0.926 0.926 0.961 0.960 0.961 0.958 0.953 0.958 0.958 

Gymnodinium 0.772 0.780 0.793 0.772 0.692 0.803 0.680 0.742 0.524 0.753 0.846 0.811 0.773 0.812 0.802 0.686 0.827 

Gyrodinium 0.793 0.802 0.802 0.800 0.729 0.801 0.800 0.798 0.775 0.799 0.827 0.812 0.790 0.799 0.790 0.801 0.808 

Karenia 0.813 0.762 0.757 0.765 0.779 0.791 0.588 0.729 0.650 0.666 0.848 0.791 0.794 0.772 0.799 0.683 0.805 

Karlodinium 0.901 0.879 0.880 0.889 0.748 0.898 0.857 0.884 0.852 0.916 0.917 0.915 0.916 0.899 0.911 0.850 0.916 

Lingulodinium 0.980 0.981 0.981 0.978 0.974 0.972 0.973 0.974 0.966 0.974 0.980 0.976 0.975 0.974 0.981 0.980 0.981 

Navicula 0.812 0.818 0.814 0.805 0.803 0.792 0.814 0.832 0.791 0.814 0.822 0.814 0.800 0.838 0.799 0.814 0.814 

Peridinium 0.714 0.706 0.687 0.685 0.586 0.679 0.658 0.674 0.654 0.650 0.722 0.719 0.717 0.708 0.690 0.661 0.717 

Phaeocystis 0.947 0.944 0.945 0.952 0.951 0.934 0.918 0.961 0.916 0.951 0.958 0.961 0.956 0.947 0.954 0.920 0.961 

Polykrikos 0.957 0.962 0.961 0.961 0.964 0.955 0.958 0.958 0.945 0.958 0.962 0.961 0.958 0.962 0.958 0.960 0.963 

Prorocentrum 0.876 0.875 0.874 0.875 0.876 0.880 0.874 0.874 0.862 0.874 0.877 0.877 0.872 0.875 0.854 0.874 0.874 

Pseudo-nitzschia 0.757 0.756 0.761 0.754 0.771 0.765 0.665 0.699 0.565 0.737 0.791 0.768 0.771 0.762 0.750 0.653 0.786 

Mean 0.877 0.872 0.871 0.868 0.841 0.870 0.841 0.863 0.820 0.862 0.892 0.882 0.879 0.876 0.872 0.845 0.885 



6493 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 6484–6505. 

an overall performance above 88.2% and the latter providing the best prediction for 4 genera. CVR, 

RC and Stacking show the same or lower performance compared with the basic algorithms and thus 

are considered as inefficient. For most genera (13 out of 18), the performance of the algorithms was 

optimal when all variables were included in the input data set. For Dictyocha and Karenia the best 

performance was achieved when removing DIN, whereas for the two Lazy algorithms (IBk and 

KStar) the prediction for Alexandrium, Polykrikos and Prorocentrum was optimal when T, S and 

PO4
3− were only included in the input variables. For RF in particular, the use of all five abiotic 

variables optimized the prediction of 7 genera (Ampidinium, Gonyaulax, Gymnodinium, Gyrodinium, 

Karlodinium, Peridinium and Pseudo-nitzschia). Therefore in the rest of the analysis aiming to 

propose a single algorithm for all genera and to assess the relative importance of the input variables 

for prediction, RF the best performing ensemble was applied on the initial input data set of all five 

abiotic variables.  

3.2. Assessing the performance of RF 

Since RF seems to be the overall best performing algorithm, more details based on RF 

classification results using the initial dataset (optimal parameter combination) are shown in Table 5. 

The mean precision is 0.723, meaning that in 72.3% of the cases in which RF predicted the presence 

of a genus, the genus is actually present. For some genera this measure is rather high, being 91.5% 

for Karlodinium and 88.1% for Prorocentrum, showing an upward trend for genera with high 

number of occurrences in the whole database. On the other hand, the rate of correct classifications of 

presences that is sensitivity is rather moderate since only 43.1% of the total genus presences is 

classified correctly by the algorithm. The predictions are even worse for genera present in less than 

10% of the samples (rare species), as Alexandrium, Goniodoma, Gonyaulax or Polykrikos. The 

specificity of the RF classification (correctly predicted absences) is generally high with a mean of 

92.1%. This finding implies that absences are more correctly classified than presences, especially for 

rare genera. On the other hand, the mean value of Kappa statistic is equal to 0.469 showing a rather 

moderate predictive performance of the RF algorithm. The value of Kappa statistic is lower for the 

rare genera and varies from 0.287 (fair agreement) for Gonyaulax to 0.723 (substantial agreement) 

for Cryptomonas. However, the discriminant power, a special measure for the predictive 

performance for rare genera, is greater than 2 for 6 rare genera, showing that the prediction by RF is 

“fair” in these cases. Considering each specific genus, the prediction is “good” being above 3 for 

Lingulodinium and “limited” being 1.632 for Amphidinium.  

Table 4. Best perfomed algorithme along with the optimal parameter combination for 

each genera.  

HA genus Best Algorithm Hyper Paremeters values Best Parameter Combination 

Alexandrium IBk Number of neighbors=5 T+S+PO4
3- 

Amphidinium RF Batch size=50 

Number of iterations=50 

T+S+DIN+ PO4
3-+SiO2 

Cryptomonas Boosting Classifier: Jrip 

(Batch size=100 

Min total weight=5) 

T+S+DIN+ PO4
3-+SiO2 

Continued on next page 
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HA genus Best Algorithm Hyper Paremeters values Best Parameter Combination 

Dictyocha RF Batch size = 100 

Number of iterations = 50 

T + S + PO4 + SiO2 

Dinophysis BN/ 

Boosting 

Batch size = 100/ 

Classifier: IBk 

(Number of neighbors = 10) 

T + S + DIN + PO4
3- + SiO2 

Goniodoma IBk Number of neighbors = 10 T + S + DIN + PO4
3- + SiO2 

Gonyaulax RF Batch size = 100 

Number of iterations = 100 

T + S + DIN + PO4
3- + SiO2 

Gymnodinium RF Batch size = 50 

Number of iterations = 50 

T + S + DIN + PO4
3- + SiO2 

Gyrodinium RF Batch size = 50 

Number of iterations = 100 

T + S + DIN + PO4
3- +SiO2 

Karenia RF Batch size = 50 

Number of iterations = 100 

T + S + PO4
3- + SiO2 

Karlodinium RF Batch size = 50 

Number of iterations = 100 

T + S + DIN+ PO4
3- +SiO2 

Lingulodinium Part/ 

RC/ 

Voting 

Batch size = 50, Min number of 

instances per rule =2/ 

Classifier: Random tree/ 

Classifiers: Jrip (Batch size = 100, 

Min total weight = 5), Part (Batch 

size = 100, Min number of 

instances per rule = 2), J48 (Batch 

size = 100, Min number of 

instances per leaf = 5) 

T + S + DIN + PO4
3- +SiO2 

Navicula CVR Classifier: M5 model tree T + S + DIN + PO4
3- + SiO2 

Peridinium RF Batch size = 50 

Number of iterations = 100 

T + S + DIN + PO4
3- + SiO2 

Phaeocystis MLP/Bagging/Voting Number of neurons = 7/ 

Classifier:MLP/ 

Classifiers: MLP, Rep (Batch 

size = 50, Min number of instances 

per leaf = 2), BN (Batch size = 100) 

T + S + DIN + PO4
3- + SiO2 

Polykrikos IBk Number of neighbors = 10 T + S + PO4
3- 

Prorocentrum KStar Global blend = 50 T + S + PO4
3- 

Pseudo-nitzschia RF Batch size = 50 

Number of iterations = 100 

T + S + DIN + PO4
3- + SiO2 
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Table 5. Predictive details of RF (the best performing algorithm) for each genus. The 

discriminant power refers only to genera with imbalanced data (rare genera). 

Algae genus N# presences Precision Sensitivity Specificity Kappa statistic Discriminant power 

Alexandrium 25 0.556 0.200 0.995 0.312 2.154 

Amphidinium 71 0.567 0.239 0.984 0.386 1.632 

Cryptomonas 168 0.878 0.774 0.974 0.723  

Dictyocha 48 0.615 0.333 0.988 0.503 2.049 

Dinophysis 228 0.647 0.407 0.912 0.500  

Goniodoma 21 0.667 0.095 0.999 0.324 2.565 

Gonyaulax 37 0.667 0.108 0.998 0.287 2.261 

Gymnodinium 279 0.814 0.659 0.931 0.655  

Gyrodinium 177 0.682 0.353 0.970 0.509  

Karenia 394 0.758 0.787 0.800 0.604  

Karlodinium 133 0.915 0.489 0.992 0.595  

Lingulodinium 23 0.833 0.217 0.999 0.291 3.100 

Navicula 165 0.550 0.200 0.963 0.480  

Peridinium 301 0.642 0.405 0.884 0.518  

Phaeocystis 71 0.867 0.549 0.993 0.633 2.840 

Polykrikos 38 0.667 0.158 0.996 0.349 2.119 

Prorocentrum 777 0.881 0.985 0.429 0.375  

Pseudo-nitzschia 490 0.811 0.808 0.769 0.668  

Mean values 0.723 0.431 0.921 0.469 2.340 

 

Figure 2. Box-and-whisker plots of MDI, measuring the relative importance of the 

various abiotic variables on the construction of RF trees. 
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3.3. Weighing the effect of abiotic variables 

According to our findings, RF seems to be the most efficient algorithm among single classifiers 

and ensembles. Since RF is also showing a general immediacy in weighing the effects of input 

variables based on the composition of the constructed trees, it is selected for providing further 

insights on the role of the abiotic drivers for the presence/absence of potentially harmful microalgae.   

The relative importance of each abiotic variable in the trees constructed for each genus by the 

RF algorithm, is assessed with the MDI measure (Figure 2). Temperature (T) has the most powerful 

effect with an MDI median of 0.325, whereas its importance varies among genera (minimum of 0.12 

for Pseudo-nitzschia and maximum of 0.40 for Prorocentrum). On the other hand, salinity (S) seems 

to have the lowest effect, with an MDI median equal to 0.169 (minimum of 0.11 for Amfidinium and 

maximum of 0.19 for Lingulodinium). PO4
3−is the most important variable among nutrients, with a 

median of 0.26, against 0.21 and 0.22 for DIN and SiO2, respectively. Moreover, the importance of 

nutrients did not vary considerably among genera (standard deviation equal to 0.39, 0.39 and 0.34 for 

DIN, PO4
3−and SiO2, respectively), implying the similar effect of each nutrient on all species 

considered. 

 

Figure 3. (a) Hierarchical clustering tree of the genera based on the relative importance 

of the abiotic variables based on MDI (Mean Decrease of Impurity) (b) The relative 

importance of the abiotic variables for each cluster. Brachidiniales (BR), Gonyaulacales 

(GO) and Gymnodiniales (GY) orders. 
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3.4. Clustering of genera according to the similarity of the effects of abiotic variables 

Possible similarity in the importance of the effects of abiotic variables among the various genera 

in terms of MDI is assessed with hierarchical clustering (Figure 3). It seems that two groups are 

formed when considering the effect of the abiotic variables on trees’ construction. The first cluster is 

formed off 8 genera, being Pseudo-nitzschia, Dictyocha, Peridinium, Phaeoystis Gymnodinium, 

Cryptomonas, and two genera belonging to the Brachidiniales (BR) order (Karenia and 

Karlodinium). The second cluster includes 10 genera, i.e., Dinophysis, Navicula, Prorocentrum, 

genera of the Gonyaulacales (GO) order (Alexandrium, Goniodoma, Gonyaulax and Lingulodinium) 

and of the Gymnodiniales (GY) order (Amphidinium, Gyrodinium and Polykrikos). The members of 

the first cluster are generally less affected by the abiotic variables compared to the members of the 

second cluster. Nutrients seem to have the main role for the occurrence of the members of the first 

cluster, compared to the physical variables (temperature and salinity). On the other hand, the 

members of the second cluster are mostly affected by temperature and nutrients, whereas salinity has 

the lowest effect. 

4. Discussion 

In this study, we assessed the overall performance of various ML techniques (both single and 

ensemble) for the prediction of the presence/absence of 18 harmful or potentially harmful marine 

microalgae at genus level. We further optimized the performance of the algorithms using different 

values of initial parameters using 10-fold CV. Jrip was the best performing basic classifier implying 

that single rules involving the five input variables can rather effectively model the response variable. 

The effectiveness of Jrip single rules has been also identified in previous studies [63,64]. The best 

ensemble method was RF achieving an overall mean accuracy of 89.2% and outperforming the rest 

algorithms by at least 1.5% in accuracy. This is in accordance with many previous studies that 

revealed the exceptional predictive power of RFs [65,33], including marine ecological studies 

[66,44]. A possible explanation for the successful performance of RFs is that they retain the benefits 

of the embedded decision trees, while they also combine tree results exploiting the great 

effectiveness of the majority of voting schema [67]. Thus, the recurring discrimination of samples 

based on the abiotic variables during the tree induction process crucially supports the detection of 

genera presences. The bootstrapping methods used for the construction of different trees protect RFs 

from overfitting issues while the majority of voting schema combines the predictions by taking into 

advantage the overlapped conditions that drive genus’s occurrence in each tree [68]. Results on 

accuracy were remarkably high (89.2%), although the detailed analysis of the RF results revealed 

some predicting weaknesses. The sensitivity of the model was found rather moderate, implying that 

some real presences were not correctly identified by the algorithm. On the other hand, the specificity 

was above 90% indicating that absences were successfully determined. The precision of the 

predictions was found relatively high (72.3%), implying that the predicted presences are in a high 

percentage real presences. High specificity combined with moderate sensitivity and low kappa 

statistic is a weakness of RFs, usually arising when occurrences are rare [69,70]. Data bootstrapping 

is biased towards the major class (absences) leading RF technique to over-predict the major and 

under-predict the minor class [71]. This imbalance was observed in the present study since 8 genera 

(i.e., Alexandrium, Amphidinium, Dictyocha, Goniodoma, Gonyaulax, Lingulodinium, Phaeocystis 
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and Polykrikos) were only present in less than 8% of the total samples. Discriminant power for these 

genera showed at least a “fair” prediction for RFs with the exception of Amphidinium for which 

prediction was characterized as “limited”. This finding combined with the higher mean sensitivity for 

the other more common genera (being 58.7%), which improves as the balance between presences 

and absences increases (80.8% and 78.7% for the genera with the most presences Pseudo-nitzschia 

and Karenia, respectively) render RF results as satisfying. Therefore, special attention should be paid 

to the prediction of occurrences of rare genera using RFs or other ML techniques. This can be 

improved by using specific performance measures or by appropriate manipulations on the dataset, as 

oversampling or repeated random sampling [72]. The exhaustive search for the optimal subset of 

abiotic variables to be used for input in the ML algorithms, showed that the best performance was 

achieved when all five variables were used for most genera. As it was found in a similar study [24], a 

low number of input variables improves prediction, however it seems that in our case the number of 

five variables is already low and the removal of variables results to information loss. Aiming to 

exploit the advantages of RFs, we weighted the relative importance of the input variables (i.e., T, S, 

DIN, PO4
3− and SiO2) using the initial dataset, in terms of MDI, for the presence/absence of the 18 

harmful microalgal genera. Temperature was the most important driver of occurrence, although its 

power varied among genera. The key-role of temperature for the appearance and abundance of 

phytoplankton species has been recognized by various studies in Mediterranean Sea [20,73,48] and 

its effect is considered as mainly indirect, associated with seasonal changes and stratification which 

are identified as drivers of primary production in both ocean and coastal waters [74]. Due to the 

recent climate changes and the tendency of seawater temperature to increase, the effect of 

temperature is currently under thorough investigation [75]. It has been reported since a long time [76] 

that higher temperatures favor the growth of flagellates, whereas diatoms are well adapted at lower 

temperatures. According to Wyatt [77] “diatoms have seasonal standing-crop maxima in spring and 

autumn in middle latitudes while lower numbers occur during the intervening months”. On the 

contrary blooms of dinoflagellates are more characteristic during summer time, especially in 

temperate and subtropical seas. The latter favors dinoflagellate dominance over diatoms during 

summer period. It is obvious that algal species succession is highly depended on temperature 

changes and this fact is clearly reflected in the results of the present work. 

Although temperature is an important driver of HABs, salinity had the less significant role 

(lower mean MDI value) for the studied microalgae. There are two possible explanations for this lack 

of significance. Salinity acts on marine organisms through the osmotic pressure exercised on their 

cellular fluids. In the present work the range of salinity values was fairly limited (around 38 psu) and 

therefore it cannot be concluded whether this variable is not of importance to phytoplankton or the 

effects were not shown due to the narrow range of the salinity values used in this work. 

Nutrients were also found to affect the presence of the studied microalgae, phosphates having a 

principal effect. The mean N:P values referring to specific genera are much higher than 16 with only 

one exception: the microalga Phaeocystis (with a corresponding N:P value 16:24). This value 

indicates that the conditions were phosphorus limited (Table 1). Nutrient concentrations in the 

surface waters in the Eastern Mediterranean are low due to mixing processes with nutrient poorer 

basin water and biological activity [78]. In addition to this shortcoming that limits phytoplankton 

abundance, the Eastern Mediterranean Sea seems to be phosphorus limited [79]. This is a rather 

peculiar characteristic, since the oceans, including the Atlantic, are nitrogen limited and the Atlantic 

Ocean supplies the Mediterranean with water masses through the Strait of Gibraltar. The 
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interpretation of the results in the present work is also complicated because there is an additional 

problem regarding phosphates. There are some algal species that given a supply of phosphates, they 

can store it within their cells in the form of polyphosphate (volutin) granules [7]. This “luxury 

phosphorus” as it is known in the literature, can be consumed by the algae and support algal growth 

in the absence of an external supply source. This way any relationship between phosphorus 

concentration dissolved in the marine environment and algal standing stock is weakened due to the 

presence of stored phosphorus in some species. 

According to the MDI values, expressing the effect of abiotic drivers for the appearance of the 

studied harmful microalgae, a possible grouping of those organisms was attempted. Two clusters 

were formed, the first of eight genera (Pseudo-nitzschia, Dictyocha, Peridinium, Phaeoystis 

Gymnodinium, Cryptomonas, Karenia and Karlodinium) and the second of ten genera (Dinophysis, 

Navicula, Prorocentrum, Alexandrium, Goniodoma, Gonyaulax, Lingulodinium, Amphidinium, 

Gyrodinium and Polykrikos). The first group is rather diverse, including members from several phyla, 

as Bacillariophyta (Pseudo-nitzschia), Ochrophyta (Dictyocha), Miozoa (Peridinium, Gymnodinium, 

Karenia, Karlodinium), Haptophyta (Phaeocystis) and Cryptophyta (Cryptomonas). The second 

group mainly includes members of the Miozoa phylum, except of Navicula belonging to 

Bacillariophyta. Therefore, common functional characteristics of genera belonging to the same phyla 

seem to play a role for their appearance [80], however this role is not so clear-cut. Members of both 

clusters are influenced by nutrients, and mainly by phosphorus, which is possibly related to the 

phosphorus limitation often observed in Eastern Mediterranean waters. For some of the studied 

genera, the role of phosphorus as a driver for presence of some genera can be found in the existing 

literature, as Karlodinium in Li et al. [81] and Cryptomonas in Gasol et al. (1993) [82]. Considering 

the physical drivers, salinity plays a minor role for both groups, although its role is important for 

specific microalgae as Pseudo-nitzchia [83,84] and Karenia [85]. Temperature is the main driver for 

the presence of the members of the second group, mainly involving Miozoa. Changes of temperature 

express seasonality, so related processes as stratification or factors as light availability [86] may be 

also important for the proliferation of the members of the second group.  

Results from this study showed that it is possible to anticipate harmful algal blooms and design 

management practices to mitigate their effects on marine life and humans. This could be done by 

monitoring abiotic drivers that were identified in this work and issue appropriate warnings that may 

suggest some sort of action on behalf of appropriate management authorities. This study and the 

proposed methodology may form the basis for an effort to improve predictability of these 

occasionally devastating events.  

5. Conclusions 

In the present study various ML techniques were assessed for their efficiency to predict the 

appearance of 18 potentially harmful marine microalgae using data from 6 coastal sites in Eastern 

Mediterranean. RF algorithm using five abiotic drivers was the most efficient algorithm for 

prediction when considering overall the 18 studied microalgae. Moreover RF results were useful to 

enlighten the role of the various abiotic drivers in an ecological context. Although the overall 

performance of RF was satisfying in terms of predictability, a more exhaustive training of the 

algorithm with large number of samples is always desirable. Since the five abiotic variable are easily 

measured in a routine basis, the proposed methodology may form the basis of an operational system 
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to be used for the prediction of HABs and therefore eliminate effects on marine life and human 

health.  
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