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a b s t r a c t

Satellite and reanalysis-derived solar products have gained great attention due to the inadequate number
of radiometric stations worldwide, however, they are associated with considerable uncertainties. This
study deals with the ground-based validation of Global Horizontal Irradiance from CAMS radiation
service (GHICAMS) and the application of supervised machine learning algorithms (MLAs) to site-adapt
GHICAMS. The validation of GHICAMS against measurements shows significant systematic and dispersion
errors for all-sky (nMBE ¼ 4.9% and nRMSE ¼ 15.7%) and cloudy conditions (nMBE ¼ 17.6% and
nRMSE ¼ 38.8%). Under clear skies, CAMS performs adequately (nMBE <1% and nRMSE <5%). All MLAs
lead to reduced errors for the site-adapted irradiances. MBE is improved by more than 50%, accompanied
by significant reductions in RMSE for various solar zenith angles and cloud fractions. The best results are
revealed for the tree-based MLAs and especially for Random Forests.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

The design of solar energy projects requires long-term, up-to-
date, high-quality solar radiation datasets at the finest spatiotem-
poral resolution. The accurate knowledge of surface solar irradiance
(SSI) and its components is crucial for assessing the solar potential
in a specific area. The most important advantage of the measured
SSI is that it provides high-quality data at an appropriate temporal
resolution. However, ground-based observations refer to specific
locations and cannot fully characterize the solar potential of the
surrounding area, especially over complex terrains. The limited
geographical coverage, cost, and difficulties in installing and
maintaining radiometric stations enhance the need to develop
satellite-derived methods for estimating solar resources. Various
satellite solar products with different geographical coverage and
temporal resolutions exist [1,2] and several validation studies
revealed the discrepancies against observations [3e9]. It is shown
that the inaccurate description of aerosols and the spatiotemporal
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variability of cloudiness may induce significant uncertainties in the
modelled products.

The Copernicus Atmospheric Monitoring Service for radiation
(CAMS-Rad) has gained significant visibility among the available
solar products. The CAMS-Rad service provides solar data at various
temporal resolutions, easily retrieved through the Solar Radiation
Data (SoDa) website (http://www.soda-pro.com/). Several valida-
tion studies examined the performance of CAMS-Rad at global
[9,10] or country level [11e15].

The Baseline Surface Radiation Network (BSRN) is the reference
database for global-based validations providing high-quality SSI
measurements at 1-min temporal resolution. The discrepancies
among the CAMS-Rad Global Horizontal Irradiance (GHICAMS) and
the GHI from BSRN depend on the location, the temporal resolution
of solar datasets and the periods for comparison. For example [9],
based on 21 BSRN stations reported normalized MBE and RMSE
(errors divided by the mean observed GHI) ranges of �13.60%e
29.66% and 10.99%e44.56%, respectively, with most nMBE values
within ±5%. However, lower errors were presented in Ref. [10]
using GHI data for the most recent three-year period of fifteen
BSRN stations (nMBE: e4.11 e 6.84% and RMSE: 8.23e36.88%).

In Europe, two independent validation studies for GHICAMS were
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conducted in the Netherlands [14] and Germany [15]. The perfor-
mance of GHICAMS was very good with correlations (R) from 0.94 to
0.97 for GHI and 0.85 to 0.89 for the clearness index (kt, the ratio of
GHI to top-of-atmosphere solar irradiance) in Netherlands. The
distance from the shoreline proved to affect nMBE (from �4% to
10%). The underestimation of GHI (or kt) in coastal locations was
explained by the underestimation of cloud-free occurrences. Cor-
relation values between 0.83 and 0.92were revealed in Germany. In
addition, the error magnitude in Germany increased from east to
west with over- and underestimation in the southern and northern
stations, respectively. nMBE ranged from �11% to 10% with con-
trasting spatial pattern when compared to the average observed
GHI. The standard deviation ranged between 25% and 39%, without
any distinct spatial variation. The observed underestimation of GHI
from CAMS-Rad was because of the erroneous classification of clear
sky conditions and the wrongly assigned cloud optical depth used
in the GHI calculations under clear and overcast skies.

Following the discussion above, there are distinguishable errors
between modelled and observed irradiances. Such errors become
important when the satellite-derived products are considered the
primary solar resource in Concentrating Solar Projects (CSP) or
photovoltaic (PV) applications. The most critical uncertainty sour-
ces were summarized in Ref. [16], including modelling issues under
clear sky conditions, uncertainties in input data (cloud and aerosol
optical parameters), non-adequate description of terrain effects
and ground albedo, as well as the variability of the above factors
within the area covered by a single satellite image pixel. For this
reason, several “site adaptation” methods have been evaluated for
correcting the mismatch between modelled and observed solar
irradiances, including Distribution Mapping (DM), Measure Corre-
late Predict (MCP), Model Output Statistics (MOS) procedures or
their combinations [16e29]. The site adaptation techniques can be
grouped into two main categories a) quantile mapping and b)
regression-based methods [23]. Quantile mapping methods aim to
adjust the individual quantiles of a modelled parameter to follow
the statistical distribution of the observations. This is achieved by
assuming that the target parameter follows a specific statistical
distribution (e. g. gaussian). Instead of the parametric approach, the
quantile-based correction can be implemented using the empirical
quantiles or by applying kernel density functions. The adjustment
of individual quantiles in a modelled parameter is translated to
minimized deviations compared to observations, also resulting in
reduced systematic and dispersion errors. Conversely, the
mismatch between modelled and observed parameters can be
adjusted by applying regression-based techniques. The target
parameter (here, GHI) can be parameterized using supervised
machine learning algorithms (MLAs) with auxiliary information
(solar zenith angle, simple meteorological information, etc.) and/or
modelled values as independent features. On the other side,
process-oriented or conditional site adaptation approaches in
terms of the state of the sky [20e24] or the aerosol types [30] were
also found in the literature. A disaggregation of cloudy and clear
instances before applying a site adaptation method could improve
the overall performance and accuracy of the modelled irradiance
[23]. In addition, individual adaptation of GHI under different
aerosol types, e.g., under the dominance of coarse or mixed aero-
sols, potentially reduced the dispersion error of the adapted GHI
[30]. In general, a site adaptation method may correct a target
parameter adequately at a specific site, however, it may fail in other
locations due to different atmospheric and climatic characteristics.
The localization of the site adaptation process implies the difficulty
of selecting a unique modelling approach to correct solar
irradiances.

Post-processing of modelled irradiances deals with the direct
comparison against high quality observations or the demonstration
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of dependencies with auxiliary information (i. e., modelled solar
irradiances, solar zenith angle, clear-sky index, air temperature,
time components, atmospheric parameters, etc.) using machine
learning (ML) and Artificial Intelligence (AI) techniques. Although
the application of ML and AI in solar energy studies has been
continuously enhanced, only a few studies use such methods for
site adaptation of solar irradiances [17,23,24,29,31]. Lorenz et al.
[17] adjusted the biases between forecasts and observed irradi-
ances by applying a fourth-order polynomial model with the clear
sky index (ratio of GHI to that under clear sky conditions) and solar
zenith angle as independent parameters. In a forward step, the
addition of plausible independent parameters such as air temper-
ature, surface pressure and relative humidity, as well as the
replacement of the polynomial expression with a kernel condi-
tional density estimator [31], lead to improved accuracy compared
to the results of traditional Lorentz's MOS technique.

In order to overcome the non-universality of site adaptation
methods, Fernandez-Peruchena et al. [24] proposed a regression
scheme to correct GHI and DHI based on a best-subsets generalized
linear model for the measured clearness index and the diffuse to
global irradiance ratio using satellite-derived solar products.
Regarding GHI, the modelling strategy was focused on drawing a
multiple linear model using the modelled clearness index,
modelled clear sky index, optical air mass, solar elevation angle and
their interaction terms as independent predictors. The optimal
predictors were determined by a stepwise approach by minimizing
Akaike's criterion. The modelling procedure was repeated sepa-
rately for clear and cloudy conditions, but the site adapted solar
products were evaluated only at all sky conditions. The comparison
against observed GHI independently of the sky's state showed low
relative bias (<2%) and reduced dispersion errors when compared
to those of the initially modelled GHI.

Instead of using a singlemodel, Narvaez et al. [29] employed and
compared different machine learning models for adapting GHI.
More specifically, four ML models (multiple linear regression,
neural networks, random forests, and AdaBoost) were developed
and compared against the Quantile Mapping (QM) method; a state-
of-the-art technique that principally adapts the compared statisti-
cal distributions. The ML algorithms estimated the observed GHI
using themodelled solar irradiance (GHI, DHI and DNI), solar zenith
angle and simple meteorological parameters (air temperature and
wind speed) as auxiliary inputs. Random Forest was selected as the
best ML model regarding the accuracy and overall performance
with all ML models except AdaBoost to outperformed QM.

The site adaptation studies reported in the literature showed
acceptable results. However, individual comparisons of the adapted
irradiances for specific weather and atmospheric conditions,
different seasons, etc. were completely missing even for research
works reporting two-stage modelling approaches in terms of spe-
cific criteria (e. g. the presence or absence of clouds). The present
study investigates the performance of GHICAMS in a south-eastern
coastal Mediterranean location with complex terrain and evalu-
ates various supervised machine learning algorithms (MLA) to
adjust the all-sky (clear and cloudy) GHICAMS. The innovative
points/extensions compared to the state-of-the art for site adap-
tation studies are summarized as follows:

� Hourly GHICAMS is verified against observed GHI under clear,
cloudy, and all-sky conditions determined through a cloud-
screening statistical approach, based on a newly proposed
method to define the thresholds of clearness index for the
classification of the sky state as cloudy, intermediate and clear.
This approach is used to: a) examine the necessity of applying a
site-adaptation scheme, b) assess the performance and accuracy
of modelled irradiances.
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� Various machine learning models, created both for clear and
cloudy conditions, are used. Moreover, their performance to
efficiently adapt GHICAMS is performed separately for clear and
cloudy conditions, at different seasons, solar zenith angles and
cloud fractions.
2. Data

2.1. Site description and ground-based measurements

Ground SSI observations come from the radiometric station
located on the rooftop of the Laboratory of Atmospheric Physics,
Patras, Greece (longitude: 21� 470 18.9000, latitude: 38� 170 28.9100,
altitude: 44.5 m a.s.l.). Patras is a coastal city located in Southern
Greecewithmildwinters and dry-hot summers; the climate type of
Patras, according to the K€oppen-Geiger climate classification sys-
tem is Csa [32]. The city, except for its western front, which is
coastal, is surrounded bymountains with peaks up to 2 km, leading
to the considerably high variability of cloudiness. Regarding the
atmospheric conditions, aerosols mainly originate from local
emission sources such as traffic and biomass burning for domestic
heating or agriculture activities, while the effect of transboundary
air pollution from Central/East Europe and Sahara Desert is also
distinguishable [33]. In general, the selected site is characterized by
considerable spatiotemporal cloudiness and aerosol variability
throughout the year.

One-minute averaged Global Horizontal Irradiance (GHIOBS),
Diffuse Horizontal Irradiance (DHIOBS) and the corresponding
standard deviations are measured by Kipp & Zonen CMP11 pyr-
anometers from January 2014 to December 2020. The standard
uncertainty is close to 1.9% when GHI reaches 800 Wm�2 [34]. The
manufacturer calibrated the instrument; periodic comparisons
with a similar instrument show differences within the standard
uncertainly. All good practices were followed for maintaining the
instrument performance and the measurements quality control.
This study considers only observations between sunrise and sunset.
Hourly averages are calculated for clear sky detection and site-
adaptation purposes. Hours with missing 1-min data (less than
90% of available data) have been discarded from the subsequent
analysis.

2.2. CAMS-Rad Service

The Heliosat-4 method is the core module to produce GHI in
CAMS-Rad Service, GHICAMS [35]. It estimates the all-sky GHI
through the combination of Meteosat Second Generation (MSG)
satellite images and simulations from a radiative transfer model at
fast rates. Heliosat-4 consists of a) a clear-sky model, the McClear
model, which calculates solar irradiances at clear sky conditions
using atmospheric inputs from CAMS reanalysis project [36,37] and
b) the McCloud model, which calculates solar irradiances at cloudy
atmospheres using the concept of cloud modification factor [38].
The cloud modification factor is a function of cloud attenuation and
ground reflection. GHI is derived through multiplying the cloud
modification factor with the clear-sky GHI output of McClear. The
cloud properties are estimated from MSG satellite images by
applying the APOLLO method [35]. The SG2 algorithm of Blanc and
Wald [39], provides the sun-position parameters required in solar
irradiance simulations.

The CAMS-Rad dataset ranges from 2004-02-01 until two days
before the date the query is performed, with various temporal
resolutions extending from 1 min to 1 month. The standard data-
base request includes modelled solar irradiances (GHI, DHI, and
DNI) at clear skies and all-sky conditions. Apart from the standard
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solar products, the ‘detailed info’ expert output mode of CAMS-Rad
includes all those atmospheric inputs required for the calculation of
the SSI. This detailed description is available only at a 1-min tem-
poral resolution. It includes atmospheric (aerosol optical thickness
at 550 nm, total columnar water vapor, ozone) and cloud-related
parameters (total cloud fraction, cloud optical thickness, cloud
type) [40]. The ‘detailed info product’ also contains raw and bias-
corrected solar irradiances. For the standard products, the CAMS-
Rad service evaluates a bias-correction scheme, and the corrected
irradiance is delivered to the end-users. Thus, any post-processing
regarding local adaptation is not possible in typical requests.

CAMS-Rad data were downloaded using the ‘detail info’ expert
mode from the SoDa Web service from January 2014 to December
2020 to match the time period of measured solar irradiances at the
ground station. Since the paper's main objective is the site-
adaptation of GHICAMS at all-sky conditions, raw solar irradiances
are used instead of bias-corrected solar products. CAMS-Rad data
are upscaled to 1-h resolution and temporally cropped to range
from sunrise to sunset.

3. Methodology

3.1. Clear sky detection

The disaggregation of a target dataset into subsets of similar
characteristics (e.g., in terms of the sky conditions) and the forth-
coming site-adaptation of each subset separately may result in er-
ror improvements and better performance of the adapted GHI
[22e24]. Cloud information (available in CAMS-Rad at 1-min
temporal resolution, Section 2.2), such as cloud fraction and cloud
optical thickness, could function as clear sky detection (CSD) tool.
However, CSD based on ground-based solar irradiance is preferable
due to induced errors in satellite-derived CSD. For example, the
Heliosat-4 method, under certain circumstances, suffers from ‘false
alarm’ cases, which erroneously characterize clear sky cases as
cloudy [35]. Furthermore, the extraction of cloud information at
specific points (coordinates) from satellite images includes
considerable uncertainty. Apart from spatial downscaling, the
temporal disaggregation to 1-min temporal resolution or the
temporal upscaling to hourly or higher temporal scales introduces
additional uncertainty. For example, 1-min CAMS-Rad data are
retrieved through temporal interpolation of the clearness index
between consecutive 15-min intervals (the temporal resolution of
MSG satellite images) ignoring the high fluctuating character of
cloud cover. In general, CSD applications are evaluated using 1-min
GHI observations (GHIOBS). At lower temporal resolutions, CSDs
may be designed from scratch or modified appropriately [22,41].
Despite the different algorithmic basis and temporal scales, most
CSD methods compare GHIOBS against clear-sky GHI or use the
(modified-) clearness index, considering several criteria and
thresholds to detect clouds [42].

In this study, a modified version of the CSD methodology, pro-
posed by Ref. [43], discriminates the sky state. Ineichen et al. [43]
used the modified clearness index, kt’ [44], to separate the sky type
into three main categories, a) cloudy sky (kt’� 0.3), b) intermediate
sky (0.3 < kt’ � 0.65), and c) clear sky (kt’ > 0.65). The modified
clearness index kt’ is defined as,

kt
0 ¼kt = ½1:031expð�1:4þ9:4 =MÞþ0:1� (1)

with kt is the global clearness index, defined as the ratio of GHI to
the solar irradiance at the top-of-the atmosphere on a horizontal
plane (E0), kt ¼ GHI=E0 (2), and M is the optical air mass [45].
However, the thresholds for the three distinct zones were selected
arbitrarily and could differ for ground measurements with lower



Fig. 2. Flow chart of the site adaptation methodology. ML and AI techniques predict
DGHI in terms of several atmospheric parameters, solar zenith angle and GHICAMS.

V. Salamalikis, P. Tzoumanikas, A.A. Argiriou et al. Renewable Energy 195 (2022) 92e106
temporal resolution. Following the three-state sky's division of
[43], the specific thresholds are adjusted by applying a Hidden
Markov Model (HMM). Considering that a mixture of sky types
represents kt’, the HMM aims to identify regimes in kt’ time series,
each represented by a specific probability distribution (here the
gaussian distribution).

Fig. 1a illustrates an idealized example of the HMM result. The
intersection points between the consecutive gaussian distributions
could diagnose the three kt’ regimes. The first threshold (Th1)
separates the cloudy from intermediate cloudy conditions while
Th2 separates the intermediate from clear conditions. Fig. 1b shows
the frequency histogram of the observed kt’ (kt0 ,OBS). When the
HMMmodel is applying to kt0 ,OBS, the threshold Th2 equals 0.73, i.e.,
indicating clear sky conditions when the clearness index exceeds
0.73 (shaded blue area in Fig. 1b).

A classification into two (clear and cloudy) rather than three
states may also be representative. Using a two-state HMM, the
threshold value to classify the sky state to clear or cloudy estimated
equal to 0.67. When comparing the two-state against the three-
state HMM model using the Bayesian Information Criterion (BIC),
the three-state HMMmodel shows a lower BIC. So, the threshold of
0.73 is finally used to classify the sky conditions. The HMM simu-
lations are performed using the depmixS4 R package [46]. It is
worth mentioning that other CSD methodologies could be applied,
possibly leading to different results. However, is beyond the scope
of this paper to describe the most appropriate CSD method.

3.2. Site adaptation framework

The concept of site adaptation aims to reduce the bias between a
modelled and observed parameter. Eq. (3) decomposes the site
adapted GHI (GHIAD) as,

GHIAD ¼GHIOBS0GHIAD ¼ GHICAMS þ DGHI (3)

where the subscripts OBS, CAMS, and AD correspond to the
observed, initially modelled and site adapted GHI. The term DGHI
(¼ GHIOBS � GHICAMS) is the bias between the CAMS and the
observed solar irradiances. The problem is transformed into a post-
processing process focusing on DGHI and it can be treated by
applying MOS techniques.
Fig. 1. a) Idealized example of mixture with 3 Gaussian distributions, each one representin
separate the total gaussian mixture area in terms of the sky's state. b) Frequency histogra
(green), and clear (blue) sky conditions. The Gaussian curves are drawn using a 3-state Hidde
through the intersection of consecutive gaussian lines. The shaded blue area indicates the pr
three sky states (outliers are omitted).
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Machine learning algorithms (MLAs) may extract possible non-
linear patterns and interactions between DGHI and independent
features. The flowchart of Fig. 2 provides an overview of the
methodology to site-adapt the GHICAMS. GHICAMS is also used as
input along with atmospheric parameters and solar zenith angle to
estimate DGHI using various MLAs. The incorporation of physics-
based information (i.e., GHICAMS) is the main difference against
the traditional residual models. The modelled biases are finally
added to the GHICAMS to obtain the site adapted GHI (GHIAD).

The proposed methodology is applied separately at clear and
cloudy conditions with DGHI ¼ fðGHICAMS; SZA;AOD550;WV; TCO3Þ
and DGHI ¼ fðGHICAMS; SZA; AOD550;WV; TCO3; COT; CFÞ.The in-
dependent features are GHICAMS (raw GHI from CAMS-Rad service),
g different sky conditions. The vertical dashed lines in thresholds 1 (Th1) and 2 (Th2)
m of the observed (kt0 ,OBS) The colored lines represent cloudy (orange), intermediate
n Markov Model (HMM). The representative ranges for each sky condition are retrieved
esence of clear skies (kt0 ,OBS > 0.73). The boxplots summarize the range of kt0 ,OBS for the
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SZA (solar zenith angle), AOD550 (aerosol optical depth at 550 nm),
WV (total column water vapor), TCO3 (total column ozone), COT
(Cloud Optical Thickness), CF (cloud fraction) and fð ,Þ is the
selected model. Any physical inconsistencies produced by the site
adaptation procedure including a) GHIAD < 0 and b) GHIAD
exceeding a maximum observation limit (aGHI ¼ 1:05� maxðGHIÞ,
[24]), are padded with GHICAMS.

Considering that GHICAMS is modelled through McClear and
McCloud modules in CAMS-Rad, all independent parameters are
incorporated into the residual modelling approach to capture any
remnant contributions not adequately described by CAMS-Rad. The
input parameters are not selected arbitrarily because they repre-
sent different physical effects contributing to GHI attenuation.
Therefore, feature selection techniques for extracting the most
prominent contributors are not implemented at this stage.

Supervised learning methods with various prediction mecha-
nisms (linear, tree-based, distance-based and kernel-based) are
implemented for site adapting GHICAMS, namely.

1. Fully Connected Neural Networks: Neural Networks (NN) [47]
attempt to extract relationships between a target parameter and
independent features using a series of layers which are con-
sisted of a series of units (neurons). Therefore, NN is formed by
three parts; the first includes the input features, the second is
the intermediate layer which controls the network's complexity
via the number of the hidden layers and units (hidden nodes per
layer), and the third layer is the output. Here, all hidden layers
are activated through the Rectified Linear Unit (ReLU) function,
also including a dropout fraction on its weights to prevent
overfitting. The output layer consists of a single linearly acti-
vated layer [48]. The AdaDelta (Adam) optimizer performs the
stochastic gradient descent on the neural network. The NN ar-
chitecture depends on various parameters, termed hyper-
parameters in ML and AI jargon. The internal parameters
controlling the NN structure and complexity are estimated by
minimizing a regularized empirical loss function. Conversely to
the standard NNs, the regularized objective here combines a
regression loss function; the mean of squared residuals (MSE),
with a structural loss function described by multiplying the L2-
norm of the NN weights with a regularization parameter ([2).
The regularized term penalizes the hidden layer's complexity
and mitigates overfitting. For optimizing the training procedure,
the input parameters are standardized to have zero mean and
unit variance before running NNs.

2. Extreme Gradient Boosting machines (XGBoost): XGBoost is a
scalable machine learning algorithm that builds an extensive
collection of decision trees and ensembles them to make pre-
dictions [49]. Each regression tree is created by the entire
training set or randomly selected sample portions of the training
set using split-based rules of the predictor space. In XGBoost, a
tree is grown by splitting into branches following the approxi-
mate greedy algorithm. A series of internal parameters esti-
mated by minimizing a regularized loss function control the
tree's structure and complexity. In contrast to the unextreme
gradient boosting methods, the regularized objective in
XGBoost combines a regression loss function such as the sum of
squared residuals and a regularization term that penalizes the
tree complexity. A shrinkage parameter that controls the effect
of each tree in the final prediction process and a feature sub-
sampling process used for training each tree and its levels are
also included in XGBoost to prevent overfitting.

3. Random Forests (RF): Random forests is a tree-basedmethod for
classification and regression problems [50]. RF method builds a
multitude of decorrelated weak learners (decision trees) and
then averages them to make the final predictions. The forest of
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regression trees produces an ensemble of predictions, and the
final output is determined through averaging over the ensemble
values. RF is based on ‘bagging’ or ‘bootstrap aggregation’ to
reduce variance and minimize overfitting. Each tree is trained
simultaneously by bootstrap samples, including a random set of
training values and features at each tree node to ensure low
correlation among decision trees. In this case, random forests
select a subset of features compared to decision trees that
consider all possible feature splits. The complexity and structure
of RF are controlled by three main hyperparameters, namely the
number of trees, the minimum nodes in each tree and the
number of features used for tree splits.

4. Elastic Net regression (GLMNET): The elastic net regression
(GLMNET) has similar parametrization to ordinary least squares,
but it is equipped with two penalized terms (lasso and ridge
regularizers) in the loss function [51,52]. The lasso penalty ([1)
multiplies the L1-norm of regression coefficients in the loss
function and makes a kind of feature selection. On the other
side, the ridge penalty ([2) shrinks the regression coefficients. It
multiplies the L2-norm of regression coefficients in the loss
function, and its main objective is to mitigate overfitting. In
contrast to the lasso term, the ridge term does not act as a
variable selection function.

5. Multivariate Adaptive Regression Splines (MARS): MARS is a
non-parametric statistical technique for regression aiming to
capture nonlinearities between the dependent and independent
variables using piecewise linear relationships [53]. The non-
linearities are incorporated in MARS by assessing knots similar
to step functions, also termed linear splines (basis functions). In
this way, the target variable in MARS is not directly modelled in
terms of the feature space, but it is estimated through an ad-
ditive form of the individual basis functions. All possible knots
are determined across the feature space. The optimal number of
terms included in the final model and the position of knots are
extracted by minimizing the Generalized Cross Validation
(GCV), while the regression coefficients are obtained by the
minimization of the residual sum squares like in standard linear
regression [52].

6. Support Vector Regression (SVR): Support Vector Machines
perform both classification and regression problems. The main
objective of this supervised learning method is to extract a hy-
perplane in the kernel-induced feature space with good gener-
alization performance [52,54]. The non-linear patterns are
captured in SVR by applying kernels (here the radial basis
function is used) in feature space. The ε-insensitive loss
regression is commonly used in SVR problems where the sup-
port vectors falling within the margin defined by the ε param-
eter do not contribute to the minimization of the ε-SVR loss
function [54].

Several hyperparameters describe the complexity and the
structure of the pre-described supervised learning techniques.
Before the application of such methods, hyperparameter tuning is
recommended to increase the model's performance [55]. Table A1
describes the tuning hyperparameter space for the statistical
techniques used in this study. Generating predictions with the
entire cartesian hyperparameter space is computationally expen-
sive and time-consuming. An alternate approach consists of
applying a randomized grid search procedure for the extraction of a
model converging to “optimal” ones. The tuning scheme for the ML
algorithms (XGBoost, RF, GLMNET, MARS and SVR) includes a ran-
domized grid search procedure equipped with an N-fold cross-
validation scheme (CV). The randomized searching algorithm
runs 100 times with 5-fold CV and RMSE as the fitness function. The
total number of simulations is considered capable of estimating the
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final hyperparameter set. On the other side, the randomized
searching algorithm for neural networks runs 100 times with 5
trials per run. Each NN is trained with 1000 epochs, a batch size of
64 and the mean squared error (MSE) as the fitness function. The
tuning procedure for the statistical models is evaluated using keras
[56], kerastuner [57], caret [58] and mlr [59] R packages.

The site adaptation scheme of Fig. 2 could be evaluated in every
place around the globe with available radiometric measurements,
even for short periods. The selected input variables are available
from every reanalysis and satellite product, so, they could be easily
treated as input parameters. This makes theML process as simple as
possible. However, model tuning is necessary to retrieve the best
configurations that optimally fit the site's specific atmospheric and
climatic characteristics.

3.3. Statistical evaluation

Numerous statistical indicators exist in the literature for vali-
dating a modelled product [60]. provided an extensive review of
the most used statistical indices in solar-related applications. Here,
the GHICAMS and GHIAD are statistically verified against GHIOBS with
the mean bias error (MBE), the root mean square error (RMSE) and
the correlation coefficient (R). Briefly, the MBE and RMSE are
dispersion indicators with optimal values equal to zero. The
normalized errors (nMBE and nRMSE) are also calculated using the
average GHIOBS as reference. The correlation coefficient, R, is a
performance metric and measures the linear association between
two variables with an optimal absolute value equal to unity. The
RMSE can serve as a distribution-scale metric for examining the
distribution similitude of the observed and modelled distributions
if modified appropriately, e.g., by using as inputs the cumulative
distribution functions (CDF),

RMSECDF¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

�
qCAMS;i � qOBS;i

�2
vuut (4)

with N the number of discrete levels selected for drawing the CDF
and q the individual quantiles.

4. Results and discussion

4.1. GHICAMS against observations in Patras, Greece

This section includes the validation of GHICAMS against obser-
vations from January 2014 to December 2020. First, the sky con-
ditions are classified as to clear or cloudy by the CSD approach
(Section 3.1) considering only the measurements with SZA <80� to
avoid low-sun and shading issues. The modified global clearness
index, kt0 ,OBS, calculated through GHIOBS, is a proxy for detecting
clouds, with clear skies for kt0 ,OBS exceeding 0.73. Fig. 3a summa-
rizes the CSD results on a yearly basis. In total, 56.3% of the hourly
data (14536 out of 25851) are classified as clear. The annual aver-
ages of clear and cloudy hours were 2077 and 1611 respectively.
Each year, the number of clear hours is higher than the cloudy ones.

The frequency histograms for the modified global clearness in-
dex, kt’, using GHIOBS and GHICAMS, show unimodal, significantly
peaked, and skewed statistical distributions towards higher kt’
(Fig. 3b). Higher frequencies of kt0 ,CAMS are revealed, indicating
erroneously assigned clear cases under the presence of clouds. CSD
outcomes in terms of kt0 ,OBS and kt0 ,CAMS are further examined using
the confusion matrix (subplot in Fig. 3b). The diagonal values
represent the number of instances classified correctly as clear (True-
Positive, TP) and cloudy (True-Negative, TN). The off-diagonal ele-
ments indicate the misclassified cases. More specifically, 1156 False-
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Negative (FN) and 1936 False-Positive (FP) cases exist, implying that
CSD using the GHICAMS cannot completely reproduce the actual
classes. According to the confusion matrix results, the accuracy
metric and the F1-score are equal to 0.88 and 0.90, respectively.

Fig. 4aecrepresent the cross-relationships between GHICAMS
and GHIOBS in Patras, Greece, for the entire measurement period.
The CAMS-Rad exhibits high performance at all-sky conditions
(Fig. 4a), with a correlation coefficient R ¼ 0.97, indicating the
strictly linear relationship between the modelled and measured
solar irradiances. CAMS-Rad overestimates the observations with
MBE¼ 22.8Wm�2 and a slope for the best fit line of 0.97, while the
data points are significantly dispersed along the bisector (dashed
line) showing a highly variable pattern (RMSE ¼ 74 W m�2). The
systematic (nMBE) and dispersion (nRMSE) errors are significant,
accounting for 4.9% and 15.7% of the average GHIOBS (470 W m�2)
respectively.

Splitting the entire dataset into clear and cloudy cases enables
the precise examination of error propagation concerning the sky
state. Clouds are mainly responsible for the error magnitude since
the CAMS-Rad performs efficiently at cloudless conditions. The
dispersion error accounts for 38.8% of the mean GHIOBS
(274.7 W m�2) with an RMSE ¼ 106.5 W m�2 and CAMS-Rad
significantly overestimates the observations (MBE ¼ 48.2 W m�2,
nMBE ¼ 17.6%). A vast number of points (Fig. 4b) exist above the
identical line, indicating the CAMS-Rad inability to reproduce
GHIOBS under the presence of clouds. Under clear skies (Fig. 4c), the
accuracy and performance for GHICAMS are substantially improved.
The systematic and dispersion errors are remarkably lower with
nMBE ¼ 0.5% and nRMSE ¼ 4.9% and an equal to unity linear
relationship.

The difference between GHIOBS and GHICAMS statistical distri-
butions is also significant. According to Eq. (4), the CDF-based RMSE
(RMSECDF) compares the statistical distribution of two variables by
measuring the dispersion between the CDFs. RMSECDF approaches
55.2 W m�2 and 23.8 W m�2 for cloudy and all-sky conditions
respectively. Under clear skies, GHIOBS and GHICAMS (Fig. 4d) are
distributed similarly with RMSECDF ¼ 5.5 W m�2.

The discrepancies between cloud-free GHICAMS and GHIOBS are
due to the underestimation of the cloud-free conditions from the
CAMS-Rad service. The frequency histograms of Fig. 3b and the
confusion matrix's results address this fact. Independently of the
magnitude of the kt’, the ideal situation for a clear-sky dataset
corresponds to an equal number of modelled and observed kt’, both
exceeding the clear sky threshold of 0.73 (True Positive cases e TP).
The existence of 1156 False-Negative cases (FN) with kt0 ,CAMS � 0.73
and kt0 ,CAMS > 0.73, determines the underestimation of the
observed cloud-free cases from CAMS-Rad. The GHI underestima-
tion at ‘real’ clear skies is further addressed by comparing GHIobs
and GHICAMS for for i) kt0 ,CAMS> 0.73 (TP), and ii) kt0 ,CAMS� 0.73 (FN),
respectively (Fig. 5a). The results of Fig. 5a verify that CAMS-Rad
calculates GHI assuming the presence of clouds even if the CSD
using kt0 ,OBS shows the dominance of clear skies. In the case of
kt0 ,CAMS � 0.73, the systematic bias reaches �53.9 W m�2

(nMBE ¼ �12.1%), and the dispersion error is 83.5 W m�2

(nRMSE ¼ 18.7%), significantly higher in absolute values than those
calculated for kt0 ,CAMS > 0.73 (MBE ¼ 8.1 W m�2, nMBE ¼ 1.3%,
RMSE ¼ 19.9 W m�2, nRMSE ¼ 3.1%). The slope of the best-fit line
drops from 0.98 to 0.91, with all GHI pairs located beneath the 1:1
line. To support further the assumption that the erroneously
assigned cloud presence is reflected in GHICAMS discrepancies, the
clear-sky GHICAMS (GHICAMS, cs), provided both in standard and
‘detailed info’ requests, is compared against observations for TP and
FN cases described previously (Fig. 5b). According to Fig. 5b, the
clusters of points for both kt0CAMS cases look similar, indicating that
GHICAMS, cs is closer to observations, and in this case, individual



Fig. 3. a) Annual distribution of clear and cloudy hours from January 2014 to December 2020. The dashed horizontal lines (blue for clear and orange for cloudy cases) correspond to
average values (Clear: 2080 and Cloudy ¼ 1614) over the whole period. b) Frequency histograms of the modified global clearness index kt’ for GHIOBS (blue) and GHICAMS (orange).
The vertical dashed line for kt’ ¼ 0.73 separates clear from cloudy conditions. The subplot corresponds to the confusion matrix of the CSD approach using the kt0 ,OBS as reference. CSD
is evaluated using kt0OBS for the actual-reference classes and kt’ from GHICAMS (kt0 ,CAMS) for the predicted classes.

Fig. 4. Scatter density plots between GHIOBS and GHICAMS, Greece, from January 2014 to December 2020 at a) all-sky, b) cloudy (kt',OBS �0.73), and c) clear (kt',OBS >0.73)
conditions. Warm colours indicate high density. The dashed and solid lines correspond to the 1:1 and best linear fit. The percentage errors in the parenthesis describe the
normalized MBE and RMSE (nMBE and nRMSE) with the averaged observed solar irradiance. d) Cumulative Distribution Functions (CDF) for GHIOBS (solid lines) and GHICAMS
(dashed lines) at all-sky, cloudy, and clear conditions. The RMSECDF describes the distribution similitude via examining the squared differences of the individual distribution
quantiles. The MBE, RMSE, and RMSECDF are express W me2.
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comparisons regarding kt’ regimes are unnecessary. The MBE and
RMSE explain only a small portion of the averaged GHIOBS with
MBE ¼ 7.5 W m�2, nMBE ¼ 1.2%, RMSE ¼ 22.4 W m�2, and
nRMSE ¼ 3.6%.
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4.2. Site adaptation of GHICAMS

4.2.1. Data splitting
A common practice in statistical modelling and intercomparison

studies includes splitting the available dataset into reference
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(training) and target (testing) subsets. The selection of a reasonable
period as a reference for site-adaptation purposes depends clearly
on the abundance and quality of ground-based measurements [23].
examined the minimum data requirements for performing site
adaptation using ground-based datasets with various temporal
intervals ranging from 3 months to 2 years. The sensitivity analysis
showed that the error metrics (MBE and RMSE) tend to a minimum
value if a complete year of observations is used at least. For shorter
periods, the errors increase substantially.

In this study, the last two available years (2019 and 2020) are
used for training and the entire period (2014e2020) for site
adaptation purposes. In addition, two sensitivity analyses were
performed to confirm that every arbitrarily chosen 2-year data
period for training leads to similar results. The first uses all possible
combinations of a 2-calendar year period between 2014 and 2020
as reference. The second takes as reference a random sample of
about 7400 values that correspond to a 2-year period. The random
sampling process is repeated 1000 times to obtain relatively robust
results. Fig. A1 and A2 display the results for both sensitivity ana-
lyses. The bars' height and the vertical segment correspond to each
statistical metric's median and interquartile range
(IQR ¼ Q75%eQ25%). Small IQR values indicate closeness to the
central tendency (in this case, the median), leptokurtic distribu-
tions of the statistical indices, and stability in the sensitivity anal-
ysis. Comparing the two sensitivity analyses, the medians of the
statistical metrics are almost similar, with minimal IQR deviations.
Low IQR values in the second sensitivity procedure are due to the
number of iterations. Also, the medians are close to the statistical
indices obtained for the entire data period (Fig. 4). The above dis-
cussion confirms the ‘unbiased’ selection of 2019e2020 as a
reference/training period.

According to Section 4.1, the training and testing datasets
contain several erroneously classified clear or cloudy instances
compared to the ‘real’ sky conditions. Since the site-adaptation
approach does not include any parametrization for handling mis-
classified cases, all data are used for the model's design process. At
this stage, it is necessary to mention that site adaptation aims to
correct the systematic and dispersion errors and not generate ir-
radiances capable of performing CSD. For CSD, highly accurate
ground observations or, in the ideal case, all-sky images are
necessary for precisely discriminating the sky's state.
Fig. 5. Scatter plots between GHIOBS and a) GHICAMS, and b) clear-sky GHCAMS (GHICAMS,cs) fro
orange dots correspond to GHI pairs with kt0 ,CAMS � 0.73 and kt0 ,CAMS > 0.73, respectively. The
and RMSE of the GHI are expressed in W m�2.
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4.2.2. Statistical assessment of site adapted GHI
This section describes the site adaptation results of MLAs and

further comparisons against state-of-the-art methods. Supervised
learning techniques attempt to predict the DGHI using several
exogenous variables, including GHICAMS as input. The ‘optimal’
hyperparameter configurations for the statistical methods at clear
and cloudy conditions are retrieved through the randomized-grid
search method (Section 3.2). The results of the tuning approach
are represented in Table A2.

Table 1 shows the statistical indicators of dispersion (MBE,
RMSE, and the relative forms), the overall performance (R), and
statistical similitude (RMSECDF) of GHICAMS and GHIAD against
GHIOBS under all-sky, clear, and cloudy conditions as classified by
kt,OBS’. Two state-of-the-art site adaptation techniques (LIN and
EQM) are also considered for comparison purposes, apart from the
MLAs. Briefly, Linear regression bias removal (LIN) draws a linear
relationship between GHICAMS and GHIOBS and then projects GHI-
CAMS across the identical line (1:1). Thus, the systematic bias is
eliminated, also reducing the dispersion error. On the other side,
the Empirical Quantile Mapping (EQM) method adjusts the distri-
bution of the GHICAMS to follow that of observations acting non-
parametrically in terms of the Empirical Cumulative Distribution
Function (ECDF). This ECDF matching improves the systematic and
dispersion errors of GHIAD by correcting the individual quantiles of
the modelled statistical distribution [19,23]. represented the LIN
and EQM approaches, highlighting their potential to correct
satellite-derived and reanalysis solar irradiances.

According to Table 1, the statistical metrics for all site adaptation
models are better than those for GHICAMS, with significant im-
provements under cloudy and all-sky conditions. The sky state is
discerned by using kt0 ,OBS and not kt0 ,CAMS. In this case, site adap-
tation models are evaluated under the ‘real’ sky conditions. The all-
sky systematic errors (MBE and nMBE) are lower than 8 W m�2,
except of SVR, with the lowest MBE for MARS and RF models
(5.9 W m�2) and reductions exceeding 50% compared to the raw
(CAMS) case (22.8 W m�2). The normalized systematic errors are
lower than 2%, in agreement with other site-adaptation studies
reported in the literature. All-sky errors reflect the improvement
detected in cloudy cases. The tree-based MLAs (RF and XGBoost)
report the lower systematic errors (<26 W m�2) compared to the
other MLAs and the state-of-the-art methods with an approximate
doubling value for the raw case (48.2 W m�2). MLAs outperform
m January 2014 to December 2020 at clear sky conditions (kt0 ,OBS > 0.73). The blue and
percentage errors in the parenthesis describe the normalized MBE and RMSE. The MBE



Table 1
Goodness-of-fit (GOF) statistics for GHICAMS and GHIAD. MBE, RMSE, and RMSECDF
are expressed in W m�2; nMBE, nRMSE in %.

MBE nMBE RMSE nRMSE R RMSECDF

All
CAMSa 22.8 4.9 74 15.7 0.98 23.8
NN 7.9 1.7 62.8 13.4 0.98 9.6
XGBoost 7.2 1.5 57.1 12.1 0.98 8.8
RF 5.9 1.3 56 11.9 0.98 8
GLMNET 7.2 1.5 65.7 14 0.97 11.5
SVR 9.7 2.1 64.9 13.8 0.97 10.6
MARS 5.9 1.3 64.4 13.7 0.97 8.2
EQM 6.4 1.4 71.7 15.3 0.98 7.6
LIN 7.4 1.6 75.5 16.1 0.98 13.1

Clear
CAMS 3.2 0.5 30.3 4.9 0.99 5.50
NN �8.5 �1.4 30.2 4.9 0.99 9.4
XGBoost �7.2 �1.2 29.2 4.7 0.99 7.8
RF �8.1 �1.3 29.8 4.8 0.99 8.7
GLMNET �10.9 �1.8 35.6 5.7 0.99 11.4
SVR �5.5 �0.9 30.7 4.9 0.99 6.6
MARS �10 �1.6 36.2 5.8 0.99 11
EQM �12.9 �2.1 32.9 5.3 0.99 15
LIN �12 �1.9 32.1 5.2 0.99 16.8

Cloudy
CAMS 48.2 17.6 106.5 38.8 0.95 55
NN 29 10.5 88.6 32.3 0.96 33.7
XGBoost 25.8 9.4 79.7 29 0.93 29.1
RF 24 8.7 77.7 28.3 0.94 26.4
GLMNET 30.4 11.1 90.9 33.1 0.91 32.7
SVR 29.2 10.6 91.7 33.4 0.92 34.7
MARS 26.4 9.6 88.3 32.2 0.92 29.4
EQM 31.3 11.4 101.9 37.1 0.95 43.7
LIN 32.4 11.8 108.2 39.4 0.95 53.3

a CAMS: uncorrected GHICAMS.
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EQM and LIN regarding the systematic bias with MBE differences
exceeding 3.4 W m�2. The dispersion error shows similar patterns
as the systematic bias. RMSE ranges for MLAs are 56 W m�2 (RF) e
64.9 W m�2 (SVR), 77.7 W m�2 (RF) e 91.7 W m�2 (SVR) in all-sky
and cloudy conditions, respectively. MLAs efficiently reduce RMSE.
The relevant RMSE reductions exceed 8.3 W m�2 (GLMNET) and
14.8Wm�2 (SVR) compared to the uncorrected case (all: 74Wm�2

and cloudy: 106.5 W m�2). Among regression methods, NN is the
best model outperforming MARS and GLMNET, indicating the
better reproduction of possible nonlinearities among the observed
GHI and the auxiliary predictors. As denoted in Ref. [23], it is hard to
obtain distinguishable reductions in the error metrics in cases
where the quality of modelled data is already high. This fact is
observed in clear sky conditions where CAMS performs efficiently.
According to Table 1, slight RMSE reductions are calculated for
XGBoost and RF. NN provides comparable RMSE to the uncorrected
GHI, while GLMNET and MARS cannot reduce the dispersion bias
giving high RMSEs (Table 1).

The overall performance assessed through the correlation co-
efficient (R) does not change significantly for the raw and the site
adapted irradiances, remaining at high levels (all: R > 0.98, cloudy:
R > 0.95, and clear: R z 1). Another critical point is to explore
whether site adaptation improves the distribution similitude be-
tween the adapted and the observed solar irradiances. All models
except LIN provide RMSECDF lower than 10 W m�2 at all-sky con-
ditions. A significant result for the distribution comparisons is that
MLAs outperform EQM at clear and cloudy conditions, even if the
mathematical ‘kernel’ of EQM is distribution matching.

The site adapted GHIs are also evaluated on a seasonal basis.
Figs. 6e8 represent the systematic and dispersion errors at all-sky,
clear and cloudy conditions for the uncorrected and the ML-
adapted GHI. It is clearly shown that MLAs perform efficiently at
all seasons in all-sky and cloudy cases, with higher MBE and RMSE
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in springtime. The high variability of cloudiness explains this
behavior in spring. Especially under the dominance of broken
clouds, the satellite suffers from reproducing accurately the cloud
fraction and the cloud optical depth giving erroneous GHI pre-
dictions. Such cloud cases are favorable in spring over the selected
location. Site adaptation methods equipped with cloud-related
exploratory variables try to reduce the error patterns to a certain
degree. In contrast, the simple methods of EQM and LIN show high
systematic and dispersion errors.

MARS records the lowest MBE in spring under all-sky conditions
(6.49 W m�2). However, looking closer at the MBE under clear and
cloudy skies, the relevant values are �19 W m�2 and 31 W m�2,
indicating that strong underestimation for clear skies (Fig. 7a) is
balanced by strong overestimation of GHI during the presence of
clouds (Fig. 8b), finally giving the low MBE. Thus, it is better to
examine MBE separately for clear and cloudy conditions. In spring,
the minimum underestimation under clear skies is calculated with
SVR (�8.9 W m�2), while the uncorrected GHICAMS is close to ob-
servations with MBE ¼ �1.92 W m�2. Additionally, RF gives the
lowest systematic error for cloudy conditions (28.6 W m�2).
Generally, under clear skies for all seasons, site adaptation models
cannot beat the uncorrected GHICAMS. When clouds are present, RF
is the optimal model, producing the lowest MBEs (Fig. 8a). The
seasonal analysis of the systematic bias implies that MLAs with
tree-based mechanisms give the best MBEs.

Regarding the dispersion error, MLAs show similar patterns
under clear skies with lower RMSE values in autumn and summer.
Most MLAs perform similarly with theworst RMSE for GLMNETand
MARS. Except springtime, the seasonal reduction of dispersion er-
ror is not notable (Fig. 7b). The potential of MLAs to correct GHI is
depicted in Fig. 8b. RMSE diminishes substantially with reductions
compared to uncorrected GHICAMS between 9.9 W m�2 and
40 W m�2. The lowest RMSEs are calculated in winter. The lowest
RMSEs are derived with XGBoost (56 Wm�2) and RF (53.6 Wm�2),
while SVR has the highest RMSE amongMLAs (65.1Wm�2). Similar
RMSE patterns are also represented in the other seasons.

4.2.3. Sensitivity analysis of GHIAD to solar zenith angle and cloud
fraction

This section is focused on the sensitivity analysis of the site
adapted GHI against various solar zenith angles and cloud fraction
cases. The attenuation of solar irradiance depends on the solar
zenith angle and the prevailing atmospheric and sky conditions,
with clouds, when present, being the most prominent factor. GHI is
related to solar zenith angle (SZA) since it controls the attenuation
of sunlight traveling through the atmosphere with more favorable
phenomena at longer slant paths via the concept of optical air mass
(analogous to the factor 1/cos(SZA) in a plane-parallel atmosphere).
On the other side, the amount of cloudiness designated by the cloud
fraction (CF) is responsible for the absorption and scattering phe-
nomena that occur during sunlight traveling. The effects of SZA and
CF on MBE and RMSE for the uncorrected GHICAMS and GHIAD are
represented in Fig. 9. Fig. 9aed shows the MBE and RMSE disag-
gregation in terms of SZA and CF, and the MLAs for each SZA and CF
case. The errors are calculated using SZA and CF windows of ±5�

and ±5%. For example, MBE at SZA ¼ 50� and CF ¼ 20% uses GHIs
within [45�e55�) and [15%e25%), respectively.

According to Fig. 9a, the MLAs represent MBEs lower than
18 W m�2 at all SZAs with lower values for RF. MBE is substantially
reduced with increasing SZA, and for SZA >60�, MBE is lower than
5 W m�2. In general, GHIAD report lower errors than GHICAMS at all
zenith angles, except for the SZA >70�, where the LIN and EQM-
adapted GHI fails to follow GHIOBS showing the worst error per-
formance. Especially in the last SZA category (SZA ¼ 80�), a
doubling in MBE is calculated for LIN compared to the uncorrected



Fig. 6. Seasonal barplots of a) MBE and b) RMSE for the site adapted GHI at all-sky conditions.

Fig. 7. Seasonal barplots of a) MBE and b) RMSE for the site adapted GHI at clear sky conditions.
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GHICAMS. On the other hand, Fig. 9c represents the systematic biases
with respect to cloud fraction as obtained by CAMS-Rad. MBE for
MLAs is substantially lower than MBECAMS for all CF cases (Fig. 9c)
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with minimal values (<5Wm�2) for CF ¼ 0% and CF ¼ 100% except
for GLMNET where MBE for overcast cases exceeds 10 W m�2.
MBECAMS exceeds 25 W m�2 for 10% < CF < 90%, while the



Fig. 8. Seasonal barplots of a) MBE and b) RMSE for the site adapted GHI at cloudy conditions.
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corresponding bias is reduced by more than 50% when the ML-
based site adapted irradiances are used. The dispersion bias bar
plots show the potential of using MLAs for site adaptation
(Fig. 9bed).

RMSE is significantly improved compared to the initial CAMS.
The ranges in RMSE difference between MLAs and CAMS (RMSEMLA
e RMSECAMS) are NN: e27.5 W m�2 to �5.8 W m�2, XGBoost:
e36.5 W m�2 to �9.3 W m�2, RF: e37.1 W m�2 to �10.5 W m�2,
GLMNET: e19.6 W m�2 to �0.4 W m�2, SVR: e15.5 W m�2

to �0.7 W m�2, MARS: e24.4 W m�2 to �3.8 W m�2, for the
different CF (Fig. 9d) classes. RMSE differences for the selected SZA
classes are lower in magnitude. For the traditional site adaptation
models (EQM and LIN), high RMSEs are revealed, even comparable
or higher than the initial CAMS data. The corresponding RMSE
differences, RMSEEQM e RMSECAMS and RMSELIN e RMSECAMS,
are �3.9 W m�2e 0.1 W m�2, e3.9 W m�2e 0.1 W m�2 for SZA
and �3.7 W m�2 e7.6 W m�2, e5.9 W m�2e �1.1 W m�2 for CF.

The collocated effects of SZA and CF to the error performance for
the ‘best’ model is displayed in Fig. 9. The best model is considered
as the one with the minimum values of systematic and dispersion
metrics. More specifically, the 2-d heatmaps in Fig. 9f and h
represent the best model for retrieving the lowest normalized MBE
(Fig. 9e) and RMSE (Fig. 9g) for each SZA-CF pair. Therefore, nMBE
and nRMSE in each grid cell of Fig. 9e and g are calculated using
only those instances falling within the SZA-CF pair. The tree-based
MLAs cover a percentage of occurrence equal to 94.8% regarding
RMSE, with RF being the model with the highest percentage
(58.4%). The heatmap for the optimal model concerning nMBE
cannot give a unique result since seven MLAs have 11 to 13 ap-
pearances in Fig. 9f nMBE and nRMSE receive the lowest value for
CF ¼ 0%, while nRMSE >35% is shown for SZA >70� and a consid-
erable level of cloudiness (CF > 50%). The high errors are probably
due to the erroneous extraction of cloud products at high zenith
angles as well as modelled uncertainties for high optical paths in
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the atmosphere. Such errors are induced in the initial calculation of
GHICAMS and cannot be efficiently improved by applying site
adaptation.

In general, the state-of-the-art site adaptation models cannot
substantially reduce systematic and dispersion errors. Therefore,
applying MLAs for site adaptation using numerous exogenous
variables is a promising tool and it is highly recommended for local-
based correction of solar products. Of course, similar models can be
designed to site adapt the other two solar irradiance components
(direct and diffuse irradiance) with different ML models configu-
rations and the addition or removal of relevant atmospheric and
climate information.

5. Conclusions

Due to the sparsity of radiometric sites worldwide and the
increasing energy demand from solar energy sources, time-
contiguous and up-to-date solar potential in every place around
the globe can be retrieved using reanalysis and satellite-derived
solar datasets. The discrepancies between the observed and
modelled solar irradiances become critical when satellite-derived
solar irradiance is used as the primary solar resource in solar en-
ergy applications.

This study presents the validation of GHICAMS against observa-
tions in Patras, Greece and the evaluation of a machine learning
framework to adjust GHICAMS biases for all-sky, clear, and cloudy
conditions. A newly proposed method is applied to define the
thresholds of clearness index for the classification of the sky state as
cloudy, intermediate and clear. GHICAMS performs efficiently in
clear skies because of the high performance of McClear with nMBE
<1% and nRMSE <5%. However, significant systematic and disper-
sion errors exist for all-sky (MBE¼ 22.8Wm�2, RMSE¼ 74Wm�2)
and cloudy (MBE ¼ 48.2 Wm�2, RMSE ¼ 106.5 Wm�2) conditions.
The calculated discrepancies between GHIOBS and GHICAMS enable



Fig. 9. Bar plots of a) MBE vs. SZA, b) RMSE vs. SZA, c) MBE vs. CF, and d) RMSE vs. CF. Heatmaps of the lowest error metrics e) nMBE and g) nRMSE for different SZA and CF. f) and h)
show the best site adaptation model in terms of the lowest MBE and RMSE. nMBE, nRMSE and CF are in % and SZA in degrees.
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the site adaptation of GHICAMS through supervised learning tech-
niques using atmospheric parameters, solar zenith angle and
GHICAMS as inputs. The main findings extracted through the eval-
uation process are summarized as follows:

� MLAs outperform the state-of-the-art site adaptation method-
ologies leading to reduced systematic and dispersion errors
increasing also the statistical similitude with the observed
irradiances.

� MLAs with tree-based prediction mechanism and especially
Random Forests can be optimally used for site adaptation of the
modelled irradiances. Compared to the other MLAs, those
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methods provide lower systematic and dispersion error even for
the clear sky instances. The seasonal analysis of the error met-
rics shows similar results with RF being the optimal model.

� Site-adaptation reduces MBE and RMSE at various SZAs and CF
cases. The lowest RMSE values are revealed for the tree-based
MLAs. The improvement in RMSE extends
between �37.1 Wm�2 and e9.3 Wm�2.

Based on the results of this study, new directions can be drawn.
The addition of other explanatory variables into the modelling pro-
cess, the site adaptation of DNI and DHI, and the application of the
proposedmethodologyat siteswithdifferent atmospheric conditions



Table A2
Optimal hyperparameters sets for supervised machine learning techniques.

Method Hyperparameter Sky State Upper

Clear Cloudy

Neural Networks (NN)
Hidden layers 3 3
Hidden nodes (64, 32, 64) (128, 32, 64)
Dropout fraction (0.1, 0, 0.2) (0.2, 0.3, 0.3)
[2 regularization (0.01, 0.001, 0.001) (0.001,0.001,0.001)
learning rate 0.01 0.001

Extreme Gradient Boosting Machines (XGBoost)
nrounds 854 402
eta 0.00413 0.0306
subsample 0.971 0.955
max_depth 8 11
min_child_weight 17.9 5.82
colsample_per_tree 0.844 0.891
colsample_by_level 0.723 0.115
lambda 26.9 4.53
alpha 0.211 17.9

Random Forests (RF)1

num.trees 234 872
sample.fraction 0.911 0.885
mtry 2 6
min.node.size 2 2

Elastic Net regression (GLMNET)
alpha 0.179 0.0355
lambda 0.00291 0.147

Support Vector Regression (SVR)
cost 15.1 25.5
gamma 0.133 0.136
degree 0.0543 0.633

Multivariate Adaptive Regression Splines (MARS)
degree 1 2
nprune 11 13

1p e number of predictors and n e number of training samples.
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and climate patterns will be future steps for investigation. Moreover,
the application of the proposed framework prior to short-term solar
forecasting is already inprogress for examiningwhether andhowsite
adaptation could improve solar radiation forecasts.
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Appendix

Table A1

Cartesian hyperparameter space for supervised learning techniques.

Method Hyperparameter Lower Upper By Trans. function

Neural Networks (NN)
Hidden layers 1 4 1 e

Hidden nodes 4 8 1 2x

Dropout fraction 0 0.5 0.1 e

[2 regularization 1 15 e e

learning rate �4 �1 1 10x

Extreme Gradient Boosting Machines (XGBoost)
nrounds 1 1000 e e

eta �10 0 e 2x

subsample 0.1 1 e e

max_depth 1 15 e e

min_child_weight 0 7 e 2x

colsample_per_tree 0 1 e e

colsample_by_level 0 1 e e

lambda �10 10 e 2x

alpha �10 10 e 2x

Random Forests (RF)1

num.trees 1 1000
sample.fraction 0 1
mtry 0 1 x*p
min.node.size 0 1 nx

Elastic Net regression (GLMNET)
alpha 0 1
lambda �10 10 2x

Support Vector Regression (SVR)
cost �10 10 2x

gamma �10 10 2x

degree 1 5 e

Multivariate Adaptive Regression Splines (MARS)
degree 1 3 e

nprune 1
�
pþ 3
3

�
e

1p e number of predictors and n e number of training samples.
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Fig. A1. Barplots of the statistical indicators for the hourly GHI using all possible combinations of 2 years of data from January 2014 to December 2020. The height and the vertical
segments in bars correspond to the median and the interquartile range (IQR ¼ Q75%eQ25%).

Fig. A2. Barplots of the statistical indicators for the hourly GHI using an iterative procedure with period lengths of approximately two years of data from January 2014 to December
2020. The selected periods cover approximately 7400 hourly values. The height and the vertical segments in bars correspond to the median and the interquartile range
(IQR ¼ Q75%eQ25%).
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