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STRENGTHENING PARAMETRIZED-DIFFERENCE
BELIEF REVISION

THEOFANIS I. ARAVANIS

Abstract. Parametrized-difference (PD) belief revision is a special type of rational belief
change, based on a fixed ranking over the atoms of the underlying language, with a plethora of
appealing characteristics. The process of PD revision is encoded in the so-called PD operators,
which essentially constitute a particular class of rational revision functions. In this article, we
strengthen the PD-revision framework with respect to three aspects that are not present in
its original proposal. In particular, we first define a dynamic form of PD revision, letting a
changeable ranking over atoms. Furthermore, we show that PD operators are incompatible
with Horn revision. Against this background, alternative Horn compliant revision operators,
in the spirit of PD operators, are introduced. Lastly, we study PD revision in the realm of
Description Logics, a family of knowledge representation languages oriented towards practical
applications.

1. Introduction

Belief Revision studies the dynamics of knowledge [14, 12]. The AGM paradigm, named
after its original developers Alchourrón, Gärdenfors and Makinson [1], is the widely-accepted
framework modelling the belief-change process. Within this framework, an agent’s belief corpus
is represented as a logical theory, the new information (epistemic input) is represented as a
logical sentence, and the policy of belief revision is encoded in a revision function that maps
a theory and a sentence to a revised (new) theory. Rational revision functions, called AGM
revision functions, are characterized axiomatically by a set of eight postulates, known as the
AGM postulates for revision, and constructively, by means of a special kind of total preorders
over possible worlds, called faithful preorders [18].

A well-behaved family of concrete AGM revision functions, called Parametrized-Difference
revision operators (alias, PD operators), has been recently introduced by Peppas and Williams
[26, 27]. PD operators are natural generalizations of the Hamming-based Dalal’s revision oper-
ator [9], and are expressive enough to cover a variety of real-world applications.

The construction of a PD operator requires an agent to specify a single total preorder ⊴ over
all propositional variables (atoms) of the underlying language, which essentially encodes their
(prior) relative epistemic value. This low representational cost is an important feature of PD
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revision, given that the construction of an arbitrary AGM revision function requires a total
preorder over all possible worlds, for every belief set of the language.1

Perhaps more importantly, as far as practical applications are concerned, when confined to
Horn knowledge bases and the size of queries is bounded by a constant, the complexity of PD
operators drops to linear time with respect to the size of the knowledge base [27].2

The aim of the present article is to strengthen the existing PD-revision framework, by study-
ing the following three aspects that are not present in the original proposal of Peppas and
Williams. Specifically:

• We consider the case where the epistemic input causes changes in the preorder ⊴ over
atoms. The proposed method demands no extra representational cost, thus, the benefits
of PD operators concerning compact specification are preserved. Since ⊴ uniquely defines
a single PD operator, its variation results in changes to the underlying revision policy,
a fact that in turn implies a form of dynamic PD revision.

• As Horn logic (namely, the Horn fragment of propositional logic) has been applied
numerous times in both Artificial Intelligence and databases, we examine whether PD
operators are compatible with Horn revision; i.e., whether the PD-revision of a Horn
knowledge base by a Horn formula always yields a (new) Horn knowledge base. An
established result shows that, unfortunately, this is not the case.3

Against this background, an alternative way for defining Horn compliant revision
operators, parametrized by a preorder over atoms, is proposed. Furthermore, on top of
very recent results established by the author (along with Peppas and Williams) [5], an
indirect connection between PD and Horn revision, by an extension of the underlying
language, is specified.

• Although the study of belief revision is confined, mainly, to the propositional setting,
several important attempts have been made for generalizing the classical AGM paradigm
to modern logical formalisms, such as Description Logics (DL) [13, 31, 29]. DL are
decidable fragments of first-order logic, widely used in ontological modelling and the
Semantic Web, and, unlike a propositional language that is built from atoms, DL are
built from atomic concepts (unary predicates) and atomic roles (binary predicates) [7].

Following this line of research, a study on the adaptation of PD revision in the realm
of DL is conducted herein. In particular, Hamming-based DL revision operators are
introduced, as well as various modified forms of them, parametrized by a total preorder
over all concept and role names.

The remainder of this article is structured as follows: The next section provides the basic
formal preliminaries, followed by a brief summary of the AGM paradigm (Section 3). Sections 4
and 5 introduce Dalal’s construction and PD operators, respectively. Section 6 presents dy-
namic PD revision, Section 7 studies the relation between PD and Horn revision, and Section 8
examines PD revision in DL. The last section of the paper is devoted to a brief conclusion.

1For a propositional language built over n atoms, there exist 2n possible worlds and 2(2
n) belief sets.

2Recall that a Horn knowledge base is a set of Horn clauses, where a Horn clause is a clause (a disjunction of
literals) with at most one positive literal.

3This does not entail that the PD-revision of a Horn knowledge base by a Horn formula —which, as stated,
is characterized by low computational cost— is not a legitimate operation; all that Horn non-compliance entails
is that the result of the revision may be a non-Horn knowledge base.
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2. Formal Preliminaries

This section fixes basic notation and terminology that shall be used throughout the article.

2.1. Language. For a finite, non-empty set of propositional variables (alias, atoms) P, we
define L to be the propositional language generated from P, using the standard Boolean con-
nectives ∧ (conjunction), ∨ (disjunction), → (implication), ↔ (equivalence), ¬ (negation), the
special symbol ⊥ (arbitrary contradiction), and governed by classical propositional logic.

A sentence φ of L is contingent iff ⊭ φ and ⊭ ¬φ. For a set of sentences Γ of L, Cn(Γ) denotes
the set of sentences following logically from Γ; i.e.,

Cn(Γ) =
{
φ ∈ L : Γ |= φ

}
.

We shall write Cn(φ1, . . . , φn) for sentences φ1, . . . , φn, as an abbreviation of Cn
(
{φ1, . . . , φn}

)
,

and φ ≡ ψ iff Cn(φ) = Cn(ψ), for any two sentences φ,ψ ∈ L.

2.2. Belief Sets. An agent’s set of beliefs will be modelled as a theory, also referred to as a
belief set. A theory K of L is any set of sentences of L closed under logical consequence; in
symbols,

K = Cn(K).

Note that, since L is built from a finite set of atoms, any theory K can be represented (modulo
logical equivalence) as a single sentence χ; that is, K = Cn(χ).

We denote the set of all consistent theories of L by K. A theory K is complete iff, for all
sentences φ ∈ L, either φ ∈ K or ¬φ ∈ K. For a theory K and a sentence φ of L, K + φ
abbreviates the theory Cn

(
K ∪ {φ}

)
.

2.3. Literals and Possible Worlds. A literal is a propositional variable p ∈ P or its negation.
We define a possible world (or simply a world) r to be a consistent set of literals, such that, for
any atom p ∈ P, either p ∈ r or ¬p ∈ r. The set of all possible worlds is denoted by M.

For a sentence (set of sentences) φ of L, [φ] is the set of worlds at which φ is true. For the
sake of readability, the negation of a propositional variable p will, sometimes, be represented
as p, instead of ¬p. Moreover, possible worlds will, occasionally, be represented as sequences
(rather than sets) of literals. For a set of literals Q, we denote by Q+ the set containing all
positive literals (atoms) of Q; i.e.,

Q+ = Q ∩ P.

2.4. Preorders. A preorder over a set V is any reflexive, transitive binary relation in V . A
preorder � is called total iff, for all r, r′ ∈ V , r � r′ or r′ � r. As usual, we shall denote by
≺ the strict part of �; i.e., r ≺ r′ iff r � r′ and r′ ⪯̸ r. Moreover, we shall denote by ≈ the
symmetric part of �; i.e., r ≈ r′ iff r � r′ and r′ � r.

For any set X ⊆ V , by min(X,�) we denote the set of all �-minimal elements of X; in
symbols,

min(X,�) =
{
r ∈ X : for all r′ ∈ X, if r′ � r, then r � r′

}
.

Whenever the set X contains (natural) numbers, we shall simply write min(X) to denote the
minimum number in X.
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3. The AGM Paradigm

In this section, the postulational side of the AGM paradigm, as well as the faithful-preorders
model for the process of belief revision, are briefly presented.

In the course of this work, we shall consider, for ease of presentation, only the principal
case of consistent belief sets and contingent epistemic input, unless explicitly stated otherwise.
Note, however, that the AGM paradigm treats the limiting cases of inconsistent belief sets and
non-contingent epistemic input as well. In any case, its dictates are that the revised belief set
is a consistent theory of L, unless the epistemic input is itself inconsistent; see postulate (K ∗5)
of the next subsection.

3.1. The AGM Postulates for Revision. Within the AGM paradigm, the process of belief
revision is modelled as a (binary) function ∗, mapping a consistent theory K and a contingent
sentence φ to a consistent (revised) theory K ∗ φ (Figure 1). The AGM postulates for revi-
sion (K ∗ 1)–(K ∗ 8), presented subsequently, circumscribe the territory of all rational revision
functions, the so-called AGM revision functions.4

(K ∗ 1) K ∗ φ is a theory of L.

(K ∗ 2) φ ∈ K ∗ φ.

(K ∗ 3) K ∗ φ ⊆ K + φ.

(K ∗ 4) If ¬φ /∈ K, then K + φ ⊆ K ∗ φ.

(K ∗ 5) K ∗ φ is inconsistent iff |= ¬φ.

(K ∗ 6) If φ ≡ ψ, then K ∗ φ = K ∗ ψ.

(K ∗ 7) K ∗ (φ ∧ ψ) ⊆ (K ∗ φ) + ψ.

(K ∗ 8) If ¬ψ /∈ K ∗ φ, then (K ∗ φ) + ψ ⊆ K ∗ (φ ∧ ψ).

Postulates (K ∗ 1)–(K ∗ 8) have been slightly reshaped by Katsuno and Mendelzon for the
propositional setting, in order to make the formalization more amendable to implementations
[18]. In particular, Katsuno and Mendelzon assume that the beliefs of an agent are represented
by a sentence ψ of L, and the result of the revision of ψ by an epistemic input µ of L is, also,
a sentence of L. The resulting postulates, which are equivalent to the AGM postulates for
revision (K ∗ 1)–(K ∗ 8), are presented below.

(KM1) ψ ∗ µ |= µ.

(KM2) If ψ ∧ µ is consistent, then ψ ∗ µ ≡ ψ ∧ µ.

(KM3) If µ is consistent, then ψ ∗ µ is also consistent.

(KM4) If ψ1 ≡ ψ2 and µ1 ≡ µ2, then ψ1 ∗ µ1 ≡ ψ2 ∗ µ2.

(KM5) (ψ ∗ µ) ∧ φ |= ψ ∗ (µ ∧ φ).

(KM6) If (ψ ∗ µ) ∧ φ is satisfiable, then ψ ∗ (µ ∧ φ) |= (ψ ∗ µ) ∧ φ.

4For a detailed elaboration on the postulates, refer to [14] or [25].
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K K ∗ φ
∗

φ

Figure 1. Belief revision within the AGM paradigm. (Figure borrowed from [6].)

3.2. Faithful-Preorders Model. Apart from the aforementioned axiomatic approach, several
constructive models for the process of belief revision have been proposed. Herein, we discuss
the well-known model introduced by Katsuno and Mendelzon, which is based on a special kind
of total preorders over all possible worlds, called faithful preorders [18].

Definition 1 (Faithful Preorder, [18]). For a theory K of L, a preorder over possible worlds
�K is faithful to K iff it is total, and such that, for any two possible worlds r, r′ ∈ M:5

(i) If r ∈ [K], then r �K r′.
(ii) If r ∈ [K] and r′ /∈ [K], then r ≺K r′.

The above definition specifies the belief set K as the set corresponding to the �K-minimal
worlds; i.e., [K] = min(M,�K).

A function that maps each theory K of L to a preorder �K , faithful to K, is called a faithful
assignment. Based on the notion of faithful assignment, the following representation theorem
relates the axiomatic and constructive sides of the belief-revision process.

Theorem 1 ([18]). A revision operator ∗ satisfies postulates (K ∗ 1)–(K ∗ 8) iff there exists a
faithful assignment such that, for every K ∈ K and φ ∈ L:

(F∗) [K ∗ φ] = min([φ],�K).

From an epistemological point of view, the faithful preorder �K encodes the comparative
plausibility of the possible worlds of M, relative to K, with the more plausible worlds appearing
lower in the ordering. Hence, condition (F∗) defines the revised belief set K ∗ φ as the theory
corresponding to the most plausible (with respect to K) φ-worlds.

4. Dalal’s Revision Operator

For a theory K of L, Dalal defines the plausibility of possible worlds, encoded in a preorder
�K faithful to K, in terms of a Hamming-based difference between worlds [9]. In the limiting
case where theory K is inconsistent (i.e., [K] = ∅), Dalal defines the belief set resulting from
the revision of K by φ to be equal to Cn(φ). For the principal case of a consistent theory K,
he proceeds to the following definitions.

Definition 2 (Difference between Worlds). The difference between two worlds w, r of M,
denoted by Diff (w, r), is the set of propositional variables over which the two worlds disagree.
In symbols:

Diff (w, r) =
(
(w − r) ∪ (r − w)

)
∩ P.

5In [18], faithful preorders are associated with sentences, rather than theories. However, given that the
underlying propositional language is built over a finite set of atoms, the difference is immaterial.
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Definition 3 (Distance between Theories and Worlds, [9]). The distance between a theory K
of L and a world r of M, denoted by Dist (K, r), is as follows:

Dist (K, r) = min
({∣∣Diff (w, r)

∣∣ : w ∈ [K]
})

.

Definition 4 (Dalal’s Operator, [9]). Dalal’s operator is the revision function induced, via
condition (F∗), from the family of Dalal’s preorders {vK}K∈K, where each preorder vK is
defined, for any r, r′ ∈ M, by means of condition (D).

(D) r vK r′ iff Dist (K, r) ⩽ Dist (K, r′).

It can be easily shown that, for each theory K of L, vK is a total preorder faithful to K,
therefore, Dalal’s operator satisfies the full set of AGM postulates for revision [18, p. 269].

5. Parametrized-Difference Revision Operators

A natural generalization of Dalal’s operator has been recently introduced by Peppas and
Williams, who defined axiomatically in [27] and constructively in [26] a new family of concrete
AGM revision operators, called Parametrized-Difference revision operators; for short, PD op-
erators. PD operators are wide enough to cover a plethora of different applications, and have
nice computational properties in a Horn setting (provided that the size of queries is bounded
by a constant). Furthermore, they can be compactly represented, as each PD operator can
be fully specified from a single total preorder ⊴ over atoms (rather than over possible worlds),
which essentially encodes their (prior) relative epistemic value; in particular, the more epistemic
entrenched (and, thus, more resistant to change) an atom is, the higher it appears in ⊴.

Subsequently, we proceed to the formal definition of ⊴, as presented in [26]. Let ⊴ be a total
preorder over the set P of atoms. For a set of atoms S and an atom q, by Sq we denote the set
Sq = {p ∈ S : p⊴ q}. The preorder ⊴ can, then, be extended to sets of propositional variables.
Definition 5 (Preorder over Sets of Atoms, [26]). For any two sets of atoms S, S ′, S ⊴ S ′ iff
one of the following three conditions holds:

(i) |S| < |S ′|.
(ii) |S| = |S ′|, and for all q ∈ P, |Sq| = |S ′

q|.

(iii) |S| = |S ′|, and for some q ∈ P, |Sq| > |S ′
q|, and for all p◁ q, |Sp| = |S ′

p|.6

In the above definition, condition (ii) states that S and S ′ are lexicographically indistinguish-
able (with respect to ⊴), whereas, condition (iii) states that S lexicographically proceeds S ′ (with
respect to ⊴). It turns out that the extended ⊴ is a total preorder over 2P .

The intended reading of the extended preorder ⊴, defined over sets of atoms, is the same as
in the case of individual atoms; namely, S ⊴ S ′ asserts that a change of all atoms in S ′ is less
plausible than a change of all atoms in S.
Definition 6 (PD Operator, [26]). Let ⊴ be a total preorder over the set of propositional
variables P. A PD operator is the revision function induced, via condition (F∗), from the
family of PD preorders {v⊴

K}K∈K, where each preorder v⊴
K is defined, for any r, r′ ∈ M, by

means of condition (PD).

6◁ denotes the strict part of ⊴.
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(PD) r v⊴
K r′ iff there is a w ∈ [K], such that, for all w′ ∈ [K],

Diff (w, r) ⊴ Diff (w′, r′).

The results in [26] imply that v⊴
K is a total preorder, faithful to K. Observe that, when

⊴ = P × P, then the PD preorder v⊴
K reduces to Dalal’s preorder vK .

Definition 6 dictates that a single preorder ⊴ generates a unique family of PD preorders
{v⊴

K}K∈K, which in turn defines, via (F∗), a revision function ∗. A revision function so con-
structed is called PD operator. The one-to-one correspondence —which can be easily shown
from Definition 6, given that P is finite— between preorders over atoms and PD preorders is
illustrated in Figure 2.

Let us, now, examine the relationship between Dalal’s construction and PD operators through
the following concrete example, borrowed from [26].

Example 1 ([26]). Let P = {a, b, c}, and let K be the complete theory K = Cn(a, b, c). Then,
the (only) preorder that Dalal attaches to K is the following:7

abc ⊏K

abc
abc
abc

⊏K

abc
abc
abc

⊏K abc

According to Dalal, the plausibility of a world r is determined by the number of propositional
variables on which r differs from the unique world abc of the complete theory K. Dalal’s
approach considers that all variables have the same epistemic value; hence, for instance, a
change in variable a is assumed to be as plausible (or implausible) as a change in variable b.

To see how the aforementioned Dalal’s preorder can be restructured to a PD preorder, consider
a total preorder ⊴ over P, such that c ◁ a ∼ b (i.e., variables a and b have greater epistemic
value than variable c, and, consequently, a change in a or b is less plausible than a change in
c).8 Given ⊴, Dalal’s preorder is refined as follows:9

abc ⊏⊴
K abc ⊏⊴

K

abc
abc

⊏⊴
K

abc
abc

⊏⊴
K abc ⊏⊴

K abc

The above ranking takes place in two stages. The first stage is identical to Dalal’s approach;
each world r is ranked according to the number of switches in propositional variables that are
necessary to turn the initial world abc into r. In the second stage, the ranking is further refined
to take into account the different epistemic values of the atoms (encoded in ⊴) that have been
switched.

We close this section by mentioning that the characterization of PD operators in the realm of
all popular constructive models for belief revision, as well as their full compliance with Parikh’s
relevance-sensitive axiom [24], were established in [4].10

7⊏K denotes the strict part of ⊑K .
8∼ denotes the symmetric part of ⊴.
9⊏⊴

K denotes the strict part of ⊑⊴
K .

10Parikh’s axiom is a well-studied constraint that addresses the weakness of the AGM postulates for revision
in capturing relevant change.
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⊴ ⊴
⊴ ⊴

⊴ ⊴

Preorders over Atoms

v⊴ v⊴

v⊴ v⊴

v⊴ v⊴ �

� �
� �

�

Preorders over Worlds

PD Preorders

Figure 2. The one-to-one correspondence between preorders over atoms and
PD preorders. Notation for preorders over worlds represents families of preorders
(one preorder for each theory K of L).

6. Dynamic PD Revision

We, now, turn to the first contribution of this article, which is the definition of a natural
form of dynamic PD revision.

As stated, once the total preorder ⊴ over P has been chosen by a rational agent, the family
of preorders {v⊴

K}K∈K is uniquely determined (via condition (PD)). As {v⊴
K}K∈K essentially

encodes the revision policy of the agent, a constant preorder ⊴ sets, in turn, a static revision
policy. Clearly, however, real-world agents do change the way they revise their beliefs at certain
applications, as a result of rearranging the relative epistemic value of propositions.11

Evidently, the only way to change the revision policy of an agent and, simultaneously, to
remain in the realm of PD revision, is to change the preorder ⊴. A plausible way to change
⊴ would be by means of the epistemic input φ; after all, φ is the only external information
that the agent receives through the whole revision process. And then we come to the natural
question: How exactly the formula φ could initiate a change in ⊴? Subsequently, we present
our proposal.

Firstly, we assume that not every formula (epistemic input) can cause a change (substitution)
of the preorder ⊴, but only some critical ones. For determining critical formulas, a formal
substitution policy is required. To this aim, consider the following definition.

Definition 7 (Degree of Justification of Atoms in Sentences). Let φ be a sentence of L, and
let p be a propositional variable of P. We define the function ρ to be a mapping from φ, p to
the set of non-negative integers, such that:

ρ (φ, p) =
∣∣ [φ ∧ p]

∣∣.
Essentially, ρ (φ, p) represents the number of φ-worlds that satisfy (entail) the atom p, and,

in a sense, expresses a quantitative degree of the deductive justification that p has in φ —
for analogous qualitative degrees of deductive justification, refer to [2, 3, 6]. This degree of
deductive justification will, in turn, serve as a means of the specification of a new total preorder
⊴φ over P, defined as follows:

11From an epistemological perspective, such changes are strongly related to what Kuhn calls paradigm shifts,
in the realm of scientific theories [20] — refer to the discussion of Section 4.7 in [1, pp. 91–94].
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a⊴φ b iff ρ (φ, a) ⩽ ρ (φ, b), for any a, b ∈ P.

Clearly, each epistemic input φ induces, via ρ, a total preorder ⊴φ over atoms, which encodes
a new relative epistemic value that the agent assigns to the atoms of the language. Specifically,
according to ⊴φ, an atom b is epistemically more entrenched than an atom a whenever b is
entailed/justified by more φ-worlds than a.

Example 2. Assume that P = {a, b, c}, and φ = (a∨¬b)∧c. Clearly then, [φ] = {abc, abc, abc},
and ρ (φ, a) = 2, ρ (φ, b) = 1, ρ (φ, c) = 3. Therefore, we have the following preorder ⊴φ over
P: b◁φ a◁φ c.

A natural candidate for comparing the similarity (or dissimilarity) between the preorders ⊴
and ⊴φ would be the Kemeny distance [19], defined subsequently.

Definition 8 (Kemeny Distance, [19]). Let ⊴, ⊴′ be two total preorders over the atoms of P.
The Kemeny distance between ⊴, ⊴′, denoted by D(⊴,⊴′), is the cardinality of their symmetric
difference. In symbols:

D(⊴,⊴′) =
∣∣∣(⊴−⊴′ ) ∪ (

⊴′ −⊴
)∣∣∣.

Example 3. Assume that P = {a, b, c, d}, and let ⊴,⊴′ be the following total preorders over
P: a◁ b ∼ c◁ d and a ∼′ c◁′ b ∼′ d. Then, D(⊴,⊴′) = 3.

Given an arbitrary threshold CR opted by the agent, several substitution policies (rules) can
be established.12 Consider, indicatively, the two presented below:

Substitution Policy I: The preorder ⊴ should be substituted by the
preorder ⊴φ iff D(⊴,⊴φ) > CR.

Substitution Policy II: The preorder ⊴ should not be substituted by
the preorder ⊴φ iff D(⊴,⊴φ) > CR.

Both the above rules are plausible depending on the underlying application or domain to
be encoded. Note that the second substitution policy is aligned with the intuition in some
approaches to non-prioritized revision, where major changes are rejected; in particular, when
the new information φ requires “a great degree” of change to the initial belief set, φ is ignored
[15, 16].

The process of dynamic PD revision is illustrated in Figure 3, for a critical epistemic input
φ. Observe that the whole procedure of replacing ⊴ with ⊴φ is implemented with no extra
representational cost; the only information required is the new information φ. Therefore, the
benefits of PD operators concerning compact specification are totally preserved. Another plau-
sible scenario would be the change of ⊴ be firing by the revised belief set K ∗ φ, and not by φ
itself. Of course, the aforementioned analysis for dynamic PD revision applies for such a case
as well; the only difference is that the function ρ takes K ∗φ, instead of φ, as its first argument.

It is implied from Figure 3 that dynamic PD revision could lead to a change in the origi-
nal definition of revision functions (Section 3). In particular, revision functions may become

12The use of an arbitrary (quantitative) threshold, opted by the agent, would give flexibility and adaptability
to a real-world PD-revision system, the implementation of which is the ultimate purpose of this line of research.
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⊴ ⊴φ
φ

∗ ∗′

Figure 3. The process of dynamic PD revision. Formula φ is critical and
causes a substitution of the preorder ⊴ (which induces the PD operator ∗) by
the preorder ⊴φ (which induces the PD operator ∗′).

dynamic in nature, in the sense that a revision function may change as new evidence arrives.
To see this, consider an agent whose initial belief set is K0. Suppose that, after a sequence of
revisions by a sequence of sentences φ1, φ2, . . . , φn, the agents ends up with a belief set Kn,
such that Kn = K0. With dynamic revision functions, it is possible that one revision function
is associated with K0, and a different one with Kn. On that premise, we are allowed to define a
(binary) revision function ∗ as a unary function that maps an epistemic input φ to a new belief
set ∗K(φ), given an initial belief set K as background.13

After the definition of dynamic PD revision, we proceed to the study of PD revision in Horn
logic.

7. PD Horn Revision

Given that Horn logic (namely, the Horn fragment of propositional logic) has been applied
numerous times in both Artificial Intelligence and databases, as well as that the computational-
complexity properties of PD operators restricted to Horn logic are quite compelling, the study
of PD Horn revision becomes imperative; for an extensive study on classical AGM-style Horn
revision, the interested reader is referred to the work of Delgrande and Peppas [11]. For the
study of PD Horn revision, some basic notation and terminology are necessary, introduced
subsequently.

A clause (i.e., a disjunction of literals) is called a Horn clause iff it contains at most one
positive literal; e.g., a ∨ ¬b ∨ ¬c. Horn clauses are usually written as

a1 ∧ a2 ∧ · · · ∧ an → a,

which is logically equivalent to

¬a1 ∨ ¬a2 ∨ · · · ∨ ¬an ∨ a,

where n ⩾ 0 and a is the only positive literal. Whenever n = 0, then → a is written as a, and
it is called fact.

A Horn formula is the conjunction of Horn clauses. The Horn language LH is the maximal
subset of L containing only Horn formulas. The letter H is reserved to represent a Horn theory

13Interestingly, the aforementioned reformulations of revision functions —which do not require any alteration
of the AGM postulates for revision, since all of them refer only to a single theory of L— has been proposed by
Nayak et al. [23], as a way to reconcile the AGM paradigm with the original Darwiche and Pearl’s approach for
iterated belief revision [10].
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(belief set). The set of all Horn theories is denoted by H. The Horn logic generated from LH is
specified by the consequence operator CnH , such that, for any set of Horn formulas Γ,

CnH(Γ) = Cn(Γ) ∩ LH .

Consider, now, the following definition.

Definition 9 (Positive-Literals Intersection of Worlds). Let r, r′ be two possible worlds of M.
The positive-literals intersection of r, r′, denoted by r ∩+ r′, is the possible world defined as
follows:

r ∩+ r′ = (r ∩ r′)+ ∪
(
P − (r ∩ r′)+

)
.

For instance, the positive-literals intersection of the worlds {a, b, c} and {a,¬b,¬c} is the
world {a,¬b,¬c}, whereas, the positive-literals intersection of the worlds {¬a, b, c} and {a,¬b,¬c}
is the world {¬a,¬b,¬c}.

An arbitrary formula (or theory) φ is Horn (i.e., φ ∈ LH) iff the possible worlds satisfied by
φ are closed under intersection of positive literals, i.e., whenever r, r′ ∈ [φ] entails r ∩+ r′ ∈ [φ].
The previous statement can be expressed by means of the notion of an elementary set of worlds
as well. In particular, we shall say that a non-empty set W of possible worlds is elementary iff{

r ∩+ r′ : for all r, r′ ∈W
}
=W .

Then, we can state that an arbitrary formula (or theory) φ is Horn iff the set [φ] of worlds is
elementary.

7.1. Horn Compliant Preorders. An AGM Horn revision function ∗ is an AGM revision
function that maps a Horn theory and a Horn formula to a (new) Horn theory; i.e., ∗ : H×LH 7→
H. With the aid of elementary sets of worlds, we can define exactly those faithful preorders that
induce (via condition (F∗)) AGM Horn revision functions, called Horn compliant preorders.

Definition 10 (Horn Compliant Preorder, [33]). A preorder �H (faithful to a Horn theory
H) is Horn compliant iff, for every Horn formula φ ∈ LH , the set of worlds min([φ],�H) is
elementary.

Zhuang and Pagnucco provided a (faithful-preorders) characterization of Horn compliance,
by means of the following constraint on possible worlds [33]:

(H) If r ≈ r′, then r ∩+ r′ � r.

Condition (H) says that whenever two worlds r and r′ are equidistant from the beginning of
a preorder �, then the world r ∩+ r′, resulting from their positive-literals intersection, cannot
appear later in �.

Zhuang and Pagnucco showed that any preorder that satisfies condition (H) is Horn compli-
ant, and, conversely, any Horn compliant preorder satisfies (H) [33].14

14For an axiomatic (postulational) characterization of AGM Horn revision functions, the reader is referred to
[11].
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7.2. PD Operators are not Horn Compliant. Although the computational complexity of
PD revision was extensively studied in [27], it was not shown whether PD operators are, indeed,
compatible with respect to Horn revision; that is to say, whether the PD-revision of a Horn
knowledge base by a Horn formula always yields a (new) Horn knowledge base. Unfortunately,
the subsequent result shows that PD operators, as originally defined in [26, 27], are not Horn
compliant.

Theorem 2. There exists a Horn theory H for which a PD preorder, associated with H, is not
Horn compliant.

Proof. Assume that L is built from P = {a, b, c}, and letH be the Horn theoryH = CnH(a, b, c).
Moreover, let ⊴ be a total preorder over the set of atoms P, such that c ◁ a ∼ b. Then, the
(only) PD preorder v⊴

H assigned to H is the following:

abc ⊏⊴
H abc ⊏⊴

H

abc
abc

⊏⊴
H

abc
abc

⊏⊴
H abc ⊏⊴

H abc

Notice, however, that for the worlds r = abc and r′ = abc, which they are equally plausible
with respect to v⊴

H , it is true that r ∩+ r′ = abc. Therefore, the worlds r, r′, r ∩+ r′ violate
condition (H), and, hence, v⊴

H is not Horn compliant. □
Of course, the above impossibility result does not entail that the PD-revision of a Horn

knowledge base by a Horn formula —which, as stated, is characterized by low computational
cost— is not a legitimate operation. All that Horn non-compliance entails is that the result of
the revision may be a non-Horn knowledge base. For instance, given an epistemic input φ such
that [φ] = {abc, abc}, the preorder in the proof of Theorem 2 (partially) induces a PD operator
∗, such that [H ∗ φ] = {abc, abc}; thus, H ∗ φ is a non-Horn theory. However, for an epistemic
input ψ such that [ψ] = {abc, abc}, [H ∗ ψ] = {abc}; that is, H ∗ ψ is indeed a Horn theory.15

Against this non-satisfactory background, an alternative way for defining Horn compliant
revision operators, parametrized by a preorder over atoms, is presented in Subsection 7.4, based
on the notion of basic Horn revision introduced in the next subsection. Furthermore, on top
of very recent results on extended languages [5], an indirect connection between PD and Horn
revision is established in Subsection 7.5.

7.3. Basic Horn Revision. In [11], it was shown that Dalal’s and Satoh’s operators cannot,
directly, be applied in a Horn setting. To remedy this weakness, the authors proposed their
own Horn compliant revision operator, inspired by the atom-based plausibility of the original
work of Dalal and Satoh.

In particular, let H be a Horn belief set. Consider, then, the following basic Horn ranking
�H over all possible worlds of M:

(BH) r �H r′ iff either r ∈ [H] or r, r′ /∈ [H] and |r+| ⩽ |r′+|.

This ordering reflects the intuition that an atom is false, unless it is “required” to be true.
In this case, the authors give preference to worlds with fewer true atomic propositions.

Definition 11 (Basic Horn Revision). The basic Horn revision function � is defined to be the
revision function induced from the family of basic Horn rankings {�H}H∈H, via condition (F∗).

15We suspect that an incompatibility result stronger than Theorem 2 cannot be achieved.
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As proved in [11], the preorder �H is a total preorder faithful to H (for any H ∈ H), therefore,
in view of Theorem 1, � satisfies (K ∗ 1)–(K ∗ 8) at H. It was shown, moreover, that � has
nice computational properties, as it can be computed in linear time. Nevertheless, basic Horn
revision has a (sometimes undesirable) feature; whenever the epistemic input φ is inconsistent
with the initial belief set H, the revised belief H � φ is always complete.

In cases where completeness can be tolerated, it appears that basic Horn revision is a satis-
factory proposal. Yet, the basic Horn ranking �H , although Horn compliant, is in some sense
counter-intuitive. We shall illustrate this with the aid of a concrete example. Suppose that L
is built from P = {a, b}, and consider the Horn belief set H = CnH(a, b). Then, the only basic
Horn ranking �H that can be assigned to H is the following:

ab ≺H ab ≺H
ab
ab

Notice that, although we initially believe that both a and b are true, the world ab appears
more plausible than both worlds ab and ab, even though the former differs from ab in more
propositional variables than the latter two. The main reason for this counter-intuitive behaviour
of basic Horn ranking is that, in order to construct the preorder �H , the initial belief set H of
the agent is not taken into consideration; the worlds outside [H] are ranked solely depending on
their true atomic propositions —an intrinsic feature of any possible world— and not on some
notion of difference from H.

7.4. Parametrized Basic Horn Revision. Inspired by the approach of Delgrande and Pep-
pas, we develop our own parametrized Horn revision operator, based on the cardinality of positive
literals of worlds. The operator we propose is, essentially, a ⊴-parametrized version of the basic
Horn revision function.

To this end, let H be a Horn belief set, and let ⊴ be a total preorder over the set of proposi-
tional variables P. We define, then, the parametrized basic Horn ranking �⊴

H over the possible
worlds of M, as follows:

(PBH) r �⊴
H r′ iff either r ∈ [H] or r, r′ /∈ [H] and r+ ⊴ r′+.

The next theorem shows that �⊴
H is a faithful-to-H preorder, and, moreover, Horn-compliant.

Theorem 3. Let H be a Horn belief set, let ⊴ be a total preorder over the set of propositional
variables P, and let �⊴

H be a parametrized basic Horn ranking associated with H. Then, �⊴
H is

a total preorder, faithful to H, and Horn compliant.

Proof. By definition, �⊴
H is reflexive. For transitivity, let r, r′, r′′ be any three worlds of M,

such that r �⊴
H r′ and r �⊴

H r′. If r ∈ [H], then clearly r �⊴
H r′′. Assume, therefore, that

r /∈ [H]. Then, r �⊴
H r′ entails r′ /∈ [H] and r+ ⊴ r′+. Similarly, from r′ /∈ [H] and r′ �⊴

H r′′, we
derive that r′′ /∈ [H] and r′+ ⊴ r′′+. Hence, r, r′′ /∈ [H] and r+ ⊴ r′′+. Consequently, r �⊴

H r′′,
as desired.

For totality, let r and r′ be any two worlds of M. If either of them is in [H], then clearly the
two worlds are comparable with respect to �⊴

H . Assume, therefore, that neither of them belongs
to [H]. If r+⊴ r′+, then r �⊴

H r′; otherwise, r′ �⊴
H r.16 In either case, r, r′ are comparable with

respect to �⊴
H , and, hence, �⊴

H is total.
16Recall that the preorder ⊴ is total.
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Faithfulness with respect to H follows immediately from the definition of �⊴
H . Hence, to

complete the proof, we need to show that �⊴
H is Horn compliant, by proving that condition (H)

is satisfied. Consider, therefore, any two worlds r, r′ of M, such that r ≈⊴
H r′. We will show

that r ∩+ r′ �⊴
H r. If r ∩+ r′ ∈ [H] or r = r′, this is clearly true. Assume, therefore, that

r ∩+ r′ /∈ [H] and, moreover, r 6= r′. Then, since H is a Horn theory, not both r and r′ can be
members of [H]. Since one of r, r′ is not in [H], from r ≈⊴

H r′, we derive that neither of the
two worlds belongs to [H]. From r ≈⊴

H r′, we also derive that |r+| = |r′+|. Hence, given that
r 6= r′, it is not hard to verify that |r ∩+ r′| < |r+|; thus, by the definition of ⊴ (Definition 5),
we have that r ∩+ r′ ⊴ r+. Consequently, r ∩+ r′ �⊴

H r, as desired. □

Observe that the parametrized basic Horn ranking �⊴
H , such as the basic Horn ranking �H ,

does not take into account some notion of difference of worlds from H. Hence, the following
remark is clearly true.

Remark 1. The preorder �⊴
H is a parametrized ranking, but not a parametrized-difference

ranking.

Parametrized basic Horn revision is defined subsequently.

Definition 12 (Parametrized Basic Horn Revision). Let ⊴ be a total preorder over P. We
define the parametrized basic Horn revision function ⋆ to be the revision function induced from
the family of parametrized basic Horn rankings {�H}H∈H, via condition (F∗).

As �⊴
H is faithful to H (for any Horn theory H ∈ H), in view of Theorem 1, ⋆ satisfies

(K ∗ 1)–(K ∗ 8) at H.
Let us, now, introduce the following definition, which will help us to establish an important

observation concerning the relation between the revision functions ⋆ and �.

Definition 13 (Horn-Revision-Equivalent Operators). We shall say that two revision functions
∗ and ∗′ are Horn-revision-equivalent iff, for any Horn theory H of LH and all Horn formulas
φ ∈ LH , H ∗ φ = H ∗′ φ.

It has been proven in Proposition 5 of [11, p. 18] that, for every consistent Horn formula φ,
there is only one φ-world, such that it has the least number of positive literals. This observation
implies the following result.

Proposition 1. The parametrized basic Horn revision function ⋆ is Horn-revision-equivalent
to the basic Horn revision function �.

Proof. Follows immediately from condition (i) of Definition 5, conditions (BH) and (PBH), and
Proposition 5 of [11, p. 18]. □

Consequently, the parametrization preorder ⊴ becomes redundant, and ⋆ degenerates to �,
with respect to Horn revision.

In the remainder of this section, a rigid connection between PD and Horn revision is proved,
on top of very recent results on extended languages established by the author (along with Peppas
and Williams) [5].

7.5. Connecting PD and Horn Revision via Language Extension. As showed in Sub-
section 7.2, PD operators are not Horn compliant. At first glance, this seems to be a conclusive
impossibility result. Nevertheless, the very recent results on extended languages of [5] offer an
appealing different direction for relating PD and Horn revision. In particular, it was shown in
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[5] that any total preorder over the worlds of M can be “extracted” from a Dalal’s preorder,
defined at a sufficiently extended language.17 Although we shall not present the formal process
of this “extraction” herein (it is in detail described in [5]), its informal intuition is illustrated
in the following concrete example.

Example 4 ([5]). Suppose that L is built from P = {a, b}. Moreover, let K be a (complete)
theory of L, such that K = Cn(a, b). Then, the (only) Dalal’s preorder vK that is assigned at
K is the following:

ab ⊏K
ab
ab

⊏K ab

Suppose, now, that we want to assign at theory K the following non-Dalal’s preorder �K :

ab ≺K ab ≺K ab ≺K ab

Consider the set of worlds S = {abc, abc, abc, abc} (where c is an atom not included in L),
and the following restricted Dalal’s preorder v over S:

abc ⊏ abc ⊏ abc ⊏ abc

Clearly, if we ignore the propositional variables of the worlds of S that are outside L, we get
the desired preorder �K .

Note that v is a restriction (part) of the next Dalal’s preorder vK′ , associated with the
(complete) theory K ′ = Cn(a, b, c):

abc ⊏K′

abc
abc
abc

⊏K′

abc
abc
abc

⊏K′ abc

We shall say that the non-Dalal’s preorder �K of the above example constitutes a filtering
of the Dalal’s preorder vK′ .

Given that a Dalal’s preorder is a particular PD preorder (i.e., in case ⊴ = P × P), the
following important theorem is obviously true.

Theorem 4. Any Horn compliant preorder, defined at L, constitutes a filtering of some PD
preorder, defined at a sufficient extension of L.

Proof. Obvious from Theorem 3 of [5], and the fact that a Dalal’s preorder is a particular PD
preorder, in case ⊴ = P × P. □

Theorem 4, essentially, implies that PD revision and Horn revision are, in fact, strongly
related; any Horn compliant preorder, defined at L, is a fragment of some richer PD preorder.
In a way, a Horn compliant preorder at L constitutes an epiphenomenon of an underlying richer
PD preorder, as the (limited) expressivity of language L does not permit the formulation of the
latter.

Having analysed the relation between PD and Horn revision, in what follows, we turn to the
study of PD revision in the realm of Description Logics (DL).

17A propositional language is called an extension of L iff it is finitary, and, moreover, it is built from a set of
atoms that is a proper superset of P.
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8. PD Revision in Description Logics

This section examines an approach of the DP-revision problem in the realm of an impor-
tant knowledge-representation formalism, namely, Description Logics (DL). DL are families of
knowledge representation languages —in fact, decidable fragments of first-order logic— that
are widely used in ontological modelling and the Semantic Web [17].18 The name “Descrip-
tion Logics” is motivated by the fact that the important notions of the domain to be encoded
are described by concept descriptions, namely, expressions that are built from atomic concepts
(unary predicates) and atomic roles (binary predicates), using the concept and role constructors
provided by the particular description logic [8].

A DL knowledge base is made up of two components, a terminological part, called TBox, and
an assertional part, called ABox, each part consisting of a set of axioms. A TBox consists of
concept axioms and role axioms, and essentially describes the relevant notions of an application
domain, by stating properties of concepts and roles, as well as relationships between them.
On the other hand, an ABox is used to describe a concrete situation by stating properties of
individuals [8]. An example of a TBox is

WOMAN v HUMAN

which states that all women are humans. An example of an ABox is

WOMAN(MARY )

which states that the individual Mary is a woman. Note that, in what follows, we shall confine
ourselves to the revision of only terminological knowledge; i.e., TBoxes.

DL are extensively used in Artificial Intelligence, as well as in domains such as Software
Engineering, Medicine, Database Management, Planning and Data Mining, for modelling an
application domain in a concrete and structured way, and for providing reasoning tools that
can deduce implicit from explicit knowledge. Several inference problems are of great interest
in DL, such as database-query-like questions like instance checking (whether a given individual
is instance of a specified concept description), and global-database-questions like subsumption
(whether a concept is a subset of another concept).

A variety of DL has been considered in the literature, according to which constructors —such
as conjunction of concepts, disjunction of concepts, negation of concepts, existential restriction,
universal restriction— are allowed to be used to form the syntax of the language. Different
combinations of constructors result in a different trade-off between the expressivity of DL and
the complexity of their inference problems. This exact balance constitutes an important research
topic, from both a theoretical and an applied perspective; the golden mean, however, depends
on the intended application. Furthermore, several language extensions have been investigated,
which have given rise to DL addressing non-monotonic, epistemic, spatio-temporal and fuzzy
reasoning, as well as to DL that are able to represent uncertain and vague knowledge [7].

For an excellent survey on the broad topic of DL, the interested reader is referred to [8].

8.1. Notation and Terminology of Description Logics. A TBox consists of concept axioms
of the form A v B, where A, B are (possibly complex) concept expressions, and role axioms
of the form R v S, where R, S are (possibly complex) role expressions. The set of all concept

18Well-known examples of DL-based ontology languages include Ontology Inference Layer (OIL), DARPA
Agent Markup Language +OIL, and Web Ontology Language (OWL).
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names is denoted by NC , and the set of all role names is denoted by NR. The set of all concept
and role names is denoted by N ; i.e.,

N = NC ∪NR.

Definition 14 (Interpretation). An interpretation I = (∆I , ·I) consists of a non-empty set
∆I , called the domain of I, and a function ·I that maps every concept description to a subset
of ∆I , and every role name to a subset of ∆I ×∆I .

The set of all interpretations in the considered DL language is denoted by Ω. For ease of
presentation, we shall assume that all interpretations are defined in a common domain ∆.

An interpretation I is a model of an axiom A v B iff AI ⊆ BI . I is a model of a TBox T ,
written I |= T , iff it is a model of every axiom in T . For a TBox T , [T ] denotes the set of all
models of T . Notation A

.
= B abbreviates A v B and B v A.

8.2. Postulates for Revision Operators in Description Logics. Qi et al. reformulated
Katsuno and Mendelzon’s postulates (KM1)–(KM6) of Section 3 in the DL setting, adopting a
model-based approach [28]. To this end, they defined a DL revision operator to be a (binary)
function mapping a pair of TBoxes to a disjunctive Tbox. A disjunctive TBox, originally defined
in [22], is a set of TBoxes. An interpretation is a model of a disjunctive TBox T iff it is a model
of one of the TBoxes in T. Against this background, and given the TBoxes T1, T2, T3, T , T ′,
the resulting set of postulates (G1)–(G6) is listed below; note that the symbol ◦ shall be used
for DL revision operator operating on TBoxes.19

(G1) [T1 ◦ T2] ⊆ [α], for all α ∈ T2.

(G2) If [T1] ∩ [T2] 6= ∅, then [T1 ◦ T2] = [T1] ∩ [T2].

(G3) If T2 is consistent, then [T1 ◦ T2] 6= ∅.

(G4) If [T ] = [T ′] and [T1] = [T2], then [T ◦ T1] = [T ′ ◦ T2].

(G5) [T1 ◦ T2] ∩ [T3] ⊆
[
T1 ◦ (T2 ∪ T3)

]
.

(G6) If [T1 ◦ T2] ∩ [T3] 6= ∅, then
[
T1 ◦ (T2 ∪ T3)

]
⊆ [T1 ◦ T2] ∩ [T3].

The interpretation of the above postulates is as follows [30]: (G1) guarantees that every axiom
in the new TBox can be inferred from the result of revision. (G2) says that we do not change the
original TBox if there is no conflict. (G3) is a condition preventing a revision from introducing
unwarranted inconsistency. (G4) says that the DL revision operator should be independent of
the syntactical forms of TBoxes. Lastly, (G5) and (G6), together, ensure minimal change.

Qi et al. provide a representation theorem for postulates (G1)–(G6), with respect to a
refinement of the notion of faithful preorder.

Definition 15 (Faithful Preorder over Interpretations, [29]). Let T , T ′ be two TBoxes. A
preorder �T over Ω is faithful to T iff it is total, and such that, for any two interpretations I,
I ′ ∈ Ω:

(i) If I |= T , then I �T I ′.
(ii) If I |= T and I ′ ⊭ T , then I ≺T I ′.

19The reformulated postulates of Qi et al. presented herein are confined to TBoxes.
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(iii) If T .
= T ′, then �T = �T ′ .

The following representation theorem resembles Theorem 1 of Katsuno and Mendelzon (Sec-
tion 3), and establishes the correspondence between the set of postulates (G1)–(G6) and faithful
preorders over interpretations.

Theorem 5 ([29]). A DL revision operator ◦ satisfies postulates (G1)–(G6) iff, for any TBoxes
T , T ′, there exists a faithful preorder �T , such that:

(F◦)
[
T ◦ T ′] = min([T ′],�T ).

Condition (F◦) says that the models of the revised TBox T ◦ T ′ are exactly the �T -minimal
models of the TBox T ′.

8.3. Hamming-Based DL Revision Operators. The purpose of this section is the introduc-
tion of Hamming-based DL revision operators, inspired by Dalal’s proposal in the propositional
setting. Accordingly, we define subsequently a notion of difference between interpretations.

Definition 16 (Difference between Interpretations). Let I = (∆, ·I), I ′ = (∆, ·I′
) be two

interpretations of Ω. The difference between I and I ′, denoted by Diff (I, I ′), is as follows:
Diff (I, I ′) =

{
N ∈ N : NI 6= NI′

}
.

The above definition mirrors the notion of Hamming distance, and says that the difference
between any two interpretations I and I ′ is the set of all concept and role names that are
interpreted differently by the interpretations. Observe that, if I, I ′ do not share a common
domain, then they are Diff-incomparable.

Example 5. Let NC = {A,B} and NR = {r, s}. Moreover, let I = (∆, ·I), I ′ = (∆, ·I′
) be

two interpretations of Ω, such that:

• ∆ = {a, b, c, d},
• AI = {a, b}, BI = {a, b}, rI =

{
〈a, c〉

}
, sI =

{
〈c, d〉

}
, and

• AI′
= {a, b, c}, BI′

= {a, b}, rI′
=

{
〈a, c〉

}
, sI′

=
{
〈c, d〉, 〈a, d〉

}
.

Since AI 6= AI′ and sI 6= sI
′ , Definition 16 implies that Diff (I, I ′) = {A, s}.

In the DL setting, other more sophisticated notions of difference between interpretations
could be deployed, providing higher levels of granularity. For instance, the difference between
any two interpretations I, I ′, can be defined with respect to a concept or role name interpreted
by I, I ′, based on symmetric difference.

Definition 17 (N -Difference). Let I, I ′ be two interpretations of Ω. For any concept/role
name N ∈ N , the N -difference between I and I ′, denoted by DiffN (I, I ′), is as follows:

DiffN (I, I ′) = NI 	NI′ ,

where NI 	NI′ denotes the symmetric difference of the sets NI , NI′ .

Utilizing the above definition, we can deploy the following quantitative measure of difference,
inspired by [32]:
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Definition 18 (Quantitative Difference between Interpretations). Let I, I ′ be two interpreta-
tions of Ω. The quantitative difference between I and I ′, denoted by Diff ′(I, I ′), is as follows:

Diff ′(I, I ′) =
∑
N∈N

∣∣DiffN (I, I ′)
∣∣.

Based on the difference of Definition 16, we define the distance between a TBox T and an
interpretation I as follows:

Definition 19 (Distance between a TBox and an Interpretation). Let T be a TBox and let I
be an interpretation of Ω. The distance between T and I, denoted by Dist (T , I), is as follows:

Dist (T , I) = min
({∣∣Diff (I ′, I)

∣∣ : I ′ ∈ [T ]
})

.

The use of the difference of Definition 18 in the preceding notion of distance is also feasible,
with the replacement of the term “|Diff (I ′, I)|” with the term “Diff ′(I ′, I)”.

Now, let T be a TBox and I, I ′ be any two interpretations, and let �T be a ranking associated
with T , defined as follows:

(D1) I �T I ′ iff Dist (T , I) ⩽ Dist (T , I ′).

It is not hard to verify that the ranking �T , defined by means of condition (D1), is a total
preorder, faithful to T . Therefore, from Theorem 5, the following result is obtained.

Proposition 2. The DL revision operators induced by means of condition (D1), via (F◦),
satisfy postulates (G1)–(G6).

Apart from the “off-the-shelf” DL revision operator defined via condition (D1), several con-
straints on a preorder �T faithful to a TBox T can be applied, based on set inclusion as well.
Consider, for instance, the following condition:

(D2) If DiffN (W, I) ⊆ DiffN (W, I ′), for every W ∈ [T ] and every N ∈ N , then I �T I ′.

Condition (D2) states that, if, for every model W of T and every concept/role name N , the
N -difference between W and I is a subset of the N -difference between W and I ′, then I ought
to be at least as plausible as I ′, with respect to T . The next example contrasts the constraints
(D1) and (D2).

Example 6. Consider the scenario of Example 5, and let T be a TBox such that it has a single
model W, for which AW = {a}, BW = {a, b}, rW =

{
〈b, c〉

}
, sW =

{
〈b, c〉

}
. Observe that

Diff (W, I) = {A, r, s}, Diff (W, I ′) = {A, r, s}, and Dist (T , I) = Dist (T , I ′) = 3.
Condition (D1) sets the interpretations I, I ′ equally plausible (with respect to T ), whereas,

condition (D2) demands I to be at least as plausible as I ′ (with respect to T ).

Evidently, condition (D2), like condition (D1), characterizes a particular class of DL revision
operators.

8.4. Parametrized Hamming-Based DL Revision Operators. For specifying parametrized
forms of Hamming-based DL revision operators, in the spirit of PD operators, an ordering over
the elementary components of the underlying language is, first, required. Given that the “build-
ing blocks” of a DL language are the concept and role names, we shall consider (à la Peppas
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and Williams) a total preorder ⊴ over the set of all concept and role names N .20 By treating
each concept and role name as a propositional variable, the preorder ⊴ can, straightforwardly,
be extended to sets of concept and role names via Definition 5 (Section 5).

Consider that the difference Diff between interpretations is defined via Definition 16. Then,
we can define a parametrized Hamming-based DL revision operator as a DL revision operator
induced by means of (F◦), from the following preorders over interpretations (one for each TBox
T ):

(PD1) I �⊴
T I ′ iff there is a W ∈ [T ], such that,

for all W ′ ∈ [T ], Diff (W, I) ⊴ Diff (W ′, I ′).

Notice the resemblance of condition (PD1) with condition (PD) of Section 5, used in the case
of propositional logic.

Given that concept and role names are treated as propositional variables, with an analogous
line of reasoning as that in the proof of Theorem 4 of [26, p. 409], we derive that the preorder
�⊴

T is a total preorder, faithful to T . Clearly then, we obtain immediately the following result.
Proposition 3. The parametrized Hamming-based DL revision operators induced by means of
condition (PD1), via (F◦), satisfy postulates (G1)–(G6).

In the remainder of this section, we shall, also, introduce another type of parametrized
Hamming-based DL revision operator, on top of a refined version of Diff of Definition 18.
Definition 20 (Refined Difference between Interpretations). Let ⊴ be a total preorder over
the set of concept and role names N , and let I, I ′ be any two interpretations of Ω. Moreover,
let R be a unary function from N to the set of non-negative integers, used to quantitatively
represent the preorder ⊴, for which A ⊴ B iff R(A) ⩽ R(B), for any A,B ∈ N . Then, the
⊴-refined difference between I and I ′, denoted by Diff ⊴(I, I ′), is as follows:

Diff ⊴(I, I ′) =
∑
N∈N

∣∣R(N) · DiffN (I, I ′)
∣∣.

The above definition of difference can be applied to the notion of distance of Definition 19,
in order to define a ⊴-refined distance between a TBox T and an interpretation I, denoted by
Dist ⊴(T , I). Based on this refined distance, consider the following two constraints on faithful
preorders over interpretations.

(PD2) If Dist (T , I) < Dist (T , I ′), then I ≺T I ′.

(PD3) If Dist (T , I) = Dist (T , I ′), then I �T I ′ iff Dist ⊴(T , I) ⩽ Dist ⊴(T , I ′).

Conditions (PD2)–(PD3), together, ensure a preorder over interpretations analogous to a PD
preorder in the propositional setting. According to (PD2)–(PD3), the ranking of interpretations
takes place in two stages; (PD2) undertakes the first stage, whereas, (PD3) undertakes the
second stage. In particular, condition (PD2) states that an interpretation I that is strictly
closer to T than an interpretation I ′ (i.e., Dist (T , I) < Dist (T , I ′)) ought to be strictly more
plausible than I ′, with respect to T ; this is a classical Hamming-based approach. Condition

20For ease of exposition, the same symbol (i.e., ⊴) for preorders over concept/role names and preorders over
atoms is used.
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(PD3), on the other hand, handles any two interpretations I, I ′ that are equidistant from T
(i.e., Dist (T , I) = Dist (T , I ′)), and orders them according to their ⊴-refined distance from T .

As conditions (PD2)–(PD3) are constraints on faithful preorders over interpretations, they
identify a certain class of parametrized Hamming-based DL revision operators that satisfy pos-
tulates (G1)–(G6).

We close this section noting that an interesting avenue for future research would be the
definition of DL revision operators based on non-Hamming string metrics for the (dis)similarity
of interpretations; the interested reader is referred to [21] for an indicative overview of such
measures.

9. Conclusion

PD operators constitute a proper subclass of concrete AGM revision functions, induced by a
total preorder over the set of propositional variables, with a plethora of favourable character-
istics. In this article, the original PD-revision framework was strengthened with respect to the
following three aspects: Firstly, a dynamic form of PD revision was defined, letting a change-
able ranking over atoms. Following that, we showed that PD operators are not compatible with
Horn revision. Accordingly, a thorough investigation of the relation between PD and Horn re-
vision was conducted, which revealed an indirect interesting connection. Lastly, as the original
definition of PD operators was formulated in classical propositional logic, a study on the adap-
tation of PD revision in the realm of DL was conducted, resulting in several Hamming-based
DL revision operators, as well as various atom-parametrized forms of them.
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