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a b s t r a c t 

Accurate prediction of Public Transport (PT) mobility is important for intelligent transportation. Nowadays, 
mobility data have become increasingly available with the General Transit Feed Specification (GTFS) being the 
format for PT agencies to disseminate such data. Estimated Time of Arrival (ETA) of PT is crucial for the public, 
as well as the PT agency for logistics, route-optimization, maintenance, etc. However, prediction of PT-ETA is a 
challenging task, due to the complex and non-stationary urban traffic. This work introduces a novel data-driven 
approach for predicting PT-ETA based on RBF neural networks, using a modified version of the successful PSO- 
NSFM algorithm for training. Additionally, a novel pre-processing pipeline (CR-GTFS) is designed for cleansing 
and reconstructing the GTFS data. The combination of PSO-NSFM and CR-GTFS introduces a complete framework 
for predicting PT-ETA accurately with real-world data feeds. Experiments on GTFS data verify the proposed 
approach, outperforming state-of-the-art in prediction accuracy and computational times. 
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. Introduction 

Cities worldwide are facing a number of serious challenges as
heir resources and infrastructure are increasing ( Breetzke & Flower-
ay, 2016 ) due to various reasons, such as population growth ( Hassan,
habbir, Iqbal, Said, Kamiran, Nawaz & Saif, 2021; Israilidis, Odusanya
 Mazhar, 2021; Manfreda, Ljubi & Groznik, 2021 ). An emerging trend

o manage these challenges is the utilisation of Information and Com-
unication Technology (ICT) ( Ismagilova, Hughes, Dwivedi & Raman,
019 ), in order for the cities to become more automated and ‘smarter’.
he concept of ‘smart’ cities ( Chen, Lu, Bulysheva & Kataev, 2022; Pee &
an, 2022; Wu & Chen, 2021 ) has drawn increased attention in recent
ears ( Chen & Silva, 2021; Lytras, Visvizi, Chopdar, Sarirete & Alhal-
bi, 2021 ) and has attracted significant attention by researchers from
arious fields, including information systems ( Ismagilova et al., 2019 ). 

One of the key aspects of efficient services and transportation of
eople and goods depends on the level of ICT automation and decision
upport systems ( Arjun, Kuanr & Suprabha, 2021; Carter, Yoon & Liu,
022; Quijano-Sanchez, Cantador, Corts-Cediel & Gil, 2020 ) in terms
f data analytics ( Dwivedi, Hughes, Kar, Baabdullah, Grover, Abbas,
ndreini, Abumoghli, Barlette, Bunker et al., 2022; Kar & Kushwaha,
021; Yadav, Kar & Kashiramka, 2021 ) regarding human flows, mo-
ility patterns and events detection. In other words, ‘smart’ modalities
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ontribute in the sense that the urban grid is not viewed as mere en-
emble of individual statistical processes but rather a holistic complex
nvironment of interconnected and interacting actors, services and as-
ociations between them. The more these ICT automation and data an-
lytics become a natural part of everyday urban life, the ‘smarter’ the
ity becomes. In practice, ‘smart’ cities employ ICT to improve various
spects of city operation and management ( Ismagilova et al., 2019 ), as
ell as deal with high-impact challenges such as energy supply, urban
obility, route management and traffic ( Jafari, Kavousi-Fard, Niknam
 Avatefipour, 2021 ). Hence, an essential part of the concept and op-
rations in a ‘smart’ city is the ‘smart’ transport system ( Chen & Silva,
021; Kar, Gupta, Ilavarasan & Dwivedi, 2017 ). 

A ‘smart’ transport system revolutionizes how cities approach mobil-
ty and manage traffic congestion, making Public Transport (PT) tasks
 key area for such advancements. This incorporates all the typical ef-
ciency factors from the viewpoint of logistics, i.e., optimal route de-
ign, accurate trip planning, capacity maximization, better marginal
ain/cost ratio for each vehicle and overall for the PT service, as well as
redictive maintenance and predictive-preventive failure management
or the vehicle fleet. Even more importantly, these efficiency factors are
ultiplied by the fact that in this case the ‘consumer’ of this optimized
T service is the citizen, who in turn becomes more efficient in terms
f net effort and productivity, as well as being of course less entan-
led in everyday problems when moving in the city, i.e., traffic jams,
 2022 
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ong waiting times, congestion points in central PT hubs (highly non-
ecommended in times of pandemic), etc. Overall, having ‘smart’ PT so-
utions helps passengers in managing their transit time and safety, and
ontributes to a more efficient transportation network as the ‘veins’ of
odern cities. Furthermore, ‘smart’ PT solutions can, also, contribute to

ddress challenges related to the spread of infectious diseases ( Costa
 Peixoto, 2020 ), such as COVID-19 pandemic, which has brought

arge challenges globally in several areas ( Bangyal, Qasim, Ahmad, Dar,
ukhsar, Aman, Ahmad et al., 2021c; Chakraborty & Kar, 2021; Gupta,
uunanen, Kar & Modgil, 2022; Mehra, Sarin, Singh, Sawhney & Kar,
021; Murano, Ueno, Shi, Kawashima, Tanoue, Tanaka, Nomura, Shoji,
himizu, Nguyen et al., 2021; Sarkar, Shankar & Kar, 2021 ). 

Intelligent transportation systems may revolutionize the passen-
ers’ experience by developing safe, secure and comfortable travels
ith predictable timetables and delays ( Ravi, Tigga, Reddy, Hakak
 Alazab, 2022 ). This includes the provision of real-time informa-

ion on bus timings, service disruptions and estimated arrival times
t different stations. Accurate prediction of Estimated Time of Ar-
ival (ETA) in PT stops, or PT-ETA for short, is vital for the PT
gencies to deliver efficient services, as well as for the passengers
lanning their daily trips with minimal uncertainty. Moreover, the
roper treatment of the PT-ETA task is the basis for efficient fleet
anagement in terms of required vehicles, optimization of routes

nd time schedules (including seasonal trends), while additionally as-
isting in failure-preventive and/or failure-predictive vehicle mainte-
ance based on actual usage figures instead of projected round-trip 
istances. 

The task of PT-ETA is very challenging in modern urban envi-
onments. There are many factors introducing uncertainty and highly
olatile behavior, ranging from Global Positioning System (GPS) sig-
al errors to unpredictable traffic conditions, thus disturbing the sched-
led time plan. In order to effectively predict PT-ETA, various studies
ave applied data-driven techniques over GPS traces derived from trans-
ort vehicles ( Liu, Xu, Yan, Cai, Sun & Li, 2020; Petersen, Rodrigues &
ereira, 2019; Ranjitkar, Tey, Chakravorty & Hurley, 2019; Celan & Lep,
017 ). Valuable information resides in the generated transit data, which
an be fully exploited through data-driven techniques and provide the
eans to adapt and improve the PT-ETA prediction quality. The motive

s to derive actionable insights with the volume, variety, and veracity of
ata ( Kushwaha, Kar & Dwivedi, 2021 ) to improve the PT-ETA predic-
ion quality. 

Over the past few years, transit data have become increasingly avail-
ble by the PT agencies all over the world. The PT industry has benefited
rom a broadly accepted open source data format, the General Transit
eed Specification (GTFS) ( Google, 2021; Velasquez Ortiz, Álvarez Ro-
ríguez, Vargas Martin & Ponce Gallegos, 2019 ), which has enabled PT
gencies to publish their transit data and associate them with spatial and
emporal characteristics. Today PT agencies can publish static transit
imetabling information through the GTFS static (GTFS-s) feed or incor-
orate the transit network’s real-time data through the GTFS real-time
GTFS-rt) feed. 

Open data are essential for the ‘smart’ cities to operate efficiently,
hile accurate and up-to-date data are important to any information

ystem dealing with such operational tasks. Pereira, Macadar, Luciano
 Testa (2017) found that open data can enhance the delivery of public
alue in ‘smart’ city contexts. Nevertheless, according to Kar, Ilavarasan,
upta, Janssen & Kothari (2019) more data might not increase the

smartness’ of citizens and various biases can occur. This possible de-
ciency also applies to the GTFS data. 

Despite the wide availability of transit data with the GTFS format,
he problem of extracting useful knowledge and usable information con-
ent inherently resides on the quality of the data ( Velasquez Ortiz et al.,
019 ). GTFS data are often saturated with GPS noise and errors, incon-
istencies and missing information. In order to address this problem,
arious open-source platforms ( Google, 2021 ) have introduced valida-
ion tools for verifying GTFS-s and GTFS-rt feeds. However, these tools
2 
an not guarantee that the validated data are directly usable in data-
riven methods and algorithms, as they require further cleansing and
efinement ( Chondrodima, Georgiou, Pelekis & Theodoridis, 2021 ). In
ddition, many of the current state-of-the-art methods in ETA prediction
ddress the task via a closely associated one, e.g. trajectory prediction,
ather than modeling the ETA task itself; as a result, the trained models
ay perform well for this associated task, but with no guarantee for the
TA performance in the sense of generalization level. 

In this work we propose a complete pipeline for Cleansing and Re-
onstructing GTFS data, called CR-GTFS. A preliminary version was pre-
ented in Chondrodima et al. (2021) , where the PT-ETA task was ad-
ressed at the context of the next vehicle’s stop, applying various stan-
ard data-driven models on processed GTFS data; the raw data were
rocessed by a much more limited version of the CR-GTFS pipeline. The
onducted experimental analysis there showed that the Neural Network
NN) -based method outperformed other alternatives in terms of predic-
ion accuracy. 

In comparison to Chondrodima et al. (2021) , in this work we inves-
igate a more complex and challenging task, as we extend the PT-ETA
ook-ahead window of prediction by including more vehicle stops, i.e.,
n a generalized manner and much longer time horizon. Additionally,
ased on the previous findings in Chondrodima et al. (2021) , we focus
ur current study primarily on NN-based methods. More specifically,
e propose a novel data-driven modeling approach based on Radial
asis Function (RBF) NNs trained with an optimally adapted version
f the successful Particle Swarm Optimization method using the Non-
ymmetric Fuzzy Means (PSO-NSFM) algorithm ( Alexandridis, Chon-
rodima & Sarimveis, 2013 ). The proposed method is applied to
TFS data processed by the currently upgraded version of the CR-
TFS pipeline. The combination of the proposed modified PSO-NSFM
ethod with the upgraded CR-GTFS pipeline presents a novel and

omplete framework, capable of predicting PT-ETA accurately and 
fficiently. 

As part of the experimental work, a case study was conducted with
TFS data collected from the American Public Transportation Associ-
tion named ‘Metro Transit’ ( MetroTransit, 2021 ). The results showed
hat the use of the modified PSO-NSFM helps in significantly improv-
ng the performance of the RBF NNs and provide increased accuracy on
he PT-ETA prediction task, outperforming other comparable state-of-
he-art methods ( Ali, 2020; Breiman, Friedman, Olshen & Stone, 2017;
ervantes, Garcia-Lamont, Rodriguez-Mazahua & Lopez, 2020; Hagan
 Menhaj, 1994; Hastie, Tibshirani & Friedman, 2008; Huang, Zhu &
iew, 2006; Klesk & Korzen, 2021; Sarimveis, Alexandridis, Tsekouras &
afas, 2002; Theodoridis & Koutroumbas, 2008; Vapnik, 2013 ). Hence,
he proposed framework can be applied as a robust and reliable ap-
roach for accurate prediction of PT-ETA on GTFS static and real-time
ata feeds. 

In summary, the main contributions of this work are listed as follows:

• A new CR-GTFS pipeline for optimized pre-processing, focused on
cleansing and reconstructing GTFS static and real-time data. 

• An optimally adapted PSO-NSFM algorithm for training RBF NNs in
order to predict PT-ETA accurately based on GTFS data. 

• Comparative results with competitive state-of-the-art alternative
methods, proving the increased accuracy and performance of the
proposed framework. 

The rest of this paper is organized as follows: Section 2 re-
iews the related literature; Section 3 formulates the problem def-
nition; Section 4 presents a short description of the GTFS data;
ection 5 presents the applied techniques and introduces the proposed
ramework for the PT-ETA prediction task; Section 6 describes the ex-
erimental protocol; Section 7 presents the results of the proposed ap-
roach, as well as comparison to other solutions; Section 8 discusses the
esults produced by the employing methods; Section 9 concludes by out-
ining the advantages of the proposed framework and setting directions
or future work. 
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. Literature review 

A number of studies covering ‘smart’ cities have been pub-
ished in the relevant literature ( Akpinar, 2019; Chatterjee & Kar,
015; Chen, Zou, Li, Li, Yang & Chen, 2021; Madakam, 2020;
evado Peña, López Ruiz & Alfaro Navarro, 2020 ). In Chatterjee, Kar
 Gupta (2018) the authors attempted to predict factors that can in-
uence ‘smart’ cities highlighting the critical aspects of produced infor-
ation and system quality. Chen, Guo, Su, Chen & Chang (2015) pro-
osed a city-level data exchange system (citizen-card system, intelligent
ransportation system and urban regional health system), that was suc-
essfully implemented and applied in Zhenjiang city (China). The study
 Corbett & Mellouli, 2017 ) developed a conceptual model that expands
he concept of sustainable ‘smart’ cities. In Rybnytska, Burstein, Rybin
 Zaslavsky (2018) a decision support tool was created to coordinate
rivers in selecting the optimal path for garbage collection; the results
ighlighted the potential for a reduction in distance covered and as-
ociated CO2 emissions. Furthermore, Ang, Seng, Ngharamike & Ije-
aru (2022) investigated the impact of data-driven approaches in the

ontext of ‘smart’ city transportation. 
Motivated by Ang et al. (2022) , in this paper we employ data-driven

echniques in order to address problems related to ‘smart’ PT. Particu-
arly, we address the PT-ETA problem by combining the advantages of
rajectory analysis ( Brisaboa, Faria, Galaktionov, Rodeiro & Rodriguez,
022; Gu, Jiang, ’David’ Fan & Chen, 2022; Sun, Zhao, Zhang, Chen
 Yu, 2022; Xiao, He, Yang, Liu & Liu, 2022 ), NNs ( Bangyal, Ahmad,
hafi & Abbas, 2012; Korovesis, Kandris, Koulouras & Alexandridis,
019; Stogiannos, Alexandridis & Sarimveis, 2018 ) and swarm intel-
igence ( Alexandridis, Paizis, Chondrodima & Stogiannos, 2017; Beni,
020; Chakraborty & Kar, 2017 ) in order to train the NN models. Signif-
cant amount of current state-of-the-art research work is concentrated
n training NNs by using meta-heuristic techniques ( Bangyal, Nisar,
brahim, Bin, Haque, Rodrigues & Rawat, 2021b; Ji, Zheng, Zhuang &
in, 2021; Ş en, Dönmez & Y ı ld ı r ı m, 2020; Thorat, Parekh & Mangrulkar,
021 ) such as PSO ( Bangyal, Ahmad, Rauf & Shakir, 2018b; Bangyal,
ameed, Alosaimi & Alyami, 2021a; Pervaiz, Ul-Qayyum, Bangyal, Gao
 Ahmad, 2021; Rauf, Bangyal, Ahmad & Bangyal, 2018 ), bat algo-

ithm ( Bangyal, Ahmad & Rauf, 2019; Bangyal, Ahmad, Rauf & Per-
aiz, 2018a; Bangyal, Ahmed & Rauf, 2020; Haider Bangyal, Hameed,
hmad, Nisar, Haque, Ibrahim, Asri, Rodrigues, Khan, Rawat et al.,
022 ), simulated annealing ( Alexandridis & Chondrodima, 2014 ), tabu
earch ( Karamichailidou, Kaloutsa & Alexandridis, 2021; Zhang, Liu,
hou & Zhang, 2020 ), differential evolution ( Karamichailidou, Alexan-
ridis, Anagnostopoulos, Syriopoulos & Sekkas, 2022 ) and many others
 Batra, Jain, Tikkiwal & Chakraborty, 2021; Chakraborty & Kar, 2016 ).

In the core task of trajectory prediction of moving objects ( Yu, Zhou,
ang, Pu, Cheng & Chen, 2021 ), a number of algorithms have been ap-

lied in various domains, including aviation, maritime and urban traf-
c ( Georgiou, Pelekis, Sideridis, Scarlatti & Theodoridis, 2020a; Geor-
iou, Petrou, Tampakis, Sideridis, Chondrodima, Pelekis & Theodor-
dis, 2020b; Petrou, Tampakis, Georgiou, Pelekis & Theodoridis, 2019 ).
oreover, some studies have addressed the ETA prediction task, in

he aviation domain, where NNs have been used successfully for the
limb/vertical trajectory prediction ( Le Fablec & Alliot, 1999 ) or in re-
ation to the air traffic flows for ETA at the destination ( Cheng, Cui &
heng, 2003 ). 

Several studies use Machine Learning (ML) approaches
 Tripathi, Goswami, Trivedi & Sharma, 2021 ) to predict travel
imes based on GPS traces from vehicles ( Ghanim, Shaaban & Miqdad,
020; Liu et al., 2020; Celan & Lep, 2017 ), or the so-called live
utomatic Vehicle Locations (AVL) data ( Hua, Wang, Wang & Ren,
018; Petersen et al., 2019; Ranjitkar et al., 2019 ). In Larsen, Yoshioka
 Marte (2020) an NN was employed to predict the travel times of
uses using open real-time data derived from Sao Paulo City bus fleet
ocation, real-time traffic data and traffic forecast from Google Maps.
n Alam, Kush, Emami & Pouladzadeh (2020) a Recurrent NN (RNN)
3 
rchitecture predicted the ETA irregularities by exploring live AVL data
rom buses, provided by the Toronto Transit Commission, along with
chedules retrieved from GTFS and weather data. 

Nevertheless, there is a limited amount of work in the literature re-
arding specifically the PT-ETA prediction task when using GTFS static
nd real-time feeds, most importantly during the transit (along the trip)
nd not only for a selected final destination. For example, Sun, Pan,
hite & Dubey (2016) combined clustering analysis with Kalman filters

o predict arrival times at various bus stops in Nashville (TN, USA) by
stimating the actual delay versus the pre-planned scheduled ETA, using
TFS static and real-time data, as well as historical bus timing data. 

Besides ( Alam et al., 2020 ), Long Short Term Memory (LSTM) models
or predicting ETA of busses were also explored in Celan & Lep (2017) ,
here heterogeneous information about the transport environment
ere taken into account; the model evaluation was conducted by us-

ng operational bus data from Samara (Russia). Petersen et al. (2019) ,
roposed a method for bus travel time prediction that leverages the non-
tatic spatio-temporal correlations presented in urban bus networks, al-
owing the discovery of complex patterns, not easily captured by more
raditional methods. The model was composed of convolutional and
STM layers and it was evaluated with a dataset from Copenhagen’s
Movia’ public transport authority. Furthermore, in Liu et al. (2020) an
STM-based comprehensive prediction model was proposed by taking
nto account spatio-temporal feature vectors and data provided by Xing-
ai bus company. 

All the aforementioned LSTM-based approaches present a very
romising alternative to automatic pattern discovery in trajectories and
TA prediction. However, there are three main drawbacks and negat-
ng factors in employing LSTM in such tasks, namely: (a) requiring long
raining sequences in order to converge properly, (b) requiring increased
usceptibility to noise and poor data quality, and (c) requiring increased
omputational complexity in terms of training time. In the context of PT-
TA prediction based on stops (i.e., not on the entire full-resolution GPS
rajectory data), the input sequences are in the order of much less than a
undred data points, i.e. much less than what a typical LSTM requires for
roper convergence. Moreover, running PT-ETA predictions as the trip
volves within very narrow time frames, instead of batch/offline mode
ith plenty of time available for computations, makes the employment
f LSTM very problematic in practice. 

Besides LSTM networks, researchers have employed other NN archi-
ectures as well. Wang, Zuo & Fu (2014) combined historical data and
eal-time transit information to forecast the bus arrival time based on
wo phases: a) an RBF NN approach for modeling the historical data,
nd b) an online-oriented adaptive method that uses the currently avail-
ble information to modify the RBF. Also, some studies exploit dwell
imes, e.g. Jeong & Rilett (2004) developed a model to predict bus ar-
ival time by using automatic vehicle location data and by taking into
ccount schedule adherence and dwell times, i.e., the durations of the
ransit vehicle stops when serving passengers. In Amita, Singh & Ku-
ar (2015) NNs were applied for bus travel time prediction, taking into

ccount dwell time, delays and the distance between the bus stops. 
Other studies focus more on the online aspect of processing, e.g. in

arsen et al. (2020) the purpose was to train a NN for predicting travel
imes of buses based on real-time open data, exploiting traffic data and
orecasts from Google Maps. Similarly, in Ghanim et al. (2020) data
rom public bus routes were used to predict transit travel time for entire
ourneys using NNs. Kodiyan & Francis (2020) focused on predicting
elays and grouped them into classes based on similarities on real-time
us transits. Furthermore, Ranjitkar et al. (2019) focused on improving
he bus passenger experience in terms of bus ETA prediction by investi-
ating various time series and regression-based techniques suitable for
us arrival time modeling. 

It is evident that in the current state-of-the-art in the PT-ETA predic-
ion task there are only few studies working directly with GTFS data.
ore specifically, Sun et al. (2016) combined clustering analysis with
alman filters to predict arrival times at various bus stops by calculat-
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ng the delay versus a scheduled time. Information is drawn from GTFS
tatic and real-time data, as well as historical bus timing data and the
odel was deployed in Nashville (TN, USA). 

. Problem formulation 

Using a GTFS dataset, the PT-ETA prediction task can be stated as
ollows: 

• Given : an input vector u 

′ = [ 𝑢 ′
𝑡 𝑠 − 𝑘 𝑠 

, … , 𝑢 ′
𝑡 𝑠 −1 

, 𝑢 ′𝑡 𝑠 , 𝑡 𝑠 + 𝑞 ] , where 𝑡 𝑠 is

the current vehicle stop, 𝑢 ′
𝑡 𝑠 − 𝑏 

contains sequential information about

passing through stop 𝑡 𝑠 − 𝑏 , 𝑏 ∈ {0 , … , 𝑘 𝑠 } and 𝑢 ′𝑡 𝑠 , 𝑡 𝑠 + 𝑞 , 𝑞 > 0 con-
tains information about current stop 𝑡 𝑠 and future vehicle stop 𝑡 𝑠 + 𝑞,

• Predict : the arrival time or 𝑑𝑇 𝑡 𝑠 , 𝑡 𝑠 + 𝑞 towards a future vehicle stop 𝑞
in sequence. 

Further analysis and details concerning the problem formulation can
e found in Appendix A . 

. General transit feed specification (GTFS) data 

As already mentioned, GTFS data exist in two main variants: the
TFS-s feed and the GTFS-rt feed. The former includes static informa-

ion, with updates occurring periodically, such as time schedules that
ight be updated only a couple of times in a year. The latter refers to

ransit data collected during the vehicle trips and are usually based on
PS tracking. Both GTFS feeds are described in detail in Appendix B . 

In this work real-world GTFS (static and real-time) data were used,
hich were collected from the American Public Transportation Asso-

iation named ‘Metro Transit’ ( MetroTransit, 2021 ). More information
bout the PT agency and the exact data feed details can be found in
ppendix C . 

. Methods 

In this section, we present all the applied techniques, including the
roposed CR-GTFS pipeline, a description of the main concepts behind
he PSO-NSFM algorithm and the modifications made in the proposed
pproach. Finally, we present the proposed framework’s robustness. 

.1. Data collection 

GTFS has been widely adopted in the past decade by transit agencies
s the standard format for sharing transit data. However, several issues
nd quality degradation need to be resolved before GTFS input can used
y data-driven methods for predictive analytics such as the PT-ETA pre-
iction task. These issues can be identified and resolved effectively by
pplying the proposed CR-GTFS pipeline to the static and real-time data
eeds. 

The CR-GTFS environment operates across multiple processes,
hereas an overview of the pipeline is presented in Fig. 1 . The pro-

ess concerning the GTFS-s feed is executed in parallel to the process
oncerning the GTFS-rt feed. First, both processes retrieve the respec-
ive data periodically and store them depending on whether the data
ave changed or not. Particularly, the GTFS-s feed is downloaded every
wo hours and the GTFS-rt data are downloaded every five seconds. In
oth processes, the download module is followed by the version-check
odule, which compares the version of the downloaded data with the

ersion of the stored data. Then the downloaded data pass through the
ext steps if the two versions differ. The data are stored and structured
n a PostgreSQL database following the GTFS data format, with the ad-
ition of executing spatial operations implemented with PostGIS. Next,
e describe the aforementioned processing steps. 
4 
.1.1. GTFS static data processing 

In the PostgreSQL database each one of the.txt files of the GTFS-s feed
onstitutes a table with the same name as the original.txt file. Once the
TFS feeds have been downloaded, the processing detects incomplete,

ncorrect or inaccurate information and reconstructs them as follows. 
First, the CR-GTFS tool detects and fixes errors in each table: 

• Each of the following fields should be unique in table ‘routes’:
‘route_id’, ‘route_short_name’, ‘route_long_name’, ‘route_url’. The du-
plicated fields are eliminated. 

• Each of the following fields should be unique in table stops: ‘stop_id’,
‘stop_code’, ‘stop_name’, ‘stop_url’. Also, each ‘stop_id’ should cor-
respond to a unique point defined by ‘stop_lat’ and ‘stop_lon’. Any
duplicate fields are eliminated. 

• In table ‘trips’ each ‘trip_id’ and ‘trip_headsign’ should be unique for
each ‘route_id’. Any duplicate fields are eliminated. 

• In table ‘stops_times’ the values of the field ‘stop_sequence’ should
increase and be unique along the trip, otherwise the out of sequence
or the duplicated stops are eliminated. Also, the ‘arrival_time’ and
‘departure_time’ should increase along the trip and should not be
the same at three or more consecutive stops (otherwise the stop is
eliminated). In addition, each ‘trip_id’ should comprise an adequate
number of stops (otherwise the ‘trip_id’ is eliminated). 

• In table ‘shapes’ the sequence of points in each ‘shape_id’ should be
in ascending order (otherwise the out of order points are eliminated),
two consecutive points within a ‘shape_id’ should be different (oth-
erwise the second point is eliminated). 

Subsequently, the GTFS-s data tables are merged according to com-
on keys as shown in Fig. 2 , where only the values of the matching keys

re maintained (inner join). Also, in Fig. 2 the different colors indicate
ifferent processes, which can be executed in parallel. For instance, one
uch process is the following: the table ‘stops’ is merged with the table
stop_times’ by using as key the ‘stops_id’. Hence, the table trips include
he full information provided by the GTFS-s and the redundant values
re eliminated. 

Next, the CR-GTFS pipeline detects spatial problems related to the ac-
ual road network generated by the OpenStreetMap contributors (2017) .
pecifically, (a) the shapes coordinates and sequence should match the
penStreetMap road network coordinates and direction respectively,
therwise the faulty points are eliminated, and (b) the stops coordi-
ates and sequence should match the coordinates and direction, respec-
ively, generated by the available shapes; the stops coordinates match
he shapes when the stops lie within a predefined small distance (a few
eters) of the shape for the respective trip. Also, the shapes must comply
ith the boundaries of the PT agency’s service area. The exact numbers
nd thresholds for these tests are GTFS-dependent and in this experi-
ental work they have been extensively explored and validated. 

Furthermore, the CR-GTFS pipeline creates two new fields called
shape_dist’ and ‘trip_stop_dist’. For the first, for each ‘shape_id’ and for
ach point it defines the network distance traveled from the first point
f the specific ‘shape_id’ by using information from OpenStreetMap road
etwork. Based on ‘shape_dist’, the ‘trip_stop_dist’, for each ‘trip_id’ and
or each ‘stop_id’, defines the network distance traveled from the first
top of the specific ‘trip_id’. 

The resulting processed GTFS-s data provide complete timetable in-
ormation of high quality (error-free) and usable as training datasets for
ata-driven methods. 

.1.2. GTFS real-time data processing 

Following the GTFS-s processing step, the process of cleansing and
econstructing the GTFS-rt feed for PT-ETA prediction purposes is im-
lemented. In the PostgreSQL database each one of the real-time feeds
onstitutes a table with the same name as the original feed. Once the
TFS-rt feeds have been downloaded, the processes of detecting incom-
lete, incorrect or inaccurate information and reconstructing the data
lso applies here. 
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Fig. 1. Overview of proposed CR-GTFS pipeline. 

Fig. 2. GTFS static merging process. 
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First, the TripUpdate and the VehiclePosition tables are merged. Due
o the fact that both real-time feeds often include missing or faulty val-
es related to their primary keys, the merging procedure is not trivial.
e address this problem by employing multiple key combinations, in-

luding ‘trip_id’, ‘route_id’, ‘direction_id’, ‘vehicle_id’ and ‘vehicle_label’.
or instance, if ‘trip_id’ is not available in the feed, it can be replaced
y ‘route_id’ and ‘direction_id’. By using the aforementioned merging
rocedure, the CR-GTFS pipeline fills the common real-time missing in-
ormation and eliminates redundancies. Then, the CR-GTFS pipeline de-
ects and eliminates any records with invalid timestamps. Specifically,
ach new valid timestamp generated by a specific vehicle operating on
 specific trip, should increase compared to its previous valid timestamp
small positive increments). 

In order to reconstruct real-time data of high quality, the CR-GTFS
ipeline merges the resulted real-time data with the reconstructed static
ata according to two common keys, the ‘trip_id’ and the ‘route_id’ (in-
er join). Hence, only the records generated by vehicles operating in
ccordance with the transit schedule are maintained. 

Subsequently, the ServiceAlerts feed is merged with the scheduled
ata in order to: (a) delete the stops from the specific routes that are
haracterised by the alerts as closed, and (b) delete the part of the route
5 
hat is indicated in the alerts as detoured. Next, the CR-GTFS pipeline de-
ects errors related to mismatches and inconsistencies between the real-
ime data and the scheduled data (changed by the alerts) and resolves
hem. First, incorrect position data are eliminated via spatial filtering,
.g. GPS jittering. Specifically, each vehicle’s new broadcasted position
hould reside within a small distance (a few meters) from the respective
TFS shape. Also, each vehicle’s new broadcasted position compared to

ts previous valid position should match the direction of the respective
TFS shape and the calculated road network distance between theses
oints should result in a reasonable value (a few meters). In addition,
or each vehicle operating on a specific trip, each new recorded times-
amped position should correspond to a reasonable speed (depending
n the vehicle type) calculated from the previous timestamped posi-
ion. The vehicle speed, which is calculated by using the road network
istance between the current and the previous positions and the corre-
ponding time horizon, should also follow the minimum and maximum
peed limits defined by the PT data provider, otherwise it is eliminated
s error. 

The CR-GTFS tool also detects inconsistencies related to trip
tart/end times and positions. Specifically, GTFS-rt feeds report updates
nly for the trips facilitated by vehicles in service. Thus, the vehicles
nd the trips that are not in progress are not included in the real-time
eed updates. Following this, a trip starts when: 

• a vehicle is assigned to the specific trip, broadcasts timestamped po-
sitions and no valid records have reported in previous real-time up-
dates; 

• the broadcasted positions fall within a small distance (50 meters)
from the position of the first scheduled stop of the specific trip; 

• the broadcasted timestamp matches the scheduled arrival time of
the first stop of the specific trip, where a small time difference is
permitted, which is equal to the calculated maximum delay time of
the trips of the same road at the first stop. 

Similarly, a trip ends when: 

• the assigned vehicle on the specific trip does not broadcast updates
for a long time, or reports a different trip/route/direction for con-
secutive timestamps; 

• the broadcasted positions fall within long distances from all the
scheduled stops of the specific trip; 

• the broadcasted timestamp is higher than the scheduled departure
time of the last stop of the specific trip and their time difference is
higher than a specific amount of time, which is equal to the calcu-
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lated maximum delay time of the trips of the same road at the last
stop. 

Although the processed GTFS data provide usable knowledge for
uilding data-driven models for PT purposes, they cannot facilitate PT-
TA prediction on stops yet, because they lack the information concern-
ng the actual arrival and departure times of the vehicles at the stops.
owever, this is a challenging task due to a number of reasons, such as

he fact that sometimes no location is reported near a stop as the vehi-
le passes the stop location too quickly (no stop). The CR-GTFS pipeline
lso addresses this problem of discovering and reconstructing the infor-
ation concerning the actual arrival/departure time of the vehicles at

tops in real-time mode. 
More specifically, the CR-GTFS pipeline matches each new valid

imestamped position broadcasted by a vehicle operating on a specific
rip to the closest scheduled stop of the specific trip along the shape
ath. A broadcasted position-stop-match is valid when the network dis-
ance between the broadcasted position and the scheduled stop falls
ithin the range of 30 meters. As the vehicle moves, multiple broad-

asted positions may match the same scheduled stop within the range of
0 meters. Thus, for each new valid broadcasted timestamped position,
he CR-GTFS compares the matches and maintains only the broadcasted
osition-stop-match that indicates the minimum network distance from
his stop location. Also, as the vehicle moves, a valid broadcasted times-
amped position-stop-match may occur while the previous stop in se-
uence remains without a valid match, i.e., the vehicle passed by the
top but no valid timestamp was reported for it. In this case, the times-
amp for the remaining stop (that does not have a matched timestamp)
an be estimated by using the road network distance and the speed of
he vehicle from the previous and next positions of the specific stop’s
ocation. 

After tackling all these challenges and quality degradation factors via
his extensive CR-GTFS pipeline, the resulting data provide complete
tatic and real-time information of high quality regarding the transit
ystem, capable of being used for training PT-ETA predictive models. 

.2. Data analysis 

.2.1. RBF training 

RBF networks ( Moody & Darken, 1989 ) are described in Appendix D .
tandard approaches decompose the problem of RBF network training
n two steps. In the first step the determination of the hidden layer di-
ension takes place, while in the second step the synaptic weights are

alculated by using linear least squares regression in matrix form as: 

 

𝑇 = Y 

𝑇 Z ( Z 𝑇 Z ) −1 (1)

here Z = [ z (1) , z (2) , … , z ( 𝐾)] 𝑇 and Y = [ y (1) , y (2) , … , y ( 𝐾)] are matri-
es containing the hidden layer outputs and the target values for all data
oints, respectively. 

As far as the first step of the RBF training procedure is concerned,
he determination of the hidden layer dimension is a difficult task with
o guarantee of strict optimality. Conventional training methods such
s the popular k -means algorithm often suffer from multiple disad-
antages ( Alexandridis, Chondrodima & Sarimveis, 2016; Kushwaha,
ant & Sharma, 2019 ). An alternative to these methods is provided by
he fuzzy means (FM) algorithm ( Sarimveis et al., 2002 ) and its vari-
nts ( Alexandridis et al., 2013; Alexandridis, Sarimveis & Ninos, 2011 ),
hich have found many successful applications ( Alexandridis & Chon-
rodima, 2014; Alexandridis, Chondrodima, Efthimiou, Papadakis, Val-
ianatos & Triantis, 2014a; Alexandridis, Chondrodima, Paivana, Sto-
iannos, Zois & Sarimveis, 2014b; Alexandridis, Stogiannos, Papaioan-
ou, Zois & Sarimveis, 2018; Karamichailidou et al., 2021; Stogiannos
t al., 2018 ). A brief discussion about the FM algorithm and its variants
s provided next. 
6 
.2.2. Symmetric fuzzy means algorithm 

The FM algorithm has the ability to automatically determine the RBF
etwork size in one step (non-iteratively), i.e., the number of RBF kernel
enters and their positions. The FM algorithm is based on a symmetric
uzzy partition of the 𝑁-dimensional input space and, thus, it is also
alled symmetric FM (SFM). Due to the symmetric partitioning concept,
he domains of all input variables are partitioned into equal fuzzy sets
nd the optimum fuzzy partition 𝑠 ′ is necessary to be determined in
rder for the SFM to operate optimally. 

In order to find 𝑠 ′, in this work an exhaustive search is employed,
here all partitions are tested ranging from 𝑠 min to 𝑠 max , which cor-

espond to the lower and upper bounds on the number of fuzzy sets,
espectively. Procedures based on exhaustive search are usually time
onsuming, but in this work we take advantage of the extremely fast
raining procedure adopted by the SFM. Thus, finding the optimal sym-
etric fuzzy partition is a rather fast and easy task to optimize, as we

nly need to test a relatively small number of RBF networks, which are
rained very fast and their total number is equal to 1 + 𝑠 max − 𝑠 min . 

.2.3. Non-symmetric fuzzy means algorithm 

A non-symmetric variant of the FM, namely NSFM algorithm
 Alexandridis et al., 2011 ), utilizing a non-symmetric fuzzy partition of
he input space, has been proposed in Alexandridis et al. (2011) offer-
ng increased accuracy over the SFM approach. Particularly, the NSFM is
ased on a non-symmetric fuzzy partitioning of the 𝑁-dimensional input
pace, which implies that the domains of all input variables are parti-
ioned into 𝑠 𝑗 fuzzy sets, where 𝑗 = 1 , 2 , … , 𝑁 . The SFM algorithm can
e considered as a special case of the NSFM when all input variables are
artitioned into the same number of fuzzy sets, i.e., 𝑠 1 = 𝑠 2 = , … , = 𝑠 𝑁 

.
ollowing the SFM approach, the NSFM also requires only a single pass
f the training data to perform the centers estimation stage. 

Furthermore, in order for the NSFM to operate successfully, the op-
imal non-symmetric fuzzy partition is necessary to be determined. The
SFM algorithm defines a more complicated network design problem
ontrary to the SFM approach. Thus, finding the optimal fuzzy parti-
ion in the NSFM algorithm is a more challenging problem. For low-
imensionality problems the optimal partition can be estimated by us-
ng an exhaustive search, as previously mentioned. However, in high-
imensionality problems we need to employ a slightly different ap-
roach in order to optimally determine an increased number of opera-
ional parameters. Although the NSFM algorithm also adopts a fast train-
ng procedure, the increased number of operational parameters makes
he use of an exhaustive search procedure prohibitive. Hence, the PSO
pproach is employed instead for NSFM, as is being described in the
ollowing section. 

.2.4. Modified PSO-NSFM algorithm 

In this work, a modified version of the PSO-NSFM algorithm is pro-
osed to train the RBF networks. The proposed algorithm is based on
he original PSO-NSFM method ( Alexandridis et al., 2013 ) and the SFM
pproach, where the former is based on a combination of the NSFM
pproach and the PSO ( Engelbrecht, 2007 ) method. A description of
he main concepts behind the PSO-NSFM algorithm is provided next,
long with the proposed modifications that were made in order to build
BF-based models with increased prediction capabilities concerning the
pecific PT-ETA prediction task. 

In Alexandridis et al. (2013) , the PSO-NSFM method was employed
s a search method for exploring the space of solutions by encoding
ach individual one to reflect the input space partitioning. Specifically,
he standard PSO is based on a population of possible solutions coded as
articles, where each particle has two vectors, namely position s and ve-
ocity v . The position vector corresponds to the number of fuzzy sets. The
SO-NSFM algorithm comprises of a swarm that includes a total number
f 𝑃 particles and at iteration 𝑡 each particle 𝑖 with 𝑖 = 1 , 2 , … , 𝑃 contains
 𝑖 ( 𝑡 ) = [ 𝑠 1 ( 𝑡 ) , 𝑠 2 ( 𝑡 ) , … , 𝑠 𝑁 

( 𝑡 )] 𝑇 elements, which represent the number of
uzzy sets assigned to each one of the 𝑁 dimensions. 



E. Chondrodima, H. Georgiou, N. Pelekis et al. International Journal of Information Management Data Insights 2 (2022) 100086 

 

w  

w  

𝑃  

s  

u
t  

[  

c  

t
 

a  

a  

n  

t  

R
 

w  

p  

b

𝐲  

𝑓  

w  

s  

𝐯

𝐬  

 

N  

e  

H  

b  

A  

p

𝑣

w  

‘  

𝑟  

a
 

l  

m  

i  

L  

o  

t  

2

𝜔  

S  

e  

T  

e  

a
 

t  

a  

T  

b  

𝜌  

N  

w  

p
 

m  

a  

v

𝑣  

 

fi  

r  

d  

o  

i

𝑅  

 

t  

i  

P  

c  

i  

h  

t

5

 

G  

a  

w  

t
 

m  

t  

N
 

p  

i  

p  

G  

h  

i  

i  

a  

E  

r  

5
 

a  

p

5

 

G  

d  

l  

G  

b  
The original PSO-NSFM algorithm starts by initializing 𝑃 randomly
ith different partitions of the 𝑁-dimensional input space. In this
ork we modify the initialization procedure by selecting randomly
 − 1 particles. The remaining particle s 𝑃 ( 𝑡 ) contains the optimum
ymmetric fuzzy partition 𝑠 ′, which is defined by the SFM algorithm
sing an exhaustive search testing all partitions ranging from 𝑠 min 
o 𝑠 max . The remaining particle at iteration 𝑡 is encoded as: s 𝑃 ( 𝑡 ) =
 𝑠 ′( 𝑡 ) , 𝑠 ′( 𝑡 ) , … , 𝑠 ′( 𝑡 ) 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑁 

] 𝑇 . It should be noted that by initializing a parti-

le of the swarm with the optimum fuzzy partition of the SFM ensures
hat the PSO will start its search from an already ‘good’ solution. 

Next, in each iteration 𝑡 , each particle in the swarm brings to action
n RBF network by determining its centers with the NSFM algorithm
nd calculating the synaptic weights according to Eq. (1) . Thus, 𝑃 RBF
etworks are trained and provide 𝑃 fitness values. These values are es-
imated by applying the error-related criterion, which in this case is the
oot Mean Square Error (RMSE). 

Based on these 𝑃 fitness values, the particles of the swarm interact
ith each other to optimize their search target. These interactions de-
end on the individual best position y 𝑖 ( 𝑡 ) of each particle 𝑖 and the global
est position ŷ ( 𝑡 ) of the swarm, which are calculated as follows: 

 𝑖 ( 𝑡 + 1) = 

{ 

𝐲 𝑖 ( 𝑡 ) , if 𝑓 ( 𝐬 𝑖 ( 𝑡 + 1)) ≥ 𝑓 ( 𝐲 𝑖 ( 𝑡 )) . 
𝐬 𝑖 ( 𝑡 + 1) , otherwise . 

(2)

( ̂𝐲 ( 𝑡 )) = min ( 𝑓 ( 𝐲 1 ( 𝑡 )) , … , 𝑓 ( 𝐲 𝑃 ( 𝑡 ))) (3)

here 𝑓 () is the fitness function. At each iteration 𝑡 each particle 𝑖 in the
warm updates its position by adding the corresponding velocity vector
 𝑖 ( 𝑡 ) as: 

 𝑖 ( 𝑡 + 1) = 𝐬 𝑖 ( 𝑡 ) + 𝐯 𝑖 ( 𝑡 + 1) (4)

As far as the velocity calculation is concerned, the original PSO-
SFM updates the velocity 𝑣 𝑖,𝑗 ( 𝑡 + 1) of particle 𝑖 in dimension 𝑗 at it-
ration 𝑡 + 1 by using the standard formula ( Alexandridis et al., 2013 ).
owever, the proposed modified PSO-NSFM updates the velocity 𝑣 𝑖,𝑗 ( 𝑡 )
y employing an adaptive inertia weight strategy ( Abbas, Gu, Farooq,
sad & El-Hawary, 2017 ), along with the classical method of ‘crazy’
articles ( Abbas et al., 2017 ): 

 𝑖𝑗 ( 𝑡 + 1) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
rand (0 , 𝑉 max ) , if 𝜌 > 𝑟 3 ,𝑖𝑗 ( 𝑡 ) 

round 
(
𝜔𝑣 𝑖𝑗 ( 𝑡 ) + 𝑐 1 𝑟 1 𝑗 ( 𝑡 )[ 𝑦 𝑖𝑗 ( 𝑡 ) − 𝑠 𝑖𝑗 ( 𝑡 )] 

... + 𝑐 2 𝑟 2 𝑗 ( 𝑡 )[ ̂𝑦 𝑗 ( 𝑡 ) − 𝑠 𝑖𝑗 ( 𝑡 )] 
)
, 

otherwise. 

(5) 

here 𝑉 max is the velocity clamping constant, 𝜌 is the probability of
craziness’, 𝜔 is the inertia weight, 𝑐 1 and 𝑐 2 are acceleration constants,
 1 ,𝑗 ( 𝑡 ) , 𝑟 2 ,𝑗 ( 𝑡 ) and 𝑟 3 ,𝑖𝑗 ( 𝑡 ) are random values in the range [0, 1], sampled
t each iteration 𝑡 from a uniform distribution. 

The inertia weight strategy affects the position of the particle, where
arger values of 𝜔 result in stronger global exploration and weaker local
ining ability. By practice, good results can be obtained when the 𝜔

s dynamically adjusted compared to a fixed value ( Li, Wu, He, Bashir,
iping & García, 2020 ), where a larger 𝜔 is applied at the beginning
f the search and is gradually decayed ( Abbas et al., 2017 ). Thus, in
his work we define 𝜔 through the adaptive inertia weight ( Abbas et al.,
017 ) as follows: 

 ( 𝑡 ) = 𝜔 max − ( 𝜔 max − 𝜔 min )( 𝑡 ∕ 𝑡 max ) (6)

uch gradually decreasing inertia weight strategies in the first few it-
rations increase the probability of locating the global optimum peak.
he original PSO-NSFM lacks the use of inertia, which implies that 𝜔 is
qual to 1, i.e., it is a large value that leads to strong global searchability
nd weak local mining ability during the optimization procedure. 

Additionally, the method of ‘crazy’ particles was employed to main-
ain momentum in the PSO search and avoid saturation. Classic PSO
lgorithms tend to converge prematurely to a local minimum solution.
7 
he method of ‘crazy’ particles randomize some of the particle velocities
ased on the probability 𝜌 of ‘craziness’, where in this study is given by:

( 𝑡 ) = 𝜔 min − exp 
(
− 0 . 4 

(
𝜔 ( 𝑡 )∕ 𝜔 max 

) )
(7)

ote that 𝜌 decreases as 𝑡 increases. Hence, by using ‘crazy’ particles
e also help the algorithm to avoid premature convergence, due to the
roposed initialization procedure that involves SFM. 

Furthermore, like the original PSO-NSFM algorithm, the proposed
odified PSO-NSFM controls the exploration-exploitation trade-off by
 ‘velocity clamping’ mechanism, bounding the elements of the velocity
ector between predefined values: 

 𝑖𝑗 ( 𝑡 + 1) = 

{ 

𝑣 𝑖𝑗 ( 𝑡 + 1) , if ||𝑣 𝑖𝑗 ( 𝑡 + 1) || < 𝑉 max 
± 𝑉 max , otherwise 

(8)

Similarly to the original PSO-NSFM algorithm, the proposed modi-
ed PSO-NSFM, after updating the positions of all particles in the swarm,
eturns to the RBF network creation stage until one of two stopping con-
itions has been met: (a) reaching a maximum number of iterations 𝜉1 ,
r (b) the normalized swarm radius 𝑅 𝑛𝑜𝑟𝑚 becomes smaller than the min-
mum normalized swarm radius value 𝜉2 , which is calculated by: 

 𝑛𝑜𝑟𝑚 ( 𝑡 ) = 

𝑅 max ( 𝑡 ) 
𝑅 max (1) 

, where 𝑅 max ( 𝑡 ) = max 
1 ≤ 𝑖 ≤ 𝑃 

[||𝐬 𝑖 ( 𝑡 ) − ̂𝐲 ( 𝑡 ) ||] (9)

In summary, the proposed modified PSO-NSFM approach provides
he following significant improvements: (a) PSO is initialized by includ-
ng the optimum fuzzy partitioning provided by SFM to ensure that the
SO will start its search from an already ‘good’ solution, (b) PSO in-
ludes the adaptive inertia weight enhancement to dynamically adjust
ts search speed and stability, and (c) PSO uses the ‘crazy’ particles en-
ancement to maintain momentum in the PSO search and avoid prema-
ure stopping. 

.2.5. Complete framework for accurate prediction of PT-ETA 

The combination of the modified PSO-NSFM algorithm and the CR-
TFS pipeline forms a novel complete framework for predicting PT-ETA
ccurately. This framework constitutes of two phases, the offline phase
here the learning procedure takes place and the online phase where

he predictions of the PT-ETA model are produced. 
In the offline mode the upgrated CR-GTFS tool downloads, clears,

erges, reconstructs and stores the processed GTFS data. The data are
hen fed to the RBF network, which is trained with the modified PSO-
SFM approach. The trained RBF network is stored in the system. 

In the online mode the CR-GTFS pipeline executes some of its tasks in
arallel with the RBF-based process. Specifically, the RBF-based process
s executed after: (a) the CR-GTFS pipeline has completed the static GTFS
rocessing, (b) the CR-GTFS pipeline has completed all the real-time
TFS processing except the data storing stage, and (c) the PT vehicle
as moved along a pre-defined number of stopping points of the trip
n question. The trained RBF model can generate predictions when the
nformation of a pre-defined number of stops of the trip in question is
vailable. To this end, the online RBF-based procedure predicts the PT-
TA of the vehicle and the trip in question. This online procedure is
epeated every 5 s, as the GTFS real time feed is also downloaded every
 s. 

Combined together, these offline and online steps of the proposed
pproach provide a complete and unified framework for the PT-ETA
rediction task based on GTFS data feeds. 

.3. Robustness checks 

It is evident from the descriptions in the previous sections that the
TFS data management is by far a non-trivial task. Besides all the typical
ata quality deficiencies that are expected in real-world data sources,
ike missing data, sensing errors, statistical biases, etc, in the case of
TFS there are numerous additional problems that have to be addressed
efore the data are usable for proper model training. These deficiencies
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Fig. 3. MetroTransit dataset generated by the CR-GTFS pipeline. 
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nclude out-of-order data updates in real-time feeds, transition via stops
ithout actually stopping (no passenger embarkation or disembarka-

ion), GPS tracks that do not match the referenced location of bus stops
too far away, e.g. due to temporary detours), as well as other statis-
ical limitations. For example, PT-ETA prediction essentially translates
n processing a sequence of only a very limited set of reference points
bus stops), rather than entire full-resolution GPS tracks, e.g. as in the
rajectory prediction tasks. 

Considering all these limitations and constraints, the proposed ap-
roach introduces a dedicated pre-processing pipeline as described
bove. The purpose is to correct typical errors in mobility data (as it is
sually the case with trajectory reconstruction pipelines), as well as to

discover’ the actual movement of a vehicle between specific pre-defined
eference points, estimating with a reliable and accurate way the cor-
esponding transition distances and timestamps. These data present the
rue information content provided by the GTFS feeds; this is the input,
hich the model training can actually use for addressing the PT-ETA

ask itself rather than any other closely associated task, e.g. performing
rajectory prediction and then matching it to bus stops. 

In this sense, this whole study was designed around the GTFS-
ased PT-ETA task and the inherent limitations, data quality degra-
ation and statistical constraints. Standard cross-validation procedures,
nhanced with additional bias-removal (multiple randomized iterations)
nd more conservative generalization estimation (multiple validation
evels), were employed throughout all the stages of the experimental
ork. The CR-GTFS pipeline was designed separately as a stand-alone
rocessing stage, i.e., regardless of the subsequent model training stage.
owever, even at this stage, maximum effort was put to include only
inimal and ‘loose’ constraints regarding the removal of data errors and
eficiencies; this is an intentional design specification, i.e., to accept a
oderate level of extremes, outliers and errors in the training data, in

rder to increase the quality and the generalization level of the trained
odels, even at a (marginal) cost of their precise performance in this

pecific GTFS data provider or PT service. 
More details regarding the exact experimental protocol, including

ataset handling (pertitioning, cross-validation, etc), is provided in
ection 6 (more importantly in Section 6.2 ). 

. Experimental study 

This section presents the evaluation procedure regarding all the im-
lemented approaches, as well as comparative experiments. 

.1. GTFS dataset 

The proposed modified PSO-NSFM was evaluated on real-world
TFS data and compared with various compatible state-of-the-art meth-
ds. Real-world GTFS (static and real-time) data provided by Metro
ransit PT agency for one month period (March 2021) were downloaded
nd processed with the improved CR-GTFS pipeline, as described in
ection 5.1 . Figure 3 depicts an overview of the extracted data routes of
he processed dataset. March was chosen as the target month because it
id not include any major holidays or exceptional weather events that
ould have impacted transit service in any of the cities in the dataset,

.e., ‘exceptional’ days that would constitute statistical outliers. For the
T-ETA task the processed dataset was prepared according to the prob-
em formulation described in Section 3 . Particularly, in order to predict
he PT-ETA at the 6th stop beyond the current one (look-ahead span
 = 6), the models used the following information as input: 

a) Sequential information from the previous four PT stops of the current
stop: 
• target stop location expressed by longitude and latitude 
• target stop sequence, which corresponds to the stop order in the

trip 
• actual distance travelled between 5 consecutive stops (current

and 4 previous) 
8 
• time travelled between 5 consecutive stops (current and 4 previ-
ous) 

• mean estimated speed (last stops pair) 
b) Sequential information for the current and future stop: 

• current and future stop location expressed by longitude and lat-
itude 

• current and future stop sequence 
• actual network distance between the current stop and the future

target stop 

.2. Performance evaluation and hyper-parameter optimization 

For evaluation purposes, standard k-fold cross-validation (kfCV) pro-
ess ( Theodoridis & Koutroumbas, 2008 ) was employed for all trained
odels. The kfCV method can be used for both model selection/hyper-
arameter optimization and for model performance evaluation. How-
ver, when the same dataset is employed for both procedures simultane-
usly, the kfCV method may provide upwardly biased model evaluation,
.e., over-estimation of its true generalization capabilities. 

In order to overcome this bias, a slightly different type of kfCV was
mployed. Specifically, the validation procedure involved dividing the
vailable data into 𝑘 non-overlapping partitions, using one fold as the
esting set and the remaining folds as the training set, according to the
fCV. Hence, 𝑘 different training sets and 𝑘 corresponding testing sets
ere created. Then, within the kfCV method, a hyper-parameter opti-
izing procedure (such as grid search, or PSO algorithm) employed the
 th training set for network parameter calculation and the 𝑘 th testing
et for estimating the optimality. Subsequently, the selected parameters
ere used for training and evaluating 𝑘 − 1 models on the 𝑘 − 1 combi-
ation of training and testing sets, i.e., excluding the 𝑘 th training and
esting sets that where used in the network selection procedure. Thus,
he model performance is evaluated as the mean value over the remain-
ng 𝑘 ∗ ( 𝑘 − 1) splits. 

A kfCV process was applied with 𝑘 = 5 folds to all the trained models.
s a result, the initial dataset was partitioned in 80% training and 20%

esting subsets. Furthermore, experimental run included 10 instances
or every algorithm tested and the accuracy and error reported are the
verages, in order to obtain further reliable performance estimation. 

.3. Comparative experiments 

For comparison purposes, a wide range of different ML techniques
as tested; these include the RBF networks trained with the SFM al-
orithm as described earlier, Multi-layer Perceptron (MLP) neural net-
orks ( Hagan & Menhaj, 1994 ), Support Vector Machines for regres-

ion (SVR) ( Cervantes et al., 2020; Vapnik, 2013 ), Extreme Learning
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Table 1 

Operational parameters for the PSO-NSFM -based meth- 
ods. 

Parameter Symbol Value 

Maximum number of iterations 𝜉1 1500 
Minimum normalized swarm radius 𝜉2 0.1 
Population 𝑃 20 
Nostalgia 𝑐 1 0.5 
Envy 𝑐 2 0.5 
Velocity clamping constant 𝑉 max 30 
Minimum inertia weight 𝜔 min 0.7 
Maximum inertia weight 𝜔 max 1.0 
Minimum number of fuzzy sets 𝑠 min 4 
Maximum number of fuzzy sets 𝑠 max 50 
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Fig. 4. Distribution of the PT-ETA regression target in the GTFS dataset, i.e., 
true 𝑑𝑇 𝑡 𝑠 ,𝑡 𝑠 +6 . The implied pdf is clearly GEV-like with thin long tail due to the 
inclusion of extreme cases. 
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achine (ELM) ( Huang et al., 2006; Klesk & Korzen, 2021 ), Classifi-
ation and Regression trees (CART) ( Breiman et al., 2017; Theodoridis
 Koutroumbas, 2008 ) and the regression ensemble learning with least

quares boosting (LSBoost) ( Ali, 2020; Hastie et al., 2008 ). In all cases,
he model parameter selection and model evaluation were performed
ased on the kfCV process as previously described. 

Regarding the model parameterization, several aspects were taken
nto account and optimized accordingly. The SFM-based models were
ptimized with respect to the number of fuzzy sets. Also, a two-hidden
ayer MLP was trained with the Levenberg-Marquardt algorithm ( Hagan
 Menhaj, 1994 ), with its parameters optimized by using an exhaustive

earch for all possible combinations with the number of nodes ranging
rom 15 to 50 and 10 to 45, for the 1st and the 2nd hidden layer, respec-
ively, with step equal to 5 and provided that the 2nd layer dimension is
ess than the 1st layer dimension, i.e., 36 combinations were produced.
n addition, the SVR models were employed with Gaussian kernel func-
ion and exhaustive search procedure based on grid search adopted for
ptimizing the width of the Gaussian kernels 𝜎 and the penalty factor
. The ELM models were optimized based on the number of hidden
eurons, with exhaustive search applied to the number of nodes rang-
ng from 10 to 2000 with step 10, and implemented by applying differ-
nt activation functions including hard-limit function (har), radial basis
unction (rad), sigmoid function (sig), sine function (sin) and triangular
asis function (tri). CART were optimized with respect to the depth of
he tree and the minimum leaf size for prunning threshold. Finally, the
SBoost ensemble models were optimized with respect to the number of
rees in the ensemble and the minimum leaf size. 

In order to further evaluate the proposed method specifically in
erms of the PSO performance, we implemented three more variants:
a) the original PSO-NSFM algorithm ( Alexandridis et al., 2013 ), (b)
he modified PSO-NSFM without using the adaptive inertia weight and
crazy’ particles strategies (see Section 5.2.4 ), and (c) the modified PSO-
SFM without using the ‘crazy’ particles strategy (see Section 5.2.4 ).
he operational parameters used by the PSO-NSFM -based approaches,
hich were applied to all experiments, are given in Table 1 . 

. Results 

This section presents the results produced by the proposed approach
nd its rivals in terms of training times, prediction accuracy and training
tability. 

.1. Training times 

The processing time estimations for all the implemented methodolo-
ies were made in the context of the experimental setup described in
he previous sections, including kfCV and averaging over multiple it-
rations. All computational times were measured on the same PC with
ntel Core i9 processor (3.60 GHz) with 16 CPU cores and 64 GB of RAM,
unning Ubuntu Linux 18.04 server edition. 
9 
Overall, the methods that are capable of predicting more accurately
nd with less computational times are the modified PSO-NSFM, the SFM
nd the LSBoost algorithms. Although the MLP model ranked in the 3rd
osition regarding the prediction accuracy, its training time for each
ne of the 𝑘 = 5 folds in the kfCV process took more than 10 min, i.e.,
oughly an hour for the complete dataset. The increased training time re-
uirement makes the MLP less practical for the PT-ETA problem in real-
orld applications, where the predictive model would normally have to
e re-trained often in a changing environment. As far as the LSBoost is
oncerned, it can be trained within approximately 10 s in this PT-ETA
etup when using predefined optimal parameters, while in comparison
he training times for RBF-based methods require less than 17 s. Regard-
ng the proposed modified PSO-NSFM approach, it is important to note
hat the resulted model requires less training time than the model pro-
uced by the SFM, due to the former’s less complicated network topol-
gy. Specifically, training RBF networks with the NSFM algorithm by
sing the optimal parameters estimated by the PSO requires about 14 s,
hile the SFM algorithm using the optimal parameters estimated by ex-
austive search requires about 17 s. 

.2. Prediction accuracy 

Figure 4 presents the distribution of the target values of PT-ETA at
he 6th PT stop, i.e., 𝑑𝑇 𝑡 𝑠 ,𝑡 𝑠 +6 , based on the available training dataset.
s explained earlier, this is the maximum look-ahead window for the
R-GTFS processed trips with an average of 20-25 stops in total for
ore than 3/4 of the available trips, i.e., given the fact that roughly
o more than 1/4 of the trip length (measured in number of stops)
hould be used as input buffer for the predictions. The error distribu-
ion of the predicted ETA values conforms to a Generalized Extreme
alue (GEV) profile ( Spiegel, Schiller & Srinivasan, 2009 ), i.e., a highly
kewed Gaussian-like or Weibull-like profile ( Spiegel et al., 2009 ) for the
nderlying probability distribution function (pdf) implied by the corre-
ponding histogram, as depicted in Fig. 4 . There are a few large time
ifferences in specific trips, i.e., having excessive distances between few
airs of (sparse) stops in their PT routes, producing a thin long positive
ail in the distribution. In order to test the robustness of the models and
heir training, it was decided not to remove any such extreme values
ut instead use it as-is, simulating a real-world requirement of having
o produce robust PT-ETA predictions for any given input vector, includ-
ng such extremes and non-typical PT routes. 

The results obtained from the testing process, employing the kfCV
ethod described in Section 6.2 , were averaged over 10 repetitions for

ll the implemented methods and the exact values are summarized in
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Fig. 5. Evolution of the RMSE in the five test sets of the kfCV procedure for the best solution produced by the PSO-NSFM -based methods. 

Table 2 

Results for all the implemented methods. 

Method RMSE 𝐑 𝟐 MAE 

ELM (SIG) 88.596 ± 2.084 0.733 ± 0.009 65.584 ± 1.333 
CART 86.943 ± 0.669 0.744 ± 0.004 63.497 ± 0.462 
SVR 83.969 ± 1.669 0.763 ± 0.009 60.799 ± 0.618 
LSBoost 81.773 ± 0.163 0.774 ± 0.002 59.872 ± 0.172 
MLP 81.148 ± 1.378 0.777 ± 0.008 59.451 ± 0.454 
RBF-SFM 80.539 ± 0.125 0.781 ± 0.001 59.372 ± 0.127 
modified PSO-NSFM 79.067 ± 0.147 0.786 ± 0.001 58.978 ± 0.141 
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able 2 in terms of Root Mean Squared Error (RMSE), R-Squared ( 𝑅 

2 )
nd Mean Absolute Error (MAE). Particularly, Table 2 depicts the mean
nd standard deviation values from the 10 test runs; bold indicates the
verall-best performance. 

.3. Training stability 

Figure 5 presents the evolution of the RMSE in the five folds of the
fCV procedure for the best solution produced by each PSO-NSFM -
ased method; the best solution corresponds to the best kfCV perfor-
ance found among the 10 runs for each method, as an example of the

verall training process. 
Regarding the PSO-NSFM hyper-parameter optimization, the maxi-

um number of iterations and the population size are parameters that
ignificantly affect the computational load of the algorithm. As ex-
ected, experiments showed that increasing these parameters may re-
ult in improving prediction accuracy, albeit at the cost of additional
omputational burden. For the purposes of this work, we kept these
arameters at small values (see Table 1 ), as our experiments showed
hat satisfactory results can be obtained in relatively fast computational
imes. 

. Discussion 

.1. Contributions to literature 

There are three main aspects worth noting in the comparative results
f this study, namely (a) the training times, (b) the prediction accuracy
nd (c) the overall stability and robustness of the proposed framework.

First, regarding the training time, it should be noted that the ex-
ct numbers and statistical margins for the processing time estimations
10 
or the implemented methodologies (presented in Section 7.1 ) are ex-
remely difficult to attain. This is an expected and common issue, since
ach individual training instance is affected by various system-level fac-
ors that can not be disabled entirely, e.g. CPU scheduling by the OS
task switching), volatile background tasks of lower priority, associated
emory swapping to disk, etc. Nevertheless, the numbers presented in

ection 7.1 are very useful in terms of general comparisons and valid
anking of alternative approaches, providing a valid baseline for the
eal-world PT-ETA task. Overall, the proposed approach for both the of-
ine and the online GTFS data feeds was proven to be a very efficient
nd balanced trade-off of speed-versus-accuracy. According to Table 2 ,
he modified PSO-NSFM method achieves marginal overall-best accu-
acy compared to the other state-of-the-art alternatives, but (equally im-
ortant) does so with the minimum possible complexity and acceptable
raining time. Inherently to all PSO-based approaches, the exact accu-
acy can be improved further depending on more complex and time-
onsuming training, if allowed. 

Second, regarding the prediction accuracy and the numbers pre-
ented in Table 2 , it can be verified that the proposed modified PSO-
SFM approach produces the overall-best ETA prediction accuracy in

erms of average RMSE. This is probably the most prominent improve-
ent over the current state-of-the-art in related literature, although not

lways the most important one. When comparing against the RBF net-
orks trained with the SFM algorithm that is the most competitive of the
lternatives, the proposed method still provides a slight advantage and
imilar stability in 𝑅 

2 . Additionally, it should be noted that the modified
SO-NSFM favors networks with smaller topology while exhibiting low
tandard deviations; this indicates better generalization capability and
obustness for model training using the proposed algorithm. The mod-
fied PSO-NSFM and SFM methods achieve an advantage over the LS-
oost models, but with somewhat higher training times, as described in
ection 7.1 . Furthermore, the modified PSO-NSFM method achieves an
dvantage over the MLP networks, which are clearly ranked in 3rd po-
ition in terms of average error, despite using exhaustive search in MLP
etwork topology optimization. Regarding the comparison with LSBoost
odels, the MLP prediction accuracy is slightly better; however, LSBoost

equires significantly smaller training times than MLP. Besides the RBF-
ased, MLP and LSBoost methods, the performances of the rest of the
odels differ more evidently. The ELM models produce the worst pre-
iction results, although still comparable. As expected, the CART model
utperforms all the implemented alternatives in terms of computational
imes, but ranks in the second-worst position regarding the prediction
ccuracy. Finally, the SVR technique is significantly less capable on pre-
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iction accuracy compared to LSBoost. Overall, the preference over both
ccuracy and processing time requirements for the PT-ETA task in realis-
ic experimental setups favours the modified PSO-NSFM over any other
lternative method. 

Third, regarding the overall stability and robustness of the proposed
ramework, Fig. 5 illustrates that in all cases the modified PSO-NSFM
utperforms the other variants in a consistent and reliable way, out-
ining the merits of extending the original algorithm using SFM-based
nitialization, as well as the adaptive inertia weight and the ‘crazy’ par-
icles strategies. The modified PSO-NSFM variant including only the
odifications of SFM-based initialization and adaptive inertia weight

see Section 5 ) ranks second after the proposed (full) modified PSO-
SFM approach. The remaining two PSO-NSFM variants produce less
ccurate results, whereas, as it was expected, the PSO-NSFM variant
ith only SFM-based initialization clearly gives better results within

he first few iterations, in contrast to the original PSO-NSFM algorithm.
ue to the fact that the SFM outperforms all the non-RBF based im-
lemented methods, the PSO-NSFM -based variants that use the SFM-
ased initialization procedure manage to outperform all the other im-
lemented methods right from the first iteration. Therefore, the pro-
osed modified PSO-NSFM approach generates a highly accurate model
ithin the first few training steps and additional improvements are be-

ng made until convergence. In addition, the robustness of the proposed
pproach is further enhanced by the highly adaptive and error-resilient
esign of the CR-GTFS pipeline for pre-processing, as described in 
etail in Section 5.3 . 

.2. Practical implications 

Given the three main aspects discussed in the previous Section, this
tudy contributes to the current state-of-the-art in urban ETA prediction
asks in the corresponding ways. As noted in Section 1 , the main nov-
lties and improvements include: (a) the CR-GTFS pipeline for efficient
nd robust pre-processing of the data feeds, (b) the modified PSO-NSFM
lgorithm optimally adapted for the PT-ETA task providing overall-best
ccuracy, (c) comparative experiments and results against other state-
f-the-art alternatives regarding both speed and accuracy. 

One additional implication is that designing a highly adaptive
ipeline for robust and error-resilient pre-processing, although it may
eem a drawback in terms of added complexity and processing time, in
eality it improves the quality of the training data and, hence, the re-
uired complexity for the trained models (see Section 5.3 ). This means
hat, even if the proposed PSO-NSFM method is not used, the CR-GTFS
ipeline as presented in this work is a standalone significant merit and a
roven quality-enhancement stage of data pre-processing in real-world
T-ETA applications. 

In addition, using methods of scalable complexity like PSO, as well
s proper ‘hot start’ initialization as with SFM, enables the fine-tuning
f the optimal balance between training speed and model accuracy. In
ther words, coarse setups with fast training can be used for massively
arallel implementations with online constraints, while fine-grained se-
ups with longer training can be used for offline applications that favour
ccuracy over speed. These advantages are of utmost importance in chal-
enging problems like the PT-ETA task, especially in the era of big data
or ‘smart’ cities. 

Finally, it should be noted that given that the scale, volume and ve-
ocity of the transit data generated in modern urban environments is
ncreasing in super-linear rates, it is extremely important that the pro-
osed solutions to everyday practical problems like the PT-ETA task fol-
ow this trend and evolve in being more and more robust, scalable and
odular by design. 

. Conclusion 

The intelligent transportation systems are said to revolutionize the
ravel experience by making it safe, secure and comfortable for the peo-
11 
le. Nowadays, PT mobility and vehicle flow information has become
ossible largely due to recent advances in the transit data format stan-
ard, namely GTFS, which has been adopted by thousands of PT agen-
ies around the world to publish their scheduled and real-time public
ransit data, i.e., transportation route and timetable information. PT
ovement information used by data-driven methods to address major
T-related problems can improve the quality and the reliability of the
T services and ’smart’ cities management. One of the most urgent yet
hallenging tasks is the accurate PT-ETA prediction task for the service’s
ehicles. 

In this work, we investigated the problem of accurate prediction of
TA for PT vehicles after a fixed number of stops, at the maximum look-
head horizon for the available data, by: (a) presenting an improved ver-
ion of the CR-GTFS pipeline as a unified pre-processing process and (b)
ntroducing a novel modified version of the successful PSO-NSFM data-
riven method for the core prediction task. Despite the increasing use
f GTFS data format by PT agencies, these data are often noisy and with
nconsistencies. The combination of the PSO-NSFM algorithm with the
R-GTFS pipeline produces a novel and complete framework for both
ccurate and fast PT-ETA predictions. Experiments on real-world GTFS
ata showed that the proposed approach outperforms several competi-
ive state-of-the-art alternatives in terms of prediction accuracy and in
omparable or better computational times. 

Future enhancements of this work include the exploitation of local-
zed weather information as possible additional input in the PT-ETA
rediction task; although this may seem intuitively correct and straight-
orward, proper factor analysis is required for assessing the actual rel-
vance and statistical correlation, especially against other, potentially
ore important factors, such as traffic jams unrelated to weather condi-

ions, localized weekday patterns, stops with special importance (e.g. in-
erlink hubs), etc. Other enhancements will focus on GTFS fields that are
till experimental and may be formally adopted in the future by the PT
gencies, such as the ‘occupancy status’ (degree of passenger occupancy
or the vehicle), the ‘congestion level’ (congestion level that the vehicle
s currently experiencing), etc. Finally, we plan to validate the proposed
ethod on GTFS data provided (when available) from PT agencies from
ifferent countries, most importantly from Europe, since it may reveal
uite different inherent properties in terms of urban environment, PT
ime schedules, trip distances, etc. 
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1 https://svc.metrotransit.org/mtgtfs/gtfs.zip 
2 https://svc.metrotransit.org/mtgtfs/tripupdates.pb 
3 https://svc.metrotransit.org/mtgtfs/vehiclepositions.pb 
4 https://svc.metrotransit.org/mtgtfs/alerts.pb 
ppendix A. Problem formulation analysis 

For each of the previous 𝑘 𝑠 + 1 vehicle stops (including the cur-
ent one at 𝑡 𝑠 ), the sequential information gathered in each element
 

′ is ‘stop lon’ (longitude), ‘stop lat’ (latitude) and ‘stop sequence’ (in-
reasing number) for the route stops in each trip, the actual distance
𝑆 𝑡 𝑠 − 𝑏, 𝑡 𝑠 − 𝑏 +1 travelled between the adjacent stops 𝑏 and 𝑏 + 1 , the ac-
ual time 𝑑𝑇 𝑡 𝑠 − 𝑏, 𝑡 𝑠 − 𝑏 +1 for this transition and the GPS-based estimated
mean) speed, i.e., 𝑑 𝑆 𝑡 𝑠 − 𝑏, 𝑡 𝑠 − 𝑏 +1 ∕ 𝑑 𝑇 𝑡 𝑠 − 𝑏, 𝑡 𝑠 − 𝑏 +1 . Hence, each element 𝑢 ′

s essentially a sub-vector by itself, including the semantic information
bout vehicle stops and the transitions between them, as provided in the
TFS data. 

It can be noted that each sub-vector 𝑢 ′ includes some redundant in-
ormation, i.e., mean speed 𝑑 𝑆 = 𝑑 𝑇 along with transition distance 𝑑𝑆
nd time 𝑑𝑇 . The reasoning behind this is that with similar techniques in
eature generation some regression models become much more simpli-
ed and easier to train, as the pair distance-and-time often introduces
on-linearities in the input compared to distance-and-speed. Further-
ore, speed may also be included in the next-step sub-vector 𝑢 ′𝑡 𝑠 , where

t is typically not available ( 𝑑𝑇 𝑡 𝑠 , 𝑡 𝑠 +1 not realized yet), if instead some
lobally available estimation of it can be attained from historic data, i.e.,
he mean time it usually takes to travel between this specific pair of stops
nd in that specific direction. For more accurate comparison of the ex-
mined models in this study, no such additional estimations were made
or next-speed elements and, hence, the future-step sub-vector 𝑢 ′𝑡 𝑠 , 𝑡 𝑠 + 𝑞 
ontains ‘stop lon’, ‘stop lat’, ‘stop sequence’ for vehicle stops 𝑡 𝑠 and
 𝑠 + 𝑞, and actual distance 𝑑𝑆 𝑡 𝑠 , 𝑡 𝑠 + 𝑞 that are available at any given vehi-
le stops. 

As mentioned above, a relevant previous work ( Chondrodima et al.,
021 ) using different algorithms employed only next-stop prediction,
.e., with 𝑞 = 1 . The purpose was to compare those methods in the pure
hort-term sense, i.e., limit the effects of degraded data quality and sta-
ionarity shifts caused by exogenous localized factors like unstable road
raffic. In contrast, in this work the look-ahead window is maximized to
 = 6 , based on the average length of the vehicle routes (about 25 stops)
nd given the fact that no more than 1/4 or so of the entire trip should
e used as input buffer, i.e., not producing any predictions for the be-
inning of the trip. Furthermore, training the predictors directly for the
arget 𝑞 = 6 , instead of using a feedback loop with six single-step predic-
ions, is the actual experimental test and a realistic baseline assessment
f how each algorithm performs when stretching the purely short-term
ingle-step setup to predicting further into the future. In other words,
irect prediction for the next 𝑞th stop is at least as good as applying the
hort-term single-next-stop prediction 𝑞 times sequentially, given the
act that in the second case the prediction errors are propagated and
ccumulated with each prediction iteration over 𝑞 steps. 

ppendix B. GTFS-s feed files 

The GTFS data exist in two main variants: the GTFS-s feed and the
TFS-rt feed. The former is usually a collection of comma-separated val-
es (CSV) files with relatively static information, with updates occurring
eriodically, such as time schedules that might be updated only a couple
f times in a year. The latter refers to transit data collected during the
ehicle trips and are usually based on GPS tracking. Some agencies pro-
ide additional information by adding extensions to the GTFS standard.

There are five files that are mandatory for sufficiently describing a
T network through the GTFS-s feed: (i) ‘agency.txt’ that includes in-
ormation for the transit agencies providing the data in the feed, each
dentified via an agency id; (ii) ‘routes.txt’ that includes the routes in the
T network, each identified via a route id; (iii) ‘trips.txt’ that includes
he trips in the PT network, each identified via a trip id which is asso-
iated with a route id - a trip describes the movement of a PT vehicle
hrough a pre-defined sequence of stopping points; (iv) ‘stops.txt’ that
ncludes the stops in the PT network, each identified via a stop id and
escribed by the respective coordinates based on the WGS 84 datum; and
12 
v) ‘stop_times.txt’ that includes the scheduling information by providing
he time that each trip is at a stop, identified via the associated trip id
nd stop id. There are also conditionally required files: (vi) ‘calendar.txt’

hat includes the service days, each identified via a service id; and (vii)
calendar_dates.txt’ that includes the exceptions to the default service pat-
erns associated with a service id. Regarding common optional files that
ay also be available, two of these are: (viii) ‘feed_info.txt’ that includes

nformation about the dataset itself; and (ix) ‘shapes.txt’ that includes
he path that the vehicle travels within trips, identified via a shape id
hich can be associated with a trip id and described by the respective

oordinates based on the WGS84 datum. 
The combination of these GTFS files provides the complete static in-

ormation for the PT network. Specifically, in a PT network stops repre-
ent specific locations at which the riders are allowed to board or disem-
ark from the PT vehicles. A fixed sequence of stops defines a route, i.e.,
t represents a predetermined path within the transit network. Hence,
ach individual stop can serve multiple routes, as a node in a graph.
dditionally, a trip describes the movement of a PT vehicle executing
ne complete pass of a route. Obviously, a trip occurs at a specific time
rame in a day along a route, while a route itself is time-independent
nd is associated to many trips. 

Moreover, PT agencies publish their real-time information through
he GTFS-rt feed. This information refers to updates from the transit sys-
em including current locations of PT vehicles, route status and system
lerts. The GTFS-rt feed supports three different types of information: (a)
rip updates, which include predicted arrival and/or departure events;
b) vehicle positions, which include updates regarding the location of
ndividual transit vehicles; and (c) alerts, which include updates regard-
ng the disruptions in the transit network in the form of human-readable
essages. Moreover, the GTFS-rt data exchange format is based on the
rotocol buffer (pb) format, which is an open-source standard for effi-
iently serializing structured data. 

ppendix C. Metro transit 

Metro Transit, the largest transportation provider in Minnesota, USA,
ses the GTFS format to publish its transit data for bus, light rail and
ommuter rail service for the Minneapolis / St. Paul metropolitan area.
TFS-s and real-time data can be retrieved from Metro Transit’s web-
age ( MetroTransit, 2021 ). The scheduled data are provided by the
TFS-s feed 1 , which is generally updated every week, but Metro Tran-

it recommends to perform checks on a daily basis. Metro Transit pub-
ishes 11 files through the GTFS-s feed, which are the following: agency,
outes, trips, stops, stop times, calendar, shapes, calendar dates, feed
nfo, linked datasets, vehicles. 

Additionally, Metro Transit provides real-time data by using three
TFS-rt feeds of version 2.0, which are refreshed every 15 s: the TripUp-
ate feed 2 , the VehiclePosition feed 3 and the ServiceAlerts feed 4 . In
etro Transit’s webpage there is extensive documentation that describes

he available information and data schemas provided by each real-time
eed. More specifically, the Metro Transit TripUpdate feed includes in-
ormation about vehicle’s timestamp, trip id, route id, direction id, start
ime, start date, vehicle id, vehicle label, stop sequence, stop id, arrival
ime, departure time. Note that the arrival/departure times at stops are
he ones provisioned in the time schedule; the actual arrival/departure
imes are not included in this feed. Also, the Metro Transit VehiclePosi-
ion feed includes information about vehicle’s timestamp, trip id, route
d, direction id, start time, start date, vehicle id, vehicle label, position
atitude, position longitude, bearing, odometer, speed. Finally, the the
etro Transit ServiceAlerts feed provides updates whenever there is dis-

uption on the network, such as delays and cancellations of individual

https://svc.metrotransit.org/mtgtfs/gtfs.zip
https://svc.metrotransit.org/mtgtfs/tripupdates.pb
https://svc.metrotransit.org/mtgtfs/vehiclepositions.pb
https://svc.metrotransit.org/mtgtfs/alerts.pb
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rips. Particularly, the ServiceAlerts feed specifies exactly, which enti-
ies of the network an alert affects; these are (i) the whole network, (ii)
he whole route, (iii) a particular trip, (vi) a particular stop. 

ppendix D. Radial basis function (RBF) network architecture 

RBF networks ( Moody & Darken, 1989 ) are a special variant of three-
ayer feed-forward neural networks. An RBF network contains an input
ayer of the same dimensionality 𝑁 of the input space, a hidden layer
ith 𝐿 neurons and an output layer. The input layer is a pass-through

ayer that translates the input sample u to the hidden layer, which in
urn applies a non-linear transformation to the input variables. More
pecifically, each hidden neuron 𝑙 is characterized by a center vector
̂
 

𝑇 
𝑙 = [ ̂𝑢 1 ,𝑙 , ̂𝑢 2 ,𝑙 , … , ̂𝑢 𝑁,𝑙 ] and for each 𝑘 th input vector the 𝑙th neuron trig-
ers the activation 𝜇𝑙 ( u ( 𝑘 )) = ||u ( 𝑘 ) − û 𝑙 ||. As a result, the overall hidden
ayer response can be defined as: 

 ( 𝑘 ) = [ 𝑔( 𝜇1 ( u ( 𝑘 ))) , … , 𝑔( 𝜇𝐿 ( u ( 𝑘 )))] , 𝑘 = 1 , 2 , … , 𝐾 (D.1)

here 𝐾 is the total number of data and 𝑔 is the activation func-
ion, which in this work is expressed in thin plate spline function:
( 𝜇) = 𝜇2 log ( 𝜇) . 

A linear combination of the hidden nodes creates a response through
he vector of the connection weights w 

𝑇 = [ 𝑤 1 , 𝑤 2 , … , 𝑤 𝐿 ] and produces
he final output of the RBF network y , which for the for the 𝑘 th data
oint is: 

̂
 𝑙 = z ( 𝑘 ) ⋅ w = 

𝐿 ∑
𝑙=1 

𝑤 𝑙 𝑔( 𝜇𝑙 ( u ( 𝑘 ))) (D.2)
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