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Abstract

Let p be a prime number, Fp a finite field with p elements, F an algebraic extension
of Fp and z a variable. We consider the structure of addition and the Frobenius map
(i.e., x 7→ xp) in the polynomial rings F [z] and in fields F (z) of rational functions.
We prove that any question about F [z] in the structure of addition and Frobenius
map may be effectively reduced to questions about the similar structure of the field
F . Furthermore, we provide an example which shows that a fact which is true for
addition and the Frobenius map in the polynomial rings F [z] fails to be true in F (z).
As a consequence, certain methods used to prove model completeness for polynomials
do not suffice to prove model completeness for similar structures for fields of rational
functions F (z), a problem that remains open even for F = Fp.
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1 Introduction

Let p be a prime number, Fp a finite field with p elements, F an algebraic extension of Fp
and z a variable. We consider the structure of addition and the Frobenius map x 7→ xp in
the polynomial rings F [z] of z over F , and in fields Fp(z) and F (z) of rational functions of
z over Fp and F respectively. The theory of a structure is decidable if there is an algorithm
which, given any first order sentence, decides whether that is true or false in the structure;
it is called undecidable otherwise. Another relevant notion is the model completeness of a
theory; one way to define model completeness is to say that any formula is equivalent to an
existential formula, i.e., one in which all quantifiers are at the beginning and are existential.
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In [3], [8], [2] and [11] it was proved that the theory of F (z) as a field, with z being a
constant-symbol of the language, is undecidable. In [10] and [18] it was proved that even
the existential theory of any Fp(z) is undecidable. It is therefore natural to ask questions of
decidability for substructures of the ring-structure of subrings of F (z). For results of this
kind, the reader may consult [9], [16], [17], [7], [1] and [6] as well as the surveys [12], [14], [15]
and [5]. For the Model Theory of the Frobenius map see [4] and the bibliographies therein.

Let Lp be the language Lp := {=,+, x 7→ xp, 0, 1} and Lp(z) := Lp ∪ {x 7→ zx, x ∈ F}.
Let Lp(z)e be the extension of Lp(z) by the predicate symbols Pσ, one for each formula σ
of Lp. We interpret the symbols of Lp(z) in the obvious way (for details see [13]), and we
interpret Pσ(α), where α is a tuple of variables ranging over F , as ‘σ(α) holds true over F ’.
We assume that all the free variables of the formula σ are among the tuple of variables α.

In [13] it was proved that:

Theorem 1.1. Assume that F is a perfect field of characteristic p > 0. Then:

1. The Lp(z)e-theory of F [z] is model complete i.e., for every Lp(z)e-formula φ(x1, . . . , xn)
there exists an existential Lp(z)e-formula φ0(x1, . . . , xn) such that

F [z] � ∀x1, . . . , xn[φ(x1, . . . , xn)↔ φ0(x1, . . . , xn)]

2. In addition, assume that F is a countable and recursive field. Then, with notation of
1, there is an algorithm which to any φ associates φ0.

From Theorem 1.1 it follows, in a straightforward way, that:

Corollary 1.2. The Lp(z)e-theory of a ring F [z] is model complete if the theory of F in the
language Lp is model complete.

In this work we prove a stronger result:

Theorem 1.3. There is an effective procedure which, to any given Lp(z)e-sentence φ asso-
ciates an Lp-sentence τ , such that φ is true in F [z] if and only if τ is true in F - considered
as a model of Lp. If φ is an existential sentence, then the sentence τ that is produced is the
same for all fields F , i.e., τ depends on p and φ but not on F.

This provides an example of a positive answer to a question by Leonard Lipshitz: “For
subtheories of the algebraic structure of a ring of polynomials F [z] and rational functions
F (z), identify those for which there is an ‘effective translation’ of every sentence over the
structure to an equivalent sentence over the field F , and, possibly, a sentence over some
simple structure, e.g., a group”.

Moreover, Theorem 1.3 provides an alternative proof of the decidability of the Lp(z)e-
theory of F [z] for fields F with a decidable Lp-theory, and it also has the advantage of
uniformity across all algebraic fields F of the same characteristic. Furthermore, the theorem
does not assume that the field F is recursive, which is, by itself, a strengthening of the
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Corollary 1.2. In future work, we intend to pursue this advantage in order to examine
relative problems in Algebra and Model Theory.

It is natural to wish to extend the methods used to prove Theorem 1.1 to the fields of
rational functions F (z), as the question of decidability of the Lp(z)e-theories of such fields
remains an open problem. To this end, we prove in Section 4 that the techniques used for the
polynomial ring F [z] cannot be naively applied for F (z). This is caused by a crucial property
required for the methods shown in [13] not being valid in the case studied. Specifically, we
prove in Theorem 1.5 that, the kernel of strongly normalized additive polynomials (defined
below) might be infinite over function fields, as opposed to the case of polynomials, where
they are necessarily finite.

The polynomial terms of the language Lp(z) with a ‘zero constant term’ are additive
polynomials. An additive polynomial f is a polynomial of the form

f(x0, . . . , xm−1) =
∑
n

fn(xn), (1.1)

where each fn(xn) is a polynomial of the variable xn of the form fn(xn) =
∑

i an,ix
pi

n and
i takes values in a finite subset of N ∪ {0}. The additive polynomial f is called strongly
normalized if its coefficients are in Fp[z], the degrees of f with respect to each of its variables
is the same, ps, for some s ∈ N, and the degrees of its leading coefficients an,s, 0 ≤ n ≤ m−1,
are pairwise inequivalent modulo ps.

In [13], the authors develop an algorithm that reduces questions regarding the solvability
of arbitrary additive polynomials to similar questions for strongly normalized polynomials.

An immediate consequence of Lemmas 3.1 and 3.2 of [13] is the following proposition,
which is a crucial property for the proof of Theorem 1.1.

Proposition 1.4. The heights (i.e., maxima of degrees) of the elements of the inverse image
{x ∈ (F [z])m | f(x) = u} of a (multivariate) additive strongly normalized polynomial f over
F [z] have a bound, which can be effectively computed from f and the height of u.

In a subsequent paper, the authors intend to show the similar result for rings that are
generated over Fp[z] by the inverses of finitely many irreducible polynomials.

We ask the following:
Question. Let f(x) ∈ Fp[z] be a strongly normalized additive polynomial of the variables

of the tuple x = (x1, . . . , xm). Is the set Kf := {x ∈ (Fp(z))m | f(x) = 0} necessarily finite?
We will give a negative answer in Section 4, by providing a counterexample in each

positive characteristic. More precisely, let p be a prime number and consider the additive
polynomial

fp(x0, . . . , xp−1) = xp0 + · · ·+ zkxpk + · · ·+ zp−1xpp−1 − xp−1. (1.2)

Observe that fp is strongly normalized. In Section 4 we prove:

Theorem 1.5. Let Q be an irreducible monic polynomial of Fp[z]. Then the equation

fp(x0, . . . , xp−1) = 0 (1.3)
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has a non-zero solution X := (X0, . . . , Xp−1) such that, for each n ∈ {0, . . . , p− 1}, we have
Xn ∈ Fp[z, 1

Q
] and Xn has only simple affine poles and positive order at infinity.

This has the following consequence. Let R be a subring of Fp(z) containing Fp[z] and
infinitely many inverses of polynomials in Fp[z], i.e., Fp[z] ⊂ R ⊂ Fp(z). Then, Theorem 1.5
implies that there are strongly normalized additive polynomials f with an infinite number
of zeros. Therefore, the strategy of [13] in order to prove model completeness or decidability
of the Lp(z)e-theory of such R does not suffice and new methods are required.

Some open problems that we consider important, for future work, in relation to the above
are:

1. Let F be a field with a decidable (or model complete) Lp-theory such that Fp ⊂ F ⊂ F̃p,
where F̃p is the algebraic closure of Fp. Does it follow that the existential Lp(z)e-theory
of F (z) is decidable? Model complete? What about the similar question asked of
subrings of F (z) containing F [z]?

2. The derivative in Fp(z) (and any extension F (z) of Fp(z) if F is perfect) is exis-
tentially definable (see [13]). Let D denote the derivative with respect to z and
LD := {+, D, 0, 1, x 7→ zx}. It follows that the theory of Fp[z] (respectively, any
F [z] with F algebraic over Fp) in the language LD is decidable if the ring-theory of F
is decidable. Is it model complete?

2 Existential Formulas

In [13, p. 1009], the authors show that any existential formula of Lp(z)e is equivalent to
either a quantifier free formula or a disjunction of formulas of the form:

φ(u, {vj}j∈J) : χ ∧ ∃x, α [α ∈ F ∧ ψ(x, α)], (2.1)

where χ is a quantifier free formula and

ψ(x, α) : f(x) +H(α) = u ∧j∈J ej(x) +Gj(α) 6= vj ∧ Pσ(α), (2.2)

under the conventions:

• x = (x1, . . . , xm) is a tuple of variables.

• α is a tuple of variables ranging over F (denoted by α ∈ F in (2.1)), each of them
distinct from each variable of x.

• f and each ej are additive polynomials in some of the variables of x.

• H and each Gj are additive polynomials in some of the variables of α.
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• u and each vj are terms of Lp(z). No variables among those of x or α occur in u or
any of the vj.

• The predicate symbol Pσ(α) may have more variables than those of α occurring in it.

The above equivalence is a direct consequence of the following two facts.

• Since the system {x = 0 ∧ y = 0} is equivalent to xp + zyp = 0, a system of equations
can be substituted by a single equation.

• Since x /∈ F is equivalent to {∃a ∈ F∃b ∈ F [z] : x = a+ zb ∧ b 6= 0}, we may substitute
relations of the form x /∈ F by systems of relations in which /∈ does not appear.

3 Proof of Theorem 1.3

Let φ0 be a given sentence of Lp(z)e. By Theorem 1 of [13], it follows that φ0 is equivalent to
an existential formula of the form φ, as shown in (2.1). We may assume that φ is a sentence1.
This means that the terms u and vj are elements of F [z]. In [13, Lemmas 3.3 and 3.4], the
authors show that there exists a suitable and effective change of variables (denoted as proper
transformations in [13, p. 1015]), after which we may assume, without loss of generality, that
the additive polynomial f is strongly normalized. Re-enumerate the variables of x so that
x = (x1, . . . , xk, xk+1, . . . , xm) and xk+1, . . . , xm are exactly the variables of x which occur in
f with non-zero highest degree coefficient. Then, by Lemma 3.2 of [13], for any value x̃ of
the tuple x which is a solution of the equation f + H = u, the degrees of x̃k+1, . . . , x̃m are
effectively bounded, hence, the variables xk+1, . . . , xm may be substituted by (existentially
quantified) variables that range over F . Therefore, we may assume that the sentence φ has
no equations. Moreover, determining the truth of φ amounts to the solvability of the system
of inequalities ej +Gj 6= vj together with Pσ. Clearly, because F [z] is an infinite domain, all
inequalities in which some of the variables x1, . . . , xk occur with a non-zero coefficient may
be satisfied simultaneously. Each of the inequalities in which none of the variables x1, . . . , xk
occurs, is clearly equivalent to a formula of the form Pω(β).

Hence, φ is equivalent to a formula of the form ∃β [β ∈ F∧ Pω(β)], for some formula
ω(β) of Lp; the proof is now complete.

1Let T be a theory of a language L, ψ and ω(y) be formulas of L such that y is a tuple of variables which
are free in ω but not occur in ψ. Assume that T |= ψ ↔ ω(y). Let t be any tuple of terms of L, with size as
large as that of the tuple y. Then it follows that T |= ψ ↔ ω(t).

In our case this means that if φ is not a sentence, we may substitute each free variable of φ by 0 and
obtain an existential sentence equivalent to φ. We are indebted to Russell Miller for pointing this to us.
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4 Infinite kernels of additive polynomials

Let F̃p be an algebraic closure of Fp and γ ∈ F̃p. The proof of Theorem 1.5 is based on the
identity

1

z + γ
=

(z + γ)p−1

(z + γ)p
=

1

(z + γ)p

p−1∑
n=0

(
p− 1

n

)
γp−1−nzn, (4.1)

which one may view as writing 1
z+γ

on the basis {1, z, z2, . . . , zp−1}, considering F̃p(z) as a

vector space over the field F̃p(zp).

Proof of Theorem 1.5. We will find a solution x̃ := (x̃1, . . . , x̃p) for the equation fp(x) = 0,
where fp(x) is defined in (1.2). Indeed, if we set λn :=

(
p−1
n

)
γp−1−n in 4.1, we obtain a

solution x̃ = ( µ0
z+γ

, µ1
z+γ

. . . , µp−1

z+γ
), where µpn = λn, for 0 ≤ n ≤ p − 1. This already proves

the analogue of Theorem 1.5 if F̃p were in place of Fp, since every irreducible element of
F̃p[z] has degree 1. Now consider a zero γ of Q and write K = Fp(γ). From the Theory of
Finite Fields we know that K is a Galois extension of Fp. Let Θ be its Galois group and
θ(γ) denote the conjugates of γ under the action of θ ∈ Θ - similarly for x̃n and θ(x̃n). Then
observe that θ(x̃) := (θ(x̃0), . . . , θ(x̃p−1)) is also a solution of fp = 0 and, by the additivity of
fp, so is X :=

∑
θ∈Θ θ(x̃) - addition is meant component-wise. Clearly, X is invariant under

the action of Θ, so we have that, writing X := (X1, X2, . . . , Xp−1) each Xn is an element of

Fp(z). Observe that, for each n we have Xn =
∑

θ∈Θ
θ(µn)
z+θ(γ)

.

Initially, we prove that X is not identically equal to 0. Indeed, Xp−1 =
∑

θ∈Θ
1

z+θ(γ)
can

not be equal to the zero function, because the extension of fields K over Fp is a separable
one, hence the various θ(γ) are pairwise distinct.

Clearly, all poles of each Xn are zeros of Q, and each one has multiplicity equal to one,
since K is algebraic and therefore separable over Fp. Moreover, the order at infinity of

each term θ(λn)
z+θ(γ)

is positive, hence the order of each Xn at infinity is positive (including the

possibility of infinite, i.e., the possibility that some Xn = 0).

Note: It is obvious how to generalise the results of Theorem 1.5 for any field F instead
of Fp.
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