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Abstract: Mobile edge computing (MEC) represents an enabling technology for prospective Internet
of Vehicles (IoV) networks. However, the complex vehicular propagation environment may hinder
computation offloading. To this end, this paper proposes a novel computation offloading framework
for IoV and presents an unmanned aerial vehicle (UAV)-aided network architecture. It is considered
that the connected vehicles in a IoV ecosystem should fully offload latency-critical computation-
intensive tasks to road side units (RSUs) that integrate MEC functionalities. In this regard, a UAV
is deployed to serve as an aerial RSU (ARSU) and also operate as an aerial relay to offload part
of the tasks to a ground RSU (GRSU). In order to further enhance the end-to-end communication
during data offloading, the proposed architecture relies on reconfigurable intelligent surface (RIS)
units consisting of arrays of reflecting elements. In particular, a dual-RIS configuration is presented,
where each RIS unit serves its nearby network nodes. Since perfect phase estimation or high-
precision configuration of the reflection phases is impractical in highly mobile IoV environments,
data offloading via RIS units with phase errors is considered. As the efficient energy management of
resource-constrained electric vehicles and battery-enabled RSUs is of outmost importance, this paper
proposes an optimization approach that intends to minimize the weighted total energy consumption
(WTEC) of the vehicles and ARSU subject to transmit power constraints, timeslot scheduling, and
task allocation. Extensive numerical calculations are carried out to verify the efficacy of the optimized
dual-RIS-assisted wireless transmission.

Keywords: computation offloading; energy efficiency; Internet of Vehicles (IoV); mobile edge com-
puting (MEC); reconfigurable intelligent surface (RIS); unmanned aerial vehicle (UAV)

1. Introduction

In the forthcoming Internet of Vehicles (IoV) era, where multiple automobile terminals
are interconnected, innovative applications will emerge, including autonomous driving,
ultra-high-quality video streaming, and augmented reality (AR) [1]. As new workloads
and real-time service requirements usually pose strict requirements with respect to latency,
local intra-vehicle computing often struggles for timely execution of computation-intensive
tasks. Moreover, a significant amount of energy is consumed that diminishes the driving
range of electric vehicles [2]. To handle these challenging issues, data offloading to mobile
edge computing (MEC) servers has been previously suggested [3]. In this respect, road
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side units (RSUs) along roads and in the vicinity of the vehicles can expedite the provision
of MEC services [4].

1.1. Background

In recent years, there have been various contributions in the MEC-enabled IoV ecosys-
tem. In [5], a stochastic optimization model for vehicular networks was proposed to
maximize the lower bound of the expected reliability during computation offloading. In
addition, a game-theoretic method was leveraged in [6] to optimize the offloading decisions
in scenarios with cooperation of cloud computing and MEC. In [7], the energy consumption
of RSUs in a MEC-enabled IoV was minimized using a heuristic algorithm. Moreover,
an architecture for vehicular ad-hoc networks (VANETs) was introduced in [8], capable
of accomplishing efficient allocation of computing resources in real-time and avoiding
computation overhead. In order to jointly optimize the computing offloading and re-
source allocation in vehicular edge computing (VEC) network, where the vehicles act as
MEC servers, a deep reinforcement learning (DRL) approach was presented in [9]. The
processing delay in software-defined networking (SDN)-based and fiber-wireless (FiWi)-
enabled VEC networks was minimized in [10] through a load-balancing task of-floading
scheme. By trading on hybrid vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V)
connections along with geolocation information, a computation offloading protocol was
also constructed in [11] for reliable data retrieval in VEC scenarios. Furthermore, an edge
intelligence-enabled IoV was described in [12] and an online algorithm based on Lyapunov
optimization was proposed to decrease the total network delay.

While fruitful results have been described in previous work on MEC in IoV, the highly
dynamic network topologies of IoV drastically influence the data offloading process. More
importantly, the communication links between vehicles and ground RSUs (GRSUs) can
be blocked in propagation environments with large obstacles and dispersed nodes. In
this direction, hovering aerial RSUs (ARSUs) relying on unmanned aerial vehicles (UAVs)
have great potential to attain a higher chance of line-of-sight (LoS) communication across
different terrains thus sufficiently extending the radio coverage between vehicles and MEC
servers [13–15]. In previous work, a UAV was employed to assist an access point (AP) in
providing MEC services to ground users (GUs) in an energy-efficient manner [16]. Identical
MEC schemes were also envisioned to optimize the energy consumption [17], the maximum
delay [18], the task completion time [19], the average latency [20], and the computation
efficiency [21]. Furthermore, energy harvesting and wireless power transfer (WPT) were
introduced to prolong the network’s operation time and an optimization problem was
formulated to maximize the computation rate [22]. Moreover, an Internet of Things (IoT)
scheme was studied in [23], where UAVs were employed to collect data from IoT devices
and forward these data to multiple distributed MEC-based APs. In addition, an energy-
optimized IoT scenario was presented in [24], where a UAV integrated an edge server and
provided computation services to ground IoT nodes. A social IoV (SIoV) network was
proposed in [25] and jointly optimized the resource allocation and the UAV’s trajectory.
In addition, an SDN-based offloading strategy for vehicular networks was presented
in [26] and the task execution time was minimized subject to quality of service (QoS)
and energy consumption constraints. Beyond the conventional orthogonal multiple access
(OMA) scenarios, a non-orthogonal multiple access (NOMA) setup was investigated in [27],
whereas the stochastic offloading concept extended the deterministic binary and partial
task offloading in [28]. Furthermore, the benefits of massive multiple-input–multiple-
output (MIMO) transmission were underlined in [29]. Nevertheless, challenges remain to
be addressed to ensure highly reliable communication links, especially in uncontrollable
vehicular environments and urban areas, where scattering objects (e.g., buildings, poles,
trees, hills or human bodies) may induce severe signal attenuation or signal blockage.

On the other hand, with the rapid evolution of radio frequency (RF) micro electro-
mechanical systems (MEMs), the programmable and reconfigurable meta-surfaces have
emerged, among which the reconfigurable intelligent surface (RIS) technology has recently
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received unprecedented attention [30,31]. More specifically, RIS stands for a thin metasur-
face consisting of a large number of passive and phase-controllable reflecting elements,
each of which can be digitally controlled to reflect the incident signals with adjusted
phase shifts and thus reconfigure the wireless propagation environment in favor of signal
transmission. Contrary to conventional active relaying, RIS leverages passive reflection
and leads to cost-effective, low-complexity, and energy-efficient implementations with
high array gain and low noise. Previously, RIS-assisted UAV communication systems
were envisioned [32–34], without accentuating MEC applications. In the context of MEC
networks, the adoption of RIS units in various wireless network setups with propagation-
induced impairments has also been investigated. A single-cell scenario with multiple
single-antenna devices and a multi-antenna AP was considered in [35] and an optimization
problem was formulated to minimize latency, under practical constraints related with the
total edge computing capability and the phase shift design. In [36], an IoT MEC system
with multiple devices was investigated capable of supporting passive beamforming via a
RIS unit in the computational offloading stage. In this system, the sum computational bits
were maximized in a partial computational offloading manner. An RIS-aided MEC-enabled
flexible time-sharing scheme that enables both NOMA and time-division multiple-access
(TDMA) transmission via data division was proposed in [37] and the sum delay of the users
was minimized under discrete-phase constraints of the RIS. Additionally, a RIS-assisted
MEC system that can handle learning-driven tasks was presented in [38] and involved
a multi-antenna intelligent edge server and multiple single-antenna users affiliated with
machine learning (ML) tasks. In this system, the learning error was minimized by taking
into account the transmit power constraints and the phase shifts of the RIS. Nevertheless,
the aforementioned works are unsuitable for UAV-based networks and cannot capture the
air-to-ground channel features. As the UAVs fly in a three-dimensional (3-D) space and
above rooftops, especial geometrical and mobility characteristics are introduced. Table 1
provides a brief description of the key elements of the aforementioned previous works,
which give emphasis either on MEC IoV architectures, where the vehicles’ computing tasks
are completed without cooperation of UAVs [5–12]; or UAV-enabled MEC network archi-
tectures that do not include RIS units [16–29]; or RIS-assisted UAV networks without MEC
capabilities [32–34]; or RIS-assisted MEC network architectures with only ground-based
nodes [35–38].

1.2. Contribution

To the best of the authors’ knowledge, the area of computation offloading for RIS-
based UAV-aided IoV is unexplored. As newer network architectures are indispensable,
this paper proposes an IoV framework, which includes a UAV-based ARSU and relies
on RIS units. This framework may find practical application in beyond fifth generation
(B5G) mission-critical scenarios, where multiple resource-limited vehicles should execute
computationally intensive tasks by using the processing capabilities of MEC servers. As
the communication links between vehicles and GRSUs may be blocked, an ARSU can bring
flexibility, additional computing resources, and extended radio coverage. RIS units are
also employed, in order to further enhance the connectivity and reliability by reshaping
the propagation environment in favor of signal transmission. More specifically, the main
contributions of this paper can be summarized as follows:

• A novel dual-MEC IoV architecture is proposed, where a rapidly deployed and
dynamically repositioned UAV-based ARSU equipped with a MEC server facilitates
the computation offloading and also acts as an intermediate decode-and-forward (DF)
aerial relay enabling the communication between vehicles and a GRSU. Full offloading
is applied and a trade-off between energy consumption and delay is obtained by
efficiently using the computing resources at both ARSU and GRSU.

• In practice, the direct communication links between vehicles (ARSU) and ARSU
(GRSU) may be vulnerable to fading and blockage effects due to large objects in
the propagation environment. Thus, the proposed architecture leverages a dual-RIS
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deployment strategy to assist the direct communication. It is considered that one RIS
unit is positioned close to the vehicles and a second RIS unit is positioned towards
GRSU. Owing to the dynamic and highly mobile vehicular environment, imperfect
estimation of the reflection phases is introduced. Hence, wireless transmission via the
RIS units with phase errors is assumed. In order to obtain a 3-D realistic geometrical
positioning of the vehicles, ARSU, GRSU, and RIS units, while accurately modeling
the mobility characteristics, velocity and distance vectors are utilized.

• Moreover, this paper formulates a multi-variable optimization problem to minimize
the weighted total energy consumption (WTEC) from both the vehicles and ARSU
perspective and elongate their endurance. In this respect, the Lagrange dual method
along with a subgradient-based algorithm are leveraged to provide optimal solutions
for the transmit power allocation, timeslot scheduling, and task allocation. More-
over, an asymptotic analysis of the WTEC is included as the number of reflecting
elements increases. The numerical results illustrate the total computation-based
and communication-based delay (TCCD) and WTEC, focus on the benefits of the
dual-RIS-based data offloading, and affirm the efficiency of the optimization method.

Table 1. Synopsis of relevant research works.

References Network Type Key Technologies Optimization Target

[5] Vehicle-to-infrastructure (V2I) Computation offloading Lower bound of expected reliability
[6] Vehicular network Mobile edge computing (MEC), cloud computing Offloading decisions
[7] Internet of Vehicles (IoV) MEC Energy efficiency
[8] Vehicular ad-hoc network (VANET) MEC Resource allocation
[9] Internet of Things (IoT) Vehicular edge computing (VEC) Resource allocation
[10] Vehicular network VEC, software-defined networking (SDN) Processing delay
[11] Vehicle-to-vehicle (V2V) and V2I VEC, geolocation information Reliable data retrieval
[12] IoV MEC, edge intelligence Total network delay
[16] Cellular network MEC, unmanned aerial vehicle (UAV) Energy consumption
[17] Computing system MEC, UAV Energy consumption
[18] Computing system MEC, UAV Maximum Delay and trajectory
[19] Computing system MEC, UAV Task completion time
[20] IoT MEC, UAV Average latency
[21] Computing system MEC, UAV Computation efficiency
[22] Computing system MEC, UAV, wireless power transfer (WPT) Computation rate
[23] IoT Centralized and distributed MEC, UAV Energy efficiency
[24] IoT MEC, UAV Energy consumption
[25] Social IoV (SIoV) MEC, UAV Resource allocation and trajectory
[26] Vehicular network MEC, UAV, SDN Task execution time
[27] Computing system MEC, UAV, non-orthogonal multiple access (NOMA) Bit allocation and trajectory
[28] Computing system MEC, UAV, stochastic offloading Energy consumption
[29] Vehicular network MEC, UAV, massive multiple-input multiple-output (MIMO) Energy consumption
[32] Communication system UAV, reconfigurable intelligent surface (RIS) Achievable rate
[33] Communication system UAV, RIS Sum-rate
[34] IoT UAV, RIS Decoding error rate
[35] Computing system MEC, RIS Latency
[36] IoT MEC, RIS Sum computational bits
[37] Computing system MEC, RIS, NOMA Delay
[38] Computing system MEC, RIS, machine learning (ML) Learning error

This paper IoV MEC, UAV, RIS Energy Consumption

1.3. Structure

The rest of this paper is organized as follows. In Section 2, the system model is
introduced, the geometrical characteristics and the mobility model are outlined, and the
computation offloading model is presented. Section 3 describes the wireless transmission
model. In Section 4, the optimization problem is formulated. Numerical results are
provided in Section 5. Finally, conclusions and future research directions are drawn in
Section 6.
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2. System Model

In this paper, a MEC-enabled IoV is considered consisting of K vehicles moving along
a unidirectional road segment, where the distribution of the vehicles follows a Poisson
distribution [39]. The latency-critical computation task of the k-th vehicle with 1 ≤ k ≤ K
can be only executed remotely within the maximum allowable latency (task deadline) ηk
by performing task offloading to MEC servers. Thus, a fixed grid-powered GRSU with
powerful computation capacity is situated along the road. In the proposed IoV scenario,
high attenuation obstructs the direct link between the vehicles and GRSU. Hence, a flying
ARSU with certain energy and computing limitations is also employed to facilitate the
provision of MEC services and also enable vehicle-to-GRSU networking via relaying. More
specifically, the ARSU initially designates the portion of vehicles’ offloaded tasks that
can timely execute with its own computing resources and then forwards the remaining
part of these tasks to GRSU. In this direction, the ARSU uses an adequately large data
buffer, in order to separately store the offloaded and processed data. As LoS air-to-ground
propagation cannot be continuously ensured in urban and dense-urban environments,
two RIS units, one unit close to the vehicles and a second unit close to the GRSU, are also
installed on surrounding building walls to assist the direct communication between the
k-th vehicle (ARSU) and ARSU (GRSU).

2.1. Geometrical Characteristics and Mobility Model

The 3-D geometrical features of the proposed IoV architecture are depicted in Figure 1,
where the (x, y, z) axes define the coordinate system. To aid our analysis, the subscripts
k, A, R1, G, and R2 with 1 ≤ k ≤ K are associated with the k-th vehicle, ARSU, 1st RIS,
GRSU, and 2nd RIS, respectively. It is considered that (xk[n], yk[n], 0), (xA[n], yA[n], zA[n]),
(xR1 , yR1 , zR1), (xG, yG, zG) and (xR2 , yR2 , zR2) are the coordinates of the k-th vehicle, ARSU,
1st RIS, GRSU, and 2nd RIS, respectively. Let Dab denote the distance vector between two

arbitrary points a and b. Then, ‖DkA[n]‖ =
√
(xk[n]− xA[n])2 + (yk[n]− yA[n])2 + z2

A[n]
is the distance between the k-th vehicle and ARSU and ‖·‖ is the Euclidean norm. Note that
the distances ‖DkR1 [n]‖, ‖DR1 A[n]‖, ‖DAG[n]‖, ‖DAR2 [n]‖ and ‖DR2G[n]‖ can be defined
accordingly. It is assumed that the k-th vehicle and ARSU are moving with velocities υk
and υA′ , respectively, in the direction in the azimuth domain determined by the angles
γk and γA,xy′ , respectively. Additionally, the hovering, diving, and rising operations of
ARSU can described by the elevation angle γA,z. Then, vk = υk[cosγk, sinγk, 0]T and
vA = υA[cosγA,xycosγA,z, sinγA,xycosγA,z, sinγA,z] stand for the velocity vectors of the
k-th vehicle and ARSU, respectively. In practice, the ARSU should not notably draw
away from its initial position, since its movement may affect the connectivity with the
vehicles and GRSU. It is assumed that the initial locations of the vehicles are known
to the ARSU for designing its trajectory, whereas the fixed locations of the 1st RIS and
2nd RIS are known as well. For convenience, we use a sufficiently small constant τ to
divide the ARSU’s flying period T into N timeslots. (In this paper, the case that ηk = T
is only considered ∀k). During each timeslot, it is assumed that both the k-th vehicle
and the ARSU are static. The coordinates of the k-th vehicle are updated as xk[n + 1] =
xk[n] + υkcosγkτ and yk[n + 1] = yk[n] + υksinγkτ, where n ∈ {1, 2, . . . N}. Furthermore,
the coordinates of the ARSU are updated as xA[n + 1] = xA[n] + υAcosγA,xycosγA,zτ,
yA[n + 1] = yA[n] + υAsinγA,xycosγA,zτ and zA[n + 1] = zA[n] + υAsinγA,zτ.
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Figure 1. A simple representation of the dual-RIS UAV-aided MEC-enabled IoV architecture.

In this paper, a rotary-wing UAV is considered as an ARSU, owing to its higher
mobility compared to that of a fixed-wing UAV. Based on [40], the propulsion energy
consumption in the n-th timeslot can be modeled as

E f l [n] = τ

(
P0

(
1 +

3‖vA,xy[n]‖2

v2
tip

)
+

1
2

drsρG‖vA,xy[n]‖3

+P1

√√√√√
√√√√1 +

‖vA,xy[n]‖4

4v2
0

−
‖vA,xy[n]‖2

2v2
0

+ P2‖vA,z[n]‖
)

,
(1)

where P0 is the blade profile power, υtip is the tip speed of the rotor blade, dr is the fuse-lage
drag ratio, s is the rotor solidity, ρ is the air density, G is the rotor disc area, P1 is the induced
power, υ0 is the mean rotor induced velocity, P2 is the descending/ascending power, and
vA,xy[n] and vA,z[n] are the horizontal and vertical ARSU velocity vectors, respectively, with
vA[n] = vA,xy[n] + vA,z[n].

2.2. Computation Offloading Model

It is considered that lk defines a particular computation task of the k-th vehicle and bk
is the task-input data size (in bits). The maximum central processing unit (CPU) frequency
at ARSU is denoted as fA,max, whereas cA > 0 is the number of required CPU cycles per bit
at ARSU. As the intra-vehicle computational resources are limited, the k-th vehicle fully
offloads to ARSU and GRSU (via relaying) its task. Thus, βk[n]bk[n] and (1− βk[n])bk[n]
computation bits are allocated for computing at ARSU and at GRSU, respectively, where
βk[n] is the offloading task assignment ratio. It is noted that the transmission delay and
the energy consumption for data downloading are omitted, since the size of the output
computed data is assumed to be significantly smaller than that of the input data for
computing. In addition, the computation delay at GRSU can be neglected owing to
its computing capabilities, while the time required for performing task partitioning is
negligible compared to the overall latency and is omitted as well.

In order to implement the computation offloading, the TDMA protocol is adopted.
This protocol has been widely used in IoV networks [41] and MEC networks [16,19,25] and
can obviate transmission collisions, contention-induced overhead, and interference among
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vehicles, while retaining short delivery delay. Thus, we divide each timeslot into K equal
durations {τk[n]}K

k=1 with ∑K
k=1 τk[n] = τ and τk[n] = τk,o f f [n] + τA,o f f [n] where τk,o f f [n]

is the transmission time for offloading bk[n] from the k-th vehicle to ARSU and τk,A,o f f [n]
is the transmission time for offloading (1− βk[n])bk[n] from ARSU to GRSU. It is assumed
that the computation delay τk,cA[n] = cAβk[n]bk/ fA,max at ARSU can span a duration τk[n].
Then, we obtain the following inequalities:

0 ≤ {τk,o f f [n], τk,A,o f f [n], τk,cA[n]} ≤
τ

K
, (2)

τk,o f f [n] + τk,A,o f f [n] ≤
τ

K
. (3)

The energy consumed by the k-th vehicle and ARSU, respectively, for data offloading in
the n-th timeslot can be expressed as:

Ek,o f f [n] = pk,o f f [n]τk,o f f [n], (4)

Ek,A,o f f [n] = pk,A,o f f [n]τk,A,o f f [n], (5)

where pk,o f f [n] and pk,A,o f f [n] is the transmit power of the k-th vehicle and ARSU, respec-
tively, for bits offloading in the n-th timeslot. Moreover, the energy consumption for ARSU
computing in the n-th timeslot can be written as [42]

Ek,cA[n] = Pk,cAτk,cA[n] ≡ κAc3
AK2(βk[n]bk[n])3τ−2, (6)

where Pk,cA = κA f 3
A,max is the power consumption of the CPU at ARSU [42] and κA > 0 is

the chip-dependent effective capacitance coefficient that is affiliated with the ARSU.

3. Wireless Transmission Model

It is considered that the k-th vehicle, the ARSU, and the GRSU are equipped with single
omni-directional antennas, whereas the RIS units employ multiple reflecting elements as
well as a wireless controller for the dynamic adjustment of the phase shift of each element.
Without loss of generality, it is assumed that the 1st and 2nd RIS units have the same number
L of reflecting elements. It is also assumed that the channel gain remains unchanged in each
timeslot, since the k-th vehicle and the ARSU shift over an insignificantly short distance.
Thus, during the flying period, the wireless radio channel can be represented by a series of
channel snapshots, where each snapshot is associated with a particular position of the k-th
vehicle and ARSU.

3.1. Direct Links without RIS Units

In order to model the channel fading behavior in air-to-ground propagation scenarios,
several statistical distributions, e.g., Rician, Rayleigh, and Nakagami-m distributions, have
been previously used [43–45]. Among these distributions, the Nakagami-m distribution
was experimentally validated in UAV-based scenarios [46], whereas it also provides flex-
ibility in several environments by including Rayleigh distribution as a special case or
by approximately describing Rician fading. Thus, this paper considers that the channel
behavior of the direct link between the k-th vehicle (ARSU) and ARSU (GRSU) is subjected
to Nakagami-m fading conditions. Then, the cumulative distribution function (CDF) of the
instantaneous SNR received at the ARSU can be expressed as [47]

Fγth ,kA(γth) = 1−
Γ(mkA, mkAγth

γ̄kA [n]
)

Γ(mkA)
, (7)

where Γ(y, x) = Γ(y)exp(−x)∑
y−1
k=0(xk/k!) is the upper incomplete Gamma function [48],

eq. (8.350/2), Γ(α) =
∫ ∞

0 tα−1e−tdt is the complete Gamma function [48], eq. (8.310/1),
mkA ≥ 1/2 is the Nakagami-m fading parameter, γth = 2rt − 1 is the SNR threshold,
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rt is the target rate (in bps/Hz), and γ̄kA[n] is the average SNR. By adopting the Friis’s
formula [49], γ̄kA[n] can be expressed as

γ̄kA[n] =
pk,o f f [n]

N0
β0‖DkA[n]‖−σkA , (8)

where N0 is the variance of the additive white Gaussian noise (AWGN) at ARSU, β0 is the
channel gain at a reference distance d0 = 1 m, and σkA is the pathloss exponent of the link
between the k-th vehicle and ARSU. (Without loss of generality, it is assumed that N0 is the
variance of AWGN at any IoV node).

3.2. Indirect Links through RIS Units

The channel between a UAV and a RIS unit is mostly dominated by LoS links, since the
UAV usually flies at high altitudes and the RIS unit is mounted on the facade of a building.
However, multipath propagation may also exist in urban and dense-urban environments
with tall buildings acting as effective scatterers. In addition, local scattering effects may
influence the channels between an RIS unit and vehicles, whereas an additional LoS link
can be also established [32,33]. Thus, in this paper, the channel between the k-th vehicle
(l-th element of 1st RIS) and the l-th element of 1st RIS (ARSU) is modeled as a Rician
fading channel accounting for both the LoS and non-line-of-sight (NLoS) components.
Each RIS element should be designed to maximize the reflection strength and steer the
reflection angle towards the ARSU (or GRSU). However, it is assumed that the phase shifts
induced by the channels cannot be perfectly evaluated and/or the desired phases cannot
be precisely set. Quantization phase errors are considered and thus only a discrete set
of 2q phases is configured with q ≥ 1, where q is the number of quantization bits. It is
assumed that the phase error Θl is uniformly distributed over [−2−qπ, 2−qπ]. Then, as
shown in [50], the composite channel between the k-th vehicle and ARSU via the 1st RIS is
equivalent to a direct channel with Nakagami scalar fading and can be expressed as

hkR1 A[n]
∆
=

1
L

L−1

∑
l=0
|hkl [n]||hlA[n]|exp(jΘl), (9)

where hkl [n](hlA[n]) is the channel gain in the n-th timeslot for the link between the k-th
vehicle (l-th element of the 1st RIS) and the l-th element of the 1st RIS (ARSU). It is assumed
that the phase errors {Θl}L

l=1 are independent and identically distributed (i.i.d.) with a
common characteristic function expressed as a sequence of complex numbers

{
ϕζ

}
ζ∈Z,

which are referred to as trigonometric (or circular) moments [51], with |ϕζ | ≤ 1 ∀ζ ∈ Z.
The size of the RIS units is assumed to be small relative to the propagation links. Thus, the
reflector elements experience identical large-scale fading. Let mkR1 A and γ̄kR1 A[n] denote
the Nakagami-m fading parameter and average SNR, respectively, of the composite channel.
Then, the CDF of the instantaneous SNR received at ARSU is expressed as [47]

Fγth ,kR1 A(γth) = 1−
Γ
(

mkR1 A,
mkR1 A

γ̄kR1 A [n]
γth

)
Γ
(
mkR1 A

) , (10)

where

mkR1 A
∆
=

L
2

θ2
1α2

kR1
α2

R1 A

1 + θ2 − 2θ2
1α2

kR1
α2

R1 A
, (11)

γ̄kR1 A[n]
∆
=

pk,o f f [n]
N0

L2θ2
1E[|hkl [n]|]2E[|hlA[n]|]2, (12)

akR1 =

√
π

4(KkR1 + 1) 1F1(−
1
2

, 1; KkR1), (13)
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aR1 A =

√
π

4(KR1 A + 1) 1F1(−
1
2

, 1; KR1 A), (14)

E[|hkl [n]|] = akR1

√
β0‖DkR1 [n]‖

−σkR1 , (15)

E[|hlA[n]|] = aR1 A

√
β0‖DkR1 [n]‖

−σR1 A , (16)

θ1 = sin(2−qπ)
2−qπ

, θ2 = sin(2−q+1π)
2−q+1π

, E[·] is the expectation operator, σkR1(σR1 A) is the path-loss
exponent of the link between the k-th vehicle (1st RIS) and 1st RIS (ARSU), 1F1(., .; .) is the
Kummer confluent hypergeometric function [52], eq. (2.18), and KkR1(KR1 A) is the Rician
factor for the link between the k-th vehicle (1st RIS) and 1st RIS (ARSU). Using (7) and (10),
the CDF of the instantaneous SNR received at ARSU accounting for both the direct link as
well as the link via the 1st RIS can be expressed as follows [53], eq. (33)

Fγth ,kA,kR1 A(γth) =

(
mkA

γ̄kA [n]

)mkA
(

mkR1 A
γ̄kR1 A [n]

)mkR1 A

γ
mkA+mkR1 A
th

Γ
(
mkA + mkR1 A + 1

)
×Φ2

(
mkA, mkR1 A; mkA + mkR1 A + 1;−mkAγth

γ̄kA[n]
;−

mkR1 Aγth

γ̄kR1 A[n]

)
,

(17)

where Φ2(·; ·; ·; ·) is the Humbert confluent hypergeometric series Φ2 and can be easily
computed using the procedure in [54]. Using (12), the effective rate (in bps/Hz) can be
obtained as follows

rkA,kR1 A[n] = rt
[
1− Fγth ,kA,kR1 A(γth)

]
. (18)

Using (18) and properly replacing the indices, the effective rate rAG,AR2G[n] accounting for
both the direct link between ARSU and GRSU as well as the link via the 2nd RIS can be
similarly defined. It is assumed that the number of bits that are offloaded to ARSU (GRSU)
does not exceed the offloading rate capabilities of the corresponding channel. Thus, it
follows that:

bk[n] ≤ τk,o f f [n]rkA,kR1 A

(
pk,o f f [n]

)
, (19)

(1− βk[n])bk[n] ≤ τk,A,o f f [n]rAG,AR2G

(
pk,A,o f f [n]

)
. (20)

It is considered that the vehicles control their transmit power according to a signal-to-
noise-ratio (SNR) threshold, in order to maintain an acceptable QoS. In this paper, maximal-
ratio combining (MRC) is adopted. Thus, the requirement γ̄kA[n] + γ̄kR1 A[n] ≥ γkA should
be satisfied [55]. Using the aforementioned inequality, as well as (8) and (11)–(16), we obtain

pk,o f f [n] ≥
1

P1[n] + P2[n]
, (21)

where

P1[n] =
β0‖DkA[n]‖−σkA

(2rt − 1)N0
, (22)

P2[n] =
(

Lθ1β0π

4

)2
∥∥DkR1 [n]

∥∥−σkR1
∥∥DR1 A[n]

∥∥−σR1 A

(2rt − 1)
(
KkR1 + 1

)(
KR1 A + 1

)
N0

[
1F1

(
− 1

2
, 1; KkR1

)
1F1

(
− 1

2
, 1; KR1 A

)]2

. (23)

From (21), one concludes that pmin
k,o f f [n] = 1/(P1[n] + P2[n]) is the lower bound of the

transmit power of the k-th vehicle for an acceptable QoS in the n-th timeslot.

3.3. Asymptotic Rate

In order to support a massive number of vehicles in future MEC-enabled IoV scenarios,
a vast number of discrete reflecting elements at each RIS unit is required. Thus, this paper
derives the asymptotic rate, as L increases. As L→ ∞ we obtain [56], eq. (1.7)
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Fasymp
γth ,kA,kR1 A

(
γth

)
= lim

L→∞
FγkA,t

(
γth

)
'

(
mkA

γ̄kA [n]

)mkA
(

mkR1 A
γ̄kR1 A [n]

)mkR1 A

γ
mkA+mkR1 A
th

Γ
(

mkA + mkR1 A + 1
)

×Φ2

(
mkA, mkR1 A; mkA + mkR1 A;−mkAγth

γ̄kA[n]
;−

mkR1 Aγth

γ̄kR1 A[n]

)

'

(
mkA

γ̄kA [n]

)mkA
(

mkR1 A
γ̄kR1 A [n]

)mkR1 A

γ
mkA+mkR1 A
th

Γ
(

mkA + mkR1 A + 1
) × 1F1

(
mkA, mkA + mkR1 A;−mkAγth

γ̄kA[n]

)

'

(
mkA

γ̄kA [n]

)mkA
(

mkRA
γ̄kR1 A [n]

)mkR1 A

γ
mkA+mkR1 A
th

Γ
(

mkA + mkR1 A + 1
) exp(−mkAγth

γ̄kA[n]
).

(24)

Using (24), we obtain the asymptotic expression of the effective rate in (18) as

rasymp
kA,kR1 A[n] = rt

[
1− Fasymp

γth ,kA,kR1 A(γth)
]
. (25)

4. Minimization of Energy Consumption

This section formulates a multi-variable optimization problem to minimize the WTEC
of the proposed dual-RIS UAV-aided MEC-enabled IoV architecture. This problem is
explicitly subjected to transmit power allocation, achievable rate (target offloading rate),
timeslot scheduling, and task allocation.

4.1. Problem Formulation

The optimization problem can be formulated as:

(P1) : min
P,τ,βk [n]

Etotal =
N

∑
n=1

((
K

∑
k=1

wkEk,o f f [n]

)
+ wAEA[n]

)
(26a)

s.t. pmin
k,o f f [n] ≤ pk,o f f [n] ≤ pmax

k,o f f [n], (26b)

pmin
k,A,o f f [n] ≤ pk,A,o f f [n] ≤ pmax

k,A,o f f [n], (26c)

0 ≤ τk,o f f [n] ≤
τ

K
, (26d)

0 ≤ τk,A,o f f [n] ≤
τ

K
, (26e)

0 ≤ βk[n] ≤
τ fA,max

KcAbk[n]
, (26f)

τk,o f f [n] + τk,A,o f f [n] ≤
τ

K
, (26g)

bk[n] ≤ τk,o f f [n]rkA,kR1 A

(
pk,o f f [n]

)
, (26h)

(1− βk[n])bk[n] ≤ τk,A,o f f [n]rAG,AR2G

(
pk,A,o f f [n]

)
, (26i)

where Etotal is the WTEC, P ,
{

pk,o f f [n], pk,A,o f f [n]
}

, τ ,
{

τk,o f f [n], τk,A,o f f [n]
}

, and
βk[n] are the optimizing variables, wk ≥ 0 and wA ≥ 0 constitute the weight factors of
energy consumption of k-th vehicle and ARSU, respectively, pmin

k,o f f [n] can be defined using
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(21), pmin
k,A,o f f [n] is the minimum transmit power of ARSU and can be defined using (21) and

properly replacing the indices, pmax
k,o f f and pmax

k,A,o f f are the maximum transmit powers of k-th
vehicle and ARSU, respectively, and

EA[n] =
K

∑
k=1

(
Ek,cA[n] + Ek,A,o f f [n]

)
(27)

is the total communication-related and computation-related energy consumption of ARSU
in the n-th timeslot. The weights can be modified according to energy demands and
tradeoffs of an envisioned IoV application and also provide priority/fairness among the
vehicles. Thus, wk(wA) should be increased to save more energy, as long as the k-th
vehicle’s (ARSU’s) battery is running low. It is noted that the constraints (26b) and (26c)
specify the range of transmit power of the k-th vehicle and ARSU, the constraints (26d),
(26e), and (26g) indicate the transmission delay limitations, the constraint (26f) designates
the range of the task assignment ratio, and the constraints (26h) and (26i) describe the data
offloading limitations. In general, the propulsion energy consumption, which is defined in
(1), is remarkable and is significantly affected by the ARSU’s trajectory, i.e., the time-variant
location of the ARSU during the flight period. However, in this paper, a pre-determined
ARSU’s trajectory is considered and the optimization of the trajectory, which can further
decrease the WTEC, is left as a future work. Thus, the propulsion energy consumption is
excluded from the optimization process.

Lemma 1. Problem (P1) is a convex problem.

Proof. From (4)–(6), (26a), and (27), it follows that the objective function of problem (P1) is
convex with respect to P and βk, since its Hessian matrix is positive semidefinite. Moreover,
the mathematical expressions in (26b)–(26g) are linear. In addition, using (22) and (23), (17)
can be written as [57], eq. (7.2) (p. 446)

Fγth ,kA,kR1 A(γth) =
p
−(mkA+mkR1 A)
k,o f f [n]

Γ(mkA+mkR1 A+1)

(
mkA
P1[n]

)mkA
(mkR1 A

P2[n]

)mkR1 A

×Φ2

(
mkA, mkR1 A; mkA + mkR1 A + 1;− mkA

P1[n]pk,o f f [n]
;− mkR1 A

P2[n]pk,o f f [n]

)
=

p
−(mkA+mkR1 A)
k,o f f [n]

Γ(mkA+mkR1 A+1)

(
mkA
P1[n]

)mkA
(mkR1 A

P2[n]

)mkR1 A

×
∞
∑

v=0

∞
∑

u=0

(mkA)v(mkR1 A)u

(mkA+mkR1 A+1)v+u
v!u!

(
− mkA

P1[n]

)v(
−mkR1 A

P2[n]

)u
p−(v+u)

k,o f f [n]

=
∞
∑

v=0

∞
∑

u=0

(
mkA
P1 [n]

)mkA+v( mkR1 A
P2 [n]

)mkR1 A+u
(mkA)v(mkR1 A)u

p
−(mkA+mkR1 A+v+u)
k,o f f [n]

Γ(mkA+mkR1 A+1)(mkA+mkR1 A+1)v+u
v!u!

,

(28)

where (x)n ≡ Γ(x + n)/Γ(x) is the Pochhammer symbol [58] (p. 256). Using (28), the second
derivative of Fγth ,kA,kR1 A(γth) with respect to pk,o f f [n] can be expressed as

∂2 Fγth ,kA,kR1 A(γth)

∂p2
k,o f f [n]

=
∞
∑

v=0

∞
∑

u=0

(
mkA
P1 [n]

)mkA+v( mkR1 A
P2 [n]

)mkR1 A+u
(mkA)v(mkR1 A)u

Γ(mkA+mkR1 A+1)(mkA+mkR1 A+1)v+u
v!u!

×
(
mkA + mkR1 A + v + u

)(
mkA + mkR1 A + v + u + 1

)(
pk,o f f [n]

)−(mkA+mkR1 A+v+u+2)
.

(29)

As ∂2Fγth ,kA,kR1 A(γth)/∂p2
k,o f f [n] > 0, Fγth ,kA,kR1 A(γth) is a strictly convex function of

pk,o f f [n]. Thus, one concludes that the right-hand-side of (26h) and (26i) is concave. Conse-
quently, Problem (P1) is a convex problem.

4.2. Problem Solution

This paper leverages the Lagrangian dual method to solve Problem (P1). First, the
non-negative dual variables

{
χδ,k,n

}3
δ=1 are introduced, each associated with one of the
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constraints in (26g)–(26i). Then, the Lagrange function of problem (P1) can be written as

L
(

P, τ, βk[n], x1, x2, x3

)
=

N

∑
n=1

K

∑
k=1

[
wk pk,o f f [n]τk,o f f [n] + wA

(
κAc3

AK2
(

βk [n]bk [n]
)3

τ−2 + pk,A,o f f [n]τk,A,o f f [n]
)]

+
N

∑
n=1

K

∑
k=1

χ2,k,nbk [n] +
N

∑
n=1

K

∑
k=1

χ3,k,n

(
1− βk [n]

)
bk [n]−

N

∑
n=1

K

∑
k=1

χ1,k,n
τ

K
+

N

∑
n=1

K

∑
k=1

χ1,k,nτk,o f f [n]

+
N

∑
n=1

K

∑
k=1

χ1,k,nτk,A,o f f [n]−
N

∑
n=1

K

∑
k=1

χ2,k,nτk,o f f [n]rkA,kR1 A

(
pk,o f f [n]

)

−
N

∑
n=1

K

∑
k=1

χ3,k,nτk,A,o f f [n]rAG,AR2G

(
pk,A,o f f [n]

)
,

(30)

where x1, x2, and x3 denote the sets of χ1,k,n, χ2,k,n, and χ3,k,n, respectively. Thus, the dual
function of problem (P1) can be expressed as

ξ(x1, x2, x3) = min
P,t,βk

L(P, t, βk, x1, x2, x3) (31a)

s.t.(26b)− (26f) (31b)

Moreover, the dual problem of problem (P1) can be written as follows

P1− dual : max
x1,x2,x3

ξ(x1, x2, x3) (32a)

s.t. {x1, x2, x3}�0 (32b)

Since problem (P1) is convex, it satisfies the Slater’s condition [59]. As a strong duality
between (P1) and (P1-dual) can be observed, the optimal solution of problem (P1) is
obtained by solving problem (P1-dual). In addition, the dual function is obtained by
solving the problem in (31a) and (31b) for arbitrary values of {xδ}3

δ=1. This particular
problem can be decomposed into a set of KN independent subproblems and these sub-
problems can be further decomposed into three subproblems as

(L1) : min
τk,o f f [n],pk,o f f [n]

(
wk pk,o f f [n] + χ1,k,n

)
τk,o f f [n]

−χ2,k,nτk,o f f [n]rkA,kR1 A

(
pk,o f f [n]

)
s.t. (26b), (26d)

(L2) : min
τk,A,o f f [n],pk,A,o f f [n]

(
wA pk,A,o f f [n] + χ1,k,n

)
τk,A,o f f [n]

−χ3,k,nτk,A,o f f [n]rAG,AR2G

(
pk,A,o f f [n]

)
s.t. (26c), (26e)

(L3) : min
bk,A [n]

wAκAc3
AK2

(
βk[n]bk[n]

)3

τ−2 + χ3,k,n

(
1− βk[n]

)
bk[n]

s.t. (26f)

The aforementioned subproblems are convex. Hence, the Karush–Kuhn–Tucker (KKT)
conditions may be imposed on these subproblems for finding their optimal solutions. The
optimal transmit power p∗k,o f f [n] of the k-th vehicle can be obtained by applying KKT
conditions, setting the derivative of the Lagrangian of subproblem (L1) with respect to
pk,o f f [n] to zero and applying numerical solving methods. Then, τ∗k,o f f [n] can be obtained
by substituting p∗k,o f f [n] into subproblem (L1) and is expressed as
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τ∗k,o f f [n] =

{ = τ
K , wk p∗k,o f f [n] + χ1,k,n − χ2,k,nrkA,kR1 A(p∗k,o f f [n]) < 0

∈ [0, τ
K ], wk p∗k,o f f [n] + χ1,k,n − χ2,k,nrkA,kR1 A(p∗k,o f f [n]) = 0

= 0,wk p∗k,o f f [n] + χ1,k,n − χ2,k,nrkA,kR1 A(p∗k,o f f [n]) > 0
. (33)

Using (33), we also obtain the following optimal solution:

E∗k,o f f [n] = p∗k,o f f [n]τ
∗
k,o f f [n]. (34)

By applying KKT-based conditions, the solution to the subproblem (L2) can be similarly
obtained.

To derive a closed-form solution and provide insights into problem (L1), we present
an asymptotic analysis as L increases.

Proposition 1. The optimal transmit power of the k-th vehicle and the offloading time, when
L→ ∞ can be, respectively, obtained as

p∗k,o f f ,asymp[n] =

[
P1[n]P3

mkA
·W
(

mkA
P1[n]P3

P3

√
χ2,k,nP4

PmkA
1 [n]P

mkR1 A
2 [n]

)]pmax
k,o f f

pmin
k,o f f [n]

, (35)

τ∗k,o f f ,asymp[n] =

{ = τ
K , wk p∗k,o f f ,asymp[n] + χ1,k,n − χ2,k,nrasymp

kA,kR1 A(p∗k,o f f ,asymp[n]) < 0
∈ [0, τ

K ], wk p∗k,o f f ,asymp[n] + χ1,k,n − χ2,k,nrasymp
kA,kR1 A(p∗k,o f f ,asymp[n]) = 0

= 0, wk p∗k,o f f ,asymp[n] + χ1,k,n − χ2,k,nrasymp
kA,kR1 A(p∗k,o f f ,asymp[n]) > 0

, (36)

where
P3 =

(
3−mkA −mkR1 A

)
, (37)

P4 =
rt
(
mkA + mkR1 A

)
mmkA

kA m
mkR1 A
kR1 A

wkΓ
(
mkA + mkR1 A + 1

) , (38)

and W(·) is the Lambert function [60].

Proof. As L→ ∞, the achievable rate can be defined using (25). Using (25) instead of (18),
applying KKT conditions, solving the equation ∂L1/∂pk,o f f [n] = 0, and performing some
mathematical manipulations, we can derive the optimal solution in (35). Then, the optimal
solution in (36) is obtained by substituting p∗k,o f f [n] into subproblem (L1).

Next, we provide a recommendation for the energy-efficient offloading task assign-
ment ratio. By solving subproblem (L3) with the aid of KKT conditions, the following
optimal solution is obtained

β∗k [n] =
τ

Kbk[n]

√
χ3,k,n

3wAκAc3
A

. (39)

One observes that ARSU processes fewer task-input data, as wA increases. In addition,
the ARSU should not perform full offloading to GRSU for computing, since β∗k [n] > 0.

Thus, τ
K

√
χ3,k,n

3wAκAc3
A

bits should be computed at ARSU for minimum WTEC.

As arbitrary dual variables are considered heretofore, the optimal dual variables can be
obtained by solving problem P1-dual. Since problem P1-dual is generally non-differentiable,
the iterative ellipsoid method [59] is adopted to obtain an optimal solution. It is considered
that the subgradient of the objective function is represented by

(
∆xT

1 , ∆xT
2 , ∆xT

3
)T , where

∆x1 = bk[n]− τk,o f f [n]rkA,kR1 A

(
pk,o f f [n]

)
, (40a)
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∆x2 = (1− βk[n])bk[n]− τk,A,o f f [n]rAG,AR2G

(
pk,A,o f f [n]

)
, (40b)

∆x3 = τk,o f f [n] + τk,A,o f f [n]−
τ

K
. (40c)

Since the optimal solution τ∗ is not unique, the following linear programming problem is
formulated:

(P2) : min
τ

N

∑
n=1

K

∑
k=1

wkEk,o f f [n] + wAEk,A,o f f [n] (41a)

s.t. 0 ≤ τk,o f f [n] ≤
τ

K
, (41b)

0 ≤ τk,A,o f f [n] ≤
τ

K
, (41c)

τk,o f f [n] + τk,A,o f f [n] ≤
τ

K
, (41d)

bk[n] ≤ τk,o f f [n]rkA,kR1 A

(
p∗k,o f f [n]

)
, (41e)

(1− β∗k [n])bk[n] ≤ τk,A,o f f [n]rAG,AR2G

(
p∗k,A,o f f [n]

)
. (41f)

In order to obtain the optimal solution to principal problem (P1), problem (P2) should
be solved. In this regard, the subgradient-based Algorithm 1 is proposed to derive an opti-
mal solution. The complexity of Algorithm 1 is due to Steps 4 to 6, the complexity of which
is O(KN), O(KN), and O

(
K2N2) [59], respectively. Hence, Algorithm 1 is characterized by

an entire complexity of O
(
K4N4). On the other hand, the complexity in Step 9 depends on

solving problem (P2) by CVX [61].

Algorithm 1: Optimal Solution to Problem (P1).

1. Set the values of IoV parameters and the value of the tolerant threshold ε.
2. Initialize the iteration index, the dual variables {xδ}3

δ=1, and the ellipsoid.
Then, calculate the achievable rate using (18).

3. Repeat
4. Solve subproblems (L1) and (L2) with KKT conditions and obtain P∗ and τ∗.

Then, use (39) and obtain β∗k [n]. Calculate the WTEC.
5. Solve problem P1-dual and calculate the subgradients of the objective

function and the constraints.
6. Update {xδ}3

δ=1 based on the ellipsoid method.
7. End Repeat until convergence.

8. Let
{

x∗δ
}3

δ=1 ← {xδ}3
δ=1

9. Update P∗ by solving subproblems (L1) and (L2) with KKT conditions.
Use (39) and obtain β∗k [n].
Then, derive τ∗ by solving problem (P2) by CVX and obtain the optimal
WTEC.

5. Numerical Results and Discussion

This section provides results to demonstrate the impact of the key network parameters
on the TCCD τTCCD = ∑N

n=1 ∑K
k=1 τk[n] and on the non-optimized and optimized WTEC.

These results were obtained using MATLAB 2020a and the popular MATLAB-based CVX
modeling framework for disciplined convex programming [61]. Figure 2 shows the simula-
tion setup with pre-determined benchmark trajectories of three vehicles and the ARSU over
the horizontal plane within a given rectangular area of 1000 m ×100 m. The initial coordi-
nates (in meters) of the 1st vehicle, 2nd vehicle, 3rd vehicle, ARSU, 1st RIS, GRSU, and 2nd
RIS are (x1[1], y1[1], z1[1]) = (0, 0, 0), (x2[1], y2[1], z2[1]) = (50, 10, 0), (x3[1], y3[1], z3[1]) =
(100, 5, 0), (xA[1], yA[1], zA[1]) = (400, 100, 80),

(
xR1 , yR1 , zR1

)
= (−100, 50, 20), (xG, yG, zG)

= (750, 30, 5), and
(

xR2 , yR2 , zR2

)
= (900, 50, 20), respectively. Without loss of generality,
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it is considered that the vehicles are moving with a constant speed and all have an iden-
tical task requirement per timeslot. Typically, either straight-line paths or circular-orbit
paths have been used for the majority of the missions of UAVs [62]. In this paper, it is
considered that the ARSU flies along a pre-determined straight-line trajectory. Moreover,
B = 10 MHz is the allocated bandwidth. Unless otherwise indicated, the values of the
network parameters are listed in Table 2.

Figure 3 depicts the TCCD as a function of the number of vehicles with a varying
number of reflecting elements at RIS units and task requirements per timeslot. One observes
that the delay significantly increases with the number of vehicles and the number of task
bits. However, the delay decreases and more vehicles can be supported, as the number of
the reflecting elements grows. For instance, RIS units with at least 64 elements are required,
in order to meet the stringent latency requirements for bk[n] = 0.3 Mbits, while providing
offloading services to six vehicles.

In Figure 4, the TCCD is illustrated as a function of the number of vehicles for dif-
ferent configuration of RIS units and the task requirement bk[n] = 0.3 Mbits per time
slot. More specifically, the UAV-based dual-RIS, vehicles-side RIS, and GRSU-side RIS
deployment strategies are investigated. In addition, a less complex UAV-based scenario is
also studied, which does not include RIS units and was extensively studied in previous
works (e.g., [17–20,24,25]). It is obvious that the number of supported vehicles changes
by adopting a particular setup. To provide computation offloading services to more than
four vehicles, while meeting the stringent latency requirements, deploying a RIS unit in
the vicinity of the vehicles is at least required. Meanwhile, the dual-RIS offloading strategy
supports more vehicles, when compared with the other strategies, thus highlighting the
utility and feasibility of the proposed IoV architecture.
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Figure 2. The projection of the proposed IoV architecture on the xy plane with pre-determined
benchmark trajectories of three vehicles and the aerial road side unit (ARSU).
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Table 2. Definition, Notation, and Value of Network Parameters.

System and Mobility Parameters Value

Number of vehicles: K 3
Weight factor for energy consumption for k-th vehicle (ARSU): wk(wA) 1 (0.1)
Parameters of rotary-wing UAV: vtip, v0, dr , s, ρ, G, P0, P1, P2 120, 4.3, 0.6, 0.05, 1.225, 0.503,

12 · 303 · 0.43ρsG/8,
1.1 · 203/2/

√
2ρG, 11.46 [40]

Velocity and moving direction of k-th vehicle in the azimuth domain, respec-
tively: vk , γk

60 km/h, π/20

Velocity and moving direction of ARSU in the azimuth (elevation) domain,
respectively: vA, γA,xy(γA,z)

5 m/s, 3π/2(0)

Computation Parameters Value

Task-input data size of k-th vehicle per timeslot: bk 0.4 Mbits
Task deadline (flight duration of ARSU): T 8 s
Timeslot length: τ 0.2 s [24]
Maximum central processing unit (CPU) frequency at ARSU: fA,max 3 GHz [24]
Required CPU cycles per bit at ARSU: cA 103 cycles/bit [24]
CPU capacitance coefficient at ARSU: κA 10−27 [24]

Wireless Transmission Parameters Value

Target rate: γt 1.5 bps/Hz
Max. transmit power of k-th vehicle and ARSU, respectively: pk,o f f

max , pk,A,o f f
max 35 dBm, 35 dBm [24]

Number of reflecting elements at the 1st RIS and 2nd RIS: L 64
Number of quantization bits: q 2
Path-loss exponents: σkA, σkR1 , σR1 A, σAG , σAR2 , σR2G 3.5, 2.2, 2, 3.5, 2, 2.2
Channel gain at reference distance d0 = 1m: β0 −20 dB [32]
Variance of the additive white Gaussian noise (AWGN) at the k-th vehicle,
ARSU, 1st RIS, ground road side unit (GRSU), and 2nd RIS: N0

−80 dBm [32]

Nakagami-m fading parameter of the direct link between the k-th vehicle
(ARSU) and ARSU (GRSU): mkA(mAG)

1 (1)

Rician factor for the link between the k-th vehicle and 1st RIS, 1st RIS and
ARSU, ARSU and 2nd RIS, and 2nd RIS and GRSU: KkR1 , KR1 A, KAR2 , KR2G

7 dB, 10 dB, 10 dB, 7 dB

Figure 5 shows the non-optimized and optimized WTEC as a function of the number
of reflecting elements for varying task requirement. The asymptotic WTEC that accounts
for the expressions for the asymptotic rate in (25) is also demonstrated, whereas the
asymptotically optimal solutions in (35) and (36) are also verified. Clearly, the WTEC
drastically decreases, as the number of the reflecting elements increases due to the lower
transmission delay. As the number of these elements increases from 10 to 60, the non-
optimized and optimized WTEC decreases up to 14 and 18 Joules, respectively, depending
on the number of task bits. However, a reasonable number of reflecting elements should be
utilized, since increasing the number of the elements beyond 60 meaninglessly changes
the WTEC. Moreover, the asymptotically derived WTEC converges to the analytical WTEC
with about 60 reflecting elements.

The effect of the number of quantization bits on the WTEC is investigated in Figure 6.
The asymptotic behavior of the WTEC is also studied. As q increases, more energy is
consumed with a fixed number of reflecting elements. However, the WTEC is remarkably
robust against phase errors for large values of reflecting elements. It can be also seen that
the convergence of the asymptotic WTEC directly depends on the number of quantization
bits and up to 90 reflecting elements are required for an accurate approximation of the
analytical results.
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Figure 3. The total computation-based and communication-based delay (TCCD) as a function of the
number of vehicles for different numbers of reflecting elements and task requirements.
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Figure 5. The non-optimized and optimized weighted total energy consumption (WTEC) as a
function of the number of reflecting elements for varying task requirement.
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Figure 7 shows the non-optimized WTEC as a function of the positioning of the ARSU
along the x-axis for different values of the Rician factors KkR1 , KR1 A, KAR2 , and KR2G. It
is obvious that the WTEC remains constant, provided that the fading is symmetric, i.e.,
KkR1 = KR2G = 7 dB and KR1 A = KAR2 = 10 dB. However, the quality of the composite
channel through the 1st RIS is degraded, as long as KkR1 = KR1 A = 0 dB. Then, the LoS
component is weak and an ARSU position closer to the vehicles is preferable to meliorate
the WTEC. On the other hand, setting KAR2 = KR2G = 0 dB downgrades the quality of the
composite channel through the 2nd RIS. Thus, moving the ARSU closer to the GRSU can
compensate for this degradation. Previous results on UAV-based MEC configurations with-
out RIS units [16] suggested a UAV position close to ground nodes to maintain low energy
consumption. Nevertheless, the RIS units can enhance the communication performance of
their nearby nodes and counterbalance the distance-dependent pathloss. Thus, the ARSU
does not need to fly toward the vehicles and GRSU too closely, in order to obtain adequate
WTEC in any fading conditions. By avoiding aimless ARSU mobility, its endurance can be
significantly extended.

In order to ascertain how the distance between the 1st RIS unit and the vehicles
influences the WTEC, Figure 8 depicts the non-optimized WTEC as a function of the
location of the 1st RIS unit along the x-axis for varying Rician factor KkR1 . One observes
that the value of the WTEC is lower, when the 1st RIS unit is placed closer to the vehicles.
Then, the quality of the communication link between the k-th vehicle and the 1st RIS unit
improves mainly owing to the increase in the average SNR of the composite channel. On
the other hand, the fading conditions also affect the effective rate and thus the WTEC.
Hence, the vehicles should move towards the 1st RIS unit, as long as the LoS component
is weak.

Figure 9 depicts the curves of the non-optimized and optimized WTEC as a function of
the velocity of ARSU for varying task completion time (flying period) and weight factor wA
of energy consumption at ARSU. It can be observed that the consumed energy substantially
increases with the velocity of ARSU owing to the growth of the propulsion energy. It is
also evident that WTEC increases as T and wA step up. Moreover, the optimized scheme
leads to substantially smaller values of WTEC, when compared with the non-optimized
one, thus confirming the effectivity of our optimization approach.
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Figure 7. The WTEC as a function of the movement of ARSU along the x-axis for different values of
the Rician factors KkR1
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of the Rician factor KkR1
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Figure 9. The non-optimized and optimized WTEC as a function of the velocity of ARSU for different
task completion time and weight factor of energy consumption of ARSU.

Finally, Figure 10 examines and ascertains the computational effectiveness of the
proposed Algorithm 1 and shows the optimized WTEC for tolerant threshold ε = 10−4 as a
function of the iteration index. One observes that the optimized scheme closely converges
after about seven iterations for all the combinations of task sizes and numbers of reflecting
elements at RIS units.
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and number of reflecting elements.

6. Conclusions

This paper leveraged a UAV to provide additional computational resources and
ubiquitous connectivity in future IoV networks. As RIS units constitute an emerging
technology for reduced latency as well as improved energy efficiency, this paper also
presented a dual-RIS network configuration and proposed a novel UAV-aided dual-RIS
MEC-enabled IoV network architecture. In this direction, this paper introduced a 3-D
geometrical representation of the entire network, provided an asymptotic WTEC analysis,
and formulated a convex WTEC-aware optimization problem, which is subjected to several
practical constraints. Based on the mathematical derivations and the convenient form of
the closed-form solutions, indicative results are provided, in order to investigate the effect
of the key network parameters on the non-optimized and optimized WTEC. These results
underline that the number of supported vehicles is determined by the number of reflecting
elements and the size of offloaded data. It is also demonstrated that the dual-RIS MEC
deployment significantly outperforms other MEC deployments operating with a single RIS
unit or without RIS units. Moreover, the results revealed that the impact of phase errors on
the WTEC becomes less influential as the number of reflecting elements increases. Since
the weight factor of ARSU and its velocity adjust the propulsion energy consumption, the
results pointed out that using RIS units not only shortens the transmission delay, but also
averts purposeless mobility of ARSU.

Several fertile research areas can be identified to expand this work. For instance,
multiple ARSUs can be deployed to extend the network range, whereas RIS-aided WPT for
flight time prolongation constitutes another interesting research direction. Furthermore,
cooperative multi-RIS transmission with inter-RIS signal reflection can further improve the
beamforming gain.

Author Contributions: Conceptualization, E.T.M. and N.I.M.; investigation, E.T.M.; methodology,
E.T.M. and N.I.M.; supervision, A.M. and D.J.V.; visualization, E.T.M.; writing—original draft, E.T.M.;
writing—review and editing, N.I.M., A.M., E.S. and D.J.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded in the context of the project “A Mobile Edge Computing-Enabled
5G Vehicular Networking Architecture to Support Innovative Services” (MIS 5050174) under the call
for proposals “Supporting Researchers with an Emphasis on Young Researchers—Cycle B” (EDULLL
103). The project is cofinanced by Greece and the European Union (European Social Fund—ESF)



Sensors 2021, 21, 4392 22 of 24

by the Operational Programme Human Resources Development, Education and Lifelong Learning
2014–2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Storck, C.R.; Duarte-Figueiredo, F. A 5G V2X Ecosystem Providing Internet of Vehicles. Sensors 2019, 19, 550. [CrossRef] [PubMed]
2. Thibault, L.; De Nunzio, G.; Sciarretta, A. A Unified Approach for Electric Vehicles Range Maximization via Eco-Routing,

Eco-Driving, and Energy Consumption Prediction. IEEE Trans. Intell. Veh. 2018, 3, 463–475. [CrossRef]
3. Zhang, J.; Letaief, K.B. Mobile Edge Intelligence and Computing for the Internet of Vehicles. Proc. IEEE 2020, 108, 246–261.

[CrossRef]
4. Lin, K.; Li, C.; Li, Y.; Savaglio, C.; Fortino, G. Distributed Learning for Vehicle Routing Decision in Software Defined Internet of

Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3730–3741. [CrossRef]
5. Zhou, J.; Tian, D.; Wang, Y.; Sheng, Z.; Duan, X.; Leung, V.C.M. Reliability-Oriented Optimization of Computation Offloading for

Cooperative Vehicle-Infrastructure Systems. IEEE Signal Process. Lett. 2019, 26, 104–108. [CrossRef]
6. Zhao, J.; Li, Q.; Gong, Y.; Zhang, K. Computation Offloading and Resource Allocation For Cloud Assisted Mobile Edge Computing

in Vehicular Networks. IEEE Trans. Veh. Technol. 2019, 68, 7944–7956. [CrossRef]
7. Ning, Z.; Huang, J.; Wang, X.; Rodrigues, J.J.P.C.; Guo, L. Mobile Edge Computing-Enabled Internet of Vehicles: Toward

Energy-Efficient Scheduling. IEEE Netw. 2019, 33, 198–205. [CrossRef]
8. Lamb, Z.W.; Agrawal, D.P. Analysis of Mobile Edge Computing for Vehicular Networks. Sensors 2019, 19, 1303. [CrossRef]
9. Liu, Y.; Yu, H.; Xie, S.; Zhang, Y. Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge Computing

and Networks. IEEE Trans. Veh. Technol. 2019, 68, 11158–11168. [CrossRef]
10. Zhang, J.; Guo, H.; Liu, J.; Zhang, Y. Task Offloading in Vehicular Edge Computing Networks: A Load-Balancing Solution. IEEE

Trans. Veh. Technol. 2020, 69, 2092–2104. [CrossRef]
11. Boukerche, A.; Soto, V. An Efficient Mobility-Oriented Retrieval Protocol for Computation Offloading in Vehicular Edge Multi-

Access Network. IEEE Trans. Intell. Transp. Syst. 2020, 21, 2675–2688. [CrossRef]
12. Ning, Z.; Zhang, K.; Wang, X.; Guo, L.; Hu, X.; Huang, J.; Hu, B.; Kwok, R.Y.K. Intelligent Edge Computing in Internet of Vehicles:

A Joint Computation Offloading and Caching Solution. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2212–2225. [CrossRef]
13. Zhou, F.; Hu, R.Q.; Li, Z.; Wang, Y. Mobile Edge Computing in Unmanned Aerial Vehicle Networks. IEEE Wirel. Commun. 2020,

27, 140–146. [CrossRef]
14. Nomikos, N.; Michailidis, E.T.; Trakadas, P.; Vouyioukas, D.; Karl, H.; Martrat, J.; Zahariadis, T.; Papadopoulos, K.; Voliotis,

S. A UAV-Based Moving 5G RAN for Massive Connectivity of Mobile Users and IoT Devices. Veh. Commun. 2020, 25, 100250.
[CrossRef]

15. Michailidis, E.T.; Potirakis, S.M.; Kanatas, A.G. AI-Inspired Non-Terrestrial Networks for IIoT: Review on Enabling Technologies
and Applications. IoT 2020, 1, 21–48. [CrossRef]

16. Hu, X.; Wong, K.; Yang, K.; Zheng, Z. UAV-Assisted Relaying and Edge Computing: Scheduling and Trajectory Optimization.
IEEE Trans. Wirel. Commun. 2019, 18, 4738–4752. [CrossRef]

17. Li, L.; Wen, X.; Lu, Z.; Pan, Q.; Jing, W.; Hu, Z. Energy-Efficient UAV-Enabled MEC System: Bits Allocation Optimization and
Trajectory Design. Sensors 2019, 19, 4521. [CrossRef]

18. Hu, Q.; Cai, Y.; Yu, G.; Qin, Z.; Zhao, M.; Li, G.Y. Joint Offloading and Trajectory Design for UAV-Enabled Mobile Edge Computing
Systems. IEEE Internet Things J. 2019, 6, 1879–1892. [CrossRef]

19. Zhan, C.; Hu, H.; Sui, X.; Liu, Z.; Niyato, D. Completion Time and Energy Optimization in the UAV-Enabled Mobile-Edge
Computing System. IEEE Internet Things J. 2020, 7, 7808–7822. [CrossRef]

20. Zhang, L.; Ansari, N. Latency-Aware IoT Service Provisioning in UAV-Aided Mobile-Edge Computing Networks. IEEE Internet
Things J. 2020, 7, 10573–10580. [CrossRef]

21. Zhang, X.; Zhong, Y.; Liu, P.; Zhou, F.; Wang, Y. Resource Allocation for a UAV-Enabled Mobile-Edge Computing System:
Computation Efficiency Maximization. IEEE Access 2019, 7, 113345–113354. [CrossRef]

22. Zhou, F.; Wu, Y.; Hu, R.Q.; Qian, Y. Computation Rate Maximization in UAV-Enabled Wireless-Powered Mobile-Edge Computing
Systems. IEEE J. Sel. Areas Commun. 2018, 36, 1927–1941. [CrossRef]

23. Han, R.; Wen, Y.; Bai, L.; Liu, J.; Choi, J. Rate Splitting on Mobile Edge Computing for UAV-Aided IoT Systems. IEEE Trans. Cogn.
Commun. Netw. 2020, 6, 1193–1203. [CrossRef]

24. Zhang, T.; Xu, Y.; Loo, J.; Yang, D.; Xiao, L. Joint Computation and Communication Design for UAV-Assisted Mobile Edge
Computing in IoT. IEEE Trans. Ind. Informatics 2020, 16, 5505–5516. [CrossRef]

25. Zhang, L.; Zhao, Z.; Wu, Q.; Zhao, H.; Xu, H.; Wu, X. Energy-Aware Dynamic Resource Allocation in UAV Assisted Mobile Edge
Computing Over Social Internet of Vehicles. IEEE Access 2018, 6, 56700–56715. [CrossRef]

26. Zhao, L.; Yang, K.; Tan, Z.; Li, X.; Sharma, S.; Liu, Z. A Novel Cost Optimization Strategy for SDN-Enabled UAV-Assisted
Vehicular Computation Offloading. IEEE Trans. Intell. Transp. Syst. 2020. [CrossRef]

27. Jeong, S.; Simeone, O.; Kang, J. Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path
Planning. IEEE Trans. Veh. Technol. 2018, 67, 2049–2063. [CrossRef]

http://doi.org/10.3390/s19030550
http://www.ncbi.nlm.nih.gov/pubmed/30699926
http://dx.doi.org/10.1109/TIV.2018.2873922
http://dx.doi.org/10.1109/JPROC.2019.2947490
http://dx.doi.org/10.1109/TITS.2020.3023958
http://dx.doi.org/10.1109/LSP.2018.2880081
http://dx.doi.org/10.1109/TVT.2019.2917890
http://dx.doi.org/10.1109/MNET.2019.1800309
http://dx.doi.org/10.3390/s19061303
http://dx.doi.org/10.1109/TVT.2019.2935450
http://dx.doi.org/10.1109/TVT.2019.2959410
http://dx.doi.org/10.1109/TITS.2020.2991376
http://dx.doi.org/10.1109/TITS.2020.2997832
http://dx.doi.org/10.1109/MWC.001.1800594
http://dx.doi.org/10.1016/j.vehcom.2020.100250
http://dx.doi.org/10.3390/iot1010003
http://dx.doi.org/10.1109/TWC.2019.2928539
http://dx.doi.org/10.3390/s19204521
http://dx.doi.org/10.1109/JIOT.2018.2878876
http://dx.doi.org/10.1109/JIOT.2020.2993260
http://dx.doi.org/10.1109/JIOT.2020.3005117
http://dx.doi.org/10.1109/ACCESS.2019.2935217
http://dx.doi.org/10.1109/JSAC.2018.2864426
http://dx.doi.org/10.1109/TCCN.2020.3012680
http://dx.doi.org/10.1109/TII.2019.2948406
http://dx.doi.org/10.1109/ACCESS.2018.2872753
http://dx.doi.org/10.1109/TITS.2020.3024186
http://dx.doi.org/10.1109/TVT.2017.2706308


Sensors 2021, 21, 4392 23 of 24

28. Zhang, J.; Zhou, L.; Tang, Q.; Ngai, E.C.-H.; Hu, X.; Zhao, H.; Wei, J. Stochastic Computation Offloading and Trajectory Scheduling
for UAV-Assisted Mobile Edge Computing. IEEE Internet Things J. 2019, 6, 3688–3699. [CrossRef]

29. Michailidis, E.T.; Miridakis, N.I.; Michalas, A.; Skondras, E.; Vergados, D.J.; Vergados, D.D. Energy Optimization in Massive
MIMO UAV-Aided MEC-Enabled Vehicular Networks. arXiv 2021, arXiv:2102.03907.

30. Gong, S.; Lu, X.; Hoang, D.T.; Niyato, D.; Shu, L.; Kim, D.I.; Liang, Y.-C. Toward Smart Wireless Communications via Intelligent
Reflecting Surfaces: A Contemporary Survey. IEEE Commun. Surv. Tutorials 2020, 22, 2283–2314. [CrossRef]

31. Hashida, H.; Kawamoto, Y.; Kato, N. Intelligent Reflecting Surface Placement Optimization in Air-Ground Communication
Networks Toward 6G. IEEE Wirel. Commun. 2020, 27, 146–151. [CrossRef]

32. Li, S.; Duo, B.; Yuan, X.; Liang, Y.; Renzo, M.D. Reconfigurable Intelligent Surface Assisted UAV Communication: Joint Trajectory
Design and Passive Beamforming. IEEE Wirel. Commun. Lett. 2020, 9, 716–720. [CrossRef]

33. Wei, Z.; Cai, Y.; Sun, Z.; Ng, D.W.K.; Yuan, J.; Zhou, M.; Sun, L. Sum-Rate Maximization for IRS-Assisted UAV OFDMA
Communication Systems. IEEE Trans. Wirel. Commun. 2021, 20, 2530–2550. [CrossRef]

34. Ranjha, A.; Kaddoum, G. URLLC Facilitated by Mobile UAV Relay and RIS: A Joint Design of Passive Beamforming, Blocklength,
and UAV Positioning. IEEE Internet Things J. 2021, 8, 4618–4627. [CrossRef]

35. Bai, T.; Pan, C.; Deng, Y.; Elkashlan, M.; Nallanathan, A.; Hanzo, L. Latency Minimization for Intelligent Reflecting Surface Aided
Mobile Edge Computing. IEEE J. Sel. Areas Commun. 2020, 38, 2666–2682. [CrossRef]

36. Chu, Z.; Xiao, P.; Shojafar, M.; Mi, D.; Mao, J.; Hao, W. Intelligent Reflecting Surface Assisted Mobile Edge Computing for Internet
of Things. IEEE Wirel. Commun. Lett. 2021, 10, 619–623. [CrossRef]

37. Zhou, F.; You, C.; Zhang, R. Delay-Optimal Scheduling for IRS-Aided Mobile Edge Computing. IEEE Wirel. Commun. Lett. 2021,
10, 740–744. [CrossRef]

38. Huang, S.; Wang, S.; Wang, R.; Wen, M.; Huang, K. Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks. IEEE Trans. Cogn. Commun. Netw. 2021. [CrossRef]

39. Shao, C.; Leng, S.; Zhang, Y.; Vinel, A.; Jonsson, M. Performance Analysis of Connectivity Probability and Connectivity-Aware
MAC Protocol Design for Platoon-Based VANETs. IEEE Trans. Veh. Technol. 2015, 64, 5596–5609. [CrossRef]

40. Mei, H.; Wang, K.; Zhou, D.; Yang, K. Joint Trajectory-Task-Cache Optimization in UAV-Enabled Mobile Edge Networks for
Cyber-Physical System. IEEE Access 2019, 7, 156476–156488. [CrossRef]

41. Xu, W.; Zhou, H.; Cheng, N.; Lyu, F.; Shi, W.; Chen, J.; Shen, X. Internet of vehicles in big data era. Ieee/Caa J. Autom. Sin. 2018, 5,
19–35. [CrossRef]

42. Zhang, W.; Wen, Y.; Guan, K.; Kilper, D.; Luo, H.; Wu, D.O. Energy-optimal mobile cloud computing under stochastic wireless
channel. IEEE Trans. Wirel. Commun. 2013, 12, 4569–4581. [CrossRef]

43. Khawaja, W.; Guvenc, I.; Matolak, D.W.; Fiebig, U.-C.; Schneckenburger, N. A Survey of Air-to-Ground Propagation Channel
Modeling for Unmanned Aerial Vehicles. IEEE Commun. Surv. Tutorials 2019, 21, 2361–2391. [CrossRef]

44. Zeng, Y.; Wu, Q.; Zhang, R. Accessing From the Sky: A Tutorial on UAV Communications for 5G and Beyond. Proc. IEEE 2019,
107, 2327–2375. [CrossRef]

45. Nguyen, A.-N.; Vo, V.N.; So-In, C.; Ha, D.-B. System Performance Analysis for an Energy Harvesting IoT System Using a DF/AF
UAV-Enabled Relay with Downlink NOMA under Nakagami-m Fading. Sensors 2021, 21, 285. [CrossRef] [PubMed]

46. Yanmaz, E.; Kuschnig, R.; Bettstetter, C. Channel Measurements over 802.11a–based UAV-to-Ground Links. In Proceedings of the
IEEE Global Communications Conference (GLOBECOM’11), Houston, TX, USA, 5–9 December 2011; pp. 1280–1284. [CrossRef]

47. Kumbhani, B.; Kshetrimayum, R.S. MIMO Wireless Communications Over Generalized Fading Channels; CRC Press: Boca Raton, FL,
USA, 2017.

48. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 6th ed.; Academic: New York, NY, USA, 2000.
49. Rappaport, T. Wireless Communications: Principles and Practice, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2002.
50. Badiu, M.; Coon, J.P. Communication Through a Large Reflecting Surface With Phase Errors. IEEE Wirel. Commun. Lett. 2020, 9,

184–188. [CrossRef]
51. Mardia, K.V.; Jupp, P.E. Directional Statistics; Wiley: Chichester, UK, 2000.
52. Simon, M.K.; Alouini, M.S. Digital Communications over Fading Channels, 2nd ed.; Wiley: New York, NY, USA, 2004.
53. Miridakis, N.I.; Tsiftsis, T.A.; Alexandropoulos, G.C. MIMO Underlay Cognitive Radio: Optimized Power Allocation, Effective

Number of Transmit Antennas and Harvest-Transmit Tradeoff. IEEE Trans. Green Commun. Netw. 2018, 2, 1101–1114. [CrossRef]
54. Martos-Naya, E.; Romero-Jerez, J.M.; Lopez-Martinez, F.J.; Paris, J.F. A MATLAB Program for the Computation of the Con-

fluent Hypergeometric Function Φ2. 2016. Available online: https://riuma.uma.es/xmlui/handle/10630/12068 (accessed on
15 April 2021).

55. Kong, N.; Milstein, L.B. Average SNR of a generalized diversity selection combining scheme. IEEE Commun. Lett. 1999, 3, 57–59.
[CrossRef]

56. Brychkov, Y.A.; Kim, Y.S.; Rathie, A.K. On new reduction formulas for the Humbert functions Ψ2, Φ2 and Φ3. Integral Transform.
Spec. Funct. 2017, 28, 350–360. [CrossRef]

57. Erdelyi, A. Beitrag zur Theorie der Konfluenten Hypergeometrischen Funktionen von Mehreren Veränderlichen; Hölder-Pichler-Tempsky
in Komm: Vienna, Austria, 1937.

58. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed.; Dover:
New York, NY, USA, 1972.

http://dx.doi.org/10.1109/JIOT.2018.2890133
http://dx.doi.org/10.1109/COMST.2020.3004197
http://dx.doi.org/10.1109/MWC.001.2000142
http://dx.doi.org/10.1109/LWC.2020.2966705
http://dx.doi.org/10.1109/TWC.2020.3042977
http://dx.doi.org/10.1109/JIOT.2020.3027149
http://dx.doi.org/10.1109/JSAC.2020.3007035
http://dx.doi.org/10.1109/LWC.2020.3040607
http://dx.doi.org/10.1109/LWC.2020.3042189
http://dx.doi.org/10.1109/TCCN.2021.3056707
http://dx.doi.org/10.1109/TVT.2015.2479942
http://dx.doi.org/10.1109/ACCESS.2019.2949032
http://dx.doi.org/10.1109/JAS.2017.7510736
http://dx.doi.org/10.1109/TWC.2013.072513.121842
http://dx.doi.org/10.1109/COMST.2019.2915069
http://dx.doi.org/10.1109/JPROC.2019.2952892
http://dx.doi.org/10.3390/s21010285
http://www.ncbi.nlm.nih.gov/pubmed/33406646
http://dx.doi.org/10.1109/GLOCOMW.2011.6162389
http://dx.doi.org/10.1109/LWC.2019.2947445
http://dx.doi.org/10.1109/TGCN.2018.2866995
https://riuma.uma.es/xmlui/handle/10630/12068
http://dx.doi.org/10.1109/4234.752901
http://dx.doi.org/10.1080/10652469.2017.1297438


Sensors 2021, 21, 4392 24 of 24

59. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge Univ. Press: Cambridge, UK, 2004.
60. Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W function. Adv. Comput. Math. 1996, 5,

329–359. [CrossRef]
61. Grant, M.; Boyd, S.; Ye, Y. CVX: MATLAB Software for Disciplined Convex Programming, version 2.0 beta. 2013. Available online:

http://cvxr.com/cvx (accessed on 15 April 2021).
62. Sujit, P.B.; Saripalli, S.; Sousa, J.B. Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-Wing

Unmanned Aerial Vehicles. IEEE Control Syst. Mag. 2014, 34, 42–59. [CrossRef]

http://dx.doi.org/10.1007/BF02124750
http://cvxr.com/cvx
http://dx.doi.org/10.1109/MCS.2013.2287568

	Introduction
	Background
	Contribution
	Structure

	System Model 
	Geometrical Characteristics and Mobility Model
	Computation Offloading Model

	Wireless Transmission Model 
	Direct Links without RIS Units
	Indirect Links through RIS Units
	Asymptotic Rate

	Minimization of Energy Consumption
	Problem Formulation
	Problem Solution

	Numerical Results and Discussion 
	Conclusions
	References

