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Abstract. This research aims at optimizing the monitoring network used to con-
sistently identify pollution’s origin in the pollution source identification problem
in groundwater hydraulics under real-time/operational applications. For this task,
Machine Learning (ML) and Deep Learning (DL) methods are introduced, which
can outperform metaheuristics, such as Genetic Algorithms (GAs), in terms of total
computational load. To test the approach, a theoretical aquifer with two pump-
ing wells is studied, where one of six possible pollution sources may spread a
conservative pollutant. An existing own software simulates a 2D surrogate steady
state flow field, using particle tracking to simulate advective mass transport only.
A large number of combinations of possible source locations (4 different layout
scenarios), hydraulic gradients and pumping wells’ flow-rates is used to calcu-
late various features (such as pollutant arrival times, hydraulic drawdowns) in a
29 × 29 grid. Three ML/DL methods (Random Forests, Multi-Layer Perceptron,
Convolutional Neural Networks) are tested for prediction accuracy, while Corre-
lation based Feature Selection (CFS), and targeted tests are used to select sub-
sets/sampling frequencies that can provide similar accuracy with the full datasets.
This evaluation process bears promising results and paves the way for monitoring
network optimization.
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1 Introduction

Cost of groundwater pollution control and remediation methods, like pump-and-treat or
hydraulic control, is high; its minimization is essential yet challenging [1, 2]. Timely
pollution detection presupposes existence of a proper network of monitoring wells, also
necessary to identify the pollution source and apply “the polluter pays” principle [3],
discouraging possible polluters. For a given monitoring scheme, source detection is an
optimization problem solved with various metaheuristic [4] or Machine Learning (ML)
methods [5]. Lately, water resources scientists have started to utilize Deep Learning (DL)
research; Shen [6] provides a great review. Zhang et al. [7] go a step further considering
surrogate models’ approximation error, and minimizing it. The installation/operation
costs of the monitoring network may be quite high, and its minimization is essential,
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hence many researchers have tried to deal with optimal network design [8]. This paper
aims at implementing ML/DL methods, already proven robust at environmental engi-
neering problems [9], to solve the source detection problem, and investigate minimization
of the number (Nr) of monitoring wells and sampling frequency.

1.1 Theoretical Problem Definition

An aquifer of known characteristics is studied (Fig. 1). Two pumping wells (PWs) near
the southern boundary provide irrigation/drinking water, defining the flow field together
with a North-South natural flow. Six suspected possible sources (S1–S6), capable of
instantaneous leakage, may spread a specific pollutant, while four scenarios with differ-
ent 6-source layouts are considered. The short-term goal is to identify the source, while
the long-term is to optimize the monitoring design and solve the real-time/operational
problem. The 29 × 29 = 841 inner field grid nodes (50 m cell size) serve as possible
locations of sources, PWs and monitoring wells (MWs). The over-simplified problem
version used for this pilot/evaluation approach is based on the assumptions: i) time t =
0 of initial pollution leakage is known, regardless of the source, ii) all sources may leak
the same pollutant, only one at a time, instantly (during a time-step), iii) initially, all the
nodes, bear MWs, that are used to locally record the following: a) yes/no pollutant detec-
tion, b) 1st day of pollution, c) pollution duration, d) hydraulic head drawdown. All these
“measured” features entail construction of a MW at the respective nodes. Features (a)
relate to a single sampling at a predefined day and in-situ/ex-situ analyses. Features (b)
relate to floating or fixed depth (low-cost, smart) sensors sending a single signal when
detecting pollution (e.g., measuring electric current variance) or consecutive manual
samplings in each timestep, followed by in-situ/ex-situ analyses, until pollution detec-
tion. Features (c) imply continuation of the remote or manual measurements after the
first pollution detection. Features (d) entail a manual one-off drawdown measurement
(steady state flow) or, in case of an existing sensor, can relate to a fixed depth sensor-strip
solution (instead of a floating sensor) that can also measure drawdown.

1.2 Research Goals

Research goals are: Find pollution source for Scenarios 1–4 (plus a merged 4 × 6 = 24
sources 5th scenario), using various ML/DL methods and evaluate them regarding their
accuracy, exploiting the full MW network and features’ values of the over-simplified ini-
tial problem version. Conclude on the useful MWs/features and remove the useless ones,
a first indirect step towards the optimization of the MW network. Investigate the impor-
tance of each feature trying to further decrease their number (feature selection), with
various techniques, depending on the ML/DL method used, simultaneously retaining the
same prediction accuracy levels. Given the specific spatial layout of the MW network,
investigate further indirect MW network optimization (monitoring cost minimization),
searching for the lowest temporal discretization (lowest sampling frequencies) that can
provide unchanged source prediction accuracy for all scenarios. Finally, evaluate each
ML/DL method, concluding on a) pros/cons, b) the significance of the features tested, c)
the formulation of the input-output (X–Y) datasets suitable for each ML/DL method. The
ultimate goal is to include the best methods in a metaheuristic optimization algorithm
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that will eventually automatically optimize the MW network (MW locations, sampling
rates/time-instances or strategies).

Fig. 1. The 2D theoretical flow field with the possible pollution Sources (S1–S6), the 4 different
scenarios/layouts, the PWs and MWs, positioned on a 29 × 29 50 m-cell-sized grid.

2 Hydraulic Simulation

2.1 Flow Field and Mass Transport Simulation

Balancing the vast computational load needed for the creation of the simulated datasets
to feed the data-driven methods, entails simplification of the flow field, hence a surrogate
2D flow field is studied. The 1500 m × 1500 m theoretical flow field (Fig. 1) includes
two PWs of known varying flow-rates during a year. An inter-annually varying North-
South natural flow also affects the flow field, while the confined aquifer is assumed to be
infinite, homogeneous, isotropic with a plane, horizontal, single-phase steady flow. The
combination of the constant/varying values of flow field parameters (Table 1) produces
a 15,246 dataset package of cases per scenario.

The pollutant is assumed to spread dominantly via advection, with a Lagrangian
Particle Tracking Method (PTM) simulating mass transport [10]. The “MovPo” soft-
ware used is part of the “OptiManage” optimization suite, created by authors [1]. Their
previous research offers guidelines/investigation techniques to define the best parameter
values, e.g., the Nr of particles for circular plumes’ simulation, the temporal discretiza-
tion of the study period, and the suitable PWs’ approximate capture zone [10]. The
pumping well pollution criterion is based on a circular approximation of time of travel
(during a timestep) capture zones. Practically, a pollutant particle P is assumed to pollute
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Table 1. Values, ranges and Nr of values used, concerning flow-field variables/parameters
producing the combination of problem instances to be simulated.

Variable Units Min Max Step Nr of values

Pollution source (S) - 1 6 1 6

N-S hydr. grad. (J) ‰ 0 2 0.1 21

PW1 flow-rate (Q1) L/s 215 225 1 11

PW2 flow-rate (Q2) L/s 225 235 1 11

Thickness (b) m 50 50 0 1

Hydr. conductivity (K) m/s 0.0001 0.0001 0 1

Porosity (n) - 0.2 0.2 0 1

RUNS = 6·21·11·11 = 15,246

a well W during a certain timestep DT, if and only if the line segment simulating the
displacement of P during DT intersects the approximate capture zone of W (i.e., [2]).

The additional simulation burden here is selecting the mathematical criterion of a
MW being polluted, hence pollution detected with any sampling method (features a, b, c
or d). The point-in-polygon method called “ray casting algorithm” (or “even-odd rule”)
[11] is implemented, so that in each timestep (here day), the algorithm checks whether
any center of a MW is inside the (moving) polygon defined by the coordinates of the 16
moving particles simulating pollution plume/source (initially circular).

2.2 Building of Datasets

In order to build the datasets for the training/validation/evaluation of the ML/DL algo-
rithms, “MovPo” simulates all 15,246 different source-flow field cases (Table 1), running
for 46.5 h (Intel Core i7 7700 @3.60 GHz; 16 GB RAM @1197 MHz). Figure 2 presents
the merged results of such two random Scenario 1 (Fig. 1) layout cases; N-S grad is 1.6‰;
Q1 = 221 L/s; Q2 = 231 L/s. Left case is a classic PTM graphical representation, where
(16) separate particle trajectories are calculated as line segments for consecutive (1-day)
timesteps, checked for polluting any PW. Right case represents the added simulation
of the pollution front, where a hexadecagon’s consecutive displacements are calculated
for consecutive timesteps, checked for polluting any MW. The selected polygons drawn
represent only: all days that plume is located upon the node of S4, and first day of pol-
lution for any polluted MW up to its PW2 pumping. Zoom 1 is a left case magnified
region presenting the 16 symmetrically placed points (+) on the initially circular pollu-
tion plume (S1), that serve as starting points for the particles being tracked. The nodes’
enumeration is shown: node 785 is S1 of the Scenario 1. Zoom 2 is a right case magnified
region, showing S4 (node 691) polluted for 35 days (35 polygons over node; Table 2).
Day 58, first day node 662 is polluted, is also shown.
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Table 2 presents the respective results of Fig. 2 right case, as calculated for run
9,632/15,246. The first 2 columns provide dataset/run info: source Nr; respective node
enumeration; PW node Nrs; flow/aquifer parameters; Nr of MWs polluted; PW(s)
polluted (here only PW2); Nr of days needed (1703).

Fig. 2. S1 (left) and S4 (right) merged results (Scenario 1 layout); S1: PTM particle trajectories,
for PW pollution criterion; S4: moving pollution front/polygon, for MW pollution criterion.

The ensuing 3 columns present raw non-zero results: “IsMWPol” (short for “Is
Monitoring Well Polluted”) includes Nrs of the 10 nodes (representing Source/ MW/PW)
polluted in this run/case; “DayPol” (“Day of Pollution”) refers to the first day pollution is
detected in the respective node; “DurPol” (“Duration of Pollution”) refers to the duration
(days) of each node being polluted.

3 Machine/Deep Learning Implementation - Results

Two basic ML/DL approaches are implemented: Classification (CL) and Computer
Vision (CV). In CL, Random Forests (RF [12]) and Multi-Layer Perceptron (MLP [13])
are tested, while in CV, a Convolutional Neural Network (CNN) is tested.
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Table 2. Results of Fig. 2 right case as produced by “MovPo” software’s run 9,632/15,246.

RUN info (scenario 1) IsMWPol DayPol DurPol

RUN count 9632/15246 111 1073 1

Source Nr 4 225 995 60

Source node 691 370 778 37

PW1 node 35 399 712 65

PW2 node 111 428 654 68

N-S grad (‰) 1.6 457 607 43

Q1 (L/s) 221 545 381 61

Q2 (L/s) 231 574 305 69

Nr MWs
polluted

10 603 242 44

DayPol PW1 - 662 58 54

DayPol PW2 1073 691 1 35

3.1 Machine Learning (Classification) - Random Forests, Multi-layer Perceptron

In CL approach, time dimension and spatial correlation of MWs are not considered, hence
the simple formulation of the datasets (Type A). Each simulated variable combination
(see Table 1) produces a single dataset and is printed in a single line in the results’ file
(see Table 3). The dataset presented in Table 2 is actually the 9,632nd dataset of Table
3, for Scenario 1. The target variable (output-Y), as far as the prediction is concerned,
is a discrete class, with nominal values from 1 to 6 (source Nr). The 4 types of input-X
variables are: a) whether node i is polluted at all (IsMWPol = 1 or 0), b) Nr of days
that node i is polluted since the leakage start (DayPol = 0–2500; integer), c) duration of
node i pollution (DurPol = 0–2500; integer), and d) hydraulic head drawdown at node
i (Drawd ≥ 0; real). The initial Type A data package is a 15,246 × (4 × (29 × 29) + 1)
= 15,246 × 3,365 matrix per scenario (including Scenario 5).

Table 3. Demonstration of the structure of Type A datasets for the Classification approach.

Dataset input-X output-Y

IsMWPol(i) DayPol(i) DurPol(i) Drawd(i) Source

Xi = 0/1 Xi = 0–2500 Xi = 0–2500 Xi = 0–∞ ϒ = 1–6

1 … 841 1 … 841 1 … 841 1 … 841

1 Xi … Xi Xi … Xi Xi … Xi Xi … Xi Yi

2 Xi … Xi Xi … Xi Xi … Xi Xi … Xi Yi

… … … … … … … … … … … … … …

15246 Xi … Xi Xi … Xi Xi … Xi Xi … Xi Yi
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The process to source prediction for each scenario (using WEKA [14]) is:
Step 1-Masking Datasets: For added realism reasons, all data from the following

nodes are removed/masked: i) the 9 adjacent to the sources nodes (9 × 6 = 54), ii) all
the nodes in the 4 southern grid series where PWs are located (nodes 1 to 29 × 4 = 116),
decreasing features to 3195.

Step 2-Remove Useless: A simple “RemoveUseless” filter is implemented to the
masked subset, for the many blank variables, as the respective nodes are never polluted,
regardless of the source inducing useless perplexity to the ML method, resulting to a
filtered subset (FL) of approximately 1000 features/scenario.

Step 3-Feature Selection: CL features the advantage of facilitating Correlation-based
Feature subset Selection (CFS) [15], indirectly leading to a pseudo-optimization of the
monitoring network, minimizing the Nr of MWs (not the sampling frequency), based
on the efficiency of identifying the source criterion. Two different search methods are
used, Best First and Greedy Stepwise, leading to the respective subsets.

Step 4-ML implementation: ML algorithms, RF (100 trees) and MLP (3 hidden
layers; learning rate = 0.3; 500 epochs; Adam optimizer; MSE loss function) are imple-
mented for the 3 subsets (RF-FL, RF-BF, RF-GS, MLP-FL, MLP-BF, MLP-GS; see
Table 4), to predict the 1–6 class. Models are evaluated using 10-fold cross validation.

Table 5 and Fig. 3 present the accuracy metrics for all ML methods/scenarios, includ-
ing Scenario 5 (merged scenarios 1–4). In this enhanced scenario, the dataset package
is now sized 60,984 × 3,365, while the classes to predict are 4 × 6 = 24.

Table 4. Features’ selected subsets (FL, BF, GS) per scenario: Nr of MWs selected; features’ Nr
(Type A datasets columns; see Table 3), and feature types (IsMWPol, DayPol, DurPol, Drawd).

Scenario Subset Nr MWs Nr Feat IsMWPol DayPol DurPol Drawd

1 FL 657 1086 143 143 143 657

BF 6 6 4 2 0 0

GS 23 55 17 18 20 0

2 FL 658 958 100 100 100 658

BF 6 6 6 0 0 0

GS 21 52 21 20 10 0

3 FL 657 1137 160 160 160 657

BF 6 6 6 0 0 0

GS 23 53 23 18 12 0

4 FL 657 1122 155 155 155 657

BF 6 6 5 0 1 0

GS 21 43 21 10 12 0

5 FL 507 2028 507 507 507 507

BF 23 26 10 10 6 0

GS 45 71 30 20 21 0
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Fig. 3. Prediction accuracy (%) metrics of Classification methods.

Table 5. Pollution source prediction accuracy (%) metrics of machine learning/classification
methods (Random Forests and Multiple Perceptron combined with feature selection methods)

Scenario Accuracy (%) of ML method

RF-FL RF-BF RF-GS MLP-FL MLP-BF MLP-GS

1 100.00 99.97 100.00 73.38 99.97 78.33

2 100.00 100.00 100.00 75.00 81.65 81.63

3 100.00 100.00 100.00 72.41 81.66 84.90

4 100.00 100.00 100.00 77.69 93.32 90.00

5 99.98 99.41 99.94 23.55 44.06 99.94

Mean 1–4 100.00 99.99 100.00 74.62 89.15 83.72

StDev 1–4 0.000 0.013 0.000 1.999 7.855 4.308

MLP performs poorly in the FL subset, improving with fewer features. RF perform
better than MLP, as the problem’s structure is “if-else”: “if this MW is polluted then
the source is that”. This is expected as in 3/4 basic scenarios, each MW is polluted by a
specific source, while even in Scenario 1, with 2 MWs polluted by 2 different sources,
but on different days, RF is nearly 100% accurate. Formulating the basic scenarios 1–4
to be solved by ML methods resembles brute force; a simple monitoring could match
observations-sources: 6 MWs manage to monitor 6 sources. This is not the case for
the 24-source Scenario 5; increased complexity does not lead to a clear univocal MW-
source match: 23 MWs achieve ≈100% accuracy. Both CFS methods are capable of
selecting the absolutely necessary information, decreasing the features needed to lead to
a successful prediction each time. Finally, drawdown measurements are unsurprisingly
never selected as important features; the simplified steady state flow field does not
vary depending on the source location. At this point, the real-time/operational problem
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is solved, with accurate predictions. Indirect optimization of the monitoring network
occurs, but only in the spatial dimension. CFS minimizes the Nr of MWs, but there is
no control in the temporal dimension.

3.2 Deep Learning (Computer Vision) - Convolutional Neural Networks

In CV approach, both spatial and temporal dimensions are considered, hence the more
complex data formulation (Type B). Each simulated variable combination (see Table
1) produces up to 2500 files (days/runs) per simulation (out of 15,246) per scenario.
Each file is a 29 × 29-sized matrix/frame containing “1” or “0” elements, depending
on yes/no pollution of the specific node that specific day. Day 1 frame contains a “1”
in the source-node, constituting the target variable (output-Y). All ensuing frames can
be used as training data for the DL algorithm (input-X variables). Figure 4 graphically
presents the single dataset/run presented in Type A form in Table 2, but in Type B form.
The full Type B dataset package is a batch of 15,246 folders × 2500 files = 38,115,000
files/frames for each of the 5 scenarios.

Fig. 4. Results of Fig. 2 right case (see Table 2), in Type B data formulation used in CV approach
(batch of up to 2500, here 1307, 29 × 29 frames), instead of single-line Type A form (Table 3).

The process to source prediction for each scenario (using Google Colab [16]) is:
Step 1-Datasets’ Temporal Masking: Not all produced 2500 frames per simulation

are fed into the CNN. The leading frames, of days when source-nodes are polluted, are
concealed (t1 to t51, t49, t48, t47 for Scenarios 1, 2, 3, 4, respectively), as well the latter
frames, when PWs are polluted (t469, t782, t327, t310 to t2500 for Scenarios 1,2,3,4,
respectively). The strictest common time window t52–t309 (258 frames) is selected
for all simulations, for realism/uniformity/comparability reasons. As a result, input-X
variables actually comprise of the sum of all available frames; all available matrices are
added together creating a super-frame/image (see Fig. 5). 29 × 29 frames are cropped
into 28 × 28 ones, for proper CNN operation (29th column/series deleted).
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Step 2-Time-variant datasets: Type B data formulation accommodates data manipu-
lation in the temporal dimension: different versions of datasets are created by summing
the frames every 1, 10, 20, …, 80 days (9 time-variant data packages/scenario). Each
image version corresponds to a different sampling (manual or sensors-telemetry based)
frequency, enter indirect optimization of the time-dimension of the monitoring network.

Step 3-Import CFS subsets from CL: Feature subsets (MWs to be constructed)
selected by CFS methods in CL, are used to indirectly introduce spatial optimization
of monitoring network in the temporal optimization of CV (Step 2). The use of subsets
entails the respective masking of the finalized super-images (unselected elements in the
matrices are given zero values). Finally, 3 subsets (full dataset CNN+ subsets CNN-BF
and CNN-GS) combined with 9 temporal variations produce 27 datasets/scenario.

Step 4-Implementation: For each one of the 27 datasets a CNN is implemented, using
the U-Net segmentation architecture (Adam optimizer; learning rate = 0.0001; binary
cross entropy loss function; 50 epochs; batch size = 32; see Fig. 6) [17]. The models
are evaluated with the train test split method (60% train - 40% test), while accuracy is
used as a performance metric. Results are presented in Table 6 and Fig. 7.

CNN in full data mode, meaning a large costly monitoring network, exhibits exquisite
performance, even with high frequencies of sampling (CNN per 50-day = 98% accu-
racy). Combining BF subsets from CL with CNN leads to disappointing results, while
CNN-GS combination is promising. CNN-GS exhibits >70% min accuracy most of the
time for frequencies up to 50 days, in the basic Scenarios 1–4; not the case in Scenario
5, where the CFS subsets do not lead to accepted accuracies even for daily monitoring.

Fig. 5. Graphical representation of output-Y (target) input-X variables: a) Y for S3, b) X for S3,
c) Y for all 6 sources, d) X for all 6 sources (Scenario 1, step = 1 day, t52-t309).
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Fig. 6. The U-Net segmentation architecture used in the Computer Vision approach.

Table 6. CNN accuracy (%) for various (9) temporal discretizations and (3) spatial MW
distributions (full monitoring network: CNN, BF/GS-optimized network: CNN-BF/CNN-GS).

Scenario Freq (days) = 1 10 20 30 40 50 60 70 80

Subset Accuracy (%) in predicting pollution source

1 CNN 100 100 100 100 100 98 89 60 76

CNN-BF 17 17 16 17 17 15 16 0 17

CNN-GS 91 82 79 74 86 92 86 54 60

2 CNN 100 100 100 100 100 100 94 85 80

CNN-BF 17 17 17 17 17 0 0 13 17

CNN-GS 88 86 83 83 82 71 62 64 80

3 CNN 83 84 83 100 100 100 100 95 82

CNN-BF 0 0 0 0 0 0 0 0 0

CNN-GS 41 70 70 82 82 58 64 68 91

4 CNN 100 99 99 89 87 87 85 79 69

CNN-BF 41 40 40 40 40 40 34 0.1 20

CNN-GS 74 73 74 73 72 70 57 19 31

5 CNN 96 98 97 96 92 94 80 67 62

CNN-BF 11 21 23 19 19 17 16 15 18

CNN-GS 25 30 34 23 32 21 28 17 24

4 Conclusions

The complex inverse groundwater hydraulics problem of pollution source identification
is successfully addressed via ML/DL implementations. In a given groundwater flow
field, for a given monitoring network, namely known MWs’ locations/sampling rates
(manual or sensor-based), RF and CNN perform excellently. This leads to the first future
research step: Replace hydraulic (flow field and mass transport) simulation with RF/CNN
to minimize computational load, so that a real-time operational application or a Decision
Support System controlling/supporting a monitoring network scheme can be faster, yet
equally accurate at predicting pollution origin against pre-registered suspicious sources.
Current research also proposes the use of the CFS feature selection method, combined
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Fig. 7. Diagrams of CNN accuracy (%) for various temporal discretizations and spatial MW
distributions (full monitoring network: CNN, BF/GS-optimized network: CNN-BF/CNN-GS).

with the proposed data formulation, to introduce indirect spatial optimization of the
monitoring network. The fact that CNN structure facilitates search of time-variant feature
subsets, conducted here by trial-and-error tests, ultimately leads to an indirect spatial and
temporal optimization of the monitoring network/schedule. For example, the managing
authority of the pseudo-realistic Scenario 1 case could create at least two monitoring
network strategies: a) only with the 6 MWs and a monitoring sampling frequency of
1 day (RF-BF) achieving 99.97% prediction accuracy, or b) with 23 MWs and monitoring
sampling frequency of 50 days (CNN-GS) achieving 92% accuracy, within seconds (if
sensors and in-situ analysis is used) or hours (if manual sampling and ex-situ analysis
is used) after 309 days since the leak incident. The real breakthrough is that these
promising pilot implementations pave the way to the next step of controlling the masking
of time/space dimensions (testing various subsets) with metaheuristic methods (e.g.,
GAs) for CNN training/validation to directly optimize the monitoring network/schedule,
minimizing the respective cost function.
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