
Blockchain-Based Slice Orchestration for Enabling
Cross-Slice Communication at the Network Edge

Konstantinos Papadakis-Vlachopapadopoulos�, Ioannis Dimolitsas�, Dimitrios Dechouniotis�, Eirini Eleni

Tsiropoulou†, Ioanna Roussaki�, Symeon Papavassiliou�
�School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
†Dept. of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, USA

{cpapad, jdimol,ddechou}@netmode.ntua.gr, eirini@unm.edu, ioanna.roussaki@cn.ntua.gr. papavass@mail.ntua.gr

Abstract—The Internet of Things (IoT) paradigm, with a
grand variety of devices in large numbers, commonly combined
with resource and power limitations dictates new challenges
and constraints. The emerging Edge Computing paradigm arises
promises to address these issues by placing cloud-type resources,
closer to IoT devices. In this context, network slicing is common
practice at the network edge. A network slice groups logically
isolated computing and network resources. Under the 5G and
Edge Computing umbrella, multi-administrative domain services
have emerged as operational challenges but also giving economic
incentives to the providers and the users. This study introduces a
Blockchain-based solution, aligned with the European Telecom-
munications Standards Institute (ETSI) Network Function Virtu-
alization (NFV) standard, for automated orchestration, enabling
cross slice communication between different domains. The main
focus is placed on enabling trust between untrusted parties,
minimizing resource consumption, management and development
overheads, as well as providing security and crash-fault tolerance.

Index Terms—Blockchain, Smart Contracts, Edge Computing,
NFV Orchestration

I. INTRODUCTION

The ever-increasing plethora of the Internet of Things (IoT)

complex services, along with the emergence of modern appli-

cations and the growing interactions between smart devices

in smart city context, makes the Edge Computing [1] a

determining factor in meeting the requirements of the 5G

network establishment. The Edge Computing paradigm offers

cloud computing capabilities at the edge of the network, where

mobile end-devices with limited computing capabilities have

to meet the high bandwidth and low latency demands of IoT-

based applications [2], [3]. Under this setting, many cloud

providers invest on small-scale data centers at the edge of the

network, referred to as edge clouds (ECs) throughout the rest

of this paper. Due to the stringent Quality of Service (QoS)

constraints and the finite available resources, the automated

and dynamic orchestration and management of ECs is prereq-

uisite for successful service delivery.

Similarly to cloud computing, EC resource orchestration

relies on the Network Function Virtualization (NFV) [4] and

Software Defined Networking (SDN) [5], [6] technologies,

which enable network slicing. A Network Slice consists of a

set of Virtual Network Functions (VNFs), which are actually

isolated Virtual Machines (VMs) with dedicated resources run-

ning a specific application. A network slice is usually deployed

in a single EC. As NFV model evolves, apart from typical

network services (e.g., routing and firewall), VNF refers to any

type of services, which can be consumed by multiple tenants.

Towards this direction, Cross-Slice Communication (CSC) can

be beneficial for both tenants and providers [7]. Leasing off-

the-shelf services reduces the administration overhead of the

tenant-consumer and it is profitable for the tenant-provider.

Furthermore, from the provider perspective, CSC leads to

minimization of allocated resources for the shared services

that in turn leads to the increase of available resources for

the deployment of other slices and services. However, CSC

should not violate the isolation property, which is a basic asset

and principle of network slicing. Thus, for the realization of

the CSC, it is very important to develop the necessary shared

policies and slice brokering solutions.

In recent years, there has been a significant raise of inter-

est around Blockchain technologies both from industry and

academia. One of the main aspects motivating this interest,

is that Blockchain technology enables parties without trust

between them, to interact without a central trusted authority,

communicating in a decentralized fashion, maintaining the

same functionality, while all parties can retain the certainty

for the outcome of the transactions. Thus, Blockchain al-

lows the deployment of distributed trustless networks. Also,

Blockchain exploits cryptography, and cryptographic hashes

of every transaction are stored in a block along with the

cryptographic hash of the previous block, creating in this way

the Blockchain. In addition, those hashes must be approved

and agreed by all participants in the network. All those

characteristics guarantee non-repudiation, immutability, data

integrity, and security. Initially, Blockchain was introduced

with Bitcoin [8] and was strictly binded with a cryptocurrency.

Later, Blockchain frameworks, such as Ethereum [9] and

Hyperledger Fabric [10] came with a currency or without and

introduced smart contracts to enable custom business. Smart

contracts are basically scripts, which reside on the Blockchain

and have a unique address, and when invoked by address

they execute transactions following predetermined rules, and

the encrypted records of those transactions are stored in the

Blockchain ledger. The automated execution of smart contracts

make them applicable for incorporating the business logic in

the deployment of smart applications in EC.

In the federated cloud environment, a central trust manage-

140

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00033

ment service is responsible for the communication between the

federated ECs [11]. In this study, we leverage the distributed

nature of Blockchain, its immutable ledger of transactions,

and smart contracts to replace the centralized trust manage-

ment with a distributed trustless framework that facilitates

the automated CSC. This advantages counterbalance any con-

cern about the performance overhead and scalability of the

Blockchain technology. The CSC establishment requires some

preparation steps, such as the instantiation of shared Network

Services (NS) and VNFs, and the creation of connection points

for virtual links. Additionally, other functionalities, such as

monitoring and billing, are involved in the CSC process.

Toward the automated resource orchestration and management,

we use Hyperledger Fabric and leverage the high level of

automation of smart contracts to initiate the communication

between slices, which are deployed in geographically dis-

persed federated ECs. With this capacity, the main objectives

of this research work are (a) to minimize the orchestration

overhead, and (b) reduce the computing resources for the

CSC establishment and the related cost. To this end, we

present a proof of concept design and implementation for

the Blockchain-based CSC lease, orchestration and lifecycle

support. We define all the entities, their interactions and the

required parameters and unique identifiers needed to perform

all the operations for the CSC operations and management.

The rest of the paper is organized as follows. In Section

II, the related literature is presented. Section III introduces

and describes the architecture and its main components, while

Section IV presents the necessary smart contracts for manage-

ment, initiation, and orchestration of the CSC alongside with

billing. Finally, Section V concludes the paper.

II. RELATED WORK

This section presents the most relative studies on cloud

resource orchestration, trusted and trustless management of

federated clouds. The automated deployment of cloud appli-

cations has attracted the interest of both the academia and

industry. Open Source Management and Orchestration (OSM)

[12] provides an open source Management and Orchestration

(MANO) stack aligned with ETSI NFV Information Models.

In combination with a Virtual Infrastructure Manager (VIM),

such as OpenStack [13], they provide automated management

of the application’s lifecycle, including instantiation, configu-

ration, and maintenance. OSM and OpenStack are primarily

used on large scale data cloud data centers and they mainly

support VM-based deployment. Kubernetes [14] is an open-

source system for automated orchestration of applications.

Kubernetes is based on containers and focuses on application

deployment, scaling, and management, and is appropriate for

IoT-based or smart applications. At the same time, serverless

computing is an emerging service delivery model that allevi-

ates the developers from the resource orchestration overhead

and offers a pay-as-you-go billing model [15]. This model is

still in its infancy and more suitable for stateless applications

[16]. In the federated cloud environment, trust management of

serverless platforms remains an open challenge.

Regarding trust management of federated heterogeneous

clouds, the authors in [17] proposed a trust management

framework based on Service Level Agreement (SLA) and rep-

utation. A multi-criteria methodology, named Fuzzy Analytic

Hierarchical Process, was used to evaluate the performance of

cloud services and update the reputation score of each cloud.

Pustchi et al. proposed a OpenStack-based trust mechanism

for federated clouds [18]. They enabled domain-trust through

temporary mapping rules, which define a set of accepted

remote users or groups to local domain users and groups. In

[19], a reputation management mechanism for federated clouds

was introduced. This mechanism focused on multi-tenancy and

feedback from the cloud providers regarding the users was

used to enable service differentiation among the tenants and

calculate the reputation of both tenant and cloud provider. A

geometric representation method was used to illustrate how

the changes of user’s reputation affect the provider’s ones.

The use of Blockchain technology in the resource or-

chestration and management of edge/cloud infrastructure is

an open and challenging research area and many on-going

studies and platforms have already been proposed. In [20],

the authors introduced a Trusted Orchestration Management

(TOM) architecture as an early solution for container-based

edge architectures, using Blockchain to provide trustworthy

mechanisms in untrusted environments focusing on identity,

provenance and orchestration management. TOM is based on

smart contracts and is aligned with the W3C-PROV standard

[21]. The authors of [22] presented a work in progress for

Virtual Machine Orchestration, originally composed by the

Orchestrator, the centralized Virtual Machine Orchestration

Authenticator, and the Virtual Machine Manager. This frame-

work aspired to replace the centralized authentication inter-

mediary mechanism with a distributed one with the use of

private Blockchain technology. In [23], a private Blockchain

system was deployed for the management of cloud tenants

and services, providing identity management, authentication,

delegation authorization of services, and charging functional-

ities with the use of smart contracts. Finally, Afraz et al. [24]

proposed the use of Blockchain for 5G network slice brokering

by implementing a variation of the double auction mechanism

with smart contracts in the market scenarios, where there is a

lack of trust between market players. Finally, in [25] and [26],

a proof of concept blockchained-based implementation using

distributed applications (DApps) is presented, for multi domain

service orchestration. Also the authors analyze three use case

scenarios (MEF, 3GPP and ETSI NFV standards) discussing

discussing standarization opportunities araound blockchain-

based DApp.

We then analyze three use case scenarios pursued by on-

going work at standards development organizations, namely

MEF, 3GPP, and ETSI NFV, discussing standardization op-

portunities around blockchain-based DApp

This work exploits the Blockchain technology to provide

a trustworthy mechanism for the communication between

network slices in a multi-administrative environment, where

VNF-deployed services can be leased by different tenants.

141

Furthermore, the exploitation of the smart contracts minimizes

the slice orchestration overhead and the essential computing

resources for the CSC establishment.

III. SYSTEM ARCHITECTURE

A. Proposed ETSI NFV-Based Architecture

The proposed architecture is based on the ETSI NFV

Standard [27]. A specific region that includes multiple ECs

is referred as Availability Zone. The proposed architecture

is shown in Figure 1 and is detailed below, following a

top-down description. In particular, at the top level, there

is the Management and Orchestration (MANO) layer, where

the OSM operates as the NFV orchestrator. Subsequently,

the lower level includes the ECs. Each EC provides the

physical infrastructure and offers the resources for network

slice deployment, under lease basis. Each EC infrastructure

is managed by the corresponding VIM, which interacts with

the OSM layer, in order to manage and control the NFV

Infrastructure (NFVI). The OSM is able to interact with

multiple VIMs to perform the necessary NFV orchestration

in a multi-domain administration environment. The NFVI is

actually one of the most important functional blocks in the

NFV architecture, as it describes the hardware and software

components on which virtual networks are built. NFVI actually

creates the virtualization layer, in which hardware resources

are logically partitioned to deploy the functionalities of each

VNF, increasing the interoperability between them and there-

fore enabling the network slice deployment. In such a way,

network slices are composed of a set of VNFs and Network

Services (Figure 2), so they deliver a plethora of different

services as an isolated network service chain to the end-user.

The network slice is allocated the essential computing and

network resources to respect the QoS requirements of the slice

tenant.

The above described architecture is aligned with 5G di-

rectives, where multiple ECs offer their resources for the

deployment of time- and mission-critical applications at the

edge of the network. It is worthwhile mentioning that, in our

case, the EC provider is not necessarily equivalent to the slice

provider. A network slice instance can be deployed in a single

edge cloud, which means that the corresponding computing

and network resources can be either located in a specific

location, or in multiple provider domains. In both cases, the

optimal resource allocation is of major importance to meet

the performance requirements alongside with the cost reducing

from the network slice provider perspective. Towards enabling

a service market among slice providers, a network service of

a deployed slice can be leased and included in the slice of a

different tenant, who is interested in deploying its slice. To

this end, OSM can automatically configure and establish the

communication between different network slices by sharing

already deployed network services.

Based on this ETSI NFV aligned architecture, we use

the permissioned Blockchain solution of Hyperledger Fabric

to automate slice orchestration for establishing cross-slice

communication at the network edge. The primary goal of

our Blockchain based solution, is to minimize the allocated

resources for the purposes of CSC realization. Additionally,

it establishes and provides trust in a trustless environment

between tenants, immutable transaction logs, security, and

more importantly eliminates single points of failure due to

its distributed nature.

As depicted in Figure 1, the minimum requirements for

our solution is the deployment of a Fabric peer and a Fabric

Certificate Authority (CA) per EC. As detailed in section IV,

every EC is considered as an individual organization in Fabric

architecture and joins the common Fabric Channel in order to

communicate and perform transactions. Extra channels, private

data, access control lists can be used in order to ensure that

confidential information would be shared only to permitted

participants. However, though considering these challenges is

of high practical importance, it remains out of scope of this

study, and is part of our future research.

A Fabric peer is a Blockchain node that stores all transac-

tions on a joining channel. Every peer has a ledger database

and the instantiated Chaincodes, known also as Fabric smart

contracts. All peers and the Orderer participate in a Fabric

channel where the Chaincodes are instantiated as depicted in

Figure 1. The CA is responsible for managing user certificates

such as user enrollment, user revocation etc. Hyperledger

Fabric is a permissioned Blockchain network, thus, only

permitted users or entities can join the network and additional

restrictions can be applied to different functionalities after

joining the network. The Orderer is one of the most important

components used in the Fabric consensus mechanism and

belongs to the Fabric networks administrative components,

therefore it is placed at the providers administrative layer in

Figure 1. The Orderer is a service responsible for ordering

transactions, creating a new block of ordered transactions and

distributing a newly created block to all peers on a channel.

Fabric offers different ordering service implementations. We

use Raft, a crash fault tolerant ordering service based on the

implementation of Raft protocol [28]. The basic components

of the Fabric architecture for our solution and their function-

alities are presented in this section. Subsequently, the specific

interaction of the components of our solution (i.e., Fabric

components, MANO, and VIMs) will be presented in detail

in section IV.

B. ETSI NFV Network Slice Instance

In order to enable cross-slice communication, it is necessary

to describe the main components of a Network Slice Instance

(NSI), as defined in the OSM model. The Network Slice

Instance in OSM is described by the Network Slice Template

(NST), which is a descriptor file that includes the necessary

information about a slice deployment.The main arguments in

the NST descriptor are about the slice identifier (ID), the name

of the slice, and the service type of the slice (e.g., eMBB). A

network slice is composed of a set of NSs which includes

the corresponding VNFs and Virtual Network Connections

between them. In the NST descriptor, the netslice-subnet
fields define the included NS using their unique ID. Also,

142

Fig. 1. System Architecture

the option for NS sharing is defined in the is-shared-nss
argument. Furthermore, the NST includes the network slice

virtual networks in the netslice-vld field. In this argument, the

NS connection points are included, in order to create virtual

links between them. The connection points of each NS are the

key argument in service sharing.

Figure 2 illustrates a cross-slice communication scenario,

where two network slices are deployed, with one shared

NS between them. The network-slice-1 consists of three

NSs: network-service-1-1, network-service-1-2, and network-
service-shared and two Virtual Networks: vld1-1 and vdl1-2.

In the descriptor of the shared NS, three connection points are

defined, while the slice owner sets as true the is-shared-nss
parameter in the NST descriptor. Then, another slice owner is

interested for deploying a new slice (NST ID network-slice-2).

This slice will include two new NSs, namely network-service-
2-1 and network-service-2-2, and the shared NS of the first

network slice, network-service-shared. A connection point of

the shared NS is necessary to create a virtual link between the

shared NS and the vld-2, the virtual network of the second

network slice. In such a way, the CSC is established without

creating a new instance of network-service-shared and the

instantiation time, the consumed resources, and the monetary

cost are reduced for both slice owners. Beyond the basic set

up of CSC, further functionalities, such as shared policies

and billing, must be realized in order to provide a secure

communication scheme in this multi-domain environment. As

it is described in the next section, Blockchain appears a

powerful option to achieve this objective.

IV. BLOCKCHAIN BASED SERVICE DISCOVERY, LEASE,

AND CSC ORCHESTRATION

In [29], challenges, architectural concepts, and proposals

for multi-domain operation have been described, including

different departments within the same network operator, in an

analogy to the setting in our research work, where different

ECs in the same availability zone are provided by a single

provider. For multi-domain operation, two alternatives are

highlighted:

1) “Configuration driven”: In this option, the different

functional blocks to be interconnected are statically

configured with the necessary information to form the

relation with the other parties.

2) “Auto-discovery”: In this option, the different functional

blocks advertise their own information and prepare the

information to be used to form the relation. This form

of interconnection assumes the implementation of a

discovery mechanism in the NFV-MANO functional

blocks.

In this study, we propose a blockchain-based solution

aligned with the auto-discovery option. We use Hyperledger

Fabric and Chaincode - the Hyperledger’s term for smart

143

Fig. 2. Cross-Slice Communication Using a Shared Network Service

contracts - for the management and automation of the auto-

discovery, as well as the lease and orchestration of network

slices provided by tenants in a trustless environment. Hyper-

ledger Fabric supports different programming languages for

Chaincode development (Java, JavaScript, TypeScript and Go).

In our case, Go language has been selected to develop smart

contracts, due to its simplicity and performance features.

A. Assets Definition

In order to achieve our objectives, we have to identify

and define all involving assets required for a complete work-

flow. Initially, we have to define the Tenant. For the initial

registration of a user or the advertisement of a service, the

tenant is enrolled to a Fabric CA. This component can be

configured to require Lightweight Directory Access Protocol

(LDAP) user authentication before enrollment and retrieve the

identity’s attribute values, which are used for authorization.

This functionality allows the easy integration in a fully au-

tomated workflow and enable the tenant to interact with the

Blockchain in order to advertise its service, or discover and

lease a provided service.

1) Network Services and Virtual Network Functions: The

most important assets to be defined are the Network Service

and Virtual Network Function. As depicted in Listing 1, we

provide a first basic definition of all mandatory attributes

needed to be known in order to lease VNFs and orchestrate the

CSC. For NSs, the ID and Name, which are unique identifiers,

are needed for recognition and orchestration. In addition the

Tenant’s (NS owner) information is included. For VNFs, we

use ID, Name, Short Name, Description and Provider.The ID
and Name attributes are used as unique identifiers likewise

NS. The Short Name and Description attributes are mostly

used to describe the Service Advertised to the user. Finally,

Provider describes the ID of the NS that the VNF belongs.

This is vital for many reasons. On the one hand, a VNF could

be shared between multiple NSs, so ID not combined with the

//NetworkService data struct def
type NetworkService struct {

ObjectType string `json:"docType"`
ID string `json:"id"`
Name string `json:"name"`
Tenant Tenant `json:"tenant"`

}

//VNF data struct def
type VNF struct {

ObjectType string `json:"docType"`
ID string `json:"id"`
Name string `json:"name"`
ShortName string `json:"short_name"`
Description string `json:"description"`
Provider string `json:"provider"`

}

//Lease data struct def
type Lease struct {

ObjectType string `json:"docType"`
Grantor string `json:"grantor"`
Recipient string `json:"recipient"`
Vnf string `json:"vnf"`
Issue int32 `json:"issue"`
Expiry int32 `json:"expiry"`
Revokers []string `json:"revokers"`

}

Listing 1: Assets definition

Provider attribute does not uniquely identify a specific instance

of a VNF. On the other hand, towards automated management,

as it will be described later, it is necessary to have the full

ownership chain information, as which VNF instance belongs

to which NS, and the tenant who owns this NS.

2) Lease: As shown in Listing 1, Lease describes the VNF

lease to an interested user. Whenever a network slice should

include shared NSs of other slices and establish CSC, the struct

lease describes the asset that would be stored in the ledger after

a successful CSC instantiation. The Grantor and Recipient
attributes describe the NSs IDs of the NS provider and

144

consumer respectively. Based on these unique identifiers, the

Orchestrator is able to realize all preparatory steps to establish

the CSC and enables the Recipient to consume the provided

service by the Grantor. In addition, with the NS ID, the owners

information (tenant) can be retrieved for functions like billing

and others. The Vnf field, describes the ID of the VNF to be

leased. The Issue and Expiry attributes describe the period of

the lease described as Unix timestamps. The Revokers array

contains the identities enrolled to the Blockchain that can

revoke the lease. The permission to revoke a CSC will be

defined by policies and decisions of the provider, and the

parties involved in the Lease.

3) Billing: Finally, templates should be created for billing

purposes, depending on the nature of the VNF to be leased. For

example, a CPU intensive service, such as video processing,

face recognition, and others, could have quotas and billing

rates in relation with CPU usage, whereas a video streaming

cache could have billing rates and quotas related to network

traffic.

B. Service Lease and Orchestration Workflow

In this subsection, we will present our Chaincode functional-

ity and the full service lease and orchestration workflow in our

proposed framework. Our Chaincode packs four smart con-

tracts aligned with the different assets, namely manage tenant,
manage network service, manage VNF and manage lease, as

described previously. The first three contracts basically handle

all the CRUD (Create, Read, Update, Delete) operations for

the respective assets. When an asset is “deleted” is not actually

deleted from the ledger and there is no alteration of the blocks

of the Blockchain. On the contrary, the key-value of the asset

is only removed from Fabric state database and if a new read

operation requests the asset, it will not “exist” as it will not

have any current state. However, all logs and previous values

and states of the asset are accessible from the ledger. The

above three contracts offer mainly management functionalities,

thus, the corresponding analysis is omitted.

At this point, we will thoroughly explain the manage lease
smart contract and the service lease and orchestration of

the cross slice communication needed. In contrast to the

previous assets, the lease asset only gets committed in the

ledger upon a user’s request. It is not a static asset, like

tenant and network services, and it is essential for service

advertisement, discovery, and all the management functions.

This contract also provides the basic CRUD operations in

a different manner. The Create operation is included in the

orchestration workflow. Additionally to the CRUD operations,

the manage lease contract offers functions to check if a lease

is valid or expired, lease suspension, and lease revocation

functions.

The lease registration and orchestration workflow is illus-

trated in the sequence diagram in Figure 3. Possible errors in

consensus, or other aspects of the Blockchain functionality and

life-cycle are omitted for clarity. For example, all Blockchain

transactions are assumed successful and we do not present the

case of an endorsement failure because the possibility of a

transaction failure is irrelevant to the workflow and lifecycle

of our proposed solution, and adding all these subcases would

make Figure 3 to complex. So only lease registration and

orchestration are presented with all possible outcomes and

scenarios (lease exists, lease does not exist e.t.c).

The workflow begins when a user requests a lease. The

information passed to the Chaincode include the Grantor’s NS

ID, the Recipient’s NS ID, the VNF ID of the requested VNF

for leasing, Issue (lease start time of the requested lease in

Unix Time), Expiry (Expiry time of the lease in Unix Time)

and an array of eligible Revokers of the lease as, described

in Listing 1. Once the register Lease function is invoked, the

Chaincode reads the ledger to check if the lease already exists

or not. Depending on the response, the Chaincode will inform

with the appropriate error message if the lease already exists.

Alternatively, it will verify if the requested VNF exists in

the ledger. If the lease does not exist, the user is informed

with the corresponding error. On the contrary, as described

in Listing 1, the lease is committed to the ledger. After the

successful transaction, the Chaincode returns a confirmation

of the lease grant and registration to the user and emits

an event to the Orchestrator and exits. Fabric allows event

based communication with subscribed and authorized clients.

The Orchestrator receives the event with all the necessary

parameters to Orchestrate the CSC, as described in section

III-B.

Finally, the Orchestrator contacts accordingly the VIMs

associated with the Network Services (Slices) involved in the

lease in order to deploy all the necessary elements for the

CSC to take place. Once the VIMs complete their tasks, they

inform the Orchestrator for the success of operations and

then, the Orchestrator invokes the Chaincode, which stores

the orchestration success to the ledger for complete logging

of the transactions and the orchestration operations, and emits

an event to the user client to inform him that the orchestration

has completed successfully.

C. Billing

In the CSC scenario, there are two main ways to manage

the billing of the leased services. One available option for the

provider is to provide the monitoring and billing calculations

based on billing templates created by the tenant who provides

the service for lease.The second option involves the imple-

mentation of intermediary slices in the CSC to manage the

monitoring and billing depending also on the characteristics

of the provided service (Network, Compute, etc.). However,

both solutions present several challenges and issues that must

be addressed. The first one creates administrative, development

and resource overhead for the provider, and at the same time

it requires absolute trust from the CSC counterparts. The latter

requires extra resources for the CSC which are controlled

by the EC provider. In that case, a charging model must be

decide, which consequently introduce extra orchestration and

management overhead.

Contrary to these options, and in order to overcome and

address these challenges, we propose to utilize completely the

145

Fig. 3. Service Lease and Orchestration Sequence Diagram

billing management and process with smart contracts. With

this capacity, no extra resources need to be reserved and no

additional development and management should be performed

by either the provider or the service consumer. Towards this

direction, we need to define clearly the parameters needed

to be submitted to the ledger or the smart contract and the

respective assets to describe them to fit the needs of services

of different nature and billing approaches. Also, we need to

define how and where the monitoring will occur (Network

Service, VNF or from the VIMs). Due to the overall benefits

of this approach, providing trust between parties, low resource

consumption, and minimum management and development

overhead, we work towards this direction and will be included

on the road to make this work a fully functional framework.

V. CONCLUSION

In this study, we proposed a proof of concept design

and early implementation of a distributed framework for en-

abling cross-slice communication and orchestration over multi-

domain EC environment, aligned with the ETSI NFV standard.

The proposed architecture exploits Blockchain technology

which enables parties to interact in a trustworthy manner,

guarantee data integrity, high availability, fault tolerance and

146

immutable logs of transactions. Our solution aims at providing

low resource demands and minimum extra administrative and

development overheads for providers, tenants and service

providers. We presented a first full service lease and CSC

orchestration workflow and lifecycle, while also providing

some early design principles and benefits for the billing

functions in such an environment.

Our current and future research and development plan

mainly focuses on the implementation of a fully functional

framework. On this road we should define additional criteria,

requirements and use cases aligned with the ETSI NFV

standard, EC providers and industry practices, common use

cases and design patterns. Furthermore, the fully implemented

version of the proposed Blockchain-based framework, will be

compared against centralized trust management solutions, in

terms of performance, resource consumption and scalability.

ACKNOWLEDGMENT

The research work of Mr. Papadakis-Vlachopapadopoulos

was co-financed by Greece and the European Union (Euro-

pean Social Fund- ESF) through the Operational Programme

“Human Resources Development, Education and Lifelong

Learning” in the context of the project “Strengthening Human

Resources Research Potential via Doctorate Research” (MIS-

5000432), implemented by the Greek State Scholarships Foun-

dation (IKY). The research work of Mr. Dechouniotis is co-

financed by Greece and the European Union (European Social

Fund- ESF) through the Operational Programme “Human

Resources Development, Education and Lifelong Learning”

in the context of the project “Reinforcement of Postdoctoral

Researchers - 2nd Cycle” (MIS-5033021), implemented by the

State Scholarships Foundation (IKY).

REFERENCES

[1] D. Dechouniotis, N. Athanasopoulos, A. Leivadeas, N. Mitton, R. M.
Jungers, and S. Papavassiliou, “Edge Computing Resource Allocation for
Dynamic Networks: The DRUID-NET Vision and Perspective,” Sensors,
vol. 20, no. 8, p. 2191, 2020.

[2] G. Papathanail, I. Fotoglou, C. Demertzis, A. Pentelas, K. Sgouromitis,
P. Papadimitriou, D. Spatharakis, I. Dimolitsas, D. Dechouniotis, and
S. Papavassiliou, “COSMOS: An Orchestration Framework for Smart
Computation Offloading in Edge Clouds,” in NOMS 2020-2020 IEEE/I-
FIP Network Operations and Management Symposium. IEEE, 2020,
pp. 1–6.

[3] P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou, “Risk-
Aware Data Offloading in Multi-Server Multi-Access Edge Computing
Environment,” IEEE/ACM Transactions on Networking, 2020.

[4] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[5] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an intel-
lectual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 87–98, 2014.

[6] G. Mitsis, P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou,
“Intelligent Dynamic Data Offloading in a Competitive Mobile Edge
Computing Market,” Future Internet, vol. 11, no. 5, p. 118, 2019.

[7] I. Fotoglou, G. Papathanail, A. Pentelas, P. Papadimitriou, V. Theodorou,
D. Dechouniotis, and S. Papavassiliou, “Towards Cross-Slice Commu-
nication for Enhanced Service Delivery at the Network Edge,” in IEEE
Conference on Network Softwarization and Workshops (NetSoft). IEEE,
2020, pp. 1–10.

[8] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Manubot, Tech. Rep., 2019.

[9] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[10] Linux Foundation, “Hyperledger Fabric,” Jun 2020. [Online]. Available:
https://github.com/hyperledger/fabric

[11] D. Dechouniotis, I. Dimolitsas, K. Papadakis-Vlachopapadopoulos, and
S. Papavassiliou, “Fuzzy Multi-Criteria Based Trust Management in
Heterogeneous Federated Future Internet Testbeds,” Future Internet,
vol. 10, no. 7, p. 58, 2018.

[12] ETSI, “Open Source MANO,” 2020. [Online]. Available: https:
//osm.etsi.org/

[13] OpenStack, 2020. [Online]. Available: https://www.openstack.org/
[14] Kubernetes, 2020. [Online]. Available: https://kubernetes.io/
[15] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,

Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al., “Cloud
Programming Simplified: A Berkeley View on Serverless Computing,”
Tech. Rep., 2019.

[16] P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou, “Risk-
aware Social Cloud Computing based on Serverless Computing Model,”
in 2019 IEEE Global Communications Conference (GLOBECOM).
IEEE, 2019, pp. 1–6.

[17] K. Papadakis-Vlachopapadopoulos, R. S. González, I. Dimolitsas,
D. Dechouniotis, A. J. Ferrer, and S. Papavassiliou, “Collaborative SLA
and reputation-based trust management in cloud federations,” Future
Generation Computer Systems, vol. 100, pp. 498–512, 2019.

[18] N. Pustchi, F. Patwa, and R. Sandhu, “Multi Cloud IaaS with Domain
Trust in Openstack,” in Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy, 2016, pp. 121–123.

[19] S. Thakur and J. G. Breslin, “A Robust Reputation Management Mech-
anism in Federated Cloud,” IEEE Transactions on Cloud Computing,
2017.

[20] N. El Ioini and C. Pahl, “Trustworthy orchestration of container based
edge computing using permissioned Blockchain,” in 2018 Fifth Inter-
national Conference on Internet of Things: Systems, Management and
Security. IEEE, 2018, pp. 147–154.

[21] “PROV-Overview,” https://www.w3.org/TR/prov-overview/, (Accessed
on 06/17/2020).

[22] N. Bozic, G. Pujolle, and S. Secci, “Securing virtual machine orches-
tration with Blockchains,” in 2017 1st Cyber Security in Networking
Conference (CSNet). IEEE, 2017, pp. 1–8.

[23] S. Nayak, N. C. Narendra, A. Shukla, and J. Kempf, “Saranyu: Using
smart contracts and blockchain for cloud tenant management,” in 2018
IEEE 11th International Conference on Cloud Computing (CLOUD).
IEEE, 2018, pp. 857–861.

[24] N. Afraz and M. Ruffini, “5G Network Slice Brokering: A Distributed
Blockchain-based Market.”

[25] R. V. Rosa and C. E. Rothenberg, “Blockchain-Based Decentralized
Applications Meet Multi-Administrative Domain Networking,” in Pro-
ceedings of the ACM SIGCOMM Conference on Posters and Demos.
ACM, 2018, p. 114–116.

[26] R. V. Rosa and C. E. Rothenberg, “Blockchain-Based Decentralized
Applications for Multiple Administrative Domain Networking,” IEEE
Communications Standards Magazine, vol. 2, no. 3, pp. 29–37, 2018.

[27] “ETSI - Standards for NFV - Network Functions Virtualisation —
NFV Solutions,” https://www.etsi.org/technologies/nfv, (Accessed on
06/17/2020).

[28] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm (extended version),” 2013.

[29] ETSI, “GR NFV-IFA 028 - V3.1.1 - Network Functions Virtu-
alisation (NFV) Release 3; Management and Orchestration; Re-
port on architecture options to support multiple administrative do-
mains,” https://www.etsi.org/deliver/etsi gr/NFV-IFA/001 099/028/03.
01.01 60/gr nfv-ifa028v030101p.pdf, (Accessed on 06/11/2020).

147

