
Electronics Laboratory (ELLAB) 

Physics Department 

University of Patras 

 

 

Neural Networks:  
Deep learning strategies 

for problems with limited data 
 

 

 

Dissertation 

A thesis submitted for the degree of 
Philosophiae Doctor (PhD) 

 

Dimitrios Tsourounis  

Physicist 

Master in Electronics and Information processing 
 

 

Patras, 2023 

 

 

 

 

  



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supervisor: George Economou  

                           Professor Emeritus 
 

 

 

 

 

 

 



iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

Board of Examiners 
 

• Economou George, Professor Emeritus, Department of Physics, University of Patras 

(Supervisor) 

• Zois Elias, Associate Professor, Department of Electrical and Electronic Engineering, 

University of West Attica (member of the Supervisory Committee)  

• Anastassopoulos Vassilis, Professor, Department of Physics, University of Patras    

(member of the Supervisory Committee)  

• Skodras Athanassios, Professor, Department of Electrical and Computer Engineering, 

University of Patras 

• Dermatas Evangelos, Associate Professor, Department of Computer Engineering & 

Informatics, University of Patras 

• Bakalis Dimitris, Assistant Professor, Department of Physics, University of Patras 

• Theodorakopoulos Ilias, Assistant Professor, Department of Electrical and Computer 

Engineering, Democritus University of Thrace 

 

 

 

 

 

 

 

 



vi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

 

 

 

 

 

 

Το έργο συγχρηματοδοτείται από την Ελλάδα και την Ευρωπαϊκή Ένωση 

(Ευρωπαϊκό Κοινωνικό Ταμείο) μέσω του Επιχειρησιακού Προγράμματος 

«Ανάπτυξη Ανθρώπινου Δυναμικού, Εκπαίδευση και Διά Βίου Μάθηση», στο 

πλαίσιο της Πράξης «Ενίσχυση του ανθρώπινου ερευνητικού δυναμικού μέσω 

της υλοποίησης διδακτορικής έρευνας – 2ος Κύκλος» (MIS-5000432), που υλοποιεί 

το Ίδρυμα Κρατικών Υποτροφιών (ΙΚΥ). 

  

 

 

This research is co-financed by Greece and the European Union (European Social 

Fund- ESF) through the Operational Programme «Human Resources Development, 

Education and Lifelong Learning» in the context of the project “Strengthening 

Human Resources Research Potential via Doctorate Research – 2nd Cycle” (MIS-

5000432), implemented by the State Scholarships Foundation (ΙΚΥ). 

 

  

 



viii 
 

 
  



ix 
 

Abstract 
Small sample size learning (SSSL) problem arises when the available training data are limited, making it 

challenging for machine learning models to capture meaningful patterns and provide accurate 

predictions. In computer vision applications, constraints on training data are common due to data 

collection difficulties or high annotation costs. This PhD thesis focuses on exploring deep learning 

strategies tailored for addressing the SSSL problem, with a specific emphasis on developing efficient 

training methods for convolutional neural networks (CNNs) when only a limited amount of data are 

available. Different approaches exist based on the space being considered: data augmentation techniques 

in the input space, approximating target functions with regularization and pretraining in the model space 

and encoding relationships between data points within a latent feature space. In this dissertation we 

propose methods that attack SSSL in one or multiple spaces simultaneously. The applications studied in 

this thesis include biometric verification in the offline signature verification (OffSV) problem, which 

currently lacks a large available offline signature dataset, and the biomedical problem of human epithelial 

type-2 (Hep-2) cell classification through indirect immunofluorescence (IIF) microscopy images, involving 

a challenging annotation process.  

Initially, shallow representation learning approaches, utilizing traditional computer vision techniques, are 

studied as a baseline scenario of approaching SSSL. This enabled us to gain valuable insights into the 

intrinsic characteristics of the studied problems and enhances the interpretability of the results. 

Subsequently, a hybrid scheme combining hand-crafted descriptors with a CNN model is proposed. Hand 

crafted features can create representations with desired invariance characteristics, hence when used as 

input to a CNN, can provide a more effective starting point for training with limited samples size.  

A different path to address the SSSL problem studied in this dissertation involves utilizing external data 

from a similar domain with data abundance. These data can serve as information carriers within a 

sophisticated training procedure, aimed at enhancing performance in the target problem that suffers data 

limitations. Such methods were developed in the context of OffSV, where auxiliary handwritten text data 

were utilized during the training of CNNs in the writer identification task, managing to learn effective 

encodings of signature images by employing domain adaptation techniques, achieving comparable 

performance or even surpassing models trained on thousands of signature images. 

The first such approach proposed in this thesis is explicit domain adaptation, which encompasses metric 

learning using an additional transformation layer trained via contrastive loss, used to transform the 

outputs of a pretrained CNN model. The second proposed technique is implicit domain adaptation, 

implemented through teacher supervision in the Feature-based Knowledge Distillation (FKD) scheme. This 

method leverages both local and global information from intermediate representations of the teacher to 

facilitate efficient knowledge transfer. Results demonstrate that the proposed approaches effectively 

address the SSSL problem in the OffSV domain, operating in either the feature space or the model space, 

by utilizing auxiliary data in the input space to overcome the challenges posed by the data limitations. 

 

  



x 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xi 
 

Περί ληψη 
Το πρόβλημα εκμάθησης με μικρό πλήθος δεδομένων προκύπτει όταν τα διαθέσιμα δεδομένα 

εκπαίδευσης είναι περιορισμένα, κάτι που καθιστά δύσκολη την αποτελεσματική εκπαίδευση μοντέλων 

μηχανικής εκμάθησης και την πρόβλεψη ακριβών αποτελεσμάτων. Η διαθεσιμότητα μεγάλου όγκου 

δεδομένων συχνά αποτελεί πρόκληση, τόσο σε επίπεδο αποθήκευσης και επεξεργασίας, όσο και σε 

επίπεδο συλλογής, ελέγχου και χειρωνακτικής επισήμανσης των δεδομένων, ιδιαίτερα σε προβλήματα 

επιβλεπόμενης εκμάθησης. Η παρούσα Διδακτορική Διατριβή εστιάζει στην ανάπτυξη αποδοτικών και 

πρωτοποριακών τεχνικών εκμάθησης που καθιστούν εφικτή την αξιοποίηση τεχνικών αιχμής από το 

χώρο των βαθιών Συνελικτικών Νευρωνικών Δικτύων (ΣΝΔ) σε προβλήματα με εγγενείς περιορισμούς 

στα διαθέσιμα δεδομένα εκπαίδευσης, όπως π.χ. είναι οι βιομετρικές και βιο-ιατρικές εφαρμογές. 

Μια απλή ταξινόμηση των προσεγγίσεων για την επίλυση του προβλήματος εκμάθησης με μικρό πλήθος 

δεδομένων μπορεί να πραγματοποιηθεί με βάση το πεδίο που εφαρμόζονται οι διάφορες τεχνικές, 

αξιοποιώντας το χώρο εισόδου των δεδομένων με κυρίαρχες τις μεθόδους επαύξησης των δεδομένων, 

το πεδίο του μοντέλου αναζητώντας τη βέλτιστη συνάρτηση για την αποδοτική κωδικοποίηση της 

πληροφορίας, και την ανάπτυξη σχέσεων (αν)ομοιότητας στα εξαγόμενα αποτελέσματα του μοντέλου. 

Αρχικά μελετώνται μοντέλα εκμάθησης με χρήση ρηχών μεθόδων αναπαράστασης εικόνων, 

χρησιμοποιώντας κλασσικές τεχνικές υπολογιστικής όρασης ως βάση αναφοράς στο πρόβλημα με μικρό 

πλήθος δεδομένων. Αυτό είναι βοηθητικό για την κατανόηση των χαρακτηριστικών των σημάτων που 

μελετώνται αλλά και την καλύτερη εξήγηση των αποτελεσμάτων. Στη συνέχεια, προτείνεται μια υβριδική 

μέθοδος που συνδυάζει κλασσικούς περιγραφείς εικόνων με ένα ΣΝΔ. Ο κλασσικός τρόπος 

κωδικοποίησης της πληροφορίας εφοδιάζει τις προκύπτουσες αναπαραστάσεις της εικόνας με 

επιθυμητά χαρακτηριστικά, και όταν χρησιμοποιούνται ως είσοδος σε ένα ΣΝΔ, μπορούν να παρέχουν 

ένα πιο αποτελεσματικό σημείο εκκίνησης για την εκπαίδευση του δικτύου με περιορισμένο αριθμό 

δειγμάτων. Σε μια διαφορετική κατεύθυνση αντιμετώπισης του προβλήματος εκμάθησης με μικρό 

πλήθος δεδομένων, αξιοποιήθηκε η χρήση εξωτερικών δεδομένων από έναν παρόμοιο πρόβλημα με 

πληθώρα δεδομένων. Αυτά τα δεδομένα εξάχθηκαν έτσι ώστε να εξυπηρετούν ως φορείς πληροφορίας 

μια ειδικά σχεδιασμένη διαδικασία εκπαίδευσης, με στόχο να βελτιωθεί η απόδοση στο πρόβλημα που 

υποφέρει από περιορισμούς δεδομένων. Σε αυτή την περίπτωση, η αποτελεσματική προσαρμογή των 

δύο προβλημάτων, του προβλήματος με επάρκεια δεδομένων και του προβλήματος ενδιαφέροντος με  

περιορισμένα δεδομένα, πραγματοποιείται σχεδιάζοντας τη διαδικασία εκπαίδευσης τόσο άμεσα με την 

εκμάθηση αποστάσεων μέσω ενός πρόσθετου επιπέδου μετασχηματισμού που χρησιμοποιείται για να 

μετασχηματίσει τις εξόδους ενός προ-εκπαιδευμένου μοντέλου ΣΝΔ στη βάση της ομοιότητας των 

σημάτων που μελετώνται όσο και έμμεσα μέσω ενός σχήματος απόσταξης γνώσης μεταξύ δύο ΣΝΔ, όπου 

το ένα δίκτυο έχει το ρόλο του μαθητευόμενου και το άλλο του επιβλέποντος, σχηματίζοντας καινοτόμες 

συναρτήσεις ομοιότητας μεταξύ των ενδιάμεσων αναπαραστάσεων των δύο μοντέλων για την 

αποτελεσματική μεταφορά της πληροφορίας από το δίκτυο επιβλέποντα κατά τη διάρκεια της 

εκπαίδευσης του δικτύου μαθητευόμενου. Επομένως, στα πλαίσια αυτής της διδακτορικής διατριβής, 

σχεδιάστηκαν πρωτοποριακές προσεγγίσεις επίλυσης του προβλήματος εκμάθησης με περιορισμένα 

δεδομένα αναπτύσσοντας τεχνικές σε πολλαπλά πεδία του προβλήματος αλλά και δοκιμάζοντας 

διαφορετικές εφαρμογές ενδιαφέροντος. 
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1. Introduction  

1.1     Small sample size learning problem 

Deep learning has revolutionized our world in the last decade, achieving remarkable performance 

in various applications, such as computer vision, speech recognition, natural language processing, 

and recommendation engines [1]–[3]. Among the most popular deep learning models are 

convolutional neural networks (CNNs) due to their efficiency in many tasks [4]–[6]. The 

advancements in parallel processing hardware along with the availability of large amount of 

annotated data and the emergence of new theoretical tools and techniques in the field of deep 

learning have made it possible to train CNNs with deep hierarchical representations [7], [8]. CNNs 

are compositional learning models that use multiple layers to learn features. Higher-level learned 

features are formed by combining lower-level features in a hierarchical way. Automatically 

learning features at multiple levels of abstraction enables CNNs to learn complex functions, 

mapping the input to the output directly from data. These layers of features are not designed by 

human engineers, but they are learned from data using a data-driven learning procedure through 

end-to-end training. Training a CNN involves optimizing the learnable parameters across all layers 

of the model. Since the number of model’s learnable parameter (weights) is usually very large, 

training typically requires a large dataset. Ultimately, the effectiveness of deep learning models 

heavily relies on the availability of abundant and high-quality training data. 

In many real-world scenarios, collecting large number of samples and annotating them is not 

always practical. The small sample size learning problem (SSSL) arises when the available training 

data are limited in size, posing a challenge for machine learning models to extract meaningful 

patterns and make accurate predictions. The scarcity of training data poses difficulties in 

capturing the underlying patterns and variability in the dataset accurately, leading to overfitting. 

As a result, the machine learning models perform well on the training data but fail to generalize 
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to unseen data. The SSSL problem is particularly evident in fields such as biometrics, where 

privacy concerns hinder the collection of a large amount of labeled data, while operational 

conditions of such systems rely on a small number of available reference samples for each user. 

Similar challenges are also encountered in the realm of biomedical applications, where manual 

annotation (diagnosis) requires high expertise and entails significant costs. These limitations 

trammel the use of deep learning models in a wide range of problems, despite the potential 

benefits they offer. 

In a general formulation, the learning problem can be expressed as a minimization problem:  

𝑚𝑖𝑛
𝑊,𝑏

ℓ(𝜑, 𝑌)         eq. 1.1  

and the process of mapping data using a learning model can be mathematically represented as: 

𝐹 = 𝜑(𝑊𝑋 + 𝑏)     eq. 1.2 

where 𝜑 is the model with weights 𝑊 and bias 𝑏, 𝑋 is the input data, 𝐹 is the output feature, 𝑌 

is the desired output, and ℓ is the loss function. To address the SSSL problem, the proposed 

solutions investigate the input space, model space, and feature space depending on whether 

they operate on 𝑋, 𝜑, or 𝐹 [9]. Methods that operate on input space aim to augment the data by 

generating additional samples or transforming existing samples to optimize the feature space. 

The methods that focus on the model space approximate target functions to map inputs to the 

output while the feature space optimization aims to efficiently encode relationships among data 

points on the embedded space. 

In the input space, there are several techniques that can be employed to address the SSSL 

problem by increasing the number of samples or making the data representation more 

informative. When working with images, these methods involve generating additional image 

representations to artificially expand the dataset [10], [11]. One approach is to introduce 

variations in certain qualities of the data, such as through geometric and color space 

transformations [12]. By creating new samples from the existing ones, the size and diversity of 

the training set can be increased. To further enhance the information extraction, a more 

advanced approach is to apply encoding techniques that transform existing images into new 

representations. This encoding process captures specific image characteristics and provides 

valuable inputs to deep learning models. By leveraging these techniques, the models can 

generalize better or faster and effectively handle the SSSL problem [13], [14]. Additionally, the 

utilization of synthetic data is another strategy to address the SSSL problem [15]. Synthetic data 

can be generated even without relying on the original dataset by using generative methods that 

generate new images resembling the target data distribution. One significant advantage of 

synthetic data generation is the elimination of manual data labeling, as it becomes possible to 

generate synthetic samples that are tailor-made with desired characteristics in the first place. 
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However, it is important to ensure the quality and realism of the augmented data for its 

effectiveness in deep learning applications. Therefore, it is crucial to provide augmented data 

that captures relevant image properties and aligns with the specific objectives of the problem at 

hand since there are domains, where large-consistent data generation or transformations are 

not always feasible, like the biometric problems.  

By working on the model space, the SSSL problem can be effectively addressed through 

various approaches. Initialization tricks and transfer learning methods are commonly utilized to 

mitigate this challenge [16]–[18]. One approach involves adapting pretrained CNN models or 

predefined CNN layers to the target problem, enabling finetuning with a small amount of data 

[19], [20]. Initializing the model's weights based on a similar problem serves as a good initial 

baseline for further re-training. Also, incorporating handcrafted filters in CNN layers, either as a 

starting point or by freezing coefficients, enhances the model's ability to generalize with limited 

training data, following layer-wise or end-to-end training settings [21], [22]. To prevent 

overfitting, custom loss functions tailored to the available data and regularization techniques are 

often utilized [23]. Introducing a penalty term to the loss function during training discourages the 

CNN from becoming too complex or having large parameter values and incorporates specific 

characteristics into the model. Another valuable approach is knowledge distillation, where a 

student network is trained with feedback from a teacher network [24]. This knowledge transfer 

process enables the student model to benefit from the insights captured by the expert teacher 

model, resulting in better generalization. It is valuable to note that designing these methods 

requires empirical exploration since there is no definitive rule-of-thumb that specifies the 

commonalities between the first and target tasks in each application of interest. Therefore, it is 

essential to experiment and adapt these techniques based on the specific characteristics and 

requirements of the problem. 

Deep metric learning is a popular approach for addressing the SSSL problem in the feature 

space. Deep metric learning is focused on learning representations that encode similarity and 

dissimilarity between samples [25]. By employing loss functions that encourage similar samples 

to have closer embeddings in the latent space and dissimilar samples to have larger distances, 

deep metric learning facilitates the extraction of discriminative features even with limited 

training data. Exploring pairwise relationships between data instances results in effectively 

expanding the number of available training samples. This approach shares similarities with few-

shot learning methods, which aim is to generalize the pretrained model to new unseen categories 

of data. In few-shot learning, the model compares the feature representations of a few-shot 

example with the limited labeled examples and makes predictions based on their similarity scores 

[26]. However, it is important to note that while few-shot learning focuses on classifying new 

samples, the goal in SSSL is to learn a distance function that serves as a metric to quantify the 

similarity between data instances. Additionally, incorporating mining hard examples can 

significantly enhance the effectiveness of metric learning methods [27].  Hard example mining 
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involves identifying and selecting challenging or informative samples from the training set. By 

prioritizing the inclusion of these difficult samples during the training process, the model can 

focus on learning from the most informative instances, thereby improving its generalization. 

Deep metric learning can be applied using different setups, such as the Siamese scheme where 

similar and dissimilar pairs are created, or the Triplet scheme by designing triplets of training data 

instances, instead of pairs [28], [29]. Various ranking losses [30], including contrastive loss, triplet 

loss, margin loss, and hinge loss, offer different formulations to choose from based on the specific 

requirements and objectives of the problem being studied.  

1.2     Subject of the PhD Thesis 

This PhD thesis aims to explore deep learning strategies specifically designed to address the small 

sample size learning (SSSL) problem. The focus lies in developing efficient training methods for 

convolutional neural networks (CNNs) when there are limited data available for the target 

problems of interest. The research investigates the application of these strategies in domains 

with inherent constraints on the training data availability, such as biometric and biomedical 

problems.  

Biometrics play a crucial role in balancing convenience, security, and user experience across 

everyday activities [31]. Although many modern biometric solutions are continuously being 

developed with a variety of input signals, handwritten signatures remain widely accepted and 

legally binding in many sectors such as banking, legal, and government. Signature is considered 

a behavioral biometric trait due to its association with an individual's learned behavioral patterns. 

The most challenging task is signature verification problem that authenticates the identity of a 

person on the basis of the claimed identity, by accepting the writer’s genuine signatures and 

rejecting the forgery ones [32]. While manual signature comparison seems like an ineffective way 

to handle the masses of documents that need to be checked in a small amount of time, automatic 

handwritten signature verification systems are pivotal to reduce fraud. This system automatically 

detects authenticity, meaning that the questioned signature owns to the claimed writer and thus 

it is genuine or whether the signature has been provided from anyone else and thus it is forgery. 

The problem of offline signature verification (OffSV), which analyses signature images after the 

signing process, presents an ideal scenario for investigating the proposed approaches in 

addressing the challenge of limited data. Additionally, during the course of this PhD research, the 

retraction of the largest offline signature dataset, which was the only publicly available and large 

enough dataset for training deep architectures, has emerged as a significant practical problem in 

this field. As a result, a challenging need has arisen to address this issue. Therefore, the proposed 

research direction seizes this opportunity and focuses on the OffSV problem. In this dissertation, 

different approaches are designed to tackle the challenges of SSSL in this field, and the 

effectiveness of the proposed methods is evaluated using several widely used offline signature 

verification datasets.  
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Biomedical research involves understanding of human health and disease, including the 

development of diagnostic tools, therapies, and improving overall healthcare outcomes [33], 

[34]. In the context of antinuclear autoantibodies (ANA) detection, the use of indirect 

immunofluorescence (IIF) on human epithelial type-2 (HEp-2) cells is a standard protocol due to 

its high sensitivity and ability to capture a wide range of antigens [35], [36]. While numerous 

nuclear and cytoplasmic patterns can be observed in HEp-2 samples, typically only a few classes 

are considered clinically relevant. The accurate classification of fluorescence patterns is crucial 

as specific diseases are associated with distinct staining patterns. However, manual pattern 

identification using a microscope is time-consuming, labor-intensive, and subjects to the 

physicians’ experience while processing large amount of data might introduces significant 

oversight errors. Automatic single cell HEp-2 fluorescence images classification could enhance 

Computer Aided Diagnosis (CAD) systems, providing complementary information by filtering the 

amount of data the expert has to inspect. The unique characteristics of HEp-2 cell images, 

combined with the limited availability of data, provide a good opportunity to assess the efficacy 

of a SSSL-oriented CNN approach in the context of IIF cell classification. Two widely recognized 

benchmark datasets are utilized to evaluate the proposed method. 

This dissertation follows a stepwise structure, studying the SSSL from multiple perspectives. 

It starts by exploring the utilization of hand-crafted representations and shallow learning 

approaches, gradually advancing towards a hybrid approach that combines hand-crafted image 

representations with CNNs.  Next, the dissertation culminates in the study of deep learning 

methods that tackle the SSSL problem through various solutions, proposing novel techniques 

such as external data utilization, domain adaptation, and knowledge distillation, specifically 

tailored to the OffSV problem. Overall, this dissertation provides a comprehensive investigation 

of various approaches and strategies for addressing the SSSL problem. By gradually transitioning 

from shallow and/or hand-crafted representations to hybrid approaches and ultimately to deep 

learning methods, it offers a systematic exploration of techniques to enhance the generalization 

capability of deep learning models in scenarios with limited training data. The structure of the 

dissertation, in detail for each chapter, is as follows: 

Chapter 2 introduces shallow representation methods that specifically focus on encoding 

signature image local neighborhoods. Traditional computer vision methods serve as a baseline 

solution to tackle the limited sample problem in the OffSV task. These methods involve the 

utilization of hand-crafted preprocessing and feature extraction stages, combined with trained 

classifiers, effectively addressing the Small Sample Size Learning (SSSL) problem. While these 

methods may not fully leverage the potential of automated feature learning that deep learning 

offers, where the features are learned directly from the data, they uncover discriminative 

characteristics of signature images. The features used in these methods are manually designed, 

drawing upon the knowledge and expertise of the human engineers in the field. Different 

encoding mechanisms are developed in this chapter, involving hand-crafted features using image 
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visibility graph motifs (IVG) [37], and mapping the signature images as Symmetric Positive 

Definite (SPD) points within the SPD manifold [38]. Also, shallow learning is employed through a 

patch-based sparse representation method [39], [40], where reconstructive overcomplete 

dictionaries are learned by utilizing patches extracted from a set of signature images. The sparse 

coding procedure then maps pixel values to sparse features, resulting in an effective 

representation to describe the information of signature images. Finally, an introduction to 

deeper topologies is explored by stacking multiple sparse representation layers and training them 

in a layer-wise manner [41]. The analysis of these approaches not only enables us to comprehend 

the effectiveness of hand-crafted features but also provides valuable insights into the inherent 

characteristics of signature signals. This understanding can subsequently guide the design of 

deep learning schemes aimed at enhancing the model's capability to extract meaningful 

information from limited data. 

Chapter 3 presents a hybrid scheme that involves an initial step of calculating hand-crafted 

descriptors, followed by the utilization of a CNN. The process of computing hand-crafted features 

transforms the image into a more informative representation that captures specific image 

characteristics. In this chapter, dense SIFT (Scale-Invariant Feature Transform) is implemented, 

where descriptors are calculated for every pixel of a grayscale image, running SIFT algorithm [42] 

on a dense gird of locations at a fixed scale. This approach extracts information from the input 

data that is richer than the raw pixel values and represents them in a suitable form for 

subsequent analysis. The resulting image representation, known as SIFT-Image [43], preserves 

the spatial structure of the original image and serves as input to the CNN model. The CNN 

operates regularly but with the new input representation, harnessing the learning capabilities of 

deep neural networks. By operating in the image space, this approach aims to address the SSSL 

problem enhancing the informativeness of the inputs. However, due to the degenerate nature of 

signature images composed of line segments and curved strokes in a uniform canvas, dense SIFT 

descriptors may not efficiently capture the underlying information in signature signals. As a 

result, it is challenging to augment signature images into a more informative representation using 

SIFT-Image. Hence, the proposed method's effectiveness in tackling the SSSL problem is 

evaluated on the biomedical Hep-2 IIF cell classification problem. Nevertheless, in order to 

explore the characteristics of handwriting within a straightforward classification problem, a study 

is conducted using the widely recognized MNIST handwritten digit dataset, which is considered 

the standard benchmark dataset in the field of machine learning. Although the design of this 

hybrid scheme is motivated by the need to address the SSSL problem, the local rotation 

invariance provided from the dense SIFT descriptors could be beneficial in many other problems. 

Therefore, the chapter delves into additional applications, such as cloud type classification using 

ground-based all-sky images and the lip-reading problem using video data of mouth region, 

where local rotation property plays a crucial role in achieving efficient results. Ultimately, the 

hybrid approach presented in this chapter combines the strengths of shallow hand-crafted 
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representations with deep neural networks, offering more informative data input for training 

CNNs with less data. By integrating these two techniques, the goal is to overcome the limitations 

imposed by small sample sizes while incorporating the beneficial properties derived from the 

hand-crafted methods into the overall hybrid system. 

Chapter 4 proposes a method that leverages external data and domain adaptation techniques 

to address the SSSL problem in OffSV. Training deep architectures inherently requires a 

substantial amount of data, however the utilization of auxiliary data from a related task could 

serve as an information carrier to substitute the target data. In many cases, this approach 

requires additional domain adaptation practices to address the distribution mismatch between 

the auxiliary data and the target data. This chapter focuses on addressing the problem of learning 

informative features by employing prior knowledge from a similar task in a domain with an 

abundance of training data. In particular, we demonstrate that an appropriate pretraining of a 

CNN model in the task of handwritten text-based writer identification task can dramatically 

improve the efficiency of the CNN in the OffSV task, enabling to obtain state-of-the-art 

performance with an order of magnitude less training signature samples. In the proposed 

scheme, we leverage the relevance of writing and signing processes, which is also enhanced by 

preprocessing the raw text data to mimic the signal characteristics of signature images through 

a fast and efficient text manipulation that is highly suitable for large-scale data processing. After 

the pretraining of the CNN in writer identification task using specially processed handwritten text 

data, the learned features are tailored to the signature problem though a metric learning stage 

that utilizes contrastive loss to learn a mapping of the signatures’ features to a latent space that 

suits the OffSV task. Therefore, the proposed SSSL solution for deep feature learning operates 

both in the image space including external data and in the feature space via contrastive metric 

mapping. This approach enables us to leverage the knowledge and patterns present in the 

auxiliary data to improve the learning and generalization capabilities of the deep architecture, 

ultimately leading to enhanced performance on the target task. At the final stage, the proposed 

scheme utilizes Writer-Dependent (WD) classifiers learned on a few reference samples from each 

writer. Our system is tested on the three challenging signature datasets, CEDAR, MCYT75, and 

GPDS300GRAY and the obtained accuracy in terms of Equal Error Rates (EER) is statistically 

equivalent to the most popular CNN model (SigNet) in the field [44], which had been trained on 

the largest offline signature dataset consisting of over ten thousand signature images contributed 

by more than five hundred writers, despite the proposed method utilizes significantly smaller 

training set of signature images and no skilled forgery signatures during training. 

Chapter 5 proposes a feature-based knowledge distillation (FKD) method to address the SSSL 

problem in OffSV. FKD focuses on transferring the knowledge of intermediate activations from a 

teacher model to a student model [45]. Unlike simply mimicking the teacher's output 

probabilities, FKD aims to align feature representations between both models. The teacher 

strongly guides the training of the student CNN by harnessing multiple intermediate layers, 



Chapter 1 | Introduction  

8 
 

providing enhanced supervision that results in improved generalization and knowledge transfer, 

even when auxiliary training data were utilized. Therefore, this approach extends the work 

presented in Chapter 4 but operating in the model space to address the SSSL problem, using the 

FKD method as a means of implicit domain adaptation from the teacher model. This chapter 

introduces a novel approach to leverage the knowledge of existing expert models for training 

new CNNs. The proposed Student-Teacher (S-T) configuration, combining graph-based similarity 

function for local activations with global similarity measures to supervise student’s training, using 

only handwritten text data. The feature maps’ similarity in shallower layers is calculated using 

the geometrical criterion based on a manifold-to-manifold distance, while the final vectorial 

representations of CNN models are compared using either the cross-entropy function with 

temperature softmax or a similarity metric based on redundancy-reduction principle expresses 

through the cross-correlation matrix. The proposed FKD captures information from multiple 

semantic perspectives and exploits the hierarchical representational learning ability of multi-

layer deep structures, combining both local and global information to improve the performance 

of the student model. The models trained using this technique exhibit comparable, or superior, 

performance to the teacher model across three signature datasets: CEDAR, MCYT75, and 

GPDS300GRAY. Based on the current state-of-the-art in OffSV research [46], we chose to utilize 

the popular pretrained SigNet feature extractor CNN as the teacher model, while the architecture 

of the student model follows the Residual Network (ResNet) family. The proposed work presents 

an efficient knowledge transfer from a successful CNN-based feature extractor to a student CNN 

of a different architecture without employing any signatures during the S-T training. This study 

demonstrates the efficacy of leveraging existing expert models to overcome data scarcity 

challenges in OffSV and potentially other related domains. 

1.3     Publications 

This PhD Thesis is based on research results that have been published during its elaboration in 

peer-reviewed scientific journals and peer-reviewed international conferences. The list of 

publications directly related to the material of this dissertation is as follows:  

Publications on peer-reviewed journals: 

• Tsourounis, D., Theodorakopoulos, I., Zois, E. N., & Economou, G. (2023). Leveraging 
Expert Models for Training Deep Neural Networks in Scarce Data Domains: Application 
to Offline Handwritten Signature Verification. Submitted to Neurocomputing journal. 

• Tsourounis, D., Theodorakopoulos, I., Zois, E. N., & Economou, G. (2022). From text to 
signatures: Knowledge transfer for efficient deep feature learning in offline signature 
verification. Expert Systems with Applications, 189, 116136. 

• Zois, E. N., Tsourounis, D., Theodorakopoulos, I., Kesidis, A. L., & Economou, G. (2019). A 
comprehensive study of sparse representation techniques for offline signature 
verification. IEEE Transactions on Biometrics, Behavior, and Identity Science, 1(1), 68-81. 
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Publications on peer-reviewed international conferences: 

• Andrianakos, G., Tsourounis, D., Oikonomou, S., Kastaniotis, D., Economou, G., & 
Kazantzidis, A. (2019). Sky Image forecasting with Generative Adversarial Networks for 
cloud coverage prediction. In 2019 10th International Conference on Information, 
Intelligence, Systems and Applications (IISA) (pp. 1-7). IEEE. 

• Tsourounis, D., Theodorakopoulos, I., Zois, E. N., Economou, G., & Fotopoulos, S. (2018). 
Handwritten signature verification via deep sparse coding architecture. In 2018 IEEE 13th 
image, video, and multidimensional signal processing workshop (IVMSP) (pp. 1-5). IEEE.  

 
Book chapters:  

• Theodorakopoulos, I., & Tsourounis, D. (2023). A Geometric Perspective on Feature-

Based Distillation. In Advancements in Knowledge Distillation: Towards New Horizons of 

Intelligent Systems (pp. 33-63). Cham: Springer International Publishing. 

 
Contribution to other publications on peer-reviewed journals during my work on this PhD 
Thesis:  

• Zois, E. N., Said, S., Tsourounis, D., & Alexandridis, A. (2023). Subscripto multiplex: A 
Riemannian symmetric positive definite strategy for offline signature verification. 
Pattern Recognition Letters, 167, 67-74. 

• Tsourounis, D., Kastaniotis, D., Theoharatos, C., Kazantzidis, A., & Economou, G. (2022). 
SIFT-CNN: When Convolutional Neural Networks Meet Dense SIFT Descriptors for Image 
and Sequence Classification. Journal of Imaging, 8(10), 256. 

• Tsourounis, D., Kastaniotis, D., & Fotopoulos, S. (2021). Lip Reading by Alternating 
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Contribution to other publications on peer-reviewed international conferences during my work 
on this PhD Thesis:  

• Zois, E.N., Zervas, E., Tsourounis, D., & Economou, G., (2020). Sequential Motif Profiles 
and Topological Plots for Offline Signature Verification. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 13248-13258), 14-
19 June 2020, Seattle, Washington, USA. 

• Kastaniotis, D., Tsourounis, D., & Fotopoulos, S., (2020). Lip Reading modeling with 
Temporal Convolutional Networks for medical support applications., Oral Presentation, 
In 2020 13th International Congress on Image and Signal Processing, BioMedical 
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2. Shallow representation learning 

2.1     Introduction 

In this chapter, shallow representation models are investigated in the context of the offline 

signature verification problem. Handwritten signature is a common biometric trait, widely used 

for confirming the presence or the consent of a person. Signature verification can be categorized 

into offline (static) and online (dynamic) based on the acquisition conditions. The first case 

focuses on analyzing the visual information and shape of the signature using a digitized version 

of the signing document, while the other requires a digitizing device, such as electronic tablets, 

to collect additional information during signing, including pen inclination, pressure, and spatial 

coordinates. Offline Signature Verification (OffSV) is the task of verifying the signer using static 

signature images captured after the signing process is completed. This task finds many 

applications, especially in the domain of forensics but also for ensuring the security of financial 

and legal documents, such as bank and compliance forms, contracts, and mail ballots [47]–[49]. 

Depending on the signature verification design plan, there are two main approaches: writer-

dependent (WD) and writer-independent (WI) [44]. WD methods build one model per user and 

WI approach uses one single (global) model for all users. The WI methods usually take advantage 

of the increased number of training samples by generating pairs between signatures (generally a 

similar pair includes signatures of the same writer while a dissimilar pair combines genuine and 

forgery signatures) and embed the feature representations to a dissimilarity space for obtaining 

the final decision. The WD approaches rely on the signatures of each writer to create a custom 

model dedicated to each writer and thus, they turn to be more restricted but at the same time 

they could provide more efficient results due to tailoring on each individual. There are different 

types of forgery signatures and the most common is to divide simulated signatures into three 

categories: the random forgeries which are generated without access to the original signature, 
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the simple or unskilled forgeries where the forger has information about the shape of genuine 

but not allowed much practice during falsification, and the skilled forgeries where the impostor 

attempts to carefully imitate the original signature with no constraints [50]. Finally, the main 

challenges faced by an OffSV system are: (a) the high intra-class variability between signatures of 

the same user, related on the psychophysical state of the signer and the conditions under which 

the signature apposition process occurs, (b) the partial knowledge during the design of the 

system and the registration of a user since there is access only to genuine signatures of the user 

while its skilled forgeries are not practically available, and accordingly (c) the limited number of 

available samples for each user. 

Shallow representations in computer vision refer to feature representations that are 

designed to capture low-level visual features such as color, texture, and shape, rather than high-

level semantic features. The goal of these models is to encode the local features and 

characteristics of a signature using numerical values or vectors. To achieve this, the chapter 

presents different approaches for encoding the neighborhoods of signatures. The process of 

encoding a signature typically involves dividing the signature into smaller regions (patches), and 

then extracting features from each patch. The feature extraction process produces a compact 

and informative representation, which can be used for signature verification tasks. Additionally, 

the relative location of the features could be incorporated through spatial pyramid matching 

techniques that divide an image into multiple subregions at different scales, creating a hierarchy 

of image subregions that form a pyramid. The presented shallow representation models can be 

categorized based on their feature extraction approach, which can be either hand-crafted 

methods or those that involve low-level learned features. Furthermore, the proposed methods 

can be partitioned based on whether they learn a distance via a metric function or focus on 

learning discriminative predictors. Although the shallow representation models are easy to 

interpret and can be trained efficiently with relatively small amounts of data, they require 

specially designed image preprocessing steps as well as pooling strategies to express spatial 

information locally for improving performance.        

This chapter presents three different approaches for encoding signature image 

neighborhoods. The first approach focuses on visibility graphs, where sequential visibility motifs 

within signature image patches are analyzed. These image visibility graph motifs (IVG) capture 

patterns of connected nodes in the visibility graph, representing substructures within the image. 

The second approach explores the representation of symmetric positive definite matrices using 

the covariance descriptor of image feature maps. This involves calculating region covariance 

matrices for image patches and averaging them to obtain the covariance descriptor, mapping the 

image to the symmetric positive definite (SPD) manifold. In addition to utilizing the covariance 

descriptor as a discriminative feature for signature images, a metric learning process is employed 

within the manifold to rearrange the SPD points improving the verification purpose. The third 

approach utilizes the sparse representation (SR) into the signature verification problem to extract 
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informative features by computing sparse coefficients that minimize reconstruction error for 

image patches using a learned dictionary. The dictionary learning process is performed for each 

writer using the signature patches from a set of reference signatures. Once the dictionary is 

learned, it can be used to represent and encode any query signature by computing its sparse 

coefficients. Ultimately, these three approaches offer distinct ways to represent and encode local 

features of images. 

To conclude, this chapter describes shallow representation models that evaluated in the 

offline signature verification task. It highlights their focus on low-level visual features, the 

encoding of signature image neighborhoods, and the incorporation of spatial information 

through spatial pyramid matching. Understanding and utilizing these models can contribute to 

improved performance in signature verification tasks, while also offering interpretability and 

efficiency with smaller amounts of data. 

2.2     Elementary Processes for offline signature images 

2.2.1     Preprocessing 

The preprocessing steps play a crucial role in transforming the signature image into a simplified 

and standardized representation, which is essential for accurate signature verification. This 

preprocessing consists of two main operations: binarization and thinning. Grayscale images are 

first binarized using Otsu's method [51]. Subsequently, morphological thinning operations are 

applied to the binary image to obtain a gradual skeletonization of the signature. The outcome of 

the thinning operation is crucial for the verification performance as it affects the shape of the 

signature image. Experimental observations indicate that the optimal thinning level (OTL) varies 

for each writer, and hence, it is not common for all databases. The OTL for each signature and 

writer is defined as the number of thinning operations that result in the steepest decrease of the 

density function. After enrolling a set of genuine reference signatures for a writer, the median 

value of the associated OTL values (MOTL) is selected as the thinning level applied to all the 

signatures related to this writer. This ensures that the thinning level used for each signature is 

consistent and appropriate for the writer's signatures characteristics. For any input signature 

claiming an identity, the number of thinning operations is determined by the MOTL value of the 

claimed signing person. Finally, to prepare the image for further processing, it is first inverted to 

have a black background and grayscale foreground. This is achieved by subtracting each pixel 

from the maximum brightness value (white), after setting the background pixels to white (255) 

and leaving the foreground pixels in grayscale. 

2.2.2     Patch extraction 

The signature patches are extracted from the original grayscale signature image, indexed by the 

signature’s skeleton pixels after applying the thinning operation MOTL times. Specifically, the 
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patches’ centers are sampled densely at every pixel of a signature's skeleton. As a consequence, 

the number of image patches equals the number of pixels of the signature’s skeleton. 

Furthermore, the patches are centered, i.e., have their average intensity been subtracted in order 

to have a zero-mean value. The centering of each patch produces data invariant to the mean 

intensity and the learned structures, like edges, are anticipated to have zero-mean as well. In all 

the conducted experiments the patch size is set to five and thus, every patch has 25 pixels 

(resolution of 5×5). The main rationale behind this selection is to keep the complexity of the local 

manifold of patches reasonably low. With this aim, it is valuable to consider the parameters which 

affect the dimensionality and shape of the underlying local manifolds. In [52] Peyré shows that 

the local manifold of patches from cartoon images (images that contain sharp variations along 

regular curves) can be parameterized by two variables, leading to a manifold topologically 

equivalent to the surface of a cylinder in 3D space. This parameterization holds as long as the 

signal within each patch can be approximated by two regions (black and white) separated by a 

linear segment. If the patch size becomes larger and the edges within the patches appear curved, 

extra degrees of freedom have to be included to the signal’s model thus leading to a more 

complex manifold. Similarly to cartoon images, the nature of the signal within signature patches 

is such that can be modeled by a handful of parameters if the patch size is small-enough, 

indicating a low-dimensional underlying manifold structure. On the other hand, the complexity 

can be dramatically increased if the patch size becomes large enough to contain curves and parts 

from neighboring line segments. The patch size equals 5, since it is a good tradeoff between the 

underlying signal’s complexity since for smaller patches the local manifold obviously becomes 

degenerate - and the overall computational complexity.  

2.2.3     Spatial Pyramid Pooling 

Spatial Pyramid Pooling (SPP) is a technique used to aggregate local features over regions of 

interest to create a final feature vector. To implement this technique, the signature images are 

first segmented into a grid of equimass subregions using a spatial pyramid. For each segment, 

local feature vectors are extracted and subjected to a pooling operation. The pooled feature 

vectors from the entire image and its subregions are then concatenated into a single final feature 

vector for the entire image. The spatial pyramid consists of either a 2 × 2, 3 × 3, or 4 × 4 equimass 

subregion division, with a pooling function applied at each level. The pooled vector according to 

different pooling functions is defined as follows: 
 

• Average (Avg) pooling (F1): 1 1

1

1
{ [ ]} { [j]}, 1:

M
F F i

i

f f j x j K
M =

= = =I I                                         eq. 2.1  

• Maximum (Max) pooling (F2):  2 2

I I{ [ ]} max( [ ] ),  1: ,  1:F F if f j x j i M j K= = = =              eq. 2.2 
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• Standard Deviation (Std) pooling (F3):  

1 2

3 4 1
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• Normalized sum (norm) pooling (F4):  4 4 1
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• L-2 normalized sum (L-2 norm) pooling (F5): 5 5 1
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         eq. 2.5 

where each extracted feature ix  for any patch i  has K elements and each region of interest 

includes M feature vectors that are pooled together. The average pooling (F1) function computes 

the mean of the feature vectors extracted from the regions of interest. In contrast, the max 

pooling (F2) operation selects the most salient feature value from each region of interest. 

Standard deviation (F3) is an alternative pooling function that captures second-order statistics of 

the vectors’ elements distribution, which could potentially improve the discrimination 

capabilities of the final feature vector. The normalized sum pooling (F4) function produces feature 

vectors that are invariant to changes in intensity. Lastly, the L-2 normalized final feature vectors 

produced by the (F5) function are projected onto the unit ball, which is important for linear 

classification kernels. 

2.3     Designing systems for offline signature verification problem 

2.3.1     Image Visibility Graph motifs (IVG) 

2.3.1.i     Method 

Visibility Graphs (VG) and Horizontal Visibility Graphs (HVG) are methods of converting ordered 

sequences into a graph structure, enabling the application of graph theory in analyzing the data 

[53], [54]. The VG connects points in the sequences that have a clear line-of-sight (or visibility) to 

one another and forming a network of nodes and edges, while the HVG is a modified version that 

considers only the horizontal visibility between points, resulting in a simplified graph structure. 

Image natural Visibility Graphs (IVG) and Image Horizontal Visibility Graphs (IHVG) are extensions 

of this concept that map scalar fields and images into graphs, where each pixel represents a node 

and edges are added between nodes that are mutually visible. Local features can be extracted by 

detecting the local properties through visibility patches, which are small subgraphs in the 

IVG/IHVG. The concept of visibility patch is the natural extension to images of the concept of 

sequential visibility graph motifs [55] by extending the visibility criteria along one-dimensional 

sections of the two-dimensional signal (image patches) via scanning in horizontal, vertical, and 

diagonal directions. Sequential natural or horizontal visibility graph motifs profiles are defined as 
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smaller substructures of n consecutive nodes that appear with characteristic frequencies. The 

visibility motifs used in this work are of low order, and specifically of size four, which can be used 

to create a six-dimensional feature vector that is computationally efficient and highly informative 

[55]. To better illustrate the encoding process for each signature patch, Figure 2-1 shows how 

the number of six IVG and six IHVG motifs' appearances are counted in different rasterized 

formats, including row, column, 1st (main) diagonal, 2nd (secondary) diagonal, and column-wise 

patch transformed-to-vector formats. The resulted visibility code is of size 60, obtained by 

concatenating the five individual formats. This encoding process produces handcrafted features 

and allows local patches to be represented by sequential visibility graph motifs while expresses 

local information by counting the repetitions of motifs in the image. Finally, the spatial pyramid 

pooling is applied to the local features (visibility codes) corresponds to image segments in order 

to provide the final feature vector for any image. 

 

Figure 2-1: An example of calculating a local visibility code with 12 sequential motifs of size four. The local patches are extracted 
on the signature trace and each patch includes 25 pixels (5 × 5). The final visibility code (Concatenated Visibility Code) is the 
concatenation of the local IVG/IHVG motif coding procedures for each line, column, main and secondary diagonals, as well as a 
column-wise patch vector. 

2.3.1.ii     Datasets 

Two popular offline signature datasets were used in order to demonstrate the effectiveness of 

the proposed system. The first one is CEDAR dataset with 55 writers and a total of forty-eight 

signature specimens (24 genuine and 24 simulated) while the skilled forgery signatures are 

IHVG motifs IVG motifs

Concatenated Visibility Code

Per Lines Per Columns Colum-wise2nd Diagonal1st Diagonal
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composed from a mixture of random, simple and skilled forgeries [56]. The second signature 

dataset is MCYT75 with a total of 15 genuine and 15 simulated signature samples from 75 

enrolled writers [57]. For this section, the thinning levels for the CEDAR and MCYT75 datasets 

have been set to one and two correspondingly. In addition, for the sake of simplicity results are 

reported when the number of equimass segments has been set to four (2×2) and sixteen (4×4) 

for the CEDAR and MCYT75 datasets respectively. 

2.3.1.iii     Classifiers 

Writer dependent (WD) classifiers are trained for the offline Signature Verification (OffSV) 

problem. The number of genuine reference samples for each writer ( 10REFN = ) has been set to 

ten for creating the positive class ω+. In a similar way, a population of 30RFN =  random forgeries 

(selected as random genuine samples from other signatories) create the corresponding negative 

class ω-. For the local sequential motif features and any associative pooled Sequential Visibility 

feature Vector (SVV), the reference 10 [60 (#segments 1)]

REFSVV   +  has been created to account for the 

genuine class while in a similar way, the random forgery visibility vector 30 [60 (#segments 1)]

RFSVV   +  

represents the negative class. These features are used as inputs to a binary, radial basis Support 

Vector Machine (SVM) classifier. A holdout cross-validation procedure returns the optimum 

operational parameters for the SVM margin and scale with respect to the maximum value of the 

Area under Curve (AUC). Moreover, the cross-validation procedure provides for each writer the 

scores conditioned on the positive only ω+ class samples CVS . The testing stage makes use of 

questioned (designated as: Q) samples that originate from: the remaining genuine signatures (14 

for CEDAR, 5 for MCYT), the skilled forgeries (S: 24 for CEDAR and 15 for MCYT) and a number of 

44 or 64 random forgeries (R) by taking one random sample from the remaining writers which 

does not participate at the training phase. Results are reported by means of the receiver 

operating characteristic (ROC) probabilities: the 
(S)FARp  and FRRp  error rates are computed as a 

function of a sliding threshold, whose extremes lie between the minimum and maximum values 

of the CVS cross validation procedure. Two different verification approaches are reported. In 

the first, a hard threshold is utilized to separate the genuine sample from skilled forgeries. This 

selection relies only on the ω+ genuine reference samples as they are the only ones available for 

training the classifier. In a typical scenario, this hard threshold is set to 50% of the average value 

of ω+ scores. Additionally, the equal error rate per user threshold: EER(S)user-threshold is calculated 

as the point in which 
( ) FF R S RA Rp p= . The experiments were repeated ten times and their average 

values are reported. In addition, at this specific EER(S) threshold, the random forgery-(R) 
(R)FARp  

error rate is calculated by using the genuine samples of the testing sets from the other writers. 
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2.3.1.iv     Results 

Table 2-1 displays the verification results achieved through various experimental protocols. For 

the CEDAR dataset, a Spatial Pyramid Pooling with 2 × 2 equimass segments, along with the whole 

image, was employed. As for the MCYT75 dataset, a Spatial Pyramid Pooling with 4 × 4 equimass 

segments, along with the whole image, was utilized. Also, this table includes the verification error 

rates when the vectors are partitioned in halves into their horizontal/natural parts. Table 2-2 

presents a summary of results for the CEDAR and MCYT75 signature datasets, with other 

approaches found on the literature. It must be kept in mind that attaining a fair comparison 

between these results can be a very difficult task, because there are a number of factors that 

affect it during the classifier construction and evaluation. The reported results are either the 

Average or the Equal Error Rates (AER/EER) for the skilled forgeries (S) case. Ultimately, it could 

be argued that the proposed method achieves a low error of verification which is considered to 

be at least comparable to the ones derived from state-of-the-art methods. 

Table 2-1: Verification Error Rates (%) for the CEDAR and MCYT75 datasets using different pooling strategies at the Sequential 
Visibility Vectors (SVV) that calculated via Horizontal, Natural and both image graph visibility motifs. 

Pooling strategy 

 CEDAR 

(REF = 10) 

MCYT75 

(REF = 10) 

Hard Decision EER(S) 

user_thresh 
PFAR(R) 

@EER(S) 
Hard Decision EER(S) 

user_thresh 
PFAR(R) 

@EER(S) PFAR(S) PFRR PFAR(S) PFRR 

Avg (SVVH) 1.23 0.97 0.30 0.00 4.37 5.32 1.59 0.02 
Max (SVVH) 25.8 23.6 22.2 2.93 11.5 23.2 16.2 2.31 
Std (SVVH) 4.69 4.18 2.72 0.04 6.20 7.18 2.40 0.02 
Avg (SVVN) 2.89 2.14 1.01 0.02 6.00 6.95 2.03 0.02 
Max (SVVN) 21.1 19.8 19.4 2.15 16.7 13.9 13.8 2.19 
Std (SVVN) 4.53 4.02 2.01 0.03 8.61 8.09 2.81 0.03 
Avg (SVV) 1.28 1.06 0.51 0.00 4.37 5.21 1.54 0.01 
Max (SVV) 19.4 18.2 17.0 1.83 15.7 12.6 12.55 2.54 
Std (SVV) 4.55 4.13 1.99 0.04 6.22 7.29 2.42 0.03 

Avg & Std (SVV) 1.25 0.99 0.41 0.00 4.38 5.32 1.61 0.02 
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Table 2-2: Comparative summary of error rates (EER(S)%) including SOTA methods for OffSV. 

 

2.3.2     Symmetric Positive Definite manifold (SPD) 

2.3.2.i     Method 

Let  𝐹 ∈ ℝ𝑤×ℎ×𝑛 be a feature map constructing from a stack of n-image planes that generated 

from one image 𝐼 when a number of n-filters is applied: 𝐹(𝑥, 𝑦, 𝑖) = Φ𝑖(𝐼, 𝑥, 𝑦), 𝑖 = 1: 𝑛. Given a 

rectangular image region ℛ ⊂ 𝐹, let 𝒇 = [𝒇𝑖]𝑖=1,2,…𝑆 ∈ ℝ𝑛×𝑆 be a local feature map of S total 

pixels that reside in ℛ. Then, the region ℛ is modelled by its region covariance matrix 𝑪ℛ ∈ ℝ𝑛×𝑛 

of the 𝒇𝑖 ∈ ℝ𝑛 points which is defined as follows: 

𝑪ℛ =
1

𝑆−1
∑ (𝒇𝑖 − 𝝁)(𝒇𝑖 − 𝝁)𝛵𝑆

𝑖=1               eq. 2.6 

where 𝝁 ∈ ℝ𝑛 represents the column mean vector of the 𝒇𝑖  points and 𝛵 denotes the transpose 

operator. Thus, the covariance matrix 𝑪ℛ can be considered as a Symmetric Positive Definite 

(SPD) matrix. In cases where it does not meet the criteria of being SPD, it can be transformed into 

an SPD matrix by adding a small regularization term nxn  I . All SPD matrices lie in the SPD 

manifold. The mapping Φ𝑖(𝐼, 𝑥, 𝑦) of a signature image 𝐼𝑠𝑖𝑔𝑛(𝑥, 𝑦) is defined as follows:  

[𝐼, 𝐼𝑥, 𝐼𝑦, 𝐼𝑥𝑥, 𝐼𝑥𝑦, 𝐼𝑦𝑦, √𝐼𝑥
2 + 𝐼𝑦

2, 𝑡𝑎𝑛−1(𝐼𝑦 𝐼𝑥⁄ ) , 𝑥𝑛,𝑦𝑛,]               eq. 2.7 

in which, 𝐼 is the grayscale image after the preprocessing, 𝐼𝑥, 𝐼𝑦, 𝐼𝑥𝑥, 𝐼𝑥𝑦, 𝐼𝑦𝑦 are image derivatives 

of 𝐼(𝑥, 𝑦), ,n nx y  are the signature pixel coordinates, normalized by their maximum number of 

rows and columns of the image bounding box and tan−1(𝐼𝑦 𝐼𝑥⁄ ) is the gradient direction, 

normalized into radians with range varying from [-π, π). The signature covariance matrix 𝑪𝑆𝐶𝑀 of 

𝐼 is calculated using only the pixels that belong to the signature trace after the preprocessing. 

Therefore, any signature image results in a 𝑪𝑆𝐶𝑀 ∈ ℝ𝑛×𝑛 point of the corresponding Symmetric 

CEDAR MCYT75 

Method REF   
AER / 
EER  

Method REF   
AER / 
EER  

Gradient & concavity [58] 16 7.90 H.O.T.  [35] 10 18.15 

Zernike moments [58] 16 16.4 Global and Local Slant [59] 10 9.28 

Partially Ordered Sets [60] 5 4.12 Partially Ordered Sets [60] 5 6.02 

Gradient LBP + LRF [61] 16 3.52 L.B.P. [62] 10 7.08 

Chain code  [63] 12 7.84 Discrete Radon Transform [64] 10 9.87 

B.O.W. with KAZE  [65] 
16 

1.60 
B.O.W. with KAZE  [65] 10 6.4 

V.L.A.D. with KAZE  [66] 1.00 

Gradient Direction  [67] 14 6.01 Contours [68] 10 6.44 

Archetypes  [69] 5 2.07 Archetypes  [69] 5 3.97 

Proposed: Average (SVV) [70] 10 0.51 Proposed: Average (SVV) [70] 10 1.54 
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Positive Definite (SPD) manifold. Using the equimass image division, different covariances 

matrices could be calculated according to relevant sub-regions. 

Both writer-dependent and writer-independent verification approaches are designed. In the 

WD approach, the signature covariance matrix 𝑪𝑆𝐶𝑀 is mapped on the tangent plane of a 

common pole 𝐼𝑛×𝑛 that creates a tangent vector with respect to a common tangential origin 

log ( )
n nn n n n = I0 I . The final feature vector representation for each signature arises by evaluating 

the orthonormal coordinates of the tangent vector in the common pole tangent space by a) 

applying the vector operator 1 2 1 2( ) ( )
n n n n n nvec


− −

 = =Iv y I yI and b) selecting its n(n+1)/2  components 

according to 
1,1 1,2 2,3 ,[ ,  2 ,...,  ,  2 ,..,  ]n n2,2v v v v v . Next, discriminative predictors are learned using WD 

classifiers for the OffSV problem. In the WI approach, a metric similarity function is utilized to 

learn a mapping 𝑊 from the original SPD manifold 𝑃𝑛 to another SPD manifold 𝑃𝑚⋅𝑝 using the 

model ∆(Θ), with parameters Θ = {𝑊, 𝐴, M}, which explores diverse visual information that is 

stored in the 𝑚 −individual block diagonal matrices ∈ ℝ𝑝×𝑝. The objective function is 

constructed based on contrastive loss, which incorporates similar pairs consisting of genuine 

signatures from the same writer, as well as dissimilar pairs comprising genuine signatures with 

random forgeries (i.e., genuine signatures of other writers in the dataset). Since the learnable 

parameters W, M lie in the Grassman and SPD manifolds respectively, the optimization procedure 

of the objective loss function is a non-jointly convex function of its learning parameters. However, 

it optimized with the stochastic gradient descent (SGD) given that 𝐴 ∈ ℝ𝑚×2 and its update stage 

relies on the Euclidean gradient 
𝜕ℒ

𝜕𝐴
 while the Riemannian constraints of W, M impose the use of 

Riemannian gradients 
𝜕ℒ

𝜕𝑾𝑅 and 
𝜕ℒ

𝜕𝑴𝑅 [38].  

2.3.2.ii     Datasets 

Four popular offline handwritten signature datasets of western and Indo-Aryan origin were 

employed in order to evaluate the proposed methods. In the Western style, the CEDAR [56] and 

MCYT75 [57] datasets were used, which are described in the previous section. For the Asian style, 

the BENGALI and HINDI, two subsets of the Indo-Aryan BHSig260 database [71], were utilized. 

The BHSig260 database comprises signatures in two regional languages and thus, it includes 100 

signers for Bengali and 160 signers for Hindi. Each signer contributed 24 genuine and 30 forged 

images in both the Bengali and Hindi datasets. 

2.3.2.iii     Classifiers 

In the WD approach, a binary, radial basis support vector machine (SVM) classifier is trained for 

each writer using REFN  genuine signatures of the writer and RFN  random forgeries selected from 

other writers in the dataset, as described in the previous section. The test set consists of the 

remaining genuine signatures of the writer, along with either skilled forgeries from the same 
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writer or random forgeries from all other writers in the dataset.  The results are reported by 

means of the average value (10 repetitions) of two corresponding Equal Error Rates (EER) with 

two user-dependent sliding thresholds. The first EER(S) measures the probability of rejecting 

genuine samples pFRR against the probability of accepting skilled forgery samples pFAR(S) and the 

second EER(RF) measures the probability of rejecting genuine samples pFRR against the probability 

of accepting random forgery samples pFAR(RF). To address the limited training data problem, 

feature points augmentation is performed using fixed Riemannian Gaussian Distributions (RGD) 

on the space of SPD matrices, with their maximum likelihood estimators evaluated from the 

original samples in the training set, which includes 3REFN =  genuine signatures.   

In the WI approach, a threshold is defined within the SPD manifold for each writer to 

differentiate between genuine and forgery signatures. This user-specific threshold is calculated 

by comparing each questioned signature with ten genuine reference samples from the same 

writer. Instead of using a single global 𝑪𝑆𝐶𝑀
1×1  covariance matrix, a set of four 𝑪𝑆𝐶𝑀

{2×2}
 and nine 𝑪𝑆𝐶𝑀

{3×3}
 

covariance matrices are utilized. Thus, each image is represented by a set of fourteen covariance 

matrices according to fourteen regions. These fourteen local scores are sorted and then a local 

score is calculated by averaging. The final signature verification score is the minimum value of all 

scores between the questioned signature and all reference samples, which determines whether 

the signature belongs to the genuine or forgery side. Additionally, two experimental protocols 

are used to evaluate the performance. The first ℱ𝑖𝑛𝑡𝑟𝑎 protocol follows a standard 5×2 blind-fold 

approach for each individual dataset. In this protocol, the writers in each dataset are divided into 

two equal sets in five different ways. One set is used for training the model ∆(Θ), while the other 

set is used as the test set. The evaluation results are presented as the average across the five 

repetitions, providing an overall assessment of the model's performance. The second ℱ𝑖𝑛𝑡𝑒𝑟 

protocol resembles a transfer learning approach, which involves cross-dataset evaluation, 

meaning that the model ∆(Θ) trained on one dataset is tested on another dataset.  

2.3.2.iv     Results 

The results obtained using the WD approach are presented in Table 2-3. To generate duplicate 

samples for the genuine training class, the maximum likelihood estimate (MLE) of the parameters 

of the Riemannian Gaussian Distribution (RGD) is calculated using three reference samples. An 

SPD RGD model is then constructed using these parameters to draw SPD duplicates. The 

duplicates are created by sampling directly from three individual RGD distributions ( )3ˆ ( ), L
i GG   +C

where iC  is one reference sample, or from three RDGs with fixed standard deviations σfixed of 0.1 

or 0.01. This process generates five duplicates for each genuine reference signature. In these 

experiments, the 𝐼𝑥𝑦 image derivative is not included in the mapping Φ𝑖(𝐼, 𝑥, 𝑦) to simplify the 

calculations. Although a comprehensive comparison with other methods from the literature is 

not possible due to differences in design and implementation, the proposed system achieved a 
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low verification error that is comparable to related works, as demonstrated in Table 2-3. 

However, a limitation of this approach is that it is sensitive to setting hyperparameters, such as 

σ, which can significantly impact the results if not properly configured. 

Table 2-3: Comparative summary of error rates (EER(S)% and EER(RF)%) including generative SOTA methods for WD OffSV. 

OffSV System Training Set CEDAR BENGALI HINDI 

Method 
Augmenta-

tion 
method 

(+)  
class 

(REF) 

(-) 
class 

 
EER(S) EER(RF) EER(S) EER(RF) EER(S) EER(RF) 

Motifs 
[70] 

- 10G 30RF 0.51 - 0.32 - 1.02 - 

Deforma-
tions [72] 

- 5 N/A 3.89 - 8.92 - 9.84 - 

Synthetic 
signatures 
[73] [74] 

Duplicator 
3G 

+66D 
648RF 
+14kD 

3.04 - 
6.06 
(5G) 

- - - 

Feature 
augment 
[74] 

Gaussian 
Noise 

0.82 - - - - - 

Generativ
e [75] 

GAN 5G N/A 4.50 - - - - - 

Proposed: 
SPD [76] 

- 10G 50RF 0.49 0.03 0.27 0.09 1.00 0.30 

- 3G 30RF 1.18 0.14 1.52 0.41 2.50 0.69 

RGD: 
G(Ci,0.1) 

3G +15D 753RF 

1.73 0.18 5.22 1.80 2.13 0.63 

RGD: 
G(Ci, 3ˆ ( )L

G  + ) 
0.74 0.15 1.41 0.53 1.82 0.57 

RGD: 
G(Ci,0.01) 

0.55 0.11 0.92 0.25 1.62 0.45 

In the WI approach, the model ∆(Θ) has two hyperparameters, 𝑚 𝑎𝑛𝑑 𝑝. The parameter 𝑚 

determines the number of block-diagonal SPD matrices 𝑿𝑘=1:𝑚, and, consequently, the number 

of sub-distances {𝐷𝑨
𝑘(⋅,⋅)}𝑘=1

𝑚 . The parameter 𝑝 determines the size of each block diagonal SPD 

matrix 𝑿𝑘 ∈ ℝ𝑝×𝑝 used in the evaluation of any 𝐷𝑨
𝑘. After experimental investigation, it was 

found that setting 𝑚 ⋅ 𝑝 = 10 leads to optimal performance due to the relatively small initial 

dimensionality of the 𝑃10 manifold. Therefore, 𝑚 is set to 1 and 𝑝 is set to 10 and the projection 

matrix W reorders the samples within the same dimensional space. The number of similar and 

dissimilar pairs are equal and is determined by the maximum number of created similar pairs. 

The number of participating segments depends on the dataset being evaluated. For the CEDAR 

signature dataset, there are four participating segments using the Spatial Pyramid equimass 

division into fourteen segments (1, 2×2, and 3×3 pyramid levels), while for the MCYT75, HINDI, 

and BENGALI datasets, there are seven participating segments from the total of fourteen 

segments on all reported results. Table 2-4 presents the EER(S) values with user-defined 
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thresholds for ℱ𝑖𝑛𝑡𝑟𝑎 (Table’s diagonal) and ℱ𝑖𝑛𝑡𝑒𝑟 (Table’s non-diagonal) protocols. The results 

presented in this table demonstrate the robust performance of our method. Table 2-5 

summarizes the state-of-the-art results in term of EER(S) for WI-SV systems, showcasing the 

comparable performance of the proposed method with other works.  

Table 2-4: EER(S) values for intra-dataset (diagonal values) and inter-dataset (non-diagonal values) experimental protocols. 

Train / Test CEDAR MCYT75 BENGALI HINDI 

CEDAR 0.37 0.95 0.24 0.75 

MCYT75 0.36 0.96 0.27 0.75 

BENGALI 0.35 0.96 0.26 0.75 

HINDI 0.35 0.97 0.27 0.77 
 

Table 2-5: Comparative summary of error rates (EER(S)%) including SOTA methods for WI OffSV. 

 

Method 
Protocol 

(training writers / 
test writers) 

REF CEDAR MCYT75 BENGALI HINDI 

Triplet Nets Graph edit dist.[77] 
16/8 signatures 

per writer 
10 5.91 3.91 - - 

MSDN [78] 50/55 10 1.75 - - - 

Point2Set DML [79] ℱ𝑖𝑛𝑡𝑒𝑟  5 5.22 4.86 - - 

DCCM [80] 10/45 5 2.10 - - - 

Partially oriented sets [60] 
12/43 for CEDAR 

50/25 for MCYT75 
5 2.90 3.50 - - 

CNN & BiLSTM [81] ℱ𝑖𝑛𝑡𝑟𝑎 N/A 0.00 - 1.76 2.23 

SigNet-F Dichotomy 
Transformation [82] 

ℱ𝑖𝑛𝑡𝑟𝑎 12 5.86 2.99 - - 
ℱ𝑖𝑛𝑡𝑒𝑟  12 4.21 4.22 - - 

SigNet-Contrastive 
(trained on GPDS [83]) 

12/10 signatures  
per writer for CEDAR 
10/5 signatures per 
writer for MCYT75 

3.34 
(12G) 

3.52 
(10G) 

- - 

SigNet-Contrastive 
(trained on GPDS-S [84]) 

4.59 
(12G) 

3.95 
(10G) 

- - 

V.L.A.D. [85] 50/55 for CEDAR 
50/100 for 
BENGALI 

100/160 for HINDI 
(SF used for 

Training) 

N/A 0.00 - 9.62 20.2 

AVN [86] 1 3.77 - 6.14 5.65 

Deep HSV [87] 1 0.00 - 11.9 13.3 

IDN [88] 1 3.62 - 4.68 6.96 

Proposed: SPD-WI ℱ𝑖𝑛𝑡𝑟𝑎 10 0.37 0.96 0.26 0.77 
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2.3.3     Sparse Representation (SR) 

2.3.3.i     Method 

Sparse Representation (SR) is a method used in signal processing to represent data as a sparse 

linear combination of a set of basis vectors. It assumes that the data can be expressed using only 

a few elements (sparsity) from a given dictionary of basis vectors (atoms). The Sparse 

Representation problem combines both the dictionary learning step, which learns the dictionary 

𝑫 from the training data, and the sparse coding step, which finds the sparse coefficients 𝑨 to 

represent the data using the dictionary. Many methods exploit the assumption that natural 

images can be represented by a sparse combination of basis vectors in a redundant dictionary 

[39], [40], [89], [90]. While these methods often succeed in enhancing discriminative power, the 

optimization process for dictionary learning is primarily generative and does not explicitly 

consider the discrimination task.  

For a given set of M training signals 1 2, n M[ , ... ] RM = X x x x , the problem of dictionary learning 

can be formulated using different variants of minimization problem:  

such as when the sparsity-inducing regularization function 𝝍(⋅) is used as a penalty: 

𝒎𝒊𝒏
𝑫∈𝑪,𝑨∈ℝ𝒑×𝒏

  
𝟏

𝒏
∑

𝟏

𝟐
‖𝒙𝒊 − 𝑫𝒂𝒊‖𝟐

𝟐𝒏
𝒊=𝟏   +   𝝀𝝍(𝒂𝒊)               eq. 2.8 

and when the sparsity-inducing regularization function 𝝍(⋅) is used as a constraint: 

𝒎𝒊𝒏
𝑫∈𝑪,𝑨∈ℝ𝒑×𝒏

  
𝟏

𝒏
∑

𝟏

𝟐
‖𝒙𝒊 − 𝑫𝒂𝒊‖𝟐

𝟐𝒏
𝒊=𝟏    𝒔. 𝒕.    𝝍(𝒂𝒊) ≤ 𝝁    eq. 2.9 

or equivalent 

𝒎𝒊𝒏
𝑫∈𝑪,𝑨∈ℝ𝒑×𝒏

  
𝟏

𝒏
∑ 𝝍(𝒂𝒊)

𝒏
𝒊=𝟏     𝒔. 𝒕.    ‖𝒙𝒊 − 𝑫𝒂𝒊‖𝟐

𝟐 ≤ 𝜺    eq. 2.10 

where the regularization function 𝝍(⋅) is the ℓ-p norm for 1≤p≤∞, while most popular forms are 

either ‖𝒂‖𝟎 𝒐𝒓 ‖𝒂‖𝟏 using ℓ-0 norm and ℓ-1 norm respectively, that could encourage sparse 

solutions [39], [40]. Also, the columns of dictionary matrix 𝑫 are constrained to have less than 

unit ℓ-2 norm to avoid trivial solutions and mitigate the issue of large atoms’ values leading to 

arbitrarily small sparce coefficients [39], [40]. Given that the above minimization problem is non-

convex, many empirical optimization methods have proven effective in practical applications. The 

most classical approach for dictionary learning is the alternate minimization scheme, which 

alternates between two minimization steps: updating the dictionary with fixed sparse codes and 

updating the sparse codes with a fixed dictionary. Although not as fast as well-tuned stochastic 

gradient descent algorithms, the alternate minimization scheme is parameter-free and has 

shown reliability in computer vision tasks [39], [40].   
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This work employs a writer dependent (WD) signature verification approach to discover the 

underlying structure in image patches using Sparse Representation (SR). Specifically, patches are 

extracted from the reference signatures of each writer and utilized as the training signals in the 

dictionary learning step. Subsequently, the dictionary of the claimed writer is used to encode 

every patch from the query signature, resulting in the calculation of sparse codes for the image. 

Different optimization approaches for solving the SR problem have been investigated, utilizing 

either batch learning with ℓ-0 norm regularization [48] or online learning with ℓ-1 norm 

regularization [49]. Depending on the case, both the K-SVD/OMP and the SPAMS/LARS-Lasso 

algorithms are evaluated in the OffSV task [91]. Therefore, greedy algorithms (like the Orthogonal 

Matching Pursuit – OMP) deal with NP-hard problems arise from the ℓ-0 norm constrain in sparse 

coding (eq. 2.9 and eq. 2.10) and homotopy algorithms (like the Least Angle Regression – LARS) 

solve the ℓ-1 regularized problems with a penalty parameter (eq. 2.8). The resulting sparse codes 

from any signature image are pooled together using spatial pyramid pooling (SPP) techniques. 

The SPP techniques are further enhanced by incorporating an additional set of patches that 

correspond to points of interest as detected by the Binary Robust Invariant Scalable Keypoints 

(BRISK) detector [92]. The keypoints serve as indicators for the patches, and thereafter the 

corresponding sparse codes are pooled together in order to obtain an additional feature vector. 

This vector is concatenated with the spatial pyramid vector resulting to a final feature vector. 

This approach enables the capture of additional local information via selective attention to 

specific signature’s points of interest.  

The typical SR has been extended in two directions, one that uses a structured sparse 

regularization to learn a dictionary embedded in a tree and one that uses a deeper multi-layer 

architecture to learn several levels of SR in different abstraction levels. First, Hierarchical Sparse 

Coding (HSC) introduces the idea of embedding dictionary atoms in a rooted and directed tree 

structure [93]. Since the ℓ-1 norm cannot model interactions between atoms, it is replaced by a 

more complex sparsity-inducing penalty that considers a particular tree structure of dictionary 

elements [93]. The tree structures are pre-defined, and the dictionary elements naturally 

organize themselves in the tree during the learning process. The hierarchical penalty combines 

the Group Lasso with the ℓ-1 norm, promoting sparsity patterns rooted in subtrees. 

Consequently, a dictionary element can only be utilized in patch decomposition if its parent in 

the tree is also used, encouraging structured sparsity patterns. Second, Deep Sparse Coding (DSC) 

utilizes multiple layers and incorporates a sparse-to-dense module between these layers [41]. 

Unlike simply stacking SR layers, DSC accounts for the spatial information of image patches and 

considers that small variations in the original space might lead to significant differences in the 

corresponding sparse codes. To address these issues, an average pooling function and a 

dimensionality reduction (DR) method are applied between SR layers. Local spatial pooling 

ensures that higher-level features are learned from collections of nearby lower-level features, 

while dimensionality reduction prevents an unnecessary increase in feature dimension without 
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gaining new information. In this way, the pooled sparse codes from the previous layer serve as 

high-dimensional vectors, while the dimensionality-reduced latent vectors become inputs for 

subsequent SR layer. Both HSC, with its pre-defined hierarchical tree structure, and DSC, with its 

layer-wise organization, enable hierarchical learning. These approaches facilitate the capture of 

increasingly abstract and complex representations of the data. These concepts are effectively 

leveraged in the OffSV task to enhance the discriminative power of the learned features [94], 

[95]. 

2.3.3.ii     Datasets 

Four popular offline handwritten signature datasets of western and Persian origin were 

employed in order to evaluate the proposed methods. In the Western style, the CEDAR [56] and 

MCYT75 [57] datasets were used and described in the previous section while another one dataset 

that included in the experiments is GPDS300GRAY [62].  This third signature dataset contains 24 

genuine signatures and 30 simulated forgeries of 300 individuals stored in an 8-bit, grey level 

format. An interesting characteristic of this dataset is that the acquisition of signature specimens 

is carried out using two different bounding boxes of size 1.8 5.0 cm and 2.5 4.5 cm respectively 

(height width). As a result, the images of this dataset have two different aspect ratios. The 

fourth signature dataset used is the Persian UTSIG, created by Soleimani et al. [96]. It contains 

specimens from 115 writers where each one has 27 genuine signatures, 3 opposite-hand 

signatures, and 42 skilled forgeries made by 6 forgers. Notably, the acquisition of signature 

specimens in the UTSIG dataset was performed using six different bounding box sizes, simulating 

real-world conditions and public services application forms. 

2.3.3.iii     Classifiers 

The writer dependent (WD) classifiers stage is implemented similarly to the experiments with 

Image Visibility Graph motifs (IVG) described previously. In this stage, the training set of each 

writer's classifier comprises both genuine signatures of the writer and randomly selected 

forgeries from other writers in the dataset. The number of training random forgeries is twice the 

number of training genuine signatures, i.e., 2RF REFN N=  . The test set, on the other hand, consists 

of the remaining genuine signatures of the writer along with skilled forgeries corresponding to 

the same writer. This approach allows for evaluating the performance of the WD classifiers with 

a user-defined threshold. 

2.3.3.iv     Results 

The dictionary size (number of atoms) is set to 60, with a sparsity level of 𝜇 = 3 for the K-

SVD/OMP algorithms and a penalty parameter of 𝜆 = 0.15 for the SPAMS/LARS-Lasso 

algorithms, determined through a grid search. In Table 2-6, the impact of different image division 
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scenarios on verification performance is investigated specifically for the CEDAR dataset, using ℓ-

0 sparsity regularization for the SR problem. Six division scenarios are examined, including: a) 

using the entire image (first level of SPP), b) employing only the second level of SPP with four 

equimass regions (2 × 2), c) using the full SPP, d) considering only the BRISK keypoints, e) a 

combination of all previous scenarios, and f) a combination of SPP with nine equimass regions (3 

x 3) and BRISK keypoints. It is observed that the combination of all scenarios together 

outperforms the others, irrespective of the pooling function. However, increasing the number of 

equimass regions in the second level of the SPP technique is not always the optimal solution. 

Therefore, subsequent tables present results for both 2 × 2 and 3 × 3 equimass regions in the 

SPP, and the SR problem is optimized using either ℓ-0 sparsity regularization with K-SVD/OMP 

algorithms or ℓ-1 sparsity regularization with SPAMS/LARS-Lasso algorithms. 

Observing the results in  

Table 2-7 and Table 2-8, several interesting conclusions can be drawn. Firstly, the standard 

deviation pooling function (F3) consistently outperforms other pooling functions in most cases. 

It is notable that although max pooling performs well in other computer vision applications, it is 

not as effective for signature images. This could be attributed to the unique nature of signature 

images, which exhibit a degenerate structure. Due to the limited set of structural elements 

shared by all signature images, the sparse coefficients of different signatures may not differ 

significantly in terms of first-order statistics, as observed in more complex image structures. 

Therefore, higher-order statistics are likely to provide better discrimination between the 

distributions of sparse coefficients, resulting in improved verification performance. Secondly, the 

verification error rates for the CEDAR and MCYT datasets do not show substantial variation when 

using either ℓ-0 or ℓ-1 form for the SR problem. Theoretically, for an appropriate dictionary, the 

solution obtained using the ℓ-1 norm is equivalent to an ℓ-0 norm solution with full probability 

[97]–[99]. Nevertheless, his equivalence does not hold for the joint regularized and constrained 

dictionary learning problem, as different formulations of the problem may lead to different 

solutions, even when using the same ℓ-1 norm [40]. However, due to the similar performance 

achieved using both approaches, only the results obtained from the ℓ-0 SR problem are 

presented in the Table 2-9 for the GPDS300GRAY and UTSIG datasets. 

Thirdly, the experimental results indicate that the optimal performance on the CEDAR dataset 

is achieved with a spatial pyramid consisting of 2 × 2 equimass regions, while for the MCYT75 

dataset, the best results are obtained with a spatial pyramid of 3 × 3 equimass regions. This 

observation can be attributed to the difference in scanning resolutions, with CEDAR signatures 

having a resolution of 300dpi and MCYT75 signatures having a resolution of 600dpi, resulting in 

higher pixel density in MCYT75 segments. It is worth noting that even with a spatial pyramid of 2 

× 2 on the CEDAR dataset, there are some patches within certain segments that do not contribute 

significantly to discrimination, which is not observed in the case of the MCYT75 dataset. 

Additionally, increasing the spatial pyramid size from two to three has a positive impact on 
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performance when using the UTSIG dataset, but it has a negative impact on the GPDS300GRAY 

dataset. Since the GPDS300GRAY dataset utilized only two acquisition bounding boxes and UTSIG 

utilized six, designing more regions seems to be beneficial when many bounding boxes are 

employed, despite the spatial pyramid equimass division does not consider the different aspect 

ratios of the acquisition bounding boxes.  

Table 2-6: EER(S) values for different image division profiles using CEDAR dataset. 

CEDAR 

REF = 5 
ℓ-0 sparsity regularization:  

K-SVD/OMP 

Pooling 

SPP:  
1 

SPP:  

2 × 2 

SPP:  

1 & 2 × 2 
keypoints 

only 

SPP: 1 &  

2 × 2 and 
keypoints 

SPP: 1 &  

3 × 3 and 
keypoints 

Feature dim 
= 60 

Feature dim 
= 240 

Feature dim 
= 300 

Feature dim 
= 60 

Feature dim 
= 360 

Feature dim 
= 660 

Avg 8.87 4.10 2.78 8.35 2.67 2.80 

Max 10.3 5.73 6.30 10.3 4.17 3.21 

Std 4.36 2.98 1.95 4.30 1.44 1.80 

Norm 9.37 9.92 8.02 9.22 7.51 13.4 

L-2 8.20 4.38 3.04 8.47 3.08 2.48 
 

Table 2-7: Performance evaluation using Sparse Representation methods for CEDAR dataset. 

CEDAR 

REF = 5 
ℓ-0 sparsity regularization:  

K-SVD/OMP 
ℓ-1 sparsity regularization: 

SPAMS/LARS-Lasso 

Pooling 
Hard Decision EER(S) 

user_thresh 
PFAR(R) 

@EER(S) 
Hard Decision EER(S) 

user_thresh 
PFAR(R) 

@EER(S) PFAR(S) PFRR PFAR(S) PFRR 

 SPP 1 & 2 × 2 and keypoints: final feature dimensionality is 360 

Avg 6.83 7.32 2.67 0.43 6.99 7.60 2.65 0.37 

Max 9.45 9.83 4.17 2.93 9.42 9.71 3.45 1.55 

Std 4.76 4.91 1.44 0.17 4.61 4.64 1.62 0.12 

Norm 8.12 9.94 7.51 1.95 8.19 8.73 3.52 0.56 

L-2 5.31 5.27 3.08 0.35 7.05 7.81 3.38 0.41 

 SPP 1 & 3 × 3 and keypoints: final feature dimensionality is 660 

Avg 6.13 7.18 2.80 0.27 6.59 6.61 3.08 0.23 

Max 8.83 8.65 3.21 0.76 8.52 8.01 2.80 0.48 

Std 4.78 5.63 1.80 0.12 4.88 5.81 2.01 0.08 

Norm 12.7 20.2 13.4 4.82 9.17 8.71 3.97 0.41 

L-2 5.05 5.11 2.48 0.24 5.49 6.48 3.07 0.22 

 



2.3     | Designing systems for offline signature verification problem 

29 
 

Table 2-8: Performance evaluation using Sparse Representation methods for MCYT75 dataset. 

MCYT75 

REF = 5 
ℓ-0 sparsity regularization: 

K-SVD/OMP 
ℓ-1 sparsity regularization: 

SPAMS/LARS-Lasso 

Pooling 
Hard Decision EER(S) 

user_thresh 
PFAR(R) 

@EER(S) 
Hard Decision EER(S) 

user_thresh 
PFAR(R) 

@EER(S) PFAR(S) PFRR PFAR(S) PFRR 

 SPP 1 & 2 × 2 and keypoints: final feature dimensionality is 360 

Avg 10.4 7.32 3.80 0.22 10.46 8.57 3.91 0.24 

Max 14.7 14.6 10.9 3.16 15.8 14.3 11.20 3.09 

Std 8.09 6.75 3.18 0.16 8.35 7.58 3.71 0.22 

Norm 12.99 16.17 10.8 3.08 12.2 13.43 3.93 0.30 

L-2 7.64 7.76 3.23 0.14 7.87 7.59 3.66 0.20 

 SPP 1 & 3 × 3 and keypoints: final feature dimensionality is 660 

Avg 9.18 7.12 3.19 0.14 7.82 7.68 3.58 0.14 

Max 15.6 11.5 8.65 1.12 13.9 12.3 8.60 1.08 

Std 8.07 6.21 2.82 0.07 7.59 7.29 3.40 0.10 

Norm 11.0 23.7 16.7 6.17 9.82 9.68 3.53 0.15 

L-2 7.77 7.92 3.46 0.13 7.07 7.69 3.05 0.12 
 

Table 2-9: Performance evaluation using Sparse Representation for GPDS300GRAY and UTSIG datasets. 

REF = 5 

GPDS300GRAY UTSIG 

ℓ-0 sparsity regularization: 
K-SVD/OMP 

Pooling 
Hard Decision EER(S) 

user_thresh 
PFAR(R) 

@EER(S) 
Hard Decision EER(S) 

user_thresh 
PFAR(R) 

@EER(S) PFAR(S) PFRR PFAR(S) PFRR 

 SPP 1 & 2 × 2 and keypoints: final feature dimensionality is 360 

Avg 6.91 6.22 2.47 0.59 18.3 16.9 11.7 1.91 

Max 8.27 8.89 3.98 3.70 25.3 21.6 17.0 7.02 

Std 6.73 6.13 1.50 0.33 16.1 13.4 9.94 1.27 

Norm 16.1 19.3 15.2 6.23 24.5 27.6 21.1 6.39 

L-2 7.79 7.96 3.30 0.55 20.7 24.6 12.2 1.48 

 SPP 1 & 3 × 3 and keypoints: final feature dimensionality is 660 

Avg 6.46 6.47 3.14 0.44 16.9 12.4 9.82 1.94 

Max 11.79 9.37 4.43 1.82 23.6 15.7 13.35 3.33 

Std 5.01 5.92 1.97 0.19 15.8 12.5 8.56 1.25 

Norm 18.6 29.4 20.4 10.0 29.8 29.5 25.15 12.5 

L-2 7.58 6.83 3.53 0.30 17.3 15.2 10.48 0.92 

 

Table 2-10 presents additional experiments involving Sparse Representation (SR) with 

different preprocessing and pooling options, as well as results from Hierarchical Sparse Coding 

(HSC) and Deep Sparse Coding (DSC) methods. It also includes some popular Deep Learning (DL) 

methods for OffSV. The performance of SR methods is found to be sensitive to user-defined 

hyperparameters in the preprocessing and Spatial Pyramid Pooling (SPP) stages, such as the 

thinning level and the choice of pooling function or number of pyramid segments. Both HSC and 
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DSC approaches, despite their complex implementations, did not achieve superior performance 

compared to the baseline SR method. This may be attributed to the limitations of layer-by-layer 

optimization and the need for setting hyperparameters specifically for the OffSV task, such as 

branch size in HSC or the dimensionality reduction method in DSC. However, DSC serves as an 

introduction to deep learning architectures by utilizing similar optimization solvers, such as 

Stochastic Gradient Descent, when employing Dimensionality Reduction by Learning an Invariant 

Mapping (DrLIM) [28]. Additionally, the layer-by-layer optimization using pairs in DSC requires 

fewer initial training images compared to CNN-based writer identification tasks in other DL works 

presented in the table. In conclusion, comparing DL and SR methods directly in the context of 

OffSV is challenging due to the differences in system design. However, it is worth noting that SR 

methods, like the one employed here, can be effective in the OffSV problem but require careful 

tuning of numerous hyperparameters (from preprocessing to feature extraction and classifiers 

stages) for optimal performance. 

Table 2-10: Comparative summary of error rates (EER(S)%) including Deep Learning methods and extension of Sparse 
Representation for OffSV. 

                           Method 
REF CEDAR MCYT75 

GPDS300 
GRAY 

UTSIG 
Name Description 

HOCCNN  
[100] 

Combine low-level and high-level 
features into a hierarchical CNN 

12 4.94 
5.46 

(10G) 
- 

12.88 
(12G) 

Deformations 
CNN [72] 

Location information as a feature 
for capturing micro deformations 

12 2.76 - - 6.14 

MLSE  
[101] 

Multi-Loss Snapshot Ensemble 
objective function 

10 - 2.93 - 6.17 

SigNet  
[102] 

Training with genuine signatures 
12 4.76 

2.87 
(10G) 

3.15 - 

5 
5.87 
(4G) 

3.58 3.92 - 

SigNet-F  
[102] 

Training with genuine and skilled 
forgery signatures 

12 4.63 
3.00 

(10G) 
1.69 - 

5 
5.92 
(4G) 

3.70 2.42 - 

SigNet-SPP  
[103] 

Training with signatures of 
different sizes 

10 3.60 3.64 3.15 - 

SigNet-SPP 
(fine-tuned) 

[103] 
10 2.33 3.40 - - 

Proposed: SR 
[91] 

SPP: 1 & 2 × 2 and keypoints (std) 10 0.90 1.63 
0.76 

(12G) 
7.36 

(12G) 

SPP: 1 & 2 × 2 and keypoints (std) 5 1.44 3.18 1.50 9.94 

SPP: 1 & 3 × 3 and keypoints (std) 10 1.14 1.97 
0.92 

(12G) 
6.22 

(12G) 

SPP: 1 & 3 × 3 and keypoints (std) 5 1.80 2.82 1.97 8.56 
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2.4     Conclusions 

The shallow representation models discussed in this chapter provide a transparent and 

interpretable way to extract features from signature images. The image encoding approaches 

using image visibility graph motifs, SPD manifold mapping, and sparse representation offer 

insights into the underlying characteristics of the signatures. Although these models demonstrate 

state-of-the-art performance in capturing relevant features from signature images, they require 

meticulous tuning of numerous hyperparameters to achieve optimal results. However, the major 

                           Method 
REF CEDAR MCYT75 

GPDS300 
GRAY 

UTSIG 
Name Description 

Preprocessing: Thinning level per 
signature and 

SPP: 1 & 2 × 2 and keypoints (std) 
5 2.89 4.98 5.71 10.3 

Preprocessing: Thinning level per 
signature  

& 
SPP: 1 & 2 × 2 and keypoints (avg) 

5 3.45 4.89 6.23 12.5 

Proposed: SR 
[104] 

SPP: 1 & 2 × 2 (avg) 5 2.78 3.67 2.70 - 

Proposed: HSC 
[94] 

Depth: 3, Branch: [20 2] 
SPP: 1 & 2 × 2 

5 

2.30 4.01 - - 

Depth: 3, Branch: [20 2] 
SPP: 1 & 3 × 3 

2.42 3.52 - - 

Depth: 4, Branch: [6 3 2] 
SPP: 1 & 2 × 2 

2.56 4.29 - - 

Depth: 4, Branch: [6 3 2] 
SPP: 1 & 3 × 3 

2.72 3.70 - - 

Proposed: DSC 
[95] 

 

Layers: 2, DR: PCA 
SPP: 1 & 2 × 2 

5 

3.98 - - - 

Layers: 2, DR: DrLIM 
SPP: 1 & 2 × 2 

3.05 - - - 

Layers: 2, DR: Random projection, 
SPP: 1 & 2 × 2 

2.85 - - - 

Layers: 2, DR: Random Ortho proj. 
SPP: 1 & 2 × 2 

2.82 - - - 

Layers: 3, DR: PCA 
SPP: 1 & 2 × 2 

5.12 - - - 

Layers: 3, DR: DrLIM 
SPP: 1 & 2 × 2 

4.93 - - - 

Layers: 3, DR: Random projection 
SPP: 1 & 2 × 2 

3.30 - - - 

Layers: 3, DR: Random Ortho proj. 
SPP: 1 & 2 × 2 

2.87 - - - 
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advantage of these models lies in their efficiency even with a limited number of training samples. 

This is due to their shallow architectures, which provide low-level features and require training 

procedures only for the final classifiers. 

On the other hand, deep learning methods have demonstrated exceptional performance in 

various computer vision tasks, including signature verification. By leveraging convolutional neural 

network architectures, deep learning models can automatically learn hierarchical 

representations from data, eliminating the need for handcrafted feature engineering and explicit 

hyperparameter tuning. The end-to-end training process allows CNN models to capture intricate 

patterns and nuances in images, potentially leading to higher accuracy and robustness. However, 

the success of deep learning models heavily relies on having a large and diverse dataset for 

training, which can be challenging to acquire in certain domains.  

Considering these aspects, a promising direction for research lies in exploring hybrid 

approaches that combine the strengths of both shallow representation methods and deep 

learning models. This approach is presented in the next chapter, where hand-crafted image 

descriptors are combined with CNNs. 
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3. Hybrid combination of shallow representations 

and deep learning 

3.1     Introduction 

Hand-crafted features have been widely employed in computer vision problems, mainly for the 

task of image classification [42], [105], [106]. These features are derived from non-learning 

processes by directly applying various operators on image pixels and can provide several 

properties, like rotation and scale invariance [42], [107], due to their ability to efficiently encode 

local gradient information. However, hand-crafted features suffer from three primary limitations. 

First, hand-crafted features extract a low-level representation of the data, lacking the ability to 

provide a prominent abstract representation necessary for recognition tasks [108]–[110]. 

Secondly, the local descriptors like SIFT (Scale-Invariant Feature Transform) do not offer a fixed-

length vector representation of the input image, necessitating additional logic for the local 

descriptor encoding [109], [111], [112]. Thirdly, hand-crafted features have limited capacity as 

they are predetermined mappings from the data to the feature space, which remains fixed 

regardless of the requirements of specific recognition problems.  

In the past decade, hand-crafted based methods have been replaced by Deep Convolutional 

Neural Networks (CNNs), which employ an end-to-end learning scheme, typically in a supervised 

manner [113]. CNNs operate by associating each input image with a ground-truth label specific 

to the computer vision task at hand. The predictive model of the CNN produces a score, which is 

compared to the corresponding label, and the model weights are adjusted until the output 

achieves an acceptable level of accuracy. Consequently, CNNs build a hierarchical organized 

feature representation of the input data through a learning process that minimizes a given 

(differentiable) cost function. Thus, the CNNs learn both the feature representation and the 

 
   
 
  Chapter 3 
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feature encoding directly from images. The result is a learnable model that can provide high-level 

feature representations of input data once trained on a particular dataset and task. However, 

CNNs have certain limitations. They demand extensive amounts of data for training and are highly 

dependent on the quality of the data, including the availability of corresponding labels. After all, 

training deep architecture presents challenges, such as the requirement for large annotated 

datasets and difficulties in ensuring scale, rotation, or geometric invariance properties [114]. 

This chapter explores the combination of local descriptor representations with deep learning 

architectures. Our objective is to assess the ability of local descriptors to provide higher-level 

information to CNNs, thereby improving their performance in handling rotations, complex 

textures, and patterns. Initially, we calculate SIFT descriptors on a dense grid of image locations, 

considering the neighborhoods of all pixels in the image. The center pixel of each image 

neighborhood is mapped to a histogram, creating a new image representation called the SIFT-

Image [43]. The spatial resolution of the SIFT-Image can match that of the input image (unless 

subsampling is applied with a stride greater than one), and the depth of the SIFT-Image 

corresponds to the dimensionality of the SIFT descriptor. The new image representation is used 

as input to CNN, resulting in a framework called SIFT-CNN. Thus, the proposed SIFT-CNN consists 

of two stages: the unsupervised calculation of the dense SIFT descriptors to generate the local 

descriptor representation [115], followed by utilizing the produced SIFT-Images as inputs for the 

supervised training of a CNN model in a classification task. Therefore, in the proposed SIFT-CNN 

framework, we undergo a transformation of the input space representation to incorporate 

desirable properties.  

The SIFT-CNN incorporates local scale and local rotation invariance property and hence 

robustness against affine distortion, viewpoint changes, illumination variations, and noise. The 

SIFT descriptors are used here as a mapping of the input pixels into a robust representation 

equipped with the SIFT properties, and thus, the local rotation invariance is integrated implicitly 

to the framework This is achieved by conducting SIFT-CNN training using SIFT-Images instead of 

directly operating on image pixels. Also, the SIFT-CNN takes advantage of both domains, the 

hand-crafted SIFT descriptors and the learned features from CNNs. Through evaluation on 

different problems, we demonstrate that this novel combination yields improved efficiency. 

Finally, the SIFT-CNN emphasizes the representation of the input images rather than on specific 

CNN architectures or loss functions and offers an alternative approach to enhancing performance 

and addressing the limited sample size if it is presents. Initially, an investigation of SIFT-CNN 

framework is developed on the widely-used MNIST ("Modified National Institute of Standards 

and Technology") dataset, consisting of handwritten digit images [116], [117]. The MNIST 

database serves as an ideal testbed for benchmarking classification algorithms.  Here, the 

experiments with varying number of training examples showed that the SIFT-CNN can be 

efficiently trained with a limited number of samples. Next, our study explores mostly the local 

rotation invariant property by examining scenarios where local areas within an image undergo 
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rotation without affecting the overall classification category, eliminating the need to rotate the 

entire image. Examples of such problems include indirect immunofluorescence (IIF) cell images, 

ground-based all-sky cloud images, and human Lip-Reading image sequences, where cell, clouds, 

or part of the mouth area can be rotated within the image, but the final image class decision 

should be preserved, as one can observe from some example data in Figure 3-1. In the case of 

the biomedical problem involving Human Epithelium Type-2 (HEp-2) cell images [118], the 

proposed SIFT-CNN framework outperforms the network trained directly on image pixels. Also, 

the experiments conducted on both the cloud type classification using a large dataset of all-sky 

images (GRSCD) [119], [120] and the sequence modelling task of word-level Lip-reading 

recognition (LRW) [121] showed that SIFT-CNN achieved state-of-the-art performance. The 

experimental results across these various tasks consistently indicate that the proposed SIFT-CNN 

approach provides significant improvements compared to CNNs trained directly on pixel images. 

Hence, the SIFT-CNN demonstrates its effectiveness in enhancing performance across a range of 

computer vision problems, making it a promising and efficient approach. 

 

Figure 3-1: Some representative data examples of the related problems. The first row shows handwriting digits from the most 
popular machine learning dataset of MNIST. The second row presents IIF cell images for the HEp-2 cell classification task. The third 
row includes the all-sky images of the whole sky dome, where different types of clouds are recognized. The fourth row corresponds 
to the lip-reading classification task, where each sample is an image sequence (29 frames) representing a spoken word. Obviously, 
local rotation invariance is a sought-after property in these tasks. 

The rest of this chapter is organized as follows: A brief overview of the existing combination 

of hand-crafted SIFT features with the deep learning topologies are given in Section 2. The 

proposed method is detailed in Section 3. The experimental procedure on four different 

classification tasks, incorporating handwritten digit images (MNIST), Human Epithelium Type-2 

(HEp-2) cells microscope images, all-sky cloud (GRSCD) images, and Lip-Reading video (LRW) 

along with the corresponding results are given in Section 4. Finally, the conclusions are drawn in 

Section 5. 
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3.2     Related Work 

For many years, computer vision research focused on developing various calculation methods for 

hand-crafted features, particularly local descriptors such as SIFT, along with feature encoding 

mechanisms to provide a robust image representation. However, over the past decade, the 

dominance of CNNs has reshaped the field. Recently, there has been a growing interest in 

combining SIFT descriptors with CNNs, recognizing the potential synergy between the two 

approaches [122]. In most of the proposed works, the SIFT features are merged with the CNN 

features at the final stage just before the classification topology [123], [124]. Thus, two streams 

are utilized independently, on the one hand is implemented the calculation of the SIFT 

descriptors along with k-means algorithm for the bag-of-words encoding and on the other hand 

the CNN features are extracted utilizing a deep learning model. The outputs of the streams are 

fused, and the result is fed a classifier consisting of fully connected layers. Next, only the CNN-

stream is updated through backpropagation on the respective stream. In this manner, many 

different approaches are proposed for the calculation of local descriptors either exploiting key-

point SIFT [125], [126] or jointly with dense SIFT features [127]. Besides, the fusion method is 

varied from simple concatenation to more sophisticated attention mechanisms [123], [128], 

[129]. The previous dual-stream logic is modified by redoubling each stream and implement a 

Siamese scheme [130]. Additionally, hybrid CNN and SIFT methods are evaluated on sequence 

modelling tasks to capture video dynamics in opposition to optical flow [131], [132].  

In scenarios with limited data availability, the use of shallow representations achieved 

through hand-crafted descriptors has demonstrated significant advantages. These approaches 

prove particularly valuable in addressing the challenges posed by data scarcity, enabling effective 

analysis and solutions [133], [134]. In an effort to reduce the number of learnable parameters in 

a CNN model, several works have proposed replacing the learnable parameters in the initial 

layers with user-specified functions and pre-defined handcrafted filters. One such approach 

involves incorporating Gabor filters into CNNs to enhance the resistance of deep learned features 

to the orientation and scale changes [135]. Another method combines the ScatNet, utilizing a 

pre-defined Morlet filter bank to extract features, with a CNN architecture to create a deep 

hybrid network [136]. The PCANet [137] employs Principal Component Analysis (PCA) for the 

filter banks, and its modifications include LDANet, which trains cascade filters using Linear 

Discriminant Analysis (LDA), and MLDANet, which combines PCANet and LDANet [138]. 

Additional  variations of the PCANet approach are the PCA-based Convolutional Network (PCN) 

[139], a multi-stage convolutional network that can be trained layer-wise in an unsupervised 

manner, and KPCANet [140], which incorporates kernel PCA and is invariant to illumination while 

remaining stable under slight non-rigid deformation. Another notable technique involves 

replacing regular CNN filters with Active Rotating Filters (ARFs), leading to a significant reduction 

in network parameters and improved classification performance. ARFs ensure within-class 
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rotation invariance by actively rotating during convolution, resulting in feature maps that 

explicitly encode location and orientation information [141]. However, notable mechanism 

widely used to address translation, scale, and rotation invariance in CNNs is the Spatial 

Transformer Networks (STNs) [142]. STNs are a generalization of differentiable attention to any 

spatial transformation. Unlike the previously mentioned approaches, STNs do not aim to reduce 

the number of network parameters. Instead, they learn the parameters of an affine 

transformation that is applied to the entire input image at the early stages of the CNN, thereby 

enhancing the geometric invariance of the model. Finally, an approach that incorporates 

underlying physics in the input representation is known as physics-informed neural networks 

(PINNs) [143], [144]. These networks integrate (noisy) data and mathematical models and utilize 

additional information obtained by enforcing physical laws during training in order to be trained 

from additional information obtained by enforcing the physical laws. By combining data-driven 

learning with the constraints imposed by the underlying physics, PINNs enable more accurate 

and robust predictions, offering an effective framework for capturing complex phenomena while 

incorporating prior knowledge of the physical laws. In the end, providing some kind of invariance 

in the first layers of CNNs seems to be very important for learning more robust representations 

without requiring large amounts of data or extreme data augmentation [145]. The integration of 

hand-crafted feature representations with CNNs provides a compelling approach that leverages 

the strengths of both feature engineering techniques and deep learning architectures [146], 

[147]. An example of this is the utilization of Local Binary Pattern (LBP) descriptors to analyze 

facial texture, where a CNN is trained using LBP-encoded images to enhance its global texture 

perception [14], [148]. The combination of hand-crafted feature representations and CNNs offers 

a promising approach to extract meaningful information from data and improve the overall 

performance of machine learning models. 

In this work, we introduce a novel method for directly integrating dense SIFT descriptors into 

CNNs as inputs. While the concept of SIFT-Images and the fusion of SIFT and CNN features have 

been previously proposed, to the best of our knowledge, the benefits of using SIFT-Images as 

inputs to CNNs have not been thoroughly investigated. Our approach utilizes dense SIFT, and the 

SIFT-Image transformation maps a single-channel image to an M-channel image, where M 

corresponds to the dimension of the SIFT descriptor and consequently the number of the SIFT-

Image channels while preserving the spatial resolution of the original image. What sets our 

approach apart is the utilization of these SIFT-Images as multi-channel inputs for training the CNN 

model in various classification problems. Our proposed SIFT-CNN framework leverages the 

feature extraction capabilities of the CNN model while implicitly incorporating the local rotation 

invariance of the SIFT descriptor within a unified system. By utilizing the consecutive integration 

of these two components, our framework synergistically combines the strengths of both 

approaches, resulting in improved performance in various computer vision tasks. 
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3.3     Proposed Method 

3.3.1     The SIFT-CNN framework 

In a typical CNN-based system, the input consists of the pixel values of an image, and the output 

is the classification result for that image. We will refer to this approach as Pixel-CNN throughout 

the rest of this chapter. In the case of dense SIFT, where SIFT descriptors are calculated on every 

pixel of the image, we obtain the SIFT-Image representation. The SIFT-Image is then fed into a 

CNN, resulting in the complete framework known as SIFT-CNN. The overview of the two 

frameworks is presented in Figure 3-2.  

By using the SIFT-CNN approach, the network learns spatial relations directly from the 

histograms of gradients in neighboring pixels. This differs from learning directly from intensity 

pixels and allows the network to focus on the relationships between statistical properties of the 

pixel regions. Specifically, CNN learns the connections between histogram bins that encode the 

frequency of gradient directions in the vicinity of each pixel. Importantly, the spatial resolution 

of the input image remains unaffected, enabling CNN to learn features with high spatial detail 

while utilizing the entire spatial image domain. At the same time, the spatial resolution of the 

input image remains unaffected, enabling the CNN to learn features with high spatial detail 

utilizing the total spatial image domain [43]. In essence, the SIFT-CNN leverages the properties 

of SIFT, leading to the implicit integration of local rotation invariance within the framework. 

 

Figure 3-2: Overview of the Pixel-CNN and SIFT-CNN frameworks for image classification. Top scheme: Pixel-CNN, the regular 

implementation of CNN where the pixels’ values of grayscale image are used directly as inputs into CNN. Bottom scheme: SIFT-

CNN, the SIFT-Image representation is used as input into a CNN and thus, the SIFT-CNN is guided to learn features from local 

gradient information of images, something that results SIFT-CNN to incorporate implicitly the local rotation invariance property.   
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3.3.2     Mapping pixels to SIFT descriptors 

The SIFT descriptor is computed for every pixel of a grayscale image using a method called Dense 

SIFT feature descriptor [149], which is roughly equivalent to running SIFT on a dense grid of 

locations at a fixed scale and orientation. In this work, we adopt the dominant scale approach, as 

suggested by previous studies [110], [150], which found that a single scale is sufficient to capture 

the necessary information. The dominant scale is computed by executing the SIFT detector using 

the training images and then, estimating the distribution’s mean of all the scales. For every pixel 

of an image, a neighborhood of size N × N pixels is defined around it, where N is specified by the 

scale parameter and is set to N = 8. This local area is divided into 4 × 4 regions called cells. For 

each cell, an 8-bin histogram is computed and therefore, each pixel is represented as an M-

dimensional feature vector, where M = 128 represents the number of bins in the SIFT histogram 

when all cells stacked together. As a result, each grayscale input image is transformed into a new 

image with M-channels, formed by the M-dimensions descriptors for every pixel. This process is 

presented on the following Figure 3-3. The descriptors encode statistical information related with 

the orientation of the gradients in the local neighborhood of pixels’ area. This representation 

exhibits local rotation and scale invariance while also expands the receptive field-of-view of the 

first layer of the CNN. The increased input receptive field enables the CNN to capture higher-level 

features with its first layer leveraging the previous SIFT encoding. Furthermore, the properties of 

the SIFT descriptors are implicitly incorporated in the training process of the CNN. Training a Deep 

CNN with these M-channel SIFT-Images has the potential to improve generalization with fewer 

augmentations or training data, while implicitly transfusing a sense of local rotation invariance 

into the CNN.  

 

Figure 3-3: Given a grayscale image, one SIFT descriptor is computed for each pixel of the image capturing a neighborhood around 

every pixel. Thus, each pixel is mapped to an M=128-dimensional SIFT descriptor. For all the pixels of the grayscale image, the 

corresponding result is a new image that is called SIFT-Image. In the SIFT-CNN framework, every input convolutional layer of the 

CNN (e.g., CNN filter 1) operates directly on the SIFT-Image such as in a multiscale input image with the regular convolution 

process. In this way, the output of the first convolutional layer is an ordinary CNN feature map.  
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3.4     Experimental Results 

The efficiency of the proposed SIFT-CNN is evaluated on many different challenging tasks. In all 

cases, the ability of SIFT-CNN to perform better than (or to be combined) regular Pixel-CNNs is 

presented. The ResNet-18 architecture is used as the standard CNN in the SIFT-CNN framework, 

since ResNets have demonstrated remarkable performance in transfer learning  [151]. 

Optimization is performed by minimizing the loss with Stochastic Gradient Descent (SGD) for 100 

epochs, starting with an initial learning rate of 0.1, which is divided by 10 every 30 epochs, unless 

specified otherwise. The size of the minibatch is determined by the maximum memory on GPU, 

with 64 images for image classification problems and 8 for the sequence classification task. 

However, our preliminary investigation using smaller minibatches (i.e., 8,16,32) results in 

performance degradation of less than 1% for each reduction. Unless otherwise stated, no specific 

data augmentation procedures are incorporated into the training procedures. 

3.4.1     Datasets 

The MNIST dataset consists of 60,000 training images and 10,000 test images, representing 10 

handwritten digit categories ranging from zero to nine [116], [117]. Upon conducting 

experimental investigations using the 28 × 28 pixels images from MNIST, we observed the need 

for a larger input spatial area to efficiently train CNNs with SIFT-Image representations. This is 

because CNNs require the ability to handle the additional information provided by the SIFT 

descriptors. Therefore, for all experiments involving Pixel-CNN and generating SIFT-Images, the 

grayscale MNIST images with a resolution of 28 × 28 pixels are resized to 64 × 64 pixels using 

bicubic interpolation.  

Two publicly available biomedical datasets with single-channel (grayscale) images of Human 

Epithelium Type-2 cells (HEp-2 cells) are used for the task of cell image classification [118]. These 

datasets were introduced in two contests and are known to be highly challenging. The first one 

is ICPR 2012 HEp-2 cell dataset, consisting of 721 training images and 734 test images across six 

categories [152]. The training and test sets are already provided by the contest organizers. The 

second dataset is ICIP 2013 HEp-2 cell contest dataset with 13,652 cell Images and six cell classes 

[153]. From the total of 13,652 images, 1,186 were used for training and the rest 12,466 were 

allocated for testing. To ensure consistency in the experiments, all grayscale cell images are 

resized to a resolution of 128 × 128 pixels. This resolution is applied to both the input images for 

Pixel-CNN and the generation of SIFT-Images. 

The TJNU ground-based remote sensing cloud database (TJNU-GRSCD) contains 8000 cloud 

images captured by the sky camera with fisheye lens [119], [120]. The images are collected for a 

long period of time from 2017 to 2018 in Tianjin, China. Every ground-based sample is an RGB 

image of the sky dome with the resolution of 1024 × 1024 pixels and preserved in the JPEG 

format. The sky conditions are divided into 7 sky types: 1) cumulus, 2) altocumulus and 
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cirrocumulus, 3) cirrus and cirrostratus, 4) clear sky, 5) stratocumulus, stratus, and altostratus, 6) 

cumulonimbus and nimbostratus, 7) mixed cloudiness, according to cloud genera definitions of 

the World Meteorological Organization (WMO) and the visual similarity of cloud in practice. The 

GRSCD is composed of 4,000 training samples and 4,000 test samples from 7 classes, as provided 

by the creators. The RGB images are converted to grayscale and resized to 280 x 280 pixels in 

order to allow the image augmentations of random crop into resolution of 256 × 256 and random 

horizontal flip during training. 

The Lip-Reading problem is tackled using the LRW-500 dataset, which is a challenging large-

scale dataset specifically designed for lip reading tasks [121]. This LRW (Lip Reading Words) 

dataset contains words extracted from short video clips captured automatically from BBC TV 

broadcasts. Each spoken word is represented with 29 RGB frames. The dataset contains a total 

of 500 different word classes, with 488,766 training samples and 25,000 samples for both 

validation and testing. To maintain a consistent frame length, the creators of the dataset cropped 

fixed windows with the target word positioned at the center. For our evaluation, each image was 

cropped to an 88 × 88 pixels region around the mouth area. These cropped images were 

transformed to grayscale and then into SIFT-Images. This mapping process converts each 

grayscale image sequence into a corresponding SIFT-Image sequence, which is subsequently 

processed by the CNN architecture.  

3.4.2     Classification Results on MNIST dataset 

The evaluation of the SIFT-CNN framework on the MNIST dataset enables us to conduct two 

distinct investigating directions: a) analyzing the impact training samples number, and b) 

assessing the robustness of SIFT-CNNs in terms of rotation invariance. By conducting experiments 

on the well-known MNIST dataset, we can examine the framework's performance under varying 

numbers of training samples and determine its ability to handle image rotations effectively. 

3.4.2.i     Study the behaviour of SIFT-CNN with limited samples 

The objective is to investigate the behaviour of SIFT-CNNs concerning the number of available 

training samples and thus experiments are conducted by varying the number of training images. 

The number of training images is reduced to 30,000 , 10,000 , 5,000 , and 1,000 in addition to the 

full training dataset of 60,000 images. For each training set, the SIFT-CNN was compared with 

Pixel-CNN using the ResNet-18 model, and the results are presented in Table 3-1. In cases with 

less than 60,000 images, the average accuracy after 100 repetitions with randomly sampled 

training images is demonstrated. The results indicate that Pixel-CNN can achieve similar 

performance to SIFT-CNN only when it is trained with a large number of training samples. On the 

contrary, as the number of training samples decreases, the SIFT-CNN consistently achieves better 

accuracy than Pixel-CNN. From the results in Table 3-1, we can observe that the accuracy of SIFT-
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CNN remains more stable, consistently above 99%, even when using less than 10% of the original 

available samples, namely 5,000 images. 

Table 3-1.Classification Accuracy on MNIST hand-digit dataset using different training set sizes. 

Number of 
Training Samples 

Classification Accuracy (%) 
on MNIST 

SIFT-CNN Pixel-CNN 

60000 99.47 99.49 

30000 99.45 99.43 

10000 99.17 98.78 

5000 99.09 98.42 

1000 97.46 95.12 

 

3.4.2.ii     Rotation invariance and comparison with Spatial Transformer Networks 

In this section, our objective is to study the behaviour of SIFT-CNN framework concerning 

rotations. To do this, only the test set is subjected to rotations of various degrees. One of the 

most effective methods for achieving global rotation invariance is the of Spatial Transformer 

Networks (STN) [142]. Therefore, in this experiment, we study the rotation invariance properties 

of SIFT-CNN its compare them with Spatial Transformer Networks (STN) and Pixel-CNN. To assess 

the ability of both Pixel-CNN and STN-CNN to overcome the challenge of rotation invariance, data 

augmentations are included in their trainings too. These augmentations applied random image 

rotations between 00 and 900 degrees. In this experiment, ResNet-18 models are trained from 

scratch to avoid using weights learned with extreme augmentations from other pretrained 

datasets. The training set consists of 1000 training samples by randomly sampled 100 training 

images per class digit. The experiments are performed by running 100 random repartitions to 

stress the generalization capabilities of the frameworks. During these experiments, the 10,000 

test images are randomly rotated at angles between 00 and 450 degrees, while the training set 

remains unmodified in means of rotation. The average classification accuracy values (average 

over 100 random repetitions) for the different frameworks, considering various rotation angles, 

are presented in Table 3-2. The Results demonstrate that SIFT-CNN could equip the framework 

with robustness against arbitrary rotations of input test images. Even for extreme rotations, the 

SIFT-CNN exhibits a descent performance. Interestingly, the rotation augmentations appear to 

have a negative impact on the models’ performance, particularly in cases where the training data 

already have intrinsic small perturbations, such as the MNIST dataset. It is also worth-noting that 

the STN-CNN outperforms the Pixel-CNN in scenarios involving large rotation angles. However, 
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Pixel-CNN demonstrates superiority in cases of small rotations where the STN may not function 

optimally.  

Table 3-2. Evaluating different frameworks to cope with arbitrary rotations of the MNIST test set. 

    

3.4.3     Classification results on ICPR 2012 and ICIP 2013 HEp-2 cell image datasets 

The Hep-2 cell image classification problem motivated us to design the SIFT-CNN method, and 

thus some critical parameters of the framework are optimized on the ICPR2012 dataset. Firstly, 

dimensionality reduction methods were applied to the 128-channel image representation to 

reduce the input 3D volume's depth. Half of the training images were used to learn the 

undercomplete dictionary for NMF (Non-negative Matrix Factorization) or the projection matrix 

for PCA (Principal Component Analysis), resulting in a reduced dimensionality of M < 128. The 

kernel size of filters in the first layer of the CNN was also investigated, considering that the SIFT-

Image pixels already encompass a larger receptive field with an encoding neighborhood of size N 

× N pixels (N = 8). Two sizes were tested: 1×1 and 3×3 pixels. Results on Table 3-3 indicate that 

the 3×3 convolution kernel demonstrated notably higher accuracy, supporting our hypothesis 

that transforming the data into a more informative representation leads to a more efficient 

starting point for training the CNN model. By enhancing the information encoding in initial layers, 

larger convolution kernels prove beneficial for capturing more extensive neighbor information. 

NMF encoding showed performance improvement with an increase in the number of dimensions, 

while PCA-based representation was inferior, especially for larger dimensions. The evaluation 

showed that dimensionality reduction did not significantly contribute, leading us to focus on 

transfer learning in the following experiments. 

 

Test 
set 

Rotation 
Angles 

(in 
degrees) 

Classification Accuracy (%) 
on MNIST 

SIFT-CNN 
without 
rotation 

augmentations 

Pixel-CNN 
without 
rotation 

augmentations 

Pixel-CNN 
with 

rotation 
augmentations 

STN-CNN 
without 
rotation 

augmentations 

STN-CNN 
with 

rotation 
augmentations 

00 97.46 95.12 89.66 92.43 81.16 

50 97.20 93.66 89.75 92.30 78.60 

150 93.75 82.06 81.22 91.46 77.67 

300 84.15 51.72 64.39 78.92 72.29 

450 73.75 27.60 52.45 71.26 67.90 
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Table 3-3: Parameter analysis in input representation depth and kernel size of first convolutional layer using the ICPR2012 
dataset. 

Parameters 
Classification Accuracy (%)  

on ICPR2012 

Kernel size of filters in the first layer of CNN 1 × 1 3 × 3 

SIFT-Image input (M=128 Channels) 70.65 73.09 

Dimensionality Reduction (DR) method 
NMF PCA NMF PCA 

Channels of Input Image after DR (M) 

4 65.76 65.48 65.76 65.75 

8 66.44 66.30 65.48 66.04 

16 69.70 70.52 69.29 68.75 

32 69.15 68.20 70.78 70.24 

64 69.43 68.47 70.92 70.92 

76 66.44 66.03 70.24 68.47 

96 67.25 66.30 72.14 68.85 
 

The availability of two HEp-2 cell image datasets sharing the same classes, namely the ICPR 

2012 and ICIP 2013, provides the opportunity for a comprehensive experimental analysis. On the 

one hand, the CNN is studied separately in each dataset and on the other hand, the transferability 

of the learned features across datasets is investigated. In the first case, the ResNet-18 is trained 

using only the training set of each dataset. Subsequently, the trained model is tested on the 

respective test set of each dataset. This approach is referred to as "without transfer learning" in 

the results presented on the Table 3-4 below. In the second case, the ResNet-18 is initially trained 

using the training images of one dataset. Then, the trained model serves as the initialization point 

for further training on the other dataset. The accuracy is reported on the test set of the final 

dataset. This approach is referred to as "with transfer learning" and the results are also presented 

in Table 3-4. To ensure a fair comparison, Pixel-CNN is tested using the same protocols as SIFT-

CNN. The SIFT descriptors are computed using the patch dominant orientation option, as 

depicted in Figure 3-4. 

Table 3-4. Classification Results on the Hep-2 cell image biomedical datasets. 

Methods 
Classification Accuracy (%) 

ICPR 2012 ICIP 2013 

Proposed: Pixel-CNN(ResNet-18) without transfer learning 66.3 84.47 

Proposed: Pixel-CNN(ResNet-18) with transfer learning 68.5 86.12 

Proposed: SIFT-CNN(ResNet-18) without transfer learning 73.0 89.18 

SIFT + VHAR [110] 73.4 - 

SIFT-SURF + BoW [154] 75.0 - 

SPM [154] 75.0 - 

Proposed: SIFT-CNN(ResNet-18) with transfer learning 75.0 89.21 

SBoW [155] 78.0 - 
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The SIFT-CNN demonstrates a notable improvement compared to the regular Pixel-CNN both 

when transfer learning is performed or not. These results highlight the superior performance of 

SIFT-CNN, indicating that the combination of SIFT-Image with a CNN model allows the CNN to 

effectively leverage the dense SIFT properties and handle the complex textures present in the 

cell images, surpassing the utilization of pixel values alone. Considering that images captured 

from fluorescence microscopy often contain noise, it is evident that SIFT descriptors provide 

more robust representations compared to the noisy pixels. Furthermore, the performance of 

SIFT-CNN is statistically comparable to traditional methods that employ SIFT descriptors along 

with Vector of Locally Aggregated Descriptors (VHAR) or frequency-related Bag-of-Words (BoW) 

encoding. The effectiveness of hand-crafted features, as opposed to Pixel-CNN’s learned 

features, is primarily attributed to the presence of noise in microscope images rather than the 

limited number of training samples. However, it is worth mentioning that both Pixel-CNN and 

SIFT-CNN exhibit the ability to transfer knowledge between tasks in all cases.    

 

Figure 3-4: SIFT descriptors computed using patch dominant orientation on a cell image. 

3.4.4     Classification results on GRSCD with all-sky images 

The SIFT-CNN was evaluated on the Ground Based Remote Sensing Dataset (GRSCD), utilizing 

only the visual information since another version of the dataset includes additional multimodal 

information for every image. Table 3-5 presents a variety of methods including both traditional 

techniques and deep learning architectures. The traditional-based features are calculated using 

the SIFT descriptors together with bag-of-words (BoW), with the uniform invariant local binary 

patterns (LBP with the (P, R) set to (24, 3), respectively), and the completed LBP that is a joint 

combination of local central information, signs, and magnitudes of the local differences (CLBP 

with P = 24 and R = 3). Many popular CNN topologies are also presented in Table 3-5, such as the 

VGG-16, the AlexNet-like for CloudNet, deep convolutional activation-based features (DCAFs), 

and ResNet variations. The deep learning methods exhibit a significant advantage over hand-

crafted methods in ground-based cloud classification. This is attributed to the unique 

characteristics of cloud images, which possess large intraclass and small interclass variances in 

terms of texture (e.g., similar clouds at different heights) and color (e.g., different daytime). CNNs 

prove effective in learning distinctive representations from challenging fisheye sky images, while 

could incorporate additional mechanisms in their end-to-end training. The utilization of these 

mechanisms, such as the ResNet model trained with dual guided loss (DGL), hierarchical fusion 
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of intermediate feature maps of deep visual features, and the attention mechanism for exploiting 

local visual features (Attentive Network) is crucial for capturing inherent structural information 

and improving performance. Hence, fusion techniques enhance performance by extracting 

information from multiple CNN-based streams and combining the outputs, as seen in the 

Improved Combined Convolutional Network (ICN). Considering this, the proposed SIFT-CNN is 

combined with PixelRGB-CNN using a late fusion mechanism to further improve results. Finally, 

to optimize the decision boundary, a support vectors machine (SVM) classifier at the top of the 

final extracted features seems advantageous for the cloud type classification task, as evidenced 

by increased classification results. 

The experiments using both Pixel-CNN and SIFT-CNN performed with the stochastic gradient 

descent (SGD) optimizer started with a learning rate 0.001 and a weight decay and momentum 

set to 0.0002 and 0.9 respectively. The learning rate was decreased every 30 epochs using a step 

function by a factor of 0.1 for a total of 100 epochs when the minibatch had 64 images. Results 

on Table 3-5 indicate that SIFT-CNN provides an efficient way to encode and utilize the SIFT 

descriptors. By comparing it with the standard approach for encoding SIFT descriptors into a 

histogram of occurrences (BoW), SIFT-CNN provides an improvement of about 16%. Moreover, 

SIFT-CNN surpasses pixel-CNN regardless of the used architecture, like the ResNet-18, ResNet-

50, AlexNet-like, and VGG-16. However, on its own, SIFT-CNN falls short in achieving a high 

classification score. To improve the results, additional mechanisms such as a fusion scheme 

should be employed, as evident from the relevant works listed in the table. 

Table 3-5. Summary of the state-of-the-art results on the GRSCD. 

Methods 
Classification 
Accuracy (%)  

on GRSCD 

SIFT + BoW [119], [156] 66.13 

LBP (P = 24, R = 3) [119], [157] 50.20 

CLBP (P = 24, R = 3) [119], [158] 69.18 

VGG-16 [119], [159] 77.95 

CloutNet (ALexNet-like) [119], [160]  79.92 

Proposed: PixelRGB-CNN (ResNet-18) [161] 82.52 

DCAFs & SVM [119], [156] 82.67 

ResNet-50 [46] 83.15 

Proposed: SIFT-CNN (ResNet-18) 83.90 

ResNet-50 + DGL [162] 85.28 

ResNet-50 + hierarchical fusion & SVM [163] 85.12 

ResNet-50 + Attentive Net & SVM [119] 86.25 

Proposed: Late Fusion PixelRGB-CNN and SIFT-CNN (Resnet 18) [161] 87.22 

Proposed: Late Fusion PixelRGB-CNN and SIFT-CNN (Resnet 18) & SVM [161] 87.55 

TGCNN (with ResNet-50) [120] 89.48 

Fusion of ICN, ResNet-50 and VGG-16 [164] 90.08 
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3.4.5     Classification results on Lip-Reading LRW dataset 

Previous experiments have demonstrated the effectiveness of SIFT-CNN for single image 

classification. In this section, the capability of SIFT-CNN in a problem of sequence modelling is 

investigated. For this purpose, the Lip-Reading (LR) problem is approached using a very 

challenging and large-scale dataset consisted of 500 English spoken words. LR is a challenging 

image sequence classification task where the CNNs are asked to learn very high-level, abstract 

patterns of mouth motion from sequences of frames [165]. Traditionally, sequence encoding 

tasks have relied on recurrent neural networks (RNNs) such as GRU and LSTMs. However, in 

recent years, Temporal Convolutional Networks (TCNs) have garnered significant attention for 

various sequence learning tasks, including action recognitions [166], weather predictions [167], 

and also LR task [168], [169]. TCNs offer an alternative approach to sequence modeling, utilizing 

convolutional layers to capture temporal dependencies and extract meaningful features from 

sequential data. Towards this direction, a state-of-the-art implementation has been obtained by 

combining spatiotemporal convolutions, also known as 3D convolutions, with ResNet-18 CNNs 

and Multiscale Temporal Convolutional Networks (MS-TCN) [168]. In this approach, the frames 

of the sequence are passed through a 3D convolutional network and then processed frame-wise 

from a ResNet-18 to extract a feature vector from each frame. Finally, the TCNs are used to map 

the sequence of vectors into a fixed length vectorial representation, thereby providing sequence 

encoding. Our goal is to explore the power of the input image representation utilizing the SIFT-

Image in combination with a deep architecture. Thus, we train the MS-TCN based Lip-Reading 

system proposed by [168], using the SIFT-Images as input, ensuring fair comparison with plain 

rule as possible. More specifically, given a gray scale image with a resolution of 88 × 88 pixels as 

input, we compute the SIFT-Image, resulting in a tensor of size 88 × 88 × 128 (Height × Width × 

Channels). Next, we apply two convolutional layers with a kernel size of 3 and a stride of 2 in 

order to map the channels from 128 to 64, and then from 64 to 64, respectively. Subsequently, a 

third convolutional layer with a stride of 1 and a kernel size of 3 is used to transform the 64 

channels to 64. Padding of 1 is applied to all images. This downscales the dimension of the SIFT-

Image by a factor of four resulting in an input tensor of size 22 × 22 × 64, as proposed by the work 

of [168]. Moreover, the essential 3D learning module in the initial stages of the LR system is used, 

similar to [168], but with the corresponding SIFT-Image sequence as input. 

Table 3-6 presents the classification accuracy of the state-of-the-art methods on the word-

level LRW dataset. The experimental results indicate an advantage of SIFT-CNN – MS-TCN over 

Pixel-CNN – MS-TCN [168]. To provide a comprehensive comparison, we also trained the Pixel-

MS TCN of [168] from scratch, however we achieved only 79.38%, something that indicates Pixel 

– MS-TCN needs some particular treatment as mentioned by its authors too, like the pre-training 

in a few words and then gradually increasing the number of words as well as a transfer learning 

process by training on a different task first. The increased classification accuracy of SIFT-CNN can 
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be attributed to the robustness in brightness, constancy, and piecewise smoothness of SIFT-flow. 

Additionally, the local rotation invariance properties and the higher-level information captured 

by SIFT-descriptors (through local gradient encoding) contribute to the superior performance of 

the proposed system compared to using regular pixel image as input. 

Table 3-6. Summary of the state-of-the-art results on the LRW-500 dataset. 

Method Data LRW-500 

Authors 
(Year) 

Frontend Backend 
Input 

image size 

Input and 
data managing 

policy 

Classifica-
tion 

Accuracy 
WRR (%) 

Chung et 
al. (2016) 

[121] 
3D &VGG M - 112 × 112 Mouth 61.10 

Chung et 
al. (2017) 

[170] 

3D & VGG M 
version 

LSTM & 
Attention 

120 × 120 Mouth 76.20 

Petridis et 
al. (2018) 

[171] 
3D & ResNet-34 Bi-GRU 96 × 96 Mouth 82.00 

Stafylakis 
et al. 

(2017) 
[172] 

3D & ResNet-34 Bi-LSTM 112 × 112 Mouth 83.00 

Cheng et 
al. (2020) 

[173] 
3D & ResNet-18 Bi-GRU 88 × 88 

Mouth & 
3D augmentations 

83.20 

Wang et 
al. (2019) 

[174] 

2-Stream ResNet-34 & 
DenseNet3D-52 

Bi-LSTM 88 × 88 Mouth 83.34 

Courtney 
et al. 

(2019) 
[175] 

alternating 
ResidualNet 

Bi-LSTM 

alternating 
ResidualNet 

Bi-LSTM 

48 × 48, 
56 × 56, 
64 × 64 

Mouth                      
(& pretraining) 

83.40 
(85.20) 

Luo et al. 
(2020) 
[176] 

3D & 2-Stream 
ResNet-18 

Bi-GRU 88 × 88 
Mouth and 

gradient policy 
83.50 

Weng et 
al. (2019) 

[177] 

deep 3D & 2-Stream 
ResNet-18 

Bi-LSTM 112 × 112 
Mouth &                   

optical flow 
84.07 

Xiao et al. 
(2020) 
[178] 

3D & 2-Stream 
ResNet-18 

Bi-GRU 88 × 88 
Mouth & 

deformation flow 
84.13 

Zhao et al. 
(2020) 
[179] 

3D & ResNet-18 Bi-GRU 88 × 88 
Mouth and mutual 

information 
84.41 
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Method Data LRW-500 

Authors 
(Year) 

Frontend Backend 
Input 

image size 

Input and 
data managing 

policy 

Classifica-
tion 

Accuracy 
WRR (%) 

Zhang et 
al. (2020) 

[180] 
3D & ResNet-18 Bi-GRU 112 × 112 

Mouth 
(Aligned) 

85.02 

Feng et al. 
(2020) 
[181] 

3D & SE ResNet-18 Bi-GRU 88 × 88 
Mouth 

(Aligned) & 
augmentations 

85.00 

Pan et al. 
(2022) 
[182] 

3D & MoCo Transformer 112 × 112 
Mouth                    

(& pretraining) 
85.00 

Martinez 
et al. 

(2020) 
[168] 

3D & ResNet-18 MS-TCN 88 × 88 
Mouth 

(Aligned) 
85.30 

Kim et al. 
(2022) 
[183] 

3D & ResNet-18 Bi-GRU 112 × 112 
Mouth                    

(& pretraining) 
85.40 

Tsourouni
s et al. 
(2021) 
[184] 

alternating 
ALSOS & 

ResNet-18 layers 
MS-TCN 88 × 88 

Mouth 
(Aligned) 

85.96 

Proposed 
SIFT- 3D & 

CNN(ResNet-18) 
MS-TCN 88 × 88 

Mouth 
(Aligned) 

86.46 

Kim 
et al. 

(2022) 
[185] 

3D & ResNet-18 
MS-TCN + KD 
(ensemble) 

88 × 88 
Mouth 

(Aligned) 
88.50 

Koumparo
ulis and 

Potamian
os (2022) 

[186] 

3D & EfficientNetV2 & 
+ Transformer 

TCN 88 × 88 
Mouth 

(Aligned) 
88.53 

 

3.5     Conclusions 

The combination of hand-crafted descriptors with the deep learning methods is an open research 

domain that bridges the experience of computer vision community with hand-crafted features 

with the feature representation capabilities of deep learning. Our attempt to combine these two 

worlds resulted in the SIFT-CNN framework, which consists of a mapping that produces a new 

image representation based on SIFT descriptors and a learning process based on efficient CNN 

architecture. For every pixel of an input single-channel (grayscale) image, the SIFT descriptor is 
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calculated generating the SIFT-Image with channel size equals to 128 (as SIFT descriptor 

dimension) and spatial size as the input grayscale image. Next, the SIFT-Images are fed into a CNN 

model under a final classification task. The SIFT-CNN framework has its own set of advantages 

and limitations. One limitation of the SIFT-CNN is its inability to inherently encode color 

information. In cases where color plays a crucial role in discriminating different classes, SIFT-CNN 

needs to compute SIFT descriptors per color channel and employ fusion mechanisms on the 

outputs, increasing computational complexity. The computation of dense SIFT introduces extra 

initial procedures, leading to higher processing resources and time compared to frameworks 

working with pixel images as input. However, the time cost during training and testing is not 

significantly impacted due to the implementation of SIFT computations on GPUs, and only the 

descriptor calculation stage is executed. At last, the utilization of a larger input volume (H×W×128 

instead of H×W×3 or H×W×1) has negligible impact on process time but needs more memory 

requirements that evidently restricts the size of the minibatch. However, we observed that the 

proposed framework does not expect large minibatches to be efficient. On the other hand, SIFT-

CNN offers several advantages. First, for every pixel, the surrounding pixels gradient information 

is encoded into a histogram and thus, information is encoded channel-wise in SIFT-Image. In this 

context, every pixel across channels encodes the occurrence of gradient patterns. This mapping 

allows the CNN to be trained directly on the values formed by the SIFT histograms using an end-

to-end learning scheme. In this manner, the SIFT-CNN can be advantageous in small datasets 

where regular Deep learning methods are prone to overfit as the try to learn all the feature 

representation and the encoding while SIFT-CNN enforces these networks to be trained on 

statistical information that might be encoded gradually in an end-to-end manner by the CNN. 

Secondly, the SIFT representation inherently provides strong local rotation invariance, which can 

be implicitly incorporated into the SIFT-CNN framework. Finally, experimental results 

demonstrate that the proposed SIFT-CNN operates better than the CNNs trained directly on 

pixels’ values in all investigated tasks. This indicates that incorporating SIFT-Images as input to a 

CNN could be an effective and easy alternative that enhances system’s efficiency. By striking a 

balance between the SIFT-based features and CNN-based features, the SIFT-CNN benefits from 

the local rotation invariance and the data-driven learning capability. In conclusion, the SIFT-CNN 

framework offers a promising approach by combining the strengths of hand-crafted descriptors 

and deep learning. 
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4. Deep learning with auxiliary external data 

4.1     Introduction 

The scarcity of training data poses a significant challenge in pattern recognition applications [9], 

[187]. Data limitations though are really inherent in the signature verification task, since a 

practical Handwritten Signature Verification system (HSV) should be designed and efficiently 

trained using just a small number of reference signature from each user and also, enabling easy 

model updating since the signature of a writer may change -deliberately or not- through the 

years. A typical structure of an HSV is presented on Figure 4-1. Thus, the solution to the small 

sample size problem of HSV is either the “in-vitro” training using a large signature dataset and a 

transfer-learning approach [102] or data augmentations via generating more samples based on 

the existing signatures [188]. In the case of Offline Signature Verification (OffSV), significant 

amounts of signature images can be found in the GPDS-960 corpus database with more than half 

a thousand writers used for training, having 24 genuine and 30 forgeries signatures per writer 

[44], [189], [190]. Unfortunately, this dataset is no longer publicly available due to the General 

Data Protection Regulation (EU) 2016/6791, thus hindering the efforts of the research community 

to develop more complex methods that require more training data. Additionally, efficient 

augmentation of signatures poses a challenge, primarily due to the need for characterization of 

the resulting images as genuine or forgeries. The utilization of augmented signature images, 

whether obtained through geometrical transformations [73], [191] or generative learning models 

[75], [192]–[194], is problematic when assuming them to be genuine because these images are 

generated through a third-party process. On the other hand, considering them as forgeries could 

introduce bias to the forgery class with the characteristics of the augmentation method. Thus, 
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the utilization of signature duplications in feature learning methods necessitates special 

processes to ensure their effectiveness. Otherwise, they are susceptible to deviating from the 

realistic intra-subject variability criterion and poor image quality [193]. 

 

 
Figure 4-1: Overview of an automatic Handwritten Signature Verification system (HSV), which builds up with the Preprocessing 
stage for input data, the Feature Extraction stage for vectorial representation of inputs, and the Decision stage for classifying the 
result. A query signature (either an offline or online signature) along with the claimed identity of the user are the inputs of the 
HSV system and the output result is accepted if the query signature classified as genuine or rejected if the query signature regarded 
as forgery. Ultimately, the HSV answers the question “is the user really who he/she claims to be?”. 

In this work we explore an alternative path that could enable the continued incorporation of 

modern deep-learning techniques to OffSV systems, despite the setback caused in the OffSV field 

by the unavailability of the largest (to date) public dataset. In this context, we demonstrate that 

state-of-the-art performance can be achieved by harnessing other types of data via appropriately 

designed training procedures. In particular, we present an OffSV system based on a transfer 

learning process for training a deep Convolutional Neural Network (CNN) that is utilized as the 

feature extraction stage of the OffSV system. In order to enrich the feature representations 

learned by the CNN without the need of a vast number of signature images, we opted for 

transferring the larger part of the data-intensive training procedure in a domain similar to OffSV, 

but with an abundance of training data. To that purpose, the CNN is first trained for solving the 

writer identification problem using handwritten text data. The rationale behind this decision is 

that since both signature and text handwriting are complex high-level tasks associated with the 

person’s motoric system and psychophysical state, it is reasonable to expect that features 

learned in one task can be useful to the other. We were inspired by the fact that the nature of 

the data is very similar for the two tasks, being comprised by scanned images of handwritten 

strokes. In this sense, features learned for such task should be far for informative to the OffSV 

compared to the usual approach for transfer learning where CNNs are pretrained to large-scale 

databases with natural images. Hence, in this work we attempt to operate with an auxiliary 

domain of handwritten text data aiming to transfer knowledge to the target domain of 

handwritten signature data. In more detail, the explored domains have the following 

characteristic: 

 

Preprocessing
Feature 

Extraction

offline

online

OR Decision
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• Auxiliary domain: A public Latin-based (western) handwriting dataset is utilized in this 

work, where several subjects write some predefined pieces of text in certain forms. The 

images of the filled forms of text are considered as the raw data of this domain. Such data 

though, should be processed in an appropriate way in order to generate data that are as 

closely related to the signature data as possible. Therefore, we designed a novel process 

of extracting multiple images of text from every handwritten form, taking care of 

preserving the personal handwriting information. CNN is trained in the writer 

identification problem using the generated text images, labeled with the writer’s ID. 

• Target domain: Three well-known western Offline signature datasets are used for 

evaluating the proposed OffSV system. The signature images of each dataset are utilized 

either in WD classifiers for estimating the performance of the system using the genuine 

and skilled forgery signatures or in a cross-validation way for additional training the 

system with the genuine signatures of one dataset and tested the system on the other 

datasets using the genuine and skilled forgery signatures. In all cases, a WI feature 

learning scheme along with WD classifiers is followed for OffSV. 

 After the pretraining of the CNN in an auxiliary domain, the learned features can be tailored 

to the OffSV task through different techniques, in an intermediate fine-tuning step. In this work 

we demonstrate that a metric learning stage can be used to learn an efficient mapping of the 

signatures’ features to a latent space. A module that learns a metric or similarity measure 

between signatures can be trained independently of the CNN model, based on the features 

extracted from the model using the signature images as input. Such function can be learned using 

just pairs of signatures, which are considered as similar when the two signatures come from the 

same writer and dissimilar when the two signatures originate from different writers. We provide 

evidence that this process can be successfully realized using only pairs of genuine-genuine and 

genuine-random forgery for learning such mapping function. In the last stage of the presented 

OffSV system, the extracted and mapped features, are used to verify the validity of a query 

signature using WD kernel based SVM classifiers, each one trained individually on the reference 

signatures of the corresponding signer and some randomly sampled genuine signatures from 

other signers (used as random forgeries). As a consequence, there is no need of skilled forgery 

signatures for any of the training stages of the pipeline, thus eliminating the requirement for such 

scarce data samples that characterize many state-of-the-art OffSV systems [65], [103].  In 

addition, a key advantage of the proposed system is that since it exploits the handwritten text 

data for the learning of the CNN, it requires a significantly smaller amount of signature images 

for learning the final feature representation. Our system achieves state-of-the-art performance 

on three popular Latin Offline signature datasets, and it is competitive with systems trained on 

thousands of signature images using datasets which are no longer available in the public domain.  

 The rest of the chapter is organized as follows: Section 2 presents a brief overview of the 

literature related to OffSV problem, emphasizing in the deep-learning implementations. Section 
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3 provides an overview of the proposed approach whereas Section 4 contains a detailed 

description of the proposed OffSV system’s pipeline. Experimental set up and results are 

presented in Section 5 and 6 respectively, while conclusions are drawn in Section 7. 

4.2     Related Work 

Feature extraction for signature images is a fundamental part of an OffSV system and various 

techniques have been employed for this task [195]. Although many taxonomies of such methods 

can be made, the most common distinction is between techniques that rely on hand-crafted 

features and learned features.  

       The hand-crafted methods aim to capture the shape of the signatures or the direction of the 

stokes, designing geometric, graphometry and directional features [70], [188], [196]–[204]. Also, 

mathematical transformations, such as Wavelets and Counterlets are utilized for feature 

extraction [205]–[207]. Moreover, texture descriptors and interest key-points detection 

techniques (e.g. SIFT, SURF, BRISK, KAZE, FREAK) are frequently used in OffSV to generate 

vectored representations [62], [208]–[215]. All the above methods handle with the task of 

producing the more compatible hand-engineered descriptors for signature images. 

       The learning-based approaches seem to be more efficient in OffSV task since the features are 

learnt directly from the images [44], [91]. The most prominent classes of algorithms from this 

group are the methods that rely on learning a dictionary from signature images, while the images 

are subsequently encoded using the learned dictionaries [91], [94], [216], [217] and methods 

based on deep learning [44], [77], [101], [103], [218], [219]. The first approach of harnessing deep 

representations for OffSV is, to the best of authors’ knowledge, the utilization of Restricted 

Boltzmann Machine for learning an encoding/representation function [220]. Later, CNNs are 

used as feature extractors in the work of [221]. Generative Adversarial Networks (GAN) were 

utilized in [222], where the discriminator was used for extracting the signature features. 

Subsequently, a feature extraction CNN explicitly designed for OffSV called SigNet was proposed 

in [223], and latter modified effectively by [224]. In the latter approach, the SigNet is trained in 

the writer identification task with signature images and then, it is used as fixed feature extractor 

for any new test signature image. A testimony of the SigNet’s efficiency are the many works in 

OffSV that used it, either in its original form or with various modifications [82], [101]–[103], 

[225]–[228]. Of course, different architectures are also investigated, such as the Capsule CNN 

[218], a combination of Recurrent Neural Network with Local Binary Patterns [219], LSTM models 

[199], and networks from the family of ResNets [77], [229], [230], however the reported results 

are inferior to SigNet. 

A sub-class of learning-based methods are those that utilize metric-learning methods [231]. 

The metric learning aims to transfuse the notion of similarity between samples into the system 

since it is not based on the absolute positions of the embedded samples but on their relative 

positions to each other. The process of learning a distance between signatures is achieved either 
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using pairs of signatures or triplets of signatures both in WI and WD systems [77], [223], [232], 

[233]. The triplets consist of a reference genuine signature from a writer as anchor sample with 

another genuine signature of the same writer as positive sample and a genuine signature of 

another writer or a skilled forgery signature of the same writer as negative sample. The OffSV 

system is trained to minimize the anchor-positive distance and maximize the anchor-negative 

distance and then a threshold is applied for the final verification decision [77], [232]. The pairs 

between two genuine signatures of the same writer and one genuine signature of one writer with 

one genuine signature of another writer or one skilled forgery signature of the same writer are 

used for training variations of Siamese-like systems and the operation of a threshold enables the 

OffSV decision [223], [233]. The Signature Embedding method proposed by [232], is equipped 

with the reduced version of VGG-16 CNN which provides a 128-dimensional feature 

representation for each input signature. Their scheme is designed as a WI OffSV system which is 

trained with signature triplets, requiring the availability of skilled forgeries. The triplet network 

scheme of [77] instead uses only genuine signatures for training, evaluating both the ResNet-18 

and the DesnseNet-121 CNNs. Nevertheless, the performance of the generated features under 

the WD setting is competitive only when combined with a structural approach based on Graph 

Edit Distance. The WD approach of [233], named Deep Multitask Metric Learning (DMML), 

utilizes pairs of similar/dissimilar signatures, but the DMML was always trained on the same 

dataset (with the same subjects) used for testing, thus limiting the practical applicability of their 

technique. The Siamese architecture of [223] utilized the Contrastive loss to build a WI system 

but it was used an older version of SigNet with extracted features of 128 dimensions using also 

skilled forgeries signatures to train the CNN model. Finally, Vianna et al. [83], [83] introduced a 

training approach for the SigNet model, which involves two sequential tasks. Firstly, the model is 

trained on the writer identification task, where the goal is to bring signature samples of the same 

user closer together in the feature space while ensuring separation from signatures of different 

users. Secondly, the model is trained using the contrastive loss function, which helps fine-tune 

the representations of skilled forgeries by incorporating contrastive losses and enabling effective 

hard negative mining techniques. 

To the authors’ knowledge, the only work that investigates the text-based writer identification 

as a domain for mining knowledge for the OffSV task is that of [229]. In that work, authors trained 

a ResNet-8 CNN with text data of Persian language and subsequently utilized it in OffSV, but the 

followed approach and study had some important disadvantages. First, it provides a limited 

investigation of the task since it did not consider any sophisticated preprocessing in order to 

improve the similarity of data from the two domains. Second, the use of a different CNN 

architecture does not allow a direct comparison with the state-of-the-art SigNet network, in 

order to highlight whether the implemented transfer learning Offers any performance benefits 

to the OffSV task.  
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In contrast to the above works, the method presented here addresses the OffSV problem by 

utilizing the SigNet architecture with completely different training philosophy. We exploit both 

properly processed text data as well as specialized mapping functions through metric learning. In 

particular, the handwritten text data from the auxiliary domain are processed by a specially 

designed algorithm in order to create an auxiliary task whose data resemble more to those of the 

target domain (handwritten signature images). We propose this technique as a more convenient 

and elaborate transfer learning methodology for efficiently training any CNN model using largely 

available auxiliary text data in order to address the problem of limited availability of actual 

signature data. Also, we design a self-contained learning module based on contrastive loss that 

maps the signatures’ features, extracted from SigNet, into an embedded space. Unlike previous 

metric-learning approaches, our proposed mapping module, after being independently trained 

using either text data or genuine signatures (i.e., without the requirement of skilled forgeries), 

can be directly applied to any input feature from any signature dataset. This design offers 

versatility and flexibility, making it applicable across different datasets without requiring 

additional training. 

4.3     Design Philosophy 

The ability to train with a small number of training samples is an implicit requirement of every 

practical OffSV system. One convenient approach to build an effective feature extractor for the 

signature images is to design a Writer-Independent (WI) learning scheme [44]. Thus, the feature 

extraction stage learns how to efficiently encode the structure of the signature image. This 

approach is also followed when the Deep Learning models are utilized. In that case though, a 

large Offline signature dataset is necessary (e.g. GPDS [190]) for training the CNN models which 

are used to provide the feature representations of the input signature images. In this work, we 

demonstrate an alternative way to train deep architectures for learning the features, in order to 

disentangle the development of OffSV systems from the need of large signature databases, since 

-among other problems- privacy issues and legislation have lately made even harder to find such 

data publicly available. Thereby, our core idea is the exploitation of auxiliary data with large 

availability as substitute to the limited signature data.  

The signature depicts wealthy personal information of the signatory, encompassing not only 

the representation of the person’s name but also both the physiological writing system (hand, 

arm, etc.) and the psychophysical state [49]. Each person possesses a distinctive style of 

handwriting, whether it is the everyday writing text or the signatures [234]. The handwritten text 

data are far more easily available in large volumes. Therefore, handwritten text can be an 

appropriate source of data for the initial training of the Deep Learning systems, which then can 

transfer the knowledge in the target problem of signature verification. 

In this work, the handwritten text data are processed suitably aspiring to emulate shapes and 

forms that resemble signatures. The goal is to manipulate the auxiliary data in order to simulate 
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the target data. We are performing this by employing a properly designed processing procedure 

of the text data, which exposes the underlying personal information of handwriting. The 

proposed technique analyzes documents of handwritten text, extracts text images and uses them 

as the training data of a CNN that solves a writer identification problem. This initial training 

process leads to a baseline CNN, which is specialized in encoding handwritten signal. This training 

is demonstrated in Figure 4-2 – Τop panel.  

Following the training of the aforementioned model, we utilize it either as an out-of-the-box 

feature extractor or as an initialization for fine-tuning of another CNN for realization of the task 

of interest, incorporating a transfer learning strategy. Two of the most popular such strategies 

are the parameter reuse followed by fine-tuning and the learning of some kind of feature 

mapping. Both techniques are graphically summarized in Figure 4-2.  

 

Figure 4-2: Different stages and techniques for transfer learning. Top panel: CNN is trained with the auxiliary data (text images), 
in the task of writer identification. Middle panel: The pretrained model is finetuned with the limited number of available signature 
images (target data). Ultimately, features are extracted from the penultimate layer of CNN. Bottom panel: features extracted by 
the pretrained model are used to learn a mapping function (Layer 8) via Contrastive Loss. In this scheme, the mapped features are 
discriminative but inherit metric properties tailored to the OffSV task. 
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 In the first case, the weights of the baseline CNN (which in our case have learned to 

distinguish between persons’ handwriting styles) are fine-tuned by end-to-end backpropagation 

in the new writer identification task, using signature images, as exposed in Figure 4-2 – Middle 

panel. This warm-starting approach essentially enables to start training the CNN from an already 

good initial (partial) solution and can reduce the number of signatures that are needed for 

accomplishing an efficient feature-extraction model for the target problem of signature 

verification. Still though, the performance scales with the amount of training data, since the 

entire CNN is trained end-to-end.  

In the second direction, the CNN stripped from its final classification layer provides a feature 

representation of every input image, acting as a feature extractor. Given the fact that CNN learns 

to solve a writer identification problem using a text image as input, the model has already learned 

naturally discriminatory feature representations of the handwritten image information for the 

training set of writers. Nevertheless, the objective target of OffSV focuses basically on 

distinguishing between genuine and forgery signatures of a writer and not on distinguishing 

among writers. Therefore, a reorganization of the feature space driven by a similarity metric can 

be beneficial. The formulation of a metric learning problem using the extracted features 

contributes to this direction. Hence, the learned metric space and the function that maps the 

data to that space can be used as an additional module of the processing pipeline, following the 

main feature extraction step performed by the CNN. The metric learning module can be 

efficiently trained with less data for two reasons: a) the mapping function is itself a very small 

model (essentially a projection matrix) compared to a CNN, and b) is typically learned using pairs 

or triplets of images as the fundamental training datum, thus effectively increasing the number 

of available training examples for a given number of signature images. Therefore, the metric 

learning module can both address the limited sample availability and better encapsulate the 

relative similarities between signatures in the form of Euclidean distances between 

corresponding feature mappings, something advantageous in the OffSV task. This stage is 

illustrated on Figure 4-2 – Bottom panel. In this work, the mapping function is learnt via an 

optimization problem with Contrastive Loss [28] that utilizes pairs of features, labeled as similar 

or dissimilar. The objective of the optimization is to learn a function that maps the similar 

features close together in the latent space, while increasing the Euclidean distance of the 

mappings from dissimilar features. The similarity relationship (label) between the features of the 

pairs is determined from the writer’s ownership of the corresponding images. So, all pairs of 

images from a single writer are considered similar, while pairs stemming from different writers 

are labeled as dissimilar. Since the mapping is obtained from the optimization of contrastive loss, 

the extracted features incorporate some sort of similarity metric. Thus, the mapped features can 

be essentially used to distinguish between different writers without them necessarily belonging 

to the utilized training set. Therefore, after learning the mapping function, it is then used for 
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embedding the vectors generated by the CNN feature extractor for any new input image, to the 

final feature space.  

In the final stage of the proposed processing pipeline, a classification stage implements the 

actual OffSV task, inferring on the validity of the processed signature. To that purpose, the vector 

representations of the signature images are processed by writer dependent (WD) SVM classifiers. 

Each of the WD classifiers is trained with the features stemming from genuine signatures of one 

registered writer, and some randomly selected genuine signatures from other writers, commonly 

called random forgeries. An important characteristic of this scheme is that there is no need for 

skilled forgery samples in order to train the WD models, with obvious practical advantages from 

an operational point of view. The different training stages of the proposed OffSV system are 

outlined in Figure 4-3. 

 

 

Figure 4-3: Overview of the different training stages of the proposed OffSV system with the respective data involved in each one. 

 

4.4     Methodology 

4.4.1     Preprocessing of handwritten text images 

There are many sources of images with handwritten text in the public domain. An easily 

accessible source which was used in this work is the CVL dataset which is a public Offline 

handwritten text database [235] with numerous writers. The CVL-database consists of image-

forms with cursively handwritten German and English texts. It contains 310 writers with 5 to 7 

pages of text for each one. Each page consists of a form filled with pre-defined text, containing 

between 5 and 10 lines of text on average.  
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The goal is to extract multiple image samples from each form, which contains handwritten 

text. The extracted images should be in a format that can convey distinctive information of the 

writer’s handwriting style, without necessarily including full words. Thus, there is no need for 

optical character recognition (OCR) or any similar language-dependent preprocessing. Therefore, 

we opted for a procedure of extracting Solid Stripes of Text (SSoT) from the handwritten text, 

which includes the following stages: 

a. Convert the forms to grayscale. 

b. Detect and extract horizontal stripes of text from the forms. 

c. Removal of spaces between the handwritten words in each isolated horizontal stripe. 

 

Figure 4-4: Overview of the preprocessing of the text images. The extraction of Solid Stripes of Text (SSoT) from a page with 
handwritten text consists of three steps: a) conversion of the image into grayscale, b) detection and isolation of stripes of text 
following the horizontal direction, c) detection and deletion of empty spaces among handwritten words in each horizontal stripe 
in order to obtain Solid Stripes of Text. 

A graphical summary of the preprocessing of text images is illustrated in Figure 4-4. In the first 

step, the RGB images-forms are converted into grayscale. This is necessary because the forms in 

the database are scanned in color, written with pens of various colors. Given the fact that the 

persons usually write across a generally horizontal direction, it is possible to isolate the horizontal 

stripes of text. With the form in grayscale, the relative intensities of the pixels are utilized for 

detecting the horizontal boundaries of the relevant areas, separating those from the empty ones 

across the document’s area. In particular, the standard deviation (STD) of the pixels’ intensity 

across every row of the image is calculated. The image then is segmented into horizontal stripes 

with text by detecting rows of pixels with STD value greater than 20% of the maximum 

document’s overall intensity STD value, in order to filter out the rows with no text while 

accounting for noise and smudges. Additionally, the detected horizontal stripes with less than 20 

pixels in height are discarded as noise-induced false positives. At the end of this process the 

horizontal stripes with text in each document are marked.  

A procedure similar to the above is subsequently used in order to also detect the spaces 

between words, by finding the pixel columns with small intensity STD in each horizontal stripe. 

Finally, the empty spaces between words are deleted and a Solid Stripe of Text (SSoT) with 

continuous letters is stored as a separate image for each line of text in the dataset. The followed 

preprocessing is necessary in order to ensure that the training samples do not end up having 

crops with large amounts of white space and little/no text. There are some documents in the 

database where the lines of text are too close to each other for the text merging process to be 

a. b. c.

a. Converting to grayscale b. Isolation horizontal stripes of text c. Deletion the spaces between words
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accurate in this simplistic form. These samples are processed normally with space removal 

considering that the results are similar to random crops operation. The choice of not using entire 

words but rather Solid Stripes of Text (SSoT) is not negatively affecting the results as the task is 

to recognize the handwriting style and not its textual content. It is important to note here that 

no further modification (e.g., scaling, rotation, etc) is performed on the extracted SSoT.  

4.4.2     Simulating signature images 

The target domain of interest deals with signatures images, whereas the auxiliary data are 

handwritten text. The strategy for the selection of text crops to train the feature extraction CNN 

can significantly affect the quality of the final representation, since the data essentially guide the 

CNN to encode the most informative visual traits for the task. With this in mind, our purpose is 

to generate text crops that resemble signature images as much as possible, by proper handling 

the Solid Stripes of Text (SSoT). The signatures usually consist of a combination of allographs and 

letters (i.e., symbols), especially in Latin-based languages [50]. In this manner, the SSoT, as a block 

of consecutive letters, can be segmented into vertical intervals to produce samples with similar 

form. This cropping process does not actually modify the vertical size of the letters and thus, it 

preserves the handwriting style properties.   

The aspect ratio is a common structural feature of Offline signatures [236] and it is the most 

reasonable tool to manipulate the cropping process. Three different strategies of cropping the 

SSoT are utilized in this study, relying on the aspect ratio of the final cropped segments. 

Therefore, the SSoTs are cropped using different values of aspect ratio selected in three different 

ways. Two of the cropping strategies consider aspect ratio to be a fixed parameter. In the first, 

the value of aspect ratio is associated with the size of the canvas -in which the images are 

centered before feed the CNN- as well as the size of the input to the CNN. The second cropping 

strategy applies the value of the aspect ratio of the signatures’ trace, estimated from three public 

signature datasets.  The third strategy produces crops of variable aspect ratio, by selecting 

random aspect ratio values lying within a fixed range. An example illustration of the three 

cropping strategies is presented in Figure 4-5. At the end of each process, several cropped 

segments are generated from every single SSoT. The set of cropped segments from each cropping 

strategy form a different set of sample text images.  
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Figure 4-5: Three strategies of cropping a SSoT based on the aspect ratio value are demonstrated. The arrows indicate the position 
of cropping, and the boxes contain the cropped results, i.e. cropped segments. Top and Middle scheme have fixed value of aspect 
ratio, which is defined by the user, and so the width of each cropped segment equals to the multiplication of its height with the 
aspect ratio value. Bottom scheme shows the cropping process when random values of aspect ratio are utilized, and each cropped 
segment has a different width. 

4.4.3     Geometrical normalization 

The used signature datasets consist of grayscale signature images that are already extracted from 

the documents where they are written, so there is no need for signature extraction process. 

Nevertheless, some simple (pre)processing operations are always used to normalize images. The 

geometrical normalization steps are dedicated to noise removal and size normalization since 

scanned images may contain noise and the methods require the images of a fixed size. The noise 

is removed utilizing a combination of a gaussian filter along with OTSU thresholding [51]. The 

common fixed size of the images is obtained by centering each signature into a blank canvas of a 

predefined size, and then resize the canvas to the desired size, thus preserving each signature’s 

original aspect ratio. The reason for adopting this implementation of centering-resizing is that it 

has shown to achieve better results in many OffSV systems [224], [237]. The geometrical 

normalization process shares exactly the same pipeline with previous works on OffSV [102], 

[103], [225] and the detailed steps are the following: 

• Apply a gaussian filter to remove small components. 

• Utilize the threshold obtained from OTSU to remove background noise. 

• Center the image in a large canvas of predefined size by aligning the signatures’ center of 

mass to the center of the canvas so as not to affect the width of strokes. 

• Invert image to have black background and grayscale foreground by subtracting each pixel 

from the maximum brightness (i.e., white) once the background pixels are set to black  

and the foreground pixels are left in grayscale.  

• Resize the image to the common fixed size. 
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The above geometrical normalization steps are implemented in every image input to CNN. 

Thus, both the images from the signature datasets as well as the text images emanating from the 

cropped segments of SSoT are processed through the geometrical normalization steps. The 

implementation of the same geometrical normalization for the text and signature images is 

intentional because the goal is to train CNN using auxiliary data of text that simulate the 

signatures, as an alternative of using the original signature images. The geometrical 

normalization has two parameters which are defined by the user: a) the size Hcanvas × Wcanvas of 

canvas and b) the common size Hinput × Winput of the final images. The canvas size is a 

hyperparameter under study during the training of the models while the common size is 

determined by the input size of the CNN, as in the work of [102]. Examples of text and signature 

images after geometrical normalization with different canvas sizes are illustrated in Figure 4-6. 

 

Figure 4-6: Examples of text and signature images after geometrical normalization. The top row includes processed text images, 
and the bottom row contains processed signature images, when different sizes of canvas are utilized. 

4.4.4     SigNet CNN architecture 

The SigNet CNN architecture utilized in this work is inspired by the work of [7] and is modified 

[102], [223], [224] in order to address the Offline signature recognition problem. The SigNet 

primarily is designed for solving the writer identification task. Given as input a grayscale image 

with handwriting, it predicts the identity of the writer among a predefined set of writers, 

essentially optimized for classification task. Subsequently, the SigNet model is utilized for feature 

extraction providing a vectorial representation for each input image. In previous works [82], 

[102], [103], [224], [227] the SigNet was trained using the signatures from various users 

therefore, it learns to distinguish between signatures from different writers in the dataset. 

Provided a large collection of signatures from many writers is available, the SigNet proved to be 

an efficient feature extractor for the signature verification problem. In this setting, the SigNet 

implicitly learns feature representations in a Writer-Independent manner and the 

representations are subsequently used by a classifier that is trained in a Writer-Dependent way.   
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       We employ similar concept in this work, but by using text data for training the CNN. The 

manipulation of the text data to simulate the signatures images makes us anticipate that training 

the SigNet in the writer identification problem of the handwritten text images can lead SigNet to 

learn features that are relevant to the problem of interest, i.e., the signature verification. The 

proposed methodology benefits from the large availability of text data and the simple image 

manipulation process that simulates the signatures’ form, thus eliminating the need for large-

scale signature data which are nevertheless of limited availability. 

The utilized CNN follows the SigNet architecture, which is summarized in the Table 4-1. SigNet 

takes as input a grayscale image of size 150 × 220 pixels and outputs the probabilities for the 

known writers’ identities via a softmax operation. Following the work of [102], after every layer 

a batch normalization [8] is applied, followed by the ReLU non-linearity [238]. The feature 

extraction is incurred from layer 7 (Fully Connected layer) and the feature’s dimension equals to 

2048. The CNN is trained using simple translational augmentations, by taking crops of resolution 

150 × 220 pixels randomly positioned inside the 170 × 242 pixels images used for training. All 

experiments used the same set of optimization hyper-parameters, minimizing the classification 

loss with Stochastic Gradient Descent with mini-batch size of 64, Nesterov Momentum factor of 

0.9, while the L2-penalty with weight decay of 0.0001 is used for regularization.  

Table 4-1: Overview of the SigNet CNN architecture. 

  SigNet architecture 

Layers Dimensions Other parameters 

# input 
Grayscale image 
with handwriting 

1 × 150 × 220  

1 
conv Convolution 96 × 11 × 11 stride = 4, padding = 0 

pool Max Pooling 96 × 3 × 3 stride = 2 

2 
conv Convolution 256 × 5 × 5 stride = 1, padding = 2 

pool Max Pooling 256 × 3 × 3 stride = 2 

3 conv Convolution 384 × 3 × 3 stride = 1, padding = 1 

4 conv Convolution 384 × 3 × 3 stride = 1, padding = 1 

5 
conv Convolution 256 × 3 × 3 stride = 1, padding = 1 

pool Max Pooling 256 × 3 × 3 stride = 2 

6 fc (dense) Fully Connected 2048  

7 fc (dense) Fully Connected 2048  

 output Softmax 
classes - 
number of writers 
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4.4.5     Learning a feature mapping function (CoLL) 

CNN addresses the classification problem of writer identification therefore, it ultimately learns 

to construct features that are as linearly separable as possible, in order to better facilitate the 

final classification layer. Therefore, such features are not necessarily equipped with a metric that 

reflects the similarity of the auxiliary data [239]–[242].For this purpose, the feature learning has 

to incorporate a ranking loss function. These type of loss functions require a similarity score 

between data points, such as a binary score of similar and dissimilar points. In the user 

identification task such notion is inherit, because the images that belong to the same person are 

similar and all others are dissimilar to them. Hence, the exploitation of a ranking loss during 

feature learning, can lead to discriminative features which in their turn, can distinguish between 

–in principle– any different writers (even out-of-sample writers) on any two (or more) data 

points. Thus, the model tries to rearrange the feature space, by learning representations with a 

small distance between similar data and greater distance for dissimilar ones.  

There are different forms of ranking losses, distinguished by the setup of the training problem. 

The most popular is the Contrastive Loss or Pairwise Loss [28] which utilize pairs of data samples. 

Its aim is to gradually (i.e., during training) decrease the distance between similar pairs and make 

that larger than a margin m for the dissimilar pairs. The Contrastive Loss Layer (CoLL) is the 

selected implementation and therefore is applied to the extracted features (obtained by the fc 7 

layer of the CNN), in order to learn a mapping function that incorporates the metric learning. 

Summarizing, the CNN is used as a fixed feature extractor, and it is not trained end-to-end with 

the Contrastive loss. This decision was made in order to accommodate fair comparisons to the 

baseline SigNet features in the task of OffSV. The CoLL is thus used as an individual component 

applied on the SigNet’s features and works as a transformation layer producing discriminative 

features in a metric space designed to express the similarity of the data.  

Therefore, the CoLL can be trained independently using pairs of features from the previously 

trained CNN. The similar pairs are comprised of features stemming out of two images which 

belong to the same writer, whilst the dissimilar pairs comprised of two features that originated 

from two images which appertain to different writers. It is important to note here that when a 

signature dataset is utilized for training the CoLL, all training pairs are constructed from genuine 

signatures, hence skilled forgeries are not required. Thus, a similar pair is made up with genuine 

- genuine for a given writer and a dissimilar pair is a genuine - random (unskilled) forgery pair. 

The dimensionality of the new output feature (output space) is selected to be the same as the 

size of the input feature (input space), i.e., a vector of 2048 elements, for as much as possible 

fairness in comparisons with the baseline SigNet. The parameterized measure of similarity in the 

output embedded space is defined as the Euclidean distance since it is simple and fast. Hence, 

the Contrastive loss is formulated as follows: 

𝐿𝐶 =  𝑌 ⋅ 𝐿𝑠 + (1 − 𝑌) ⋅ 𝐿𝐷       eq. 4.1 
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where 𝐿𝑠 is the partial loss function for a pair of similar vectors and 𝐿𝐷 is the partial loss function 

for a pair of dissimilar vectors given by the relations: 

𝐿𝑠 =
1

2
‖𝐺(𝑠𝑖) − 𝐺(𝑠𝑗)‖

2
=   

1

2
‖𝐷𝑖𝑗‖

2
      eq. 4.2 

𝐿𝐷 =
1

2
(𝑚𝑎𝑥{0, 𝑚 − ‖𝐺(𝑠𝑖) − 𝐺(𝑠𝑗)‖})

2
=

1

2
(𝑚𝑎𝑥{0, 𝑚 − ‖𝐷𝑖𝑗‖})

2
      eq. 4.3 

with 𝐺() the CNN feature extractor, 𝑠𝑥 the input image (in the current implementation 𝐺(𝑠𝑥) is 

a feature vector of 2048 dimensions), and 𝑚 the margin of Euclidean distance in the embedded 

space, while 𝑌 is the label of each pair with: 

𝑌 = {
1 , 𝑓𝑜𝑟  𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑝𝑎𝑖𝑟𝑠 (𝑠𝑎𝑚𝑒 𝑤𝑟𝑖𝑡𝑒𝑟′𝑠 𝑑𝑎𝑡𝑎)              

0 , 𝑓𝑜𝑟 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑝𝑎𝑖𝑟𝑠 (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑤𝑟𝑖𝑡𝑒𝑟𝑠′ 𝑑𝑎𝑡𝑎)
 

It is obvious that the Contrastive Loss is equal to the Euclidean distance between the two 

input features for a similar pair, otherwise is equivalent to hinge loss. The CoLL is minimized using 

adaptive moment estimation (Adam) method with mini-batch [243]. At each iteration, a subset 

of 32 similar pairs and 32 dissimilar pairs are randomly selected to create the mini-batch of size 

64 and along with a learning rate of 0.0001, a gradient decay factor of 0.9, and a squared gradient 

decay factor of 0.99, the learnable parameters of the transformation layer are updated. The 

margin 𝑚 outlines a radius around the point in the embedded space and the dissimilar pairs 

contribute to the loss only if their distance is inside this radius. The value of margin 𝑚 was set to 

0.1 after a grid search. The CoLL is trained using the feature representations either of the 

processed text images or the genuine signature images from one dataset and then, it can be 

applied in any feature vector from any input image utilized as a standard mapping function. 

The CoLL maps the features extracted by SigNet into an output embedded space permeating 

the metric qualities that original features were lacking. In particular, this last layer forces the 

attraction of the samples owned by each writer into form clusters via the projection of the 

feature vectors to the new latent space. Simultaneously, the new space enforces greater 

distancing between features from different writers. Thus, the simple Euclidean distance in the 

latent space reflect the neighboring relationships in the input space according to the samples’ 

ownership, and as a linear projection function, CoLL provides a mapping which is smoother and 

more coherent in the output space [28]. This essentially results into a reorganization of the 

feature space which is in-principle more suitable for the verification task, since the initial CNN-

generated features are optimized for a specific identification task without any explicit motivation 

for exhibiting metric traits. An indicative 2D visualization (t-SNE projection) of the feature spaces 

is provided in Figure 4-7, comparing the four different feature extraction schemes descripted in 

Figure 4-2 evaluated for all the signatures of MCYT75 dataset. It can be easily observed that the 

representations produced by CoLL, especially when it is trained with signature data (Figure 4-7 

(d)), provide a more uniform distribution of the different signatures overall, while maintaining 
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very good intra-class compactness and separability between both different writers and imitators 

(skilled forgeries). It is important to note that the signatures used for the training of CoLL and 

finetune of the CNN (Figure 4-7 (b) and (d)) are different from the samples of MYCT which are 

mapped here, thus the latter being completely unseen data to every compared scheme. The 2D 

projection of the features from the CNN trained solely with text data (Figure 4-7 (a)) provides a 

distribution with visibly worse characteristics in terms of both inter-class separability and intra-

class compactness and shape. Nevertheless, it is still remarkable that the features have far better 

characteristics than similar features from CNNs pre-trained in external classification tasks, as 

previously reported in literature [102]. This can be attributed to the special design and 

preprocessing of the text-based identification task that resulted into training the CNN to a truly 

similar task thus generating inherently more appropriate features for the OffSV. The other two 

schemes (Figure 4-7 (b) and (c) lie in between the previous two cases, delivering relatively good 

separability and distribution, but slightly inferior to that of Figure 4-7 (d). A noteworthy 

observation though, is that the utilization of CoLL-even with text data- improves the resulting 

representation. This signifies both the importance of engaging a metric-learning stage to the 

overall pipeline, and the affinity of the specially pre-processed text data to the signature data, 

since learning a metric for text clearly improves signatures’ representation. 
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Figure 4-7: 2D projections using t-SNE of feature vectors, which are provided from the four feature extractors related to our work. 
The signature images are fed into the feature extractors schemes and the vectorial representations (features) are provided. Next, 
the vectors of 2048-dimensions are mapped into 2-dimensions through the t-SNE dimensionality reduction method. Thus, the 
signatures of MCYT75 dataset are represented as points on the 2D embedded space. The cyan points correspond to genuine 
signature while the red points correspond to skilled forgery signatures of MCYT75 dataset for all the writers. The 2D projections 
in a) result from features extracted from a CNN trained with text images while in b) the same CNN is finetuned with the genuine 
signatures of CEDAR dataset. The points in c) came from the CoLL module -placed at the top of the initial CNN of case a)- when 
the same text images are utilized for training both CNN and CoLL. Finally, in d) the representations are produced by CoLL, which 
is fed with the features from the initial CNN of case a) and CoLL is trained with the genuine signatures of CEDAR dataset, the same 
images that used for finetuning the CNN in case b). 

4.4.6     Employing Writer-Dependent (WD) classifiers 

Since a vectorized representation is constructed for every signature image via the feature 

extraction and mapping process, the feature is fed into a classifier that infers on the validity of 

the signature. In this study, the Writer-Dependent (WD) approach is followed, where one 

classification model is trained for each one of the writers. The signature verification problem is 

addressed through the respective classifier that answers the question “is the writer really who 

he/she claims to be?”. Consequently, the classifier tries to separate the genuine signatures of the 

corresponding writer from forgery signatures and thus, it works as a binary classifier among the 

two populations.  

a) b)

c) d)
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       The SVM (Support Vectors Machine) classifier with a Radial Basis Function (RBF) kernel is 

utilized for constructing the classification model of each writer. The SVM is trained with a positive 

class ω+ consisting of a number of genuine signature features by the writer and a negative class 

ω- composed of features from genuine signatures by other writers (also called random forgeries), 

since the skilled forgeries of the writer are not available in a practical setting. The number of the 

used genuine signature features of the writer is denoted as REF and it is a measure for 

comparisons between OffSV systems because the smaller the reference set has needed the more 

preferable is the system in an everyday application. The number of the genuine signatures 

features of other writers is set to be the twice of REF in order to populate the negative class with 

more samples than the positive class during the SVM training. The reason behind this decision is 

to better cover the space of the negative class, since the trained model is required to reject skilled 

forgeries, even if such samples are not present during training.  

       A radial basis SVM classifier has two hyper-parameters, the  (gamma) and ᴄ (cost). The 

parameter  (gamma) defines how far the influence of a single training sample reaches and can 

be seen as the inverse of the radius of influence of support vectors. The regularization parameter 

ᴄ trades off the correct classification of training samples against the maximization of the decision 

function’s margin. In our implementation, a holdout cross validation procedure returns the 

optimal writer’s parameters  and ᴄ minimizing the misclassification rate (loss) in the training set 

for every writer. 

4.4.7     Accuracy metrics 

Many metrics have been used in order to test the efficiency of a OffSV system, such as the False 

Rejection Rate (FRR), which is referred to the misclassification of a genuine signature as being a 

forgery, the False Acceptance Rate (FAR), which is mentioned to the misclassification of a forgery 

as genuine signature, and the Area Under Curve (AUC) considering the Receiver Operating 

Characteristic (ROC) curve drew for each writer [44]. The point where the FRR and FAR are equals 

(FRR=FAR) is known as the Equal Error Rate (EER). The EER describes the overall performance of 

a biometric system with only one demonstrated value and for that it is a very popular metric in 

the evaluation of OffSV systems too [44], [47], [49], [50], [195], [244]. Some researchers address 

the signature verification problem incorporating both skilled and random forgeries [245] in the 

negative population of the classifier or evaluate the performance based on each type of forgery, 

i.e. only using Random forgeries and only using Skilled forgery signatures in the negative class. 

This has an impact on the calculation of the EER value since the FAR is related to the evaluated 

forgeries samples. Additionally, the EER can be calculated employing user-specific decision 

thresholds or global decision threshold. 

       In this work, due to the plethora of experimental results we opted for focusing only on the 

Equal Error Rate (EER), obtained using optimal user-specific decision thresholds with the genuine 

signatures of the user and the corresponding skilled forgeries. Thus, the EER is calculated when 
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FRR = FARskilled using user-specific decision thresholds. After training the feature extraction 

schemes, the vector representations of the signatures are processed by the Writer-Dependent 

(WD) classifiers. The training of every SVM WD classifier has been repeated 10 times with the 

feature representations of randomly selected Reference genuine samples. The EER results are 

obtained in the terms of the average and standard deviation values across these 10 experiments 

for the test set of signatures, i.e., the rest genuine and the skilled forgeries signatures of the user. 

4.5     Experimental Setup 

4.5.1     Handwritten Text Dataset 

The CVL-database is a public dataset of digitized documents with hand-filled forms of text, 

suitable for writer identification as well as optical character recognition tasks [235]. The dataset 

includes 310 writers with a varying number of documents for each writer spanning from 5 to 7. 

First, the forms were split into a training set and a validation set, with 3 of the forms by each 

writer placed into the training set and 1 kept for validation. The forms were selected randomly 

from the available set of each writer, as some writers have more forms than others. 

4.5.2     Handwritten Signature Datasets 

Three popular datasets of Offline signatures are utilized in this work to assess the efficiency of 

the presented scheme. All the corpuses belong to Western scripts and are Latin-based. The 

signatures have been digitized -by means of scanning- after acquisition and they are available as 

grayscale images. 

The first signature dataset is the publicly available CEDAR (Centre of Excellence for Document 

Analysis and Recognition) [56]. It consists of 55 enrolled writers with 24 genuine and 24 forgeries 

signatures per writer. The forgeries are a mixture of random, simple, and skilled simulated 

signatures. Each person signed in a square box of 50 mm by 50 mm and the forms are scanned 

at 300 dpi in grayscale. 

The second signature dataset is the Offline version of the MCYT (Ministerio de Ciencia Y 

Tecnologia, Spanish Ministry of Science and Technology), known as the MCYT75 Offline Signature 

Baseline Corpus (“Database”) and it is publicly available [57], [198]. The MCYT75 includes 75 

writers with 15 genuine and 15 forgeries signatures per writer. The forgeries contributed by 3 

different user-specific forgers and thus, they are skilled simulated signatures. The signatures are 

captured in a paper template within a 17.5 mm by 37.5 mm (height by width) frame and are 

digitized by means of scanning at 600 dpi in grayscale. 

The third signature dataset is the Offline handwritten signature GPDS (Digital Signal 

Processing Group) database, which is no longer publicly available due to the General Data 

Protection Regulation (EU) 2016/679 (“GDPR”) [189], [190], [246]. The GPDS-960 corpus began 

with 960 enrolled writers, having 24 genuine and 30 forgeries signatures per writer. The forgeries 
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signatures marked as skilled since they made by 10 forgers from 10 different genuine specimens. 

The signatures were collected using black or blue ink on white paper in two different bounding 

boxes evenly distributed, one box is 18 mm height by 50 mm width and the other is 25 mm height 

by 45 mm width. There are two versions of the dataset based on the image type, the grayscale 

version (GPDS960GRAY), which is scanned at 600 dpi, and the black-and-white version (GPDS-

160, GPDS-300 with 160 and 300 users respectively), which is scanned at 300 dpi. During the 

move to the grayscale version of the dataset though, 79 users and 143 imitations of the remaining 

signers were lost. Thus, the GPDS960GRAY signature database consists of 881 users. The standard 

practice for evaluation with GPDS though [44], [195], is to use a subset with the first 300 users of 

the GPDS960GRAY called GPDS300GRAY, which is what we utilized in this work for compatibility 

with previously published results.   

4.5.3     Constructing Training Sets 

As already mentioned, three different strategies are evaluated for cropping SSoT into text 

samples. For the first case, the aspect ratio is set in the value of 1.4 since this is the aspect ratio 

of the input images in the CNN, as defined in the standard SigNet architecture. In the second 

case, the aspect ratio arises from the mean aspect ratio of the signatures’ trace in the three used 

signature datasets and is set to 2.2. In the third strategy, the aspect ratio takes a random value 

in each cropped SSoT, with the restriction that the width of the final crop should be between 350 

pixels and 50 pixels. Finally, three corresponding sets of text images are formed by applying the 

above settings, having about seventy thousand training and twenty-five thousand validation 

images for the first and third set, and about forty-five thousand training and fifteen thousand 

validation images from the second set.  

       The geometrical normalization is controlled mainly by two parameters, the common final size 

of the images and the size of the canvas in which the images are centered. The final size of the 

images determined from the input of the CNN. The CNN takes as input a grayscale image with 

150 pixels width and 220 pixels height. Nonetheless, the images are resized to resolution of 170 

× 242 pixels in the end so that to apply random crops of size 150 × 220 as data augmentations 

during training of the CNN. The canvas size specifies the area where the image’s center of mass 

is aligned to. The centering of the image in a large canvas before resizing serves the persistence 

of the stokes’ width but poses the problem that an image which is larger than the canvas should 

be scaled down and also, some details can be lost in the very small images. Empirically, the 

conjunction of centering and resizing as opposed to only resizing results in superior performance 

of OffSV systems [224], [237]. Thus, the canvas size is a parameter of crucial importance for the 

performance of the system. In this work, different sizes of canvas were investigated covering a 

large range of values, though all with the same aspect ratio, which is the same as the CNN’s input 

image, equal to W/H=1.4.  Specifically, the tested canvases are of dimensions 300×430, 

400×560, 500×710, 600×850 and 730×1042 pixels. Since our study relies on the exploitation of 
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auxiliary data for efficient CNN learning schemes, the utilization of different canvas sizes also 

allows the generation of multiple training images from the same original set of text images. This 

enables us to investigate the effects of the relationship between the spatial distribution of the 

signals in the target and auxiliary domains, and whether this should be taken into consideration 

when preparing the external data for knowledge learning or it can be addressed via more general 

guidelines. 

      In this study, we tried multiple combinations of cropping and geometrical normalization 

settings to reveal the influence of image preprocessing to the accuracy of an OffSV system, and 

also indicate best practices for future research efforts. First, 15 different training sets are 

constructed based on the three text sets (from the three cropping strategies) and five canvas 

sizes, as presented on Table 4-2. Additional training sets for the CNN can be created by merging 

the existing sets. Therefore, the union of text images from all cropping strategies can form a new 

training set, as also images from the first and the second cropping strategy. Finally, the union of 

sets from each individual cropping can form new training sets (using all the canvas sizes), as 

demonstrated on Table 4-3. Overall, 20 different training sets of text images are investigated for 

their efficiency in the training of CNN models. The same procedure is executed for the validation 

images with the difference that the final 150 × 220 pixels samples are cropped from the center 

of the 170 × 220 images.  

      Furthermore, the genuine signatures from the CEDAR or MCYT75 datasets are used in the 

same spirit, creating 12 (6 with CEDAR + 6 with MCYT75) signature training sets. These sets are 

utilized either for finetuning the CNN after its training with text data or training the CoLL module 

to learn the mapping function, and they also constitute external data (of the same nature though) 

to the final verification task. The combinations for creating the 12 signature training sets are 

summarized in Table 4-4 From the genuine signatures of each signer, one genuine signature is 

used for the validation set and the rest constitute the training set in every single set. Once again, 

after the centering step, the training images of size 170 × 242 pixels are cropped randomly in 

size of 150 × 220 and the validation images are center cropped to obtain the final 150 × 220 

images. 

       For  better clarity regarding the evaluation protocol, it is important to note that the signatures 

used for the target test verification task in each experiment, are processed with only one specific 

canvas size that corresponds to the respective dataset, as proposed in the works of [102], [103]. 

These canvases are related to specific features of each dataset which are linked to the acquisition 

techniques followed in each case and are closely followed here for the sake of fair comparisons. 

Hence, the signatures of CEDAR utilize a canvas size of 730 × 1042 pixels, the signatures of 

MCYT75 use a canvas with resolution of 600 × 850, and the signatures of GPDS300GRAY are 

processed with a canvas of 952 × 1360 pixels. Finally, all images are center cropped with 

resolution 150 × 220 pixels in order to be processed by the trained CNN.  
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Table 4-2: Text Sets generated with single canvas sizes. 

 

Table 4-3: Text Sets generated with multi canvas sizes by merging the Text Sets that generated with single canvas sizes. 

 

 

 

 

 

 

 

Table 4-4: Sign Sets based on the hyperparameter of canvas size using the genuine signatures of CEDAR or MCYT75 datasets. 

 

 

 

 

 

 

 

 

# 
Text 
sets 

Cropping 
scenario 
based on 

aspect 
ratio  

Canvas size  
(Height ×  

Width) 

# 
Text 
sets 

Cropping 
scenario 
based on 

aspect 
ratio  

Canvas size  
(Height × 

Width) 

# 
Text 
sets 

Cropping 
scenario 
based on 

aspect 
ratio  

Canvas size  
(Height × 

Width) 

1. 

1.4 

300 × 430 6. 

2.2 

300 × 430 11. 

random 

300 × 430 

2. 400 × 560 7. 400 × 560 12. 400 × 560 

3. 500 × 710 8. 500 × 710 13. 500 × 710 

4. 600 × 850 9. 600 × 850 14. 600 × 850 

5. 730 × 1042 10. 730 × 1042 15. 730 × 1042 

# 
Text 
sets 

Cropping 
scenario 
based on 

aspect 
ratio 

Canvas sizes 
(Height × Width) 

merge 
Text sets 

16. 1.4 
300 × 430, 400 × 560, 
500 × 710, 600 × 850, 

730 × 1042 
 

1 – 5 

17. 2.2 6 – 10 

18. 1.4 & 2.2 1 – 10 

19. random 11 – 15 

20. all 1 – 15 

# 
Signature 

sets 

Canvas size(s) 
(Height × Width) 

merge 
Sign sets 

I. 300 × 430 - 

II. 400 × 560 - 

III. 500 × 710 - 

IV. 600 × 850 - 

V. 730 × 1042 - 

VI. 
300 × 430, 400 × 560, 
500 × 710, 600 × 850, 

730 × 1042 
I – V 
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4.5.4     Assessing Different Mechanisms of Feature Learning 

As mentioned earlier and summarized in, there are several ways to obtain the feature-level 

representation of the signature images using the trained CNN. In the spirit of a thorough 

evaluation, we opted for assessing all levels of possible feature learning schemes that lie in the 

described framework. Thus, in addition to the fully-trained pipeline with CoLL, we also evaluated 

the effectiveness of the representations produced directly by the trained (with text) CNN without 

any modifications, as also the representations produced if the CNN is further fine-tuned with 

signatures in the traditional way. Finally, since CoLL can be trained both with signatures and text 

data, we evaluated and compared both strategies in the respective experimental settings. 

4.5.5     Training WD classifiers 

After the feature extractors of CNN and CoLL are trained, Writer-Dependent (WD) classifiers are 

also trained with the feature representations of the signatures. Thus, feedforward propagation 

is performed for every training image until the feature extraction layer of each experimental case. 

The extracted feature vectors of 2048 dimensions are used as input to the classifiers. The WD 

binary classifiers are Radial Basis Function Support Vectors Machines (RBF SVM). The RBF SVM is 

trained for each writer using a number REF of Reference signatures’ features of the writer along 

with twice this number of Random forgeries signatures’ features, picked randomly from the 

genuine signature pool of other writers in the dataset. Finally, the SVM (trained) model is 

evaluated using feature vectors from the remaining genuine writers’ signatures and from the 

skilled forgeries signatures of the writer. The features are used either as is, or normalized and 

centered to zero mean and unit variance along each dimension using the global mean and 

standard deviation. This is pronounced in the corresponding results in the “sd” column (True or 

False).  

       The evaluation of the signature verification systems in the WD manner is quantified using the 

Equal Error Rate (EER). The metric of EER using user-specific decision thresholds is calculated 

when the False Acceptance Rate (FAR) is equals to the False Rejection Rate (FRR) for each user, 

considering the respective genuine and skilled forgeries signatures of the user. For every trained 

feature extractor, the SVM WD classifier of the user is trained 10 times with different Reference 

genuine signatures. Finally, the average EER value as well as the standard deviation across the 10 

runs are reported. 

4.6     Experimental Results 

4.6.1     Training CNN only with Text images 

The first experimental setting involves the features generated by the trained CNN without any 

modification to better suit the target task. In all experiments, the CNN was initialized using He-
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Normal [247], and trained from scratch using the text image sets 1-20 (Table 4-2 and Table 4-3), 

obtaining 20 trained models.  In each CNN, the writer’s identity is inferred from the text image 

via a typical classification task of 310 classes, which is the number of the writers in the text 

dataset. The accuracy obtained for the 20 different training sessions is demonstrated in Figure 

4-8. It is important to note that the accuracy is calculated in the level of individual text -

generated- images and is not averaged across whole documents, as it is the usual approach for 

text-based identification systems [235]. It is evident that the size that the text strip occupies in 

the final image plays a crucial role in the obtained accuracy, with the smaller canvases (e.g., sets 

1, 6, 11, 20) that have a larger portion of text inside the image bearing the best performance. In 

line with that observation is the fact that if the text cutouts are resized to the full input image’s 

dimensions, the accuracy gets above 90% (however in that case the performance is unsatisfactory 

at signature verification task).  The writer identification task using text is secondary and out of 

the scope of this work though and thus, we did not perform a thorough analysis of the obtained 

performance since the sole objective of this phase is to generate CNNs that are effective in the 

OffSV task.  In the subsequent stage and for each configuration, the final layer of the respective 

model is removed, and the CNN is used as a fixed function that generates a global feature vector 

for each input signature image. In order to quickly assess the quality of the learned 

representations, WD classifiers are trained on each of the three signature datasets with the 

extracted features, and the EER values are presented in the next error bar diagrams of Figure 4-9, 

Figure 4-10, and Figure 4-11. 
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Figure 4-8: Validation Accuracy (%) for the 20 generated Text Sets. The geometrical normalization steps are applied to the 
preprocessed text images of the CVL-database, and the CNN predicts the writer considering only one validation image 
(individual predictions are not consolidated into document-level predictions). 

 

Figure 4-9: Error bar diagram of EER (%) for the CEDAR dataset using the 20 different CNN models, with REF=10 and 10 
iterations with random reference genuine signatures for every experiment. 
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Figure 4-10: Error bar diagram of EER (%) for the MCYT75 dataset using the 20 different CNN models, with REF=10 and 10 
iterations with random reference genuine signatures for every experiment. 

 

Figure 4-11: Error bar diagram of EER (%) for the GPDS300GRAY dataset using the 20 different CNN models, with REF=12 and 10 
iterations with random reference genuine signatures for every experiment. 
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From the signature verification results some interesting observations can be made. First, 

there are instances where slightly better performance can be obtained using single-canvas Text 

sets (i.e., sets 1-15), compared to mixed-canvas sets 16-20. It is known that the signing procedure 

depends on many parameters, including both the signer’s behavior and the conditions during the 

act of signing. Even though the behavioral state of each signer cannot be regulated, the 

acquisition conditions under the recording of each dataset like the type of paper, the available 

pens, the signature boxes, the signers’ posture and even the environmental conditions, can have 

an effect on the signatures, reflected as dataset-level characteristics. Thus, such implicit dataset-

specific traits could be coincidentally matched by a CNN trained via one specific canvas size and 

one cropping strategy that better fits with the dataset, but such a mechanism has limited 

practical importance since it requires prior knowledge of the reference dataset at training time.  

The second and most important observation is that somewhat better results are obtained 

when all cropping strategies are utilized together (i.e., in the Text set 20). In that case, the training 

set is larger than any other and most importantly, it includes all the types of crops, thus priming 

the trained CNN to generate features that express more general visual cues of the handwritten 

signal. In the same manner, set 18, which is essentially a merge of 16 and 17, is more effective 

than each of them. This remark extends to the superior performance obtained when utilizing 

random aspect ratio values instead of a single aspect ratio value, which again can be justified due 

to the greater generalization of cases that the Text set 19 includes against both Text sets 16 and 

17. Therefore, it seems that the CNN models that learn from more general Text sets, have the 

potential to consistently perform well in all three datasets.  

From the above results, we can point out the more efficient baseline CNN models for the final 

target task of signature verification. In order to keep the number of experiments manageable, 

only these CNN models are used for the next sections that we investigate the following stages of 

the proposed pipeline. Thus, for the CEDAR and MCYT75 datasets, which have about the same 

number of signatures (and they are much smaller than GPDS300GRAY), only one CNN model from 

each cropping strategy is selected, while the last five (16-20) CNN models are selected for all 

three datasets. These five last models serve our purpose of designing an OffSV system that can 

be sufficient across datasets. The selected trained CNN models -that we’ll utilize in the next 

experiments- as well as the corresponding EERs (for the first experiment) are summarized in 

Table 4-5. 
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Table 4-5: The Selected Initial CNNs. 

Test  
Signature  
dataset 

CNN  
(trained with 

text) 
WD classifiers 

trained 
CNN 

models 

db name canvas size #Text set sd EER name 

CEDAR 730 × 1042 

5. False 1.19 (± 0.72) M5 

8. False 1.22 (± 0.72) M8 

15. False 1.13 (± 0.70) M15 

16. False 2.23 (± 0.76) M16 

17. False 1.93 (± 0.91) M17 

18. False 1.88 (± 0.75) M18 

19. False 1.86 (± 0.82) M19 

20. False 1.91 (± 0.78) M20 

MCYT75 600 × 850 

1. False 1.84 (± 1.60) M1 

6. False 1.77 (± 1.50) M6 

12. False 2.29 (± 1.30) M12 

16. False 3.20 (± 1.60) M16 

17. False 2.94 (± 1.90) M17 

18. False 2.39 (± 1.80) M18 

19. False 2.15 (± 1.70) M19 

20. False 1.86 (± 1.40) M20 

GPDS300GRAY 952 × 1360 

16. False 2.44 (± 0.72) M16 

17. False 2.61 (± 0.76) M17 

18. False 2.48 (± 0.84) M18 

19. False 2.51 (± 0.77) M19 

20. False 2.36 (± 0.81) M20 

4.6.2     Finetuning CNN with Signature images 

As a next step, the selected initial CNN models are finetuned with the Signature sets obtained 

applying the parameters of Table 4-4. Since the signatures used for finetune are considered as 

external data from different signers than those that engage with the target OffSV task, the data 

configuration in the experiments that involve external signature data is as follows: In one setting, 

the Signature sets obtained using the CEDAR dataset and utilized for finetuning, while the 

evaluation is performed in the datasets of MCYT75 and GPDS300GRAY. In a separate setting, the 

Signature sets based on the MCYT75 dataset are used for finetuning and the systems are 

evaluated on CEDAR and GPDS300GRAY datasets. The finetuning is performed for 20 epochs and 

the freezing of the initial layers is utilized for the first epochs considering the best performance 

in each case. The optimization was achieved with a learning policy of decreasing learning rate by 

a factor of 10 after 10 epochs with initial value of 0.001, along with Nesterov Momentum factor 
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of 0.9, weight decay of 0.0001, and batch-size of 16. The results are reported for each dataset in 

the following Table 4-6, Table 4-7, Table 4-8. The column of initial CNN, in the Tables, indicates 

the CNN model, which is used as the initial pre-trained model (with the text data) for the 

finetuning using the signature data.  

Table 4-6: EER results for CEDAR (finetuning with Signature the initial CNNs). 

Test  
Signature  
dataset 

initial 
CNN  

(trained 
with text) 

CNN 
(finetuned 
with sign) 

WD classifiers  

with REF = 10 

db name canvas size 
#Text set 

model 
#Sign 

MCYT set 
sd EER 

CEDAR 730 × 1042 

M5. 

I. False 2.60 (± 0.82) 

II. False 2.40 (± 0.82) 

III. False 2.39 (± 0.85) 

IV. False 2.42 (± 1.00) 

V. False 2.15 (± 0.95) 

M8. 

I. False 2.20 (± 0.90) 

II. False 2.24 (± 0.87) 

III. False 1.58 (± 0.74) 

IV. False 1.51 (± 0.76) 

V. False 1.44 (± 0.83) 

M15. 

I. False 2.50 (± 0.85) 

II. False 2.50 (± 0.64) 

III. False 2.32 (± 0.68) 

IV. False 2.41 (± 0.88) 

V. False 2.20 (± 0.83) 

M16. VI. False 2.26 (± 0.66) 

M17. VI. False 2.15 (± 0.91) 

M18. VI. False 2.41 (± 0.80) 

M19. VI. False 1.95 (± 0.68) 

M20. VI. False 2.05 (± 0.86) 
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Table 4-7: EER results for MCYT75 (finetuning with Signatures the initial CNNs). 

Test  
Signature  
dataset 

initial 
CNN  

(trained 
with text) 

CNN 
(finetuned 
with sign) 

WD classifiers 

with REF = 10 

db name canvas size 
#Text set 

model 
#Sign 

CEDAR set 
sd EER 

MCYT75 600 × 850 

M1. 

I. False 1.83 (± 1.20) 

II. False 1.74 (± 1.20) 

III. False 1.91 (± 1.50) 

IV. False 1.99 (± 1.40) 

V. False 2.03 (± 1.30) 

M6. 

I. False 1.65 (± 1.30) 

II. False 1.68 (± 1.40) 

III. False 1.94 (± 1.40) 

IV. False 2.12 (± 1.30) 

V. False 2.33 (± 1.50) 

M12. 

I. False 1.52 (± 1.30) 

II. False 1.80 (± 1.40) 

III. False 1.97 (± 1.50) 

IV. False 2.00 (± 1.50) 

V. False 2.38 (± 1.50) 

M16. VI. False 2.20 (± 1.50) 

M17. VI. False 2.54 (± 1.40) 

M18. VI. False 2.19 (± 1.50) 

M19. VI. False 2.08 (± 1.50) 

M20. VI. False 1.77 (± 1.60) 
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Table 4-8: EER results for GPDS300GRAY (finetuning with Signatures the initial CNNs). 

Test  
Signature  
dataset 

initial 
CNN  

(trained 
with 
text) 

CNN 
(finetuned 
with sign) 

WD classifiers 

with REF = 12 

db name canvas size 
#Text set 

model 
#Sign 

set 
#Sign 

db 
sd EER 

GPDS300GRAY 952 × 1360 

M16. VI. 

C
ED

A
R

 

False 2.64 (± 0.76) 

M17. VI. False 2.72 (± 0.66) 

M18. VI. False 2.31 (± 0.78) 

M19. VI. False 2.52 (± 0.82) 

M20. VI. False 2.21 (± 0.68) 

M16. VI. 

M
C

YT7
5

 

False 3.01 (± 0.90) 

M17. VI. False 3.07 (± 0.84) 

M18. VI. False 2.69 (± 0.80) 

M19. VI. False 3.18 (± 0.83) 

M20. VI. False 2.86 (± 0.96) 

 

The finetuning with about one thousand signature images improves the performance in most 

of the cases, as it is expected. Each Signature set consists of about one thousand signature images 

since there are 55⋅24=1320 and 75⋅14=1050 genuine signatures in CEDAR and MCYT75 

respectively. Exceptions are the Sign sets VI that they have quintuple number of images because 

they are obtained as a merger of the others sets. The performance of the initial model is crucial 

for the performance of the finetuned model, meaning that, in general, an initial model providing 

good results leads also to good results after the finetuning. Ultimately, the finetuning procedure 

leads to an increase of the performance even though the rise cannot be characterized as 

significant. 

4.6.3     Training CoLL with Text images 

Next, alternatively to traditional finetuning, the CoLL module is employed in order to apply a 

feature mapping on the extracted CNN features. In this scheme, the CNN models are trained with 

text data (presented at Table 4-5) and then, they are used as a fixed feature extractor. The CoLL 

module is fed with the CNN features and trained with pairs of features using contrastive loss in 

order to learn the mapping function. The first option to train the CoLL module is to also utilize 

text images. In this context, one Text set (from the 1-20) is utilized with the selected CNN model 

and the extracted features are used for creating the feature pairs and for training the CoLL. The 

column of initial CNN indicates the selected CNN model (Table 4-5), which is used for feature 

extraction before CoLL. The Text sets that are used rely on the selected CNN model in the basis 
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of having the same cropping strategy, so as again limit the number of experimental cases. For 

example, when the selected CNN model is trained from the Text set 1, the relevant Text sets for 

training the CoLL are the sets 1-5 because only these originated from the same cropping strategy. 

The EER is computed and the results for the three signature datasets are provided in the Table 

4-9 and Table 4-10, while Table 4-11 demonstrates the difference of using a CNN scheme versus 

a CNN-CoLL scheme (CoLL is added after fixed CNN) when both schemes share the same training 

text sets. The addendum of CoLL module at the top of CNN feature extractor increases the 

performance of the OffSV systems and it appears to have more significant impact than the 

previous finetuning strategy, although signature images are not utilized at all during training. 

Table 4-9: EER results for CEDAR (CoLL trained with Text). 

Test  
Signature  
dataset 

CNN  
(trained 

with 
text) 

CoLL 
(trained 

with text) 

WD classifiers 

with REF = 10 

db name canvas size 
#Text set 

model 
#Text set sd EER 

CEDAR 730 × 1042 

M5. 

1. True 1.06 (± 0.62) 

2. True 1.10 (± 0.54) 

3. True 0.99 (± 0.74) 

4. True 1.19 (± 0.66) 

5. True 1.15 (± 0.63) 

 
M8. 

6. True 1.17 (± 0.84) 

7. True 1.18 (± 0.76) 

8. True 1.12 (± 0.84) 

9. True 1.20 (± 0.73) 

10. True 1.21 (± 0.86) 

M15. 

11. True 1.27 (± 0.84) 

12. True 1.18 (± 0.79) 

13. True 1.23 (± 0.85) 

14. True 1.12 (± 0.73) 

15. True 1.13 (± 0.59) 
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Table 4-10: EER results for MCYT75 (CoLL trained with Text). 

Test  
Signature  
dataset 

CNN  
(trained 

with 
text) 

CoLL 
(trained 

with text) 

WD classifiers 

with REF = 10 

db name canvas size 
#Text set 

model 
#Text set sd EER 

MCYT75 600 × 850 

M1. 

1. True 1.62 (± 1.20) 

2. True 1.69 (± 1.30) 

3. True 1.47 (± 1.30) 

4. True 1.66 (± 1.40) 

5. True 1.60 (± 1.30) 

M6. 

6. True 1.54 (± 1.30) 

7. True 1.64 (± 1.40) 

8. True 1.47 (± 1.50) 

9. True 1.48 (± 1.30) 

10. True 1.71 (± 1.50) 

M12. 

11. True 2.05 (± 1.30) 

12. True 1.86 (± 1.30) 

13. True 1.82 (± 1.50) 

14. True 1.88 (± 1.40) 

15. True 1.99 (± 1.10) 

 
 
 

Table 4-11: EER results for CEDAR and MCYT75 with REF=10 as well as GPDS300GRAY with REF=12 for CNN and CoLL trained 
with the same Text sets. 

Test  
Signature  
dataset 

Train Set 
CNN  

(trained 
with text) 

CoLL 
(trained  

with text) 

db name canvas size #Text set  EER (WD) EER (WD) 

CEDAR 730 × 1042 

16. 2.23 (± 0.76) 1.86 (± 0.72) 

17. 1.93 (± 0.91) 1.61 (± 0.65) 

18. 1.88 (± 0.75) 1.49 (± 0.76) 

19. 1.86 (± 0.82) 1.51 (± 0.81) 

20. 1.91 (± 0.78) 1.65 (± 0.78) 

MCYT75 600 × 850 

16. 3.20 (± 1.60) 2.26 (± 1.60) 

17. 2.94 (± 1.90) 2.21 (± 1.60) 

18. 2.39 (± 1.80) 2.06 (± 1.50) 

19. 2.15 (± 1.70) 1.54 (± 1.70) 

20. 1.86 (± 1.40) 1.65 (± 1.60) 
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Test  
Signature  
dataset 

Train Set 
CNN  

(trained 
with text) 

CoLL 
(trained  

with text) 

db name canvas size #Text set  EER (WD) EER (WD) 

GPDS300GRAY 952 × 1360 

16. 2.44 (± 0.72) 2.09 (± 0.82) 

17. 2.61 (± 0.76) 2.23 (± 0.64) 

18. 2.48 (± 0.84) 2.17 (± 0.88) 

19. 2.51 (± 0.77) 2.25 (± 0.71) 

20. 2.36 (± 0.81) 2.30 (± 0.76) 

 

Table 4-11 reflects the effectiveness of CoLL module in the system, since EER values are lower 

in every case using the same training data and regardless of the canvas size. To support this claim, 

we apply a statistical analysis of the experimental results based on common omnibus tests in 

order to confirm whether the considered models significantly outperform the baseline models. 

Following the work of [248], the popular non-parametric Friedman test and the parametric 

repeated measures ANOVA (Analysis of Variance) are executed for calculating the p-value [249] 

for the ten repetitions of each WD classifier, using the same permutations of reference/test 

samples. The p-values (both ANOVA and Friedman results) lie in orders of magnitude between 

1E-6 and 1E-2 for all 15 cases of Table 4-11, indicating that the obtained difference in 

performance is statistically significant. As an example, ANOVA for the results corresponding to 

Text set 20 have p-values equal to 4.5E-3, 6.3E-6, and 1.7E-2 for CEDAR, MCYT75, and 

GPDS300GRAY respectively, while for the case of Text set 17 the p-values of Friedman tests are 

1.8E-3, 3.7E-2 and 5.6E-3 for the same datasets. The important finding of the current experiments 

here is that by simply employing CoLL, using exactly the same training images, leads to superior 

results due to the more favorable distribution of the features in the latent space. This behavior 

comes in contrast to the regular finetuning, which can deliver a performance improvement only 

in specific combinations of text and signature datasets. It is important to note again that the 

dimensionality of the features after the CoLL was intentionally kept the same (i.e., 2048-dim 

feature), so as to highlight the role of the learned mapping regardless of any dimensionality 

reduction that can be incorporated to the mapping function if needed. This way, the comparisons 

are fair and can better justify the effectiveness of CoLL in the overall framework.  

4.6.4     Traininng CoLL with Signature images 

In the last series of experiments, the CoLL is trained using the features from signature images. In 

that case, signature images from the sets of Table 4-4 are processed by one CNN model from 

Table 4-5 and the obtained representations are utilized for training a CoLL module. The CEDAR 

or MCYT75 signature datasets are utilized for training and in each case the other two signature 

datasets are used for evaluation, following the same rationale as in section 4.6.2 for the selection 



Chapter 4 | Deep learning with auxiliary external data  

86 
 

of the signature training sets. The experimental results in terms of EER are presented in the next 

Table 4-12, Table 4-13, and Table 4-14 for the three test signature datasets. 

Table 4-12: EER results for CEDAR (CoLL trained with Sign). 

Test  
Signature  
dataset 

CNN  
(trained 

with 
text) 

CoLL 
(trained 

with sign) 

WD classifiers 

with REF = 10 

db name canvas size 
#Text set 
models 

#Sign 
MCYT set 

sd EER  

CEDAR 730 ×1042 

M5. 

I. True 1.23 (± 0.75) 

II. True 1.27 (± 0.76) 

III. True 1.13 (± 0.65) 

IV. True 1.20 (± 0.75) 

V. True 1.12 (± 0.68) 

M8. 

I. True 1.23 (± 0.78) 

II. True 1.35 (± 0.64) 

III. True 1.32 (± 0.52) 

IV. True 1.21 (± 0.61) 

V. True 1.09 (± 0.58) 

M15. 

I. True 1.15 (± 0.73) 

II. True 1.20 (± 0.71) 

III. True 1.08 (± 0.71) 

IV. True 1.10 (± 0.75) 

V. True 1.15 (± 0.54) 

M16. VI. True 2.03 (± 0.75) 

M17. VI. True 1.71 (± 0.68) 

M18. VI. True 1.57 (± 0.59) 

M19. VI. True 1.56 (± 0.72) 

M20. VI. True 1.66 (± 0.74) 
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Table 4-13: EER results for MCYT75 (CoLL trained with Sign). 

Test  
Signature  
dataset 

CNN  
(trained 

with 
text) 

CoLL 
(trained 

with sign) 

WD classifiers 

with REF = 10 

db name canvas size 
#Text set 
models 

#Sign 
CEDAR set 

sd EER 

MCYT75 600 × 850 

M1. 

I. True 1.43 (± 1.30) 

II. True 1.46 (± 1.30) 

III. True 1.39 (± 1.40) 

IV. True 1.63 (± 1.20) 

V. True 1.62 (± 1.40) 

M6. 

I. True 1.39 (± 1.20) 

II. True 1.40 (± 1.20) 

III. True 1.26 (± 1.10) 

IV. True 1.38 (± 1.20) 

V. True 1.48 (± 1.40) 

M12. 

I. True 1.53 (± 1.10) 

II. True 1.88 (± 1.30) 

III. True 1.97 (± 1.30) 

IV. True 1.89 (± 1.30) 

V. True 2.07 (± 1.30) 

M16. VI. True 2.18 (± 1.40) 

M17. VI. True 2.13 (± 1.60) 

M18. VI. True 1.94 (± 1.50) 

M19. VI. True 1.64 (± 1.40) 

M20. VI. True 1.62 (± 1.30) 
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Table 4-14: EER results for GPDS300GRAY (CoLL with Sign). 

Test  
Signature  
dataset 

CNN  
(trained 

with 
text) 

CoLL 
(trained  

with sign) 

WD classifiers 

with REF = 12 

db name canvas size #Text set 
#Sign 

set 
#Sign 

db 
sd EER 

GPDS300GRAY 952 × 1360 

M16. VI. 

C
ED

A
R

 

True 2.11 (± 0.79) 

M17. VI. True 2.20 (± 0.75) 

M18. VI. True 2.19 (± 0.84) 

M19. VI. True 2.23 (± 0.75) 

M20. VI. True 2.22 (± 0.74) 

M16. VI. 

M
C

YT7
5

 

True 1.98 (± 0.81) 

M17. VI. True 2.26 (± 0.75) 

M18. VI. True 2.04 (± 0.86) 

M19. VI. True 2.16 (± 0.75) 

M20. VI. True 2.12 (± 0.76) 

 
 

Given that the addition of CoLL in the framework exhibits superior performance, even if is 

trained only with text images (for instance Table 4-11), the utilization of external signature 

images is advantageous. Therefore, the use of signatures for learning the CoLL leads to mostly 

superior (or at least comparable) results against all the previous experiments. Only in the case of 

CEDAR dataset where the signatures of MCYT75 were utilized for the training of CoLL module, 

the obtained EER values were a little bit worse. However, the deterioration is still less than 0.1% 

compared to the results of Table 4-9 and thus, cannot be considered significant. Thus, the 

combination of a CNN that learns features from a large amount of -readily available- text images 

along with a CoLL that learns the feature mapping through a limited number of signature images 

results in an efficient feature learning scheme for the OffSV task. In addition, another observation 

can be made about the normalization (“sd” parameter) of the final extracted features. When the 

CNN features are used to train the SVMs, there is no need for any normalization since the CNN 

has a batch normalization layer before its output. On the contrary, the normalization to zero 

mean and unit variance is beneficial when the CoLL module is used to produce the final features 

because the feature mapping has not provided normalization controls. 

4.6.5     Comparison with SigNet trained with Signature images 

In this section, we perform a fair comparison of the proposed feature extraction process with 

CoLL, to the original SigNet feature extractor proposed by Hafemann et al. in [102]. This SigNet 

model utilized only genuine signatures and no skilled forgeries during its training, similar to our 
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scheme. The two compared feature extraction methods are applied to the same signature images 

-after applied the same geometrical normalization steps- and their output features are processed 

by the same classifiers. Thus, the comparison focuses only on the feature extraction stage and 

the quality of the generated features. The original SigNet was trained with the genuine signature 

images of 531 writers from GPDS-960 corpus and the trained model was downloaded from the 

Official repository2.  

The error bar diagrams of Figure 4-12 represent the EER values of all the proposed CNN-CoLL 

variations (based on the used training sets) for the three datasets, along with the corresponding 

EER and error margins derived using the SigNet as feature extractor. Similar to all previous results, 

the experiments are repeated ten times by randomly selecting the reference signatures, as is the 

standard practice in the OffSV literature. Additionally, Table 4-15 contains the results of our 

proposed method as well as the EER values in the case of our implementation with the 

downloaded SigNet model. This Table provides the direct comparison with SigNet and 

summarizes the multitude of previous experimental results. The various tested models are 

divided into single and multi-canvas preprocessed text and signatures, based on the used training 

set. For the models that trained with single-canvas images, the table is organized such that for 

each model (identified by the set used for its training) the top row includes signature sets with 

the same canvas size with the selected CNN model, the middle row incudes the signature set that 

provide the best performance using the sign-trained CoLL, and the bottom row includes the set 

with the best result for the text-trained CoLL.  

As it is clear from Figure 4-12, the error margins of the reported average EERs between the 

proposed OffSV systems and the original SigNet CNN in all three signature datasets, i.e. CEDAR, 

MCYT75, and GPDS300GRAY, are highly overlapping. In order to strengthen the validity of our 

finding we perform a statistical analysis [248] of the results across the different experimental 

setting and dataset permutations. Once again, pairwise statistical comparisons between the 

original SigNet and every investigated setting for training a CNN-CoLL model are implemented 

using the Friedman’s test and ANOVA (Analysis of Variance) for the ten repetitions of classifiers 

(with the same permutations of reference and test signatures). For most tested settings the p-

values have large values (> 0.1), indicating that the models produced via the proposed technique 

are able to produce results which are statistically equivalent to those of Signet, even if they are 

trained with limited signature data. Especially important is the fact that for settings that utilize 

random or multiple canvas sizes (five rightmost settings in all plots of Figure 4-12), the p-values 

for all three datasets range between 0.2 and 0.97 for ANOVA and 0.11 to 1.0 for Friedman tests, 

signifying that these approaches are a safe option for replicating the performance of Signet.  

 

 
2 https://github.com/luizgh/sigver/tree/master/sigver/featurelearning/models 

https://github.com/luizgh/sigver/tree/master/sigver/featurelearning/models
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Figure 4-12: Error bar diagrams of EER (%) for the CEDAR, MCYT75, and GPDS300GRAY datasets using the different CNN-CoLL 
models from Table 4-12, Table 4-13, and Table 4-14, and comparison with the results of original SigNet model. The red lines 
represent the results from our implementation of original SigNet feature extractor proposed by Hafemann et al. in [102] with the 
solid red line indicating the average EER and the dashed red lines the respective error margins. 
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In some of the other investigated settings, the observed variations in the average EER were 

found to be statistically significant. For example, in some extreme cases (where the compared 

average EERs seems to differ), like M15–CoLLIII and M8–CoLLV in the CEDAR dataset the 

corresponding models achieved better performance than original SigNet with p-values of 6E-4 

and 4E-4 (ANOVA) respectively. Similarly, models for M6–CoLLIII and M12–CoLLV in the MCYT75 

are slightly better or worse than original SigNet, with p-values (ANOVA) of 2E-2 and 2E-4 

respectively. The p-values values of Friedman test are very similar to those of ANOVA at every 

tested setting. The results of Figure 4-12 however, are presented in the spirit of an ablation study 

on the effects of canvas size to the overall performance of the feature extraction CNN, and they 

do not Offer any particular insight to the problem of how to train an efficient feature extraction 

CNN with less signature data. They can rather be attributed to circumstantial conditions that may 

benefit the classifiers for a particular database, which cannot be easily translated in a real-life 

situations, especially when considering that the fluctuation of results (i.e. variation of EER) from 

different CNN-CoLL settings (due to the different preprocessing parameters for generating the 

training sets) are considerable smaller than the variation that arises from the writer’s signature 

variability, based on the selected reference signatures (via the ten repetitions of the 

experiments).  

On the other hand, the statistical analysis of the results suggests that by using the proposed 

CNN-CoLL technique it is feasible to train an effective feature extraction model, using less 

signature images by taking advantage of the metric learning via the Contrastive Loss Layer (CoLL) 

and the pre-training with properly processed handwritten text images. The original SigNet is 

trained with about 531⋅24=12744 signature images (GPDS-960) whilst the proposed feature 

extraction system can be trained with about 55⋅24=1320 (CEDAR) or 75⋅25=1125 (MCYT75) 

signature images, providing statistically equivalent results. Hence, the presented technique can 

use one order of magnitude fewer training signatures than the SigNet, delivering similar level of 

performance. Most importantly, achieving such performance using random canvas sizes and 

arbitrary cropping ratios (such as Text set 20 and Signature Sets VI) in all datasets highlights the 

robustness and versatility of the proposed approach. The utilization of using the most general 

setting for the selection of these parameters, combined with the effective use of CoLL, eliminates 

the requirement of selecting a specific training set for each dataset. This level of flexibility enables 

the method to be easily adapted to various datasets without the need for extensive 

customization. Consequently, the proposed approach offers a practical and efficient solution for 

OffSV, demonstrating promising potential for real-world applications. 
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Table 4-15: Overview of our results for CEDAR and MCYT75 with REF=10 as well as for GPDS300GRAY with REF=12. 

Test dataset 
SigNet 

[3][102] 

Proposed method 

Signature 
Train-

ing 
Canvas  

initial CNN  
(trained  

with text) 

CNN 
(finetuned 
with sign) 

CoLL 
(trained  

with text) 

CoLL 
(trained  

with sign) 

 

Signature 
Prepro-
cessing 
canvas 

size 

EER 
(WD) 

Canvas 
type 

#Text 
Set 

EER 
(WD) 

#Sign 
Set 

EER 
(WD) 

#Text 
Set 

EER 
(WD) 

#Sign 
Set 

EER 
(WD) 

C
E
D
A
R 

730  
×  

1042 

1.66 
(±0.63) 

Si
n

gl
e 

ca
n

va
s 

M5. 
1.19 

(±0.72) 

V. 
2.15 

(±0.95) 
5. 

1.15 
(± 0.63) 

V. 
1.12 

(±0.68) 

IV. 
2.42 

(±1.00) 
4. 

1.19 
(±0.66) 

IV. 
1.20 

(±0.75) 

III. 
2.39 

(±0.85)  
3. 

0.99 
(±0.74) 

III. 
1.13 

(±0.65) 

M8. 
1.22 

(±0.72) 

III. 
1.58 

(±0.74) 
8. 

1.12 
(±0.84) 

III. 
1.32 

(±0.52) 

V. 
1.44 

(±0.83) 
10. 

1.21 
(±0.86) 

V. 
1.09 

(±0.58) 

I. 
2.20 

(±0.90) 
6. 

1.17 
(±0.84) 

I. 
1.23 

(±0.78) 

M15. 
1.13  

(±0.70) 

V. 
2.20 

(±0.83) 
15. 

1.13 
(±0.59) 

V. 
1.15 

(±0.54) 

III. 
2.32 

(±0.68) 
13. 

1.23 
(±0.85) 

III. 
1.08 

(±0.71) 

IV. 
2.41 

(±0.88) 
14. 

1.12 
(±0.73) 

IV. 
1.10 

(±0.75) 

M
u

lt
i 

ca
n

va
s 

M18. 
1.88 

(±0.75) 
18. 

2.41 
(±0.80) 

18. 
1.49 

(±0.76) 
18. 

1.57 
(±0.59) 

M19. 
1.86 

(±0.82) 
19. 

1.95 
(±0.68) 

19. 
1.51 

(±0.81) 
19. 

1.56 
(±0.72) 

M20. 
1.91 

(±0.78) 
20. 

2.05 
(±0.86) 

20. 
1.65 

(±0.78) 
20. 

1.66 
(±0.74) 

M
C
Y
T
7
5 

600  
×  

850 

1.51 
(±1.30) 

Si
n

gl
e 

ca
n

va
s 

M1. 
1.84 

(±1.60) 

I. 
1.83 

(±1.20) 
1. 

1.62 
(±1.20) 

I. 
1.43 

(±1.30) 

III. 
1.91 

(±1.50) 
3. 

1.47 
(±1.30) 

III. 
1.39 

(±1.40) 

V. 
2.03 

(±1.30) 
5. 

1.60 
(±1.30) 

V. 
1.62 

(±1.40) 

M6. 
1.77 

(±1.50) 

I. 
1.65 

(±1.30) 
8. 

1.54 
(±1.30) 

I. 
1.39 

(±1.20) 

III. 
1.94 

(±1.40) 
10. 

1.47 
(±1.50) 

III. 
1.26 

(±1.10) 

IV. 
2.12 

(±1.30) 
11. 

1.48 
(±1.30) 

IV. 
1.38 

(±1.20) 
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Test dataset 
SigNet 

[3][102] 

Proposed method 

Signature 
Train-

ing 
Canvas  

initial CNN  
(trained  

with text) 

CNN 
(finetuned 
with sign) 

CoLL 
(trained  

with text) 

CoLL 
(trained  

with sign) 

 

Signature 
Prepro-
cessing 
canvas 

size 

EER 
(WD) 

Canvas 
type 

#Text 
Set 

EER 
(WD) 

#Sign 
Set 

EER 
(WD) 

#Text 
Set 

EER 
(WD) 

#Sign 
Set 

EER 
(WD) 

M12. 
2.29 

(±1.30) 

II. 
1.80 

(±1.40) 
12. 

1.86 
(±1.30) 

II. 
1.88 

(±1.30) 

I. 
1.52 

(±1.30) 
11. 

2.05 
(±1.30) 

I. 
1.53 

(±1.10) 

III. 
1.97 

(±1.50) 
13. 

1.82 
(±1.50) 

III. 
1.97 

(±1.30) 

M
u

lt
i  

ca
n

va
s 

M18. 
2.39 

(±1.80) 
18. 

2.19 
(±1.50) 

18. 
2.06 

(±1.50) 
18. 

1.94 
(±1.50) 

M19. 
2.15 

(±1.70) 
19. 

2.08 
(±1.50) 

19. 
1.54 

(±1.70) 
19. 

1.64 
(±1.40) 

M20. 
1.86 

(±1.40) 
20. 

1.77 
(±1.60) 

20. 
1.65 

(±1.60) 
20. 

1.62 
(±1.30) 

G
P
D
S
3
0
0
G
R
A
Y 

952 
 ×  

1360 

2.21 
(±0.79) M

u
lt

i 
ca

n
va

s 

M16. 
2.44 

(±0.72) 
16. 

3.01 
(±0.90) 

16. 
2.09 

(±0.82) 
16. 

1.98 
(±0.81) 

M17. 
2.61 

(±0.76) 
17. 

3.07 
(±0.84) 

17. 
2.23 

(±0.64) 
17. 

2.26 
(±0.75) 

M18. 
2.48 

(±0.84) 
18. 

2.69 
(±0.80) 

18. 
2.17 

(±0.88) 
18. 

2.04 
(±0.86) 

M19. 
2.51 

(±0.77) 
19. 

3.18 
(±0.83) 

19. 
2.25 

(±0.71) 
19. 

2.16 
(±0.75) 

M20. 
2.36 

(±0.81) 
20. 

2.86 
(±0.96) 

20. 
2.30 

(±0.76) 
20. 

2.12 
(±0.76) 

 

4.6.6     Summary of Performance in WD OffSV field 

Table 4-16 provides an overview of the OffSV field, summarizing the most important results from 

various methods and evaluation protocols reported in the Writer-Dependent (WD) OffSV 

literature during the last 15 years, using the three most popular datasets CEDAR, MCYT75, and 

GPDS. It is obvious that a fair comparison between all methods is a strenuous task due to the 

many different protocols and technicalities that impact the performance. (e.g., number of 

reference signatures, use of skilled forgery training samples etc.). Therefore, the particular table 

serves the purpose of providing a general outlook of the WD OffSV research, emphasizing in the 

recent advances. In this context, a quick look to state-of-the-art systems can be useful. At the 

work of (Maruyama et al., 2021), the WD SVM classifier is populated with more points in the 
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training stage using feature replicas extracted from a signature duplication process and thus, the 

improvement is stemming from these classifier scheme and is not attributed to a better feature 

extraction mechanism. Also, a variant of SigNet [102], named SigNet-SPP [103], utilizes spatial 

pyramid pooling for variable input image sizes, while another variant of SigNet, the SigNet-F 

[102], uses forged signatures along with the genuine signatures of GPDS-960 corpus for training. 

However, none of SigNet's variants is consistently better in all three datasets. It is worth noting 

that the difference in EER values between our implementation of SigNet and the published values 

in the work of [102] is associated with the different way of utilizing the WD classifiers. In our 

experiments the hyperparameters of RBF SVM are optimized through a cross-validation 

procedure for every writer, while at the work of [102] the same hyperparameters were used for 

all the writers. Finally, research conducted by Zois et al. [70], [91] utilizing the spatial pyramid 

pooling of sparse features and visibility motif features achieved a good tradeOff between 

learning-based and hand-crafted components in the model that fits OffSV task. Ultimately, we 

argue that the proposed approach proves the feasibility of achieving a low verification error, 

which is at least comparable to the state-of-the-art methods in all three datasets, despite 

following a fully learning-based approach with limited training samples. Therefore, it can provide 

a pathway to develop more complex deep learning based OffSV systems with the current data 

availability. 

Table 4-16: Summary of state-of-the-art OffSV Systems in terms of EER, for the CEDAR, MCYT75, and GPDS300GRAY datasets. 

Signature OffSV approach 
WD 

classifiers 

db name REF Reference Method EER 

CEDAR 

12 [63]  Chain Code 7.84 

16 [250] Chord moments 6.02 

16 [61] Gradient LBP+LRF 3.54 

5 [69] Archetypes 2.07 

12 [102] SigNet-F 4.63 

12 [102] SigNet 4.76 

10 [103] SigNet-SPP 3.60 

5 [95] Deep SC 2.82 

16 [212] VLAD with KAZE 1.00 

10 [91] SR –KSVD/OMP 0.79 

16 
(10) 

[251] Hybrid Texture  
1.64 

(6.66) 

10 [77] CNN-Triplet and Graph edit distance 5.91 

12 [100] HOCCNN 4.94 

10 [70] Visibility Motif profiles 0.51 

3 [227] SigNet-F and classifier with replicas 0.82 
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Signature OffSV approach 
WD 

classifiers 

db name REF Reference Method EER 

3 [102]* SigNet 2.83 

5 [102]* SigNet 2.14 

10 [102]* SigNet 1.66 

3 Proposed CNN-CoLL 2.50 

5 Proposed CNN-CoLL 2.03 

10 Proposed CNN-CoLL 1.66 

MCYT75 

10 [68] Contours 6.44 

5 [252] Ring Peripheral 15.02 

10 [62] LBP 7.08 

10 [64] Radon Transform 9.87 

10 [233] HOG + DMML 9.86 

10 [253] HOT 10.60 

8 [188] Duplicator 9.12 

5 [217] Archetypes 3.97 

10 [102] SigNet-F 3.00 

10 [102] SigNet 2.87 

10 [103] SigNet-SPP 3.64 

10 [254] FV with KAZE 5.47 

10 [229] ResNet trained with text 3.98 

10 [101] MLSE 2.93 

10 [91] SR – KSVD/OMP 1.37 

14 
(10) 

[251] Hybrid Texture  
6.10 

(9.26) 

10 [77] CNN-Triplet and Graph edit distance 3.91 

12 [100] HOCCNN 5.46 

10 [70] Visibility Motif profiles 1.54 

3 [227] SigNet-F and classifier with replicas 0.01 

3 [102]* SigNet 3.28 

5 [102]* SigNet 2.52 

10 [102]* SigNet 1.51 

3 Proposed CNN-CoLL 3.33 

5 Proposed CNN-CoLL 2.61 

10 Proposed CNN-CoLL 1.62 

GPDS160GRAY 

16 [255] Geometric 9.64 

12 [256] MDF, Energy, Maxima 17.25 

12 [215] HOG-LBP 15.41 

10 [209] Pseudo-dynamic 7.66 
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Signature OffSV approach 
WD 

classifiers 

db name REF Reference Method EER 

12 [257] HOG-LBP-SIFT 6.97 

12 [71] LBP 11.74 

12 [228] 2-channel SigNet-F 
2.08 

(0.88) 

12 [219] RBP 0.57 

 
 
 
 
 
 
 
 
 
 
 
 

GPDS300GRAY 

13 [258] Circular Grid 4.21 

12 [259] Cosine similarity 7.20 

6 [260] Optical flow 4.60 

12 [60] Poset-oriented grid 3.24 

14 [222] DCGANs 12.57 

10 [233] LBP + DMML 20.94 

10 [253] HOT 9.30 

8 [188] Duplicator 14.58 

12 [102] SigNet-F 1.69 

12 [102] SigNet 3.15 

12 [103] SigNet-SPP-F 0.41 

10 [261]  HOT + AIRS 11.35 

12 [91] SR – KSVD/OMP 0.70 

12 [251] Hybrid Texture  8.03 

3 [227] SigNet-F and classifier with replicas 0.20 

3 [102]* SigNet 3.44 

5 [102]* SigNet 2.84 

12 [102]* SigNet 2.21 

3 Proposed CNN-CoLL 3.69 

5 Proposed CNN-CoLL 2.91 

12 Proposed CNN-CoLL 2.12 

*The trained SigNet model from [102] is used along with our SVM configuration. 

4.7     Conclusions 

The aim of this work is to present a methodology of efficient feature learning for the Offline 

Signature Verification task using Convolutional Neural Networks, designed to overcome the 

limitations in availability of signature images following the withdrawal of large datasets from the 

public domain due to privacy legislation. The proposed CNN-CoLL scheme is taking advantage of 

handwriting data in a more general sense. The handwritten style arises both in handwritten texts 

and signatures. The relevancy of writing and signing let us pre-train the CNN in an exterior task 

of identifying the author of an input image that contains text and then, use the trained CNN as a 
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good initial baseline model for feature extraction. For validating our claim, we followed the most 

established evaluation methods in the related literature, ensuring that the results are directly 

comparable to the most popular deep-learning approach for OffSV task - the SigNet CNN 

architecture. We incorporated a series of simple processing steps for the raw text data, designed 

to simulate the signature images without the incorporation of sophisticated OCR or similar 

techniques, thus enabling a fast and efficient text manipulation, well-suited to large-scale data 

processing. This choice was made to allow harnessing information from the large abundance of 

available handwritten text data to develop better learning-based OffSV systems, and ultimately 

encourage further research towards the direction of incorporating modern deep-learning 

techniques in OffSV even though a large signature dataset is currently unavailable.  

        The addition of a feature mapping stage aiming to reorganize the feature space, based on 

metric learning with pairwise contrastive loss, boosted the performance of the presented OffSV 

system. The WI training of CNN-CoLL framework provides a feature extraction mechanism which 

is efficient for any query signature image of unseen writers (from other datasets or tasks). The 

CNN is trained solely with text images while the training of CoLL was evaluated with either text 

or genuine signatures (from irrelevant writers) as training examples.  

       A point of significant practical importance is that the presented scheme does not require 

skilled forgeries at any stage of the training pipeline. In this spirit, the WD SVM classifiers are also 

trained with samples of genuine against random forgeries but evaluated with the remaining 

genuine signatures as well as the skilled forgery signatures for each writer. Results indicate that 

the proposed CNN-CoLL scheme manages to successfully learn informative features with about 

one thousand signature images, while other CNN-based methods utilize over an order of 

magnitude more signature images in order to achieve similar performance in the OffSV task. The 

efficiency of the system is demonstrated with experiments in the most popular signature 

datasets, achieving better average EER than several state-of-the-art OffSV systems and 

statistically equivalent results to the original SigNet model, despite the latter being trained on 

the GPDS dataset with one order of magnitude more signature images compared to the 

presented scheme. Comparisons were focused to SigNet since this is the only GPDS-trained 

model with only genuine signatures and reproducible results, allowing a fair comparison using 

the most popular protocol in WD-OffSV literature. 

       Evaluation results also indicated that the variability of the EER due to the random selection 

of reference sets across iterations, is greater than the variability induced by the selection of the 

specific combinations of canvas sizes for the normalization of text and signatures during the 

training of CNN and CoLL Thus, although the preprocessing is of crucial importance, the 

comparable results when different models are utilized show that the different preprocessing 

parameters have lower effect than the writer’s natural variability as expressed in its reference 

signatures. Through a meticulous experimental study on the effects of cropping and canvas 

dimensions of the external text and signature data, we demonstrated that even with random 
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choice of parameters for generating the training sets (i.e., Text Set 20 and Signature Set VI) the 

proposed pipeline can reliably train a model that learns efficient features across all tested 

datasets. Therefore, as long as those parameters lie inside a reasonable margin as the ones tested 

in this study, it is needless to seek for specific qualities in the external data which are tuned to 

the target domain. This finding is of particular practical importance, since it enables to train the 

feature extraction stage without any knowledge of the reference dataset, thus avoiding the need 

of retraining the CNNs as the reference set grows through the lifetime of an OffSV system. This 

last observation supports our core idea that transferring knowledge from the handwriting text 

data to the signature problem, even with a simple and fast preprocessing procedure that involves 

random selection of cropping strategy and canvas sizes for the generation of the training images 

based on text and signature data, can deliver state-of-the-art performance even compared to 

methods trained with 10X the amount of currently available data. 

 

  



5.1     | Introduction 

99 
 

5. Deep learning with knowledge distillation 

5.1     Introduction 

An extrinsic limitation in OffSV problem is introduced from the absence of large offline datasets 

[195].  Until recently, the GPDS-960 corpus offline database [262], with more than half a thousand 

writers having 24 genuine along with 30 forgeries signatures per writer, allowed the training of 

deep models into the similar task of writer identification [44]. Even though these CNN models 

are not specialized to the task of signature verification, the large size of GPDS-960 dataset 

enabled CNNs to be good universal functions for producing image-level feature descriptors for 

signature images, surpassing the expressiveness of hand-crafted features [46]. Unfortunately, 

this dataset, is no longer available due to the General Data Protection Regulation (EU) 2016/679 

(“GDPR”), thus hindering the efforts of research community to investigate new models and 

design elaborate methods that require more training data. 

Motivated by the data-intensive nature of CNNs’ training, many OffSV systems pursue 

designing methodologies to address the lack of adequate signature training data. These 

approaches follow two main directions, the generation of synthetic signature images using 

geometrical transformations [73], [191] or generative learning models [75], [192]–[194] and the 

utilization of images from a relative domain such as the handwritten text documents [263], [264]. 

For completeness, there are also developed feature space augmentation methods that artificially 

populate samples for improving the classifier’ performance, yet they rely on feature vector 

representations and do not create signature images for training [74], [76], [265]. Finally, 

considering the fully synthetic nature of generated signatures and the contingent unreal 

identities, the signature duplications would be prone to diverge from the realistic intra-subject 

variability criterion and thus, their use as the training images of an end-to-end deep learning 
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model could be problematic, requiring special manipulations for their beneficial usage output 

[83], [84]. 

Despite the capabilities of the above approaches to cope with signature verification problems 

with small sample size, these methods ignored the knowledge of older benchmark models in the 

OffSV task. In situations where an effective CNN model is available, a popular approach is to 

transfer knowledge from this (expert) model to facilitate learning of another (new) model. This 

forms the case of Knowledge Distillation (KD), where the knowledge is transferred between the 

models that assume the role of teacher (expert) and student (new) [45]. When the teacher is pre-

trained and fixed during training, it is called offline KD. Additionally, the condition when an 

effective teacher model exists but there is no access to its training data constitutes the data-free 

KD, where the distillation process uses only external or artificial data to perform the knowledge 

transfer from the teacher to the student model [24]. Finally, another branch which is relevant to 

this work is Feature-based KD (FKD), which involves distilling knowledge from the intermediate 

layers of the teacher model in order for the student model to learn feature representations that 

are a good approximation of the teacher’s intermediate representations.  

To the best of our knowledge, we consider this work to be the first one that introduces the 

data-free KD approach into the OffSV domain. Here we propose a novel KD method to transfer 

the knowledge from a teacher CNN into a new CNN student model with different architecture. 

This allows the new model to leverage the knowledge learned by the teacher model, even though 

the original training data are not available anymore. Furthermore, the new model is able to 

achieve improved performance on the OffSV task compared to the teacher. The KD scheme 

consists of 1) the teacher CNN supervising the training process, 2) the training data used to 

transfer the knowledge, and 3) the KD method that defines knowledge features, distillation loss, 

strategy, and connections. The ultimate goal is to express the learned information inasmuch as it 

is helpful for building up a well-performing student CNN. Therefore, to address OffSV using offline 

data-free Feature-based KD, the above components are realized as follows: 

1) An appropriate teacher is one of the benchmark CNN models in the field, such as SigNet 

[102] which is trained with the genuine signature images from 531 writers using GPDS-

960 corpus and the trained model is publicly available3. In this occasion, the teacher 

model can provide valuable feature representations for any input image, but not a 

meaningful classification response, since the training classes are person IDs which are 

irrelevant outside the specific identification task.  

2) The data which act as information carriers for the distillation, can be either synthetic or 

external. In our work, we opt to utilize images of handwritten text because they possess 

a similar structure to signatures (thin pen strokes on a piece of paper) and most 

 
3 https://github. com/luizgh/sigver/tree/master/sigver/featurelearning/models 
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importantly, there is an abundance of data available from public sources. The option of 

using synthetically generated signatures was dismissed in light of evidence indicating that 

the currently available synthetic signature datasets can deteriorate the effectiveness of 

OffSV systems if used to train the feature extractor model [83], [84], [193]. 

3) The Feature-based Knowledge Distillation (FKD) is applied for guiding the activations at 

the intermediate layers of teacher and student models. Here, we utilize computationally 

efficient loss functions aiming to transfer the geometry of activations from intermediate 

layers of the teacher CNN to the activations of the student CNN model at matching spatial 

resolutions. The employed loss functions emerge from manifold-manifold distance 

functions, formulating the problem of FKD as a problem of learning similar manifolds of 

local activations in corresponding layers of teacher and student models. Furthermore, the 

training of the student model incorporates KD attained by an additional regularization 

loss that is based on the global feature, generated at the penultimate layers of the teacher 

and student models respectively. Under this direction an efficient loss function is 

designed to fit with the KD scope, inspired from the Self-Supervised Learning method of 

Barlow Twins [266]. Ultimately, the proposed KD method utilizes both geometric FKD and 

global FKD, thus integrating local information via manifold-to-manifold comparison as 

well as global information via metrics that range from typical temperature-scaled cross 

entropy to KD-oriented cross-correlation losses. 

4) The requirements for the student CNN model architecture, utilized in the FKD scheme 

are: (i) matching of intermediate activations for at least some of spatial resolutions and 

(ii) for the global feature to share equal dimensions with that of the teacher model. The 

popular ResNet-18 CNN was selected as the student architecture, given its efficiency and 

modern topology [4]. 

The training of a feature extraction model for OffSV is a learning task different than the main 

verification task, since the identity and data of the users involved in the operational phase are 

not always available during the model’s training. Following feature extraction, the decision stage 

analyses the feature representation of a signature image and decides upon its validity. Since the 

goal of this work is to demonstrate the value of the proposed FKD in designing an efficient OffSV 

feature extractor, at the final decision stage we follow the most straightforward WD approach, 

using WD Support Vector Machine classifiers to evaluate our method at the operational phase. 

Results indicate that our system achieves top-tier performance on three popular Latin offline 

signature datasets without requiring any signature images during Student-Teacher training. The 

verification error is in par with state-of-the-art models trained with thousands of signature 

images, obtained by only exploiting knowledge via the proposed FKD scheme. Also, the training 

of the OffSV system does not require any skilled forgery signatures because the final decision 

stage with the WD classifiers uses only genuine signatures and particularly, a few signatures of 

the writer along with some signatures of other writers, also known as random forgeries. 
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The contributions of the proposed work for OffSV could be summarized as follows:  

• We demonstrate that FKD enables the efficient training of any new architectures that 

inherit the prior knowledge of benchmark models whose training data are unavailable, 

using external data of similar nature. 

• The knowledge transfer between expert CNN model and new CNN model is accomplished 

without the use of signature images, employing only handwritten text data processed 

using a specialized yet simple pre-processing scheme.  

• We propose a method for KD that combines information from both local features’ 

geometry and global feature distribution. 

• A novel global feature-level loss function is designed in the basis of H. Barlow’s 

redundancy-reduction principle, enhancing the similarity between the compared features 

while minimizing the redundancy between the remaining components of these vectors, 

accommodating the utilization of two different architecture in the S-T KD scheme. 

 

The rest of the paper is organized as follows. Section 2 presents an overview of the recent 

deep learning methods related to OffSV problem. Section 3 describes thoroughly the proposed 

FKD method through the Student-Teacher architecture. Section 4 presents the experimental 

results investigating many different KD schemes and finally Section 5 provides discussion and 

conclusions. 

5.2     Related Work 

Training a feature extraction model for Offline Signature Verification (OffSV) is typically a 

separate learning task from the main verification task, as the identity and data of users involved 

in the operational phase are not available during the model’s training phase. This provides 

flexibility in designing an efficient and practical OffSV system, resulting in a multitude of 

developed methods. Deep learning schemes have demonstrated effective performance in OffSV, 

mainly as feature extractors [46]. The main points of any deep learning based OffSV system could 

be summarized on the CNN architecture, the design strategy, and the multi-task learning 

mechanism. To achieve feature learning, a variety of CNN architectures are employed using 

either a WI or WD approach. The choice of architecture depends on both the user’s requirements 

and the available signature data. Several OffSV datasets are available, as detailed in a recent 

survey by Diaz et al. [195]. In addition, a plethora of strategies have been developed to effectively 

capture the underlying signature information. The Siamese concept has a prominent position 

among these strategies since it is well-suited to the verification problem, having two inputs to 

compare two patterns and one output whose state value corresponds to the similarity between 

the two patterns [267]. Finally, the multi-task learning enjoys high popularity in the OffSV field 

due to its easy and effective implementation. The multi-task approach begins with a first task 

that acts as primary learning, while additional learning task(s) fine-tuned specific characteristics 
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on the feature representations of signatures [44]. A taxonomy of deep OffSV methods according 

to the involved CNN architecture is attempted on Table 5-1, including information about the 

respective strategies and presence of multi-task stages. 

       The SigNet architecture, based on the AlexNet CNN topology, is dominant in the OffSV field 

[7]. It was initially designed for writer identification, with the aim of distinguishing between 

signatures of different writers using only genuine signatures [102]. However, the architecture has 

since undergone various modifications, resulting in several versions of SigNet that differ mainly 

in the dimensions of the extracted features, such as the so-called thin SigNet [102], R-SigNet 

[268], and SigNet-SPP [103]. Also, different multi-loss settings have been employed as objective 

functions during training of SigNet. In these settings, the primary loss is responsible for 

associating signatures with their respective users, while additional loss terms are used either for 

detecting forgeries, resulting in the SigNet-F version [102], [268], or combined with other metric 

learning functions to form the Multi-Loss Snapshot Ensemble (MLSE) method [101]. To leverage 

the benefits of the SigNet-F feature extractor, post feature management methods are applied, 

such as the Dichotomy Transformation in the dissimilarity space [82] and the feature 

augmentation techniques to enhance the performance of the classifiers [74]. The Siamese 

scheme is also formulated using the SigNet’s architecture in its identical subnetworks [223]. 

Building upon this, SigNet is utilized in multi-stage frameworks, either when it is initially trained 

to distinguish between signatures of different writers and subsequently re-trained using the 

contrastive loss function [84] or when it is initially trained with handwritten text data and then is 

used as the baseline model for training an additional contrastive loss layer at the top of the net 

[264]. The contrastive loss is the most common similarity ranking function in Siamese schemes 

and its objective is to learn such an embedding space in which similar sample pairs are pulled 

together while dissimilar ones are pushed apart [28]. An extension of the Siamese concept is the 

triplet loss, which is composed of: an anchor, a positive sample from the same class, and a 

negative sample from a different class. In this case, the goal is to minimize the distance between 

the anchor and positive sample while maximizing the distance between the anchor and negative 

sample in the embedding space [29], [269]. Beyond that, the dual triplets (or quadruplet) can 

also be used, which include two negative samples in addition to the anchor and positive samples 

[270]. In the case of OffSV using SigNet model, the first negative sample is a random forgery and 

the second negative sample is a skilled forgery signature [271].  

       Many CNN architectures for OffSV systems are utilized as identical streams of joint 

embedding (i.e., Siamese) frameworks that rely on contrastive representation learning. One such 

architecture is the DenseNet [272] including squeeze-and-excitation blocks (SE) [273] with [274] 

and without [275] spatial pyramid pooling (SPP) for the calculation of the global feature. The SPP 

layer is also compiled with the custom CNN architecture, named Position-Dependent Siamese 

Network (PDSN), to model the local similarity between signatures [276], while a custom CNN 

equipped with an inception layer [277], named Siamese Convolutional Inception Neural Network 
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(SCINN), is utilized to capture signature details [278]. In the work of Parcham et al. [279], the 

Capsule Neural Network (CapsNet) produces the final feature embeddings of the overall Siamese 

scheme and the resulting composite backbone architecture with the hybrid CNN-CapsNet models 

is named CBCapsNet. In this study, a plethora of CNN architectures are evaluated along with the 

CapsNet and thus, networks from the families of VGG [159], In/Xception [277], [280], ResNet [4], 

[281], [282], DenseNet [272], MobileNet [283], and NASNet [284] were investigated under the 

proposed Siamese set up. The triplet-based learning is also performed in the OffSV problem using 

the VGG-16 model [232] as well as the ResNet-18 and DenseNet-121 models [77]. In more 

complex configurations with custom CNN architectures for OffSV, the use of signature pairs can 

take many forms. For example, the work of Lu et al. [285] proposed the use of a smooth double-

margin loss as an inventive extension of the contrastive loss while the work of Zhu et al. [79] 

proposed a CNN equipped with fractional max pooling function as long as the contrastive and 

triplet losses are formulated with the novel point-to-set (P2S) similarity metric. The Deep 

Multitask Metric Learning (DMML), created by Soleimani et al. [233] as a multi-task learning 

version of Discriminative Deep Metric Learning (DDML), has a shared layer for all the writers that 

is followed by separated layers which belong to each writer independently and the overall 

topology is optimized using the relevant signature pairs. In addition, both the Inverse 

Discriminative Network (IDN) and the Multiple Siamese Net (MSN) utilize the original image (i.e., 

with white background and gray signature strokes) and the inverse version (i.e., with black 

background and gray signature strokes) of each signature of the input pair and through pairwise 

connection of its four different streams providing three [88] or four [286] verification scores that 

combined for the final decision. Finally, in an altered direction, a pair of grayscale signatures is 

fed into a custom CNN architecture as a two-channel input image to incorporate the similarity 

between the two signatures implicitly in the encoding process [228]. 

Before their final use as feature extractors for signature images, popular CNN architectures 

are often trained following a different strategy, specifically in writer identification tasks, rather 

than the Siamese concept. The multi-task approach is commonly adopted in many cases, either 

as a multi-stage process where pretraining serves as coarse initialization for the network before 

the main training process specific to the method, or as a multi-loss implementation where 

multiple loss functions are optimized together to balance multiple objectives. For the OffSV 

problem, the ResNet-8 is pretrained with auxiliary Persian handwritten text images in the writer 

identification task and next either is used as a fixed feature extractor or is fine-tuned with 

signature images of the target domain [263]. Following a similar rationale, the CNNs are initially 

pretrained on the general imagenet dataset with millions of training images and then fine-tuning 

is performed on a single signature dataset under the writer identification problem to harness the 

effectiveness of the extracted vectors from the models such as VGG-16 [287], ResNet-50 [287], 

[288] and GoogLeNet [289]. Likewise, the pretrained (on imagenet dataset) models of VGG-16, 

VGG-19, ResNet-50, and DenseNet-121 feed with feature representations the CapsuleNet that 
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operates as the final verification classifier and the whole system is trained in an end-to-end 

manner using signatures [193]. Also, the custom topology combining two streams of 

convolutional processes in the work of Zheng et al. [72] is pretrained on the signature writer 

identification task and subsequently the CNN is trained to capture micro deformations. Unlike 

the previous multi-stage approaches, the Shariatmadari et al. [100] trained their deep 

architecture utilizing a multi-loss approach combining two losses emerged from three CNN 

streams in different sizes of convolutional layers, while the proposed approach is based on 

Hierarchical One-Class CNN (HOCCNN) that trained only with genuine signatures from different 

feature levels. Furthermore, the CNN structure named Large-Scale Signature Network (LS2Net) 

with the class-center based classifier addresses the writer identification problem using the class 

centers -by averaging the extracted features of each class- and the 1-Nearest Neighbor classifier 

[290]. 

The Recurrent Neural Networks (RNNs) are a type of neural network that are well-suited for 

processing sequential data. In the context of signature verification, RNNs can be used to analyze 

signature images by dividing them into segments and treating each segment as a separate time 

step in a sequence. There are several ways that RNNs can be applied to this task. One approach 

is to simply design geometrical windows on the pixel domain, as described in [291]. Another 

approach is to use Local Binary Patterns (LBP) coded image windows, as described in [292]. These 

windows can be processed by a Bidirectional Long Short-Term Memory (BiLSTM) network, which 

is a type of RNN that is able to analyze the input data in both forward and backward directions. 

In a simpler implementation, a CNN can be used for feature extraction, with the output of the 

CNN being fed into a BiLSTM to classify the signature as genuine or forged [81]. The Static-

Dynamic Interaction Network (SDINet) is another method for incorporating sequential 

information into static signature images by assuming pseudo dynamic processes in the static 

image [293]. It does this by uniformly dividing the feature maps of the signature into rows and 

columns, with each row or column representing a dynamic unit in the signing process. Thus, the 

static feature maps are converted into sequences based on the part-by-part nature of the signing 

process. 

In the field of signature verification, there have been alternative proposed approaches that 

deviate from the usual line of research that was described above. One such approach is to use an 

autoencoder to generate forgery signatures from the genuine ones, where the encoder model is 

utilized to extract features from signature images [294]. In the same vein, another approach is to 

use an Adversarial Variation Network (AVN), as proposed in the work of Li et al. [295]. The AVN 

exploits a variation consistency mechanism to train a discriminative model for signature 

authentication that is more robust than a typical Generative Adversarial Network (GAN). The 

AVN’s feature extractor and discriminator are equipped with a variator that slightly perturbs the 

colors or intensities of the signature images to produce variants that should not affect the 

verification decision. Additionally, adversarial examples, which are intentionally designed to 
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mislead a classifier, can pose a challenge for OffSV systems, as they can cause misclassification 

[225], [296]. Finally, Graph Neural Networks (GNNs) have been applied to the problem of OffSV 

for the first time in the work of Roy et al. [297] and the transformer structure has been introduced 

as a feature extractor for signature images by Ren et al. [298]. Both of these approaches show 

promising results. 

Recently, the Self-Supervised Learning (SSL) approach has been introduced for the OffSV 

domain. Two SSL approaches have been developed for this task. The first approach involves 

pretraining a ResNet-18 model by minimizing the cross-correlation matrix between compared 

features. The resulting model is then used as a fixed feature extractor [299]. The second approach 

involves pretraining an image reconstruction network with an encoder-decoder topology. The 

encoder (ResNet-18) is then finetuned using a dual triplet loss, and the resulting model is used 

as a feature extractor [300]. Differently from these SSL approaches where supervisory signals are 

obtained from the data itself, we propose a KD method for the training of the OffSV feature 

extractor where the process is supervised from a teacher model. Hence, we leverage prior 

knowledge by having the student model use an existing efficient CNN model for signature 

encoding. Additionally, we utilize handwritten text data to transfer the knowledge from the 

teacher to the student and not signatures, contrary to the aforementioned SSL works that rely 

on signature samples from the same datasets for achieving descent performance. Although both 

methods, SSL and FKD, utilize loss functions based on the cross-correlation matrix of global 

features, in the proposed scheme the FKD loss function is tailored to the KD concept instead of 

feature similarity.  

Table 5-1: A taxonomy of recent deep learning-based OffSV systems. 

CNN involved Architecture Strategy 
Multi-
task 

Authors, Year 
Refe-

rences 

SigNet 
(AlexNet) 

SigNet, 
thin SigNet 

Identification - 
Hafemann et al., 

2017 
[102] 

SigNet-F 2-term Loss 
Multi-
Loss 

Hafemann et al., 
2017 

[102] 

SigNet Siamese - Dey et al., 2017 [223] 

SigNet-SPP, fine-
tuned 

2-term Loss & fine-tuning 
Multi-
Loss 

Hafemann et al., 
2018 

[103] 

SigNet (MLSE) 3-term Loss 
Multi-
Loss 

Masoudnia et al., 
2019 

[101] 

SigNet-F Dichotomy Transformation 
Multi-
stage 

Souza et al., 2020 [82] 

SigNet-F Feature Augmentation 
Multi-
stage 

Maruyama et al., 
2020 

[74] 

R-Signet-F 2-term Loss 
Multi-
Loss 

Avola et al., 2021 [268] 

SigCNN Dual Triplets - 
Wan and Zou, 

2021 
[271] 
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CNN involved Architecture Strategy 
Multi-
task 

Authors, Year 
Refe-

rences 

SigNet-CoLL Contrastive Layer (CoLL) 
Multi-
stage 

Tsourounis et al., 
2022 

[264] 

SigNet 
Multi-task Contrastive 

Learning 
Multi-
stage 

Viana et al., 2022 
Viana et al., 2023 

[83], 
[84] 

ResNet 

ResNet-8 Auxiliary data 
Multi-
stage 

Mersa et al., 
2019 

[263] 

ResNet-18 
Pretraining Identification + 

Triplets 
Multi-
stage 

Maergner et al., 
2019 

[77] 

ResNet-50 
Pretraining Imagenet + 

Active Learning 
Multi-
stage 

Younesian et al., 
2019 

[288] 

ResNet-50 
Pretraining Imagenet + 

Identification 
Multi-
stage 

Engin et al., 2020 [287] 

ResNet-18 
SWIS: Self-Supervised 

Pretraining + Contrastive 
Multi-
stage 

Manna et al., 
2022 

[299] 

ResNet-18 
SURDS: Self-Supervised 

Pretraining + Dual Triplets 
Multi-
stage 

Chattopadhyay 
et al., 2022 

[300] 

VGG 
VGG-16 (reduced) 

Pretraining Identification + 
Triplets 

Multi-
stage 

Rantzsch et al., 
2016 

[232] 

VGG-16 
Pretraining Imagenet + 

Identification 
Multi-
stage 

Engin et al., 2020 [287] 

DenseNet 

DenseNet-36 Multi-region + Siamese - Liu et al., 2018 [275] 

DenseNet-121 
(MCS) 

Pretraining Identification + 
Triplets 

Multi-
stage 

Maergner et al., 
2019 

[77] 

Mutual Signature 
DenseNet-36 (MSDN) 

Multi-region, SPP + Siamese - Liu et al., 2021 [274] 

InceptionNet 

Convolutional 
Inception NN (SCINN) 

Signature Synthesis + 
Siamese 

- Ruiz et al., 2020 [278] 

GoogLeNet 
Pretraining Imagenet + 

Identification 

Multi-
loss/ -
stage 

Jain et al., 2021 [289] 

CapsuleNet 

VGG-16/19, 
DenseNet-121, 

ResNet-50 + CapsNet 

Signature Augmentation + 
Pretraining Imagenet + end-

to-end Verification 

Multi-
stage 

Yapici et al., 2021 [193] 

VGG-16/19, ResNet-
50/101/152, 
In/Xception, 

InceptionResNet, 
MobileNet, NASNet 

+ CBCapsNet 

Siamese - 
Parcham et al., 

2021 
[279] 

Custom CNN 

Shared layers 
followed by 

separated layers 
(DMML) 

DDML with User-specific 
layer + Pairs 

Multi-
stage 

Soleimani et al., 
2016 

[233] 

2-channel CNN 2-channel input Pair - 
Yilmaz and 

Öztürk, 2018 
[228] 
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CNN involved Architecture Strategy 
Multi-
task 

Authors, Year 
Refe-

rences 

CNN + PSDN Siamese 
Multi-
Loss 

Lai and Jin, 2018 [276] 

4-stream CNN 
Multi-Path + Pairs 

(IDN) / (MSN) 
- 

Wei et al., 2019 / 
Xiong et al., 2021 

[88], 
[286] 

HOCCNN 
Hierarchical one-class 

Learning 
Multi-
Loss 

Shariatmadari et 
al., 2019 

[100] 

LS2Net 
1-Nearest Neighbor (1-NN) 
classification task by using 

the class-centers 
- Çalik et al., 2019 [290] 

CNN with fraction 
max pooling 

Point-to-Set (P2S) Similarity - Zhu et al., 2020 [79] 

2-stream combined 
CNN 

Pretraining Identification + 
micro-Deformations 

Learning 

Multi-
stage 

Zheng et al., 
2021 

[72] 

cut-and-compare Net 
Segmentation, Comparison 

+ Pairs 
- Lu et al., 2021 [285] 

SDINet 
conversion of static feature 

maps into sequences 
- Li et al., 2021 [293] 

RNN 

LSTM/ BiLSTM 
Spatial segments + 

Identification 
- 

Ghosh et al., 
2020 

[291] 

Recurrent Binary 
Pattern – BiLSTM 

LBP coded windows + 
Identification 

- 
Yilmaz and 

Öztürk, 2020 
[292] 

CNN with BiLSTM 
Hybrid CNN-BiLSTM 

verification 
- 

Longjam et al., 
2023 

[81] 

Autoencoder custom 6-layer CNN Utilization of encoder model - 
Prajapati et al., 

2021 
[294] 

AVN VGG (inspired from) 
Variation consistency 

mechanism 
- Li et al., 2021 [295] 

GraphNN GLCM-GNN Node Classification - Roy et al., 2021 [297] 

Transformer 
two-channel and 

two-stream (2C2S) 
transformer 

squeeze-and-excitation (SE) 
operation between two 

standard Swin Transformer 
blocks + Pairs 

- Ren et al., 2023 [298] 

Adversarial 
attack 

adversarial examples 
adversarial characterization 
/ adversarial perturbations 

- 
Hafemann et al., 
2019 / Li et al., 

2021 

[225], 
[296] 

 

5.3     Proposed Method 

5.3.1     Harnessing Knowledge through Distillation 

The efficiency of CNNs in the modern Deep Learning era is founded on large and annotated 

training datasets and thus, the amount and quality of both data and labels is mission-critical. The 

most popular approach for reducing the amount of labeled training data without affecting the 
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performance too much, is by employing prior knowledge from a source domain with an 

abundance of training data on a similar task. Then, transfer knowledge is performed from the 

source task to enable the learning on the target task utilizing the same network sequentially 

[301]. Towards a similar goal but with on a slightly different line, Knowledge Distillation (KD) is a 

method for transferring information from one network to another network whilst training 

constructively [302], [303]. The most prominent setting of KD is a Student-Teacher (S-T) scheme, 

where the knowledge is transferring from a “Teacher (T)” model to a “Student (S)” model and in 

this manner, the teacher CNN is supervising the training of the student CNN. Since the knowledge 

from the teacher reflects a more general type of information that could be expressed through 

many representations, there is no commonly agreed rule as to how knowledge is transferred. 

Therefore, various forms of KD methods are developed covering different aspects, like the types 

of distillation, the quality measures of knowledge, the design of S-T architecture, etc.  

In brief, the KD schemes are either offline or online. In offline distillation, the teacher model 

is pre-trained and fixed, and its knowledge is distilled to train the student model. On the other 

hand, in online distillation, both the teacher and student models are updated simultaneously in 

an end-to-end training procedure. Self-distillation is a special case where the teacher and student 

models are the same. Additionally, there are variations in the number of teachers used, including 

distillation from one teacher or multiple teachers, where the student learns from an ensemble 

of teachers. Also, the S-T framework has been extended handling various data formats, such as 

data-free or cross-modal KD, and different labeling requirements, including label-free or meta-

data KD. Additionally, different learning metrics have been utilized, involving adversarial 

distillation and KD using attention maps. Thus, there is a wide range of S-T variations developed, 

each tailored to the specific characteristics of the problem at hand. A detailed survey on KD and 

S-T learning methods can be found in [24], [45]. 

Knowledge often refers to the learned weights and biases, although there is a diversity in the 

sources of knowledge in a CNN. Typically, the two principal sources of knowledge in a CNN model 

are, the output prediction score, known as logits, and the activations of intermediate layers, 

known as hints. Since the soft logits represent the class probability distribution, the knowledge 

from teacher’s model is shifted to the student’s model by learning the class distribution via 

softened softmax (also called “soft labels”), where each soft label’s contribution is controlled 

using a parameter defined as temperature [302], [303]. The main idea is that the student model 

will learn to mimic the responses of the teacher model and not only the hard class predictions. 

However, since CNNs are compositional models that organize the information hierarchically, they 

could learn multiple levels of feature representation with increasing abstraction [304] and thus, 

the knowledge derived from the intermediate layers of a teacher model could provide favorable 

information. Like so, the goal of this type of KD (Feature-based KD), is matching the internal 

representations between student and teacher models. Supplementary to the above sources, the 

knowledge that captures the relationship between different activations and neurons -from one 
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or more locations of features along the network- can also be used to train a student model. Next, 

we present a detailed description of the used FKD, explaining how knowledge is measured and 

how the information is transferred from teacher to student through the proposed loss functions.  

5.3.2     Geometric Regularization through Local Activation Features 

The local features are the activations from intermediate layers of a CNN, meaning that they are 

the output of a hidden layer that constitute a Feature Map (FM). The FM is an intermediate 

representation generated from a convolution layer and thus, includes local information since 

each entry of FM highlights only a local neighborhood of input pixels. In an S-T FKD scheme, the 

teacher’s intermediate representations supervise the training of the student model, so to learn 

feature representations that match some qualities of the respective teacher’s predictions.  

Given its spatial structure, a FM can be considered as a set of multidimensional vectors 

representing local features depth wise. The overall affinity between two sets of multidimensional 

data (feature vectors) can be measured through a similarity or dissimilarity function, formulated 

from either statistical or geometrical perspective. According to the statistical approach, the 

distance between two sets of feature vectors is related to the dissimilarity between the 

underlying distributions from which the vectors are derived. On the other hand, the geometrical 

approach assumes that the data from each set of vectors are lying on a low-dimensional manifold 

inside the feature space and thus, the distance can be defined as a measure of the dissimilarity 

between geometrical properties of the corresponding manifold structures. In [305], a manifold-

to-manifold distance is introduced based on the notion of reordering efficiency of the 

neighborhood graphs representing the manifolds of local features. Following, in [306], [307] this 

distance was extended to an efficient Feature-based Knowledge Distillation (FKD) technique 

through a geometric regularization of local activations within an S-T framework. Consequently, 

the local manifold-based regularization incentivizes a student CNN to create local features that 

resemble, in overall geometry, to those of a teacher model at several layers with matching spatial 

resolutions. In this work, we employ a FKD approach which is based on the above-mentioned 

manifold-to-manifold distance, regularizing the activations in several intermediate layers of 

student model via the respective activations in the teacher network. 

5.3.2.i     Geometric Distillation 

Let us consider a Feature Map (FM) of size 𝐻 × 𝑊 × 𝐷, where H and W correspond to its spatial 

size (Height and Width) while the Depth size D denotes the number of channels. It consists of 

N=H⋅W feature vectors, each one having dimensionality of D (i.e., 𝑥𝑗 ∈ ℝ1×𝐷 is a channel-wise 

feature vector with D elements, one for each pixel location j=1,…,N). Thus, a FM is a set of N 

feature vectors in a feature space of size D. Hence, the dissimilarity between two feature maps 

extracted from two CNNs could be measured via a manifold-to-manifold distance metric between 

the local activation manifolds, at corresponding layers of the two models with one-to-one 
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correspondence between samples of the two compared sets. This happens in the case where the 

two compared feature maps have the same spatial size (H&W), independent of the feature 

dimensionality (i.e., the value of D). The neighboring relations within each feature set can be 

encoded by a Minimal Spanning Tree (MST), which in the form of a minimalistic backbone, 

connecting the nodes representing feature vectors [308]. In such case, neighborhoods can be 

defined via a geodesic radius around each node on the MST. The MST was used in such setting 

because it is less prone to topological short-circuits and thus, generating neighborhoods whose 

affinities are more indicative of the underlying manifolds’ features [309]. Finally, a measurable 

quantity of local affinity for each FM’s vector can be obtained with the Neighborhood Affinity 

Contrast (NAC) [310]. The NAC measures the ratio of the sum of square Euclidean distances of a 

sample to all its neighbors, to the sum of distances to all the other samples of the set. Thus, NAC 

is an atypical measure of compactness of the local neighborhood of each sample. The, the NAC 

ratio (i.e., intra distance to inter distance) is calculated using the following formula:  

                                                           𝑁𝐴𝐶𝑀
𝐹𝑀 =

∑ 𝑑𝑖𝑠𝑡𝑖𝑗 ⋅ 𝑚𝑖𝑗 𝑁
𝑗=1

∑ 𝑑𝑖𝑠𝑡𝑖𝑗
𝑁
𝑗=1

 ∈ ℝ1×𝑁                eq. 5.1 

where the total number of FM vectors is 𝑁 = 𝐻 ⋅ 𝑊 , the pairwise vectors’ normalized square 

Euclidean distance is 𝑑𝑖𝑠𝑡𝑖𝑗 =
‖𝑥𝑖−𝑥𝑗‖

2

2

∑ ‖𝑥𝑖−𝑥𝑗‖
2

2𝑁
𝑗=1

, 𝑥𝑖 ∈ ℝ1×𝐷 and the neighborhood mask 𝑀 ∈

 {0,1} 𝑁×𝑁 is based on the geodesic distance between the i-th and j-th nodes (i.e., feature vectors) 

on the MST with        

                                                       𝑚𝑖𝑗 =  {
1,    𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐

𝑀𝑆𝑇 (𝑖, 𝑗)  ≤ 𝑟

0,    𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐
𝑀𝑆𝑇 (𝑖, 𝑗)  > 𝑟

         eq. 5.2                                                          

with r a geodesic radius indicating the number of hops that define the neighbors of each node on 

the MST. 

In this work, the neighborhood mask 𝑀 ∈  {0,1} 𝑁×𝑁 is computed only on the teacher’s side (𝑀𝑡) 

and once for each datum, as proposed in [306], [307], [310], to force the student model’s 

activations to mimic the neighboring relations, as expressed in the corresponding activations in 

the teacher’s model. Therefore, the student’s model is guided to produce local activation 

features with similar geometrical characteristics to those of the teacher model. The comparison 

between a feature map from the teacher CNN (FMt) and a feature map from the student CNN 

(FMs) -with equal spatial resolutions- is provided by the mean squared distance between the 

respective NAC vectors from the teacher’s and student’s FM, using the same neighborhood mask 

𝑀𝑡. Therefore, the Geometrical Loss of the local features from the intermediate layers in the 

utilized S-T FKD scheme is defined as:  
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𝐺𝑒𝑜𝑚𝐿 = ‖𝑁𝐴𝐶𝑀𝑡
𝐹𝑀𝑡 − 𝑁𝐴𝐶𝑀𝑡

𝐹𝑀𝑠‖2
2                 eq. 5.3                                                                      

By designing in this way, multiple supervision connections between layers of the teacher and the 

student can be simultaneously implemented, adding the respective regularization terms in the 

overall loss function. Also, the geometrical regularization of local activations could work 

synergistically with any other KD loss as well as task-dependent loss terms. In our 

implementation, we utilize two connections between intermediate layers on the S-T scheme for 

geometric regularization of local activation features. Thus, there are two geometrical 

regularization terms targeting different layers of the networks, one in an early layer and one after 

the middle of the teacher’s topology, connecting with layers equivalent in terms of spatial size to 

the student’s topology (Figure 5-1). 

5.3.3     Response Regularization through Global Features 

Typically, when a CNN model is utilized for feature extraction, the extracted feature is provided 

by the penultimate layer, just before the classification layer. Since this feature is the network’s 

response, optimized so to facilitate a classification task, it reflects the discriminative qualities 

learned by the model during training. Hence, if the global feature of a CNN model exhibits 

preferable characteristics, it is reasonable to try to teach the student model to imitate this 

directly. Fortunately, in a S-T scheme, the teacher’s knowledge could be transferred to the 

student through the feature information of the respective responses, regardless of the 

classification task solved by the teacher and the respective data.   

Assuming that the global features from the two models (teacher and student) have the same 

dimensionality, it is easy to formulate a function to compare them. In this work, the FKD through 

global features is incurred by minimizing the difference between the teacher response and 

student response using either the cross-entropy loss of the two temperature-scaled features, or 

a loss utilizing the cross-correlation matrix between the two feature vectors.  

5.3.3.i     Response Distillation based on cross-entropy 

The softmax function transforms the input vector into a probability distribution promoting the 

highest value against others. Accordingly, the output values are restricted to the range of [0,1] 

with their sum being equal to 1, whilst the larger values are intensified, and the lower values are 

denoted. One effective calibration technique for rescaling the output values to increase the 

sensitivity of low probability candidates is the temperature scaling [302], [303]. The softmax with 

temperature parameter softens the distribution by penalizing the larger logits more than the 

smaller logits and thus, more probability mass will be assigned to the smaller logits. This 

characteristic could be very beneficial for our case, where high-dimensional feature vectors (and 

not class predictions) are utilized directly in the loss function. The softmax with temperature 
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parameter 𝜏 for an input vector 𝑓 ∈ ℝ1×𝐾, where 𝐾 is the feature dimensionality, is calculated 

as: 

     𝑝𝑖 =
𝑒(𝑓𝑖 𝜏)⁄

∑ 𝑒(𝑓𝑙 𝜏)⁄𝐾
𝑙

                                     eq. 5.4                                   

  

The imitation of teacher’s output by the student model is driven by the minimization of cross-

entropy between the temperature scaled features extracted from two CNNs respectively. Thus, 

the Response Loss of the final features with the temperature-scaled cross-entropy function (T-

CE) in the S-T FKD scheme is defined as: 

𝑅𝑒𝑠𝑝𝐿ᴛᴄᴇ = − ∑ (  𝑞𝑖
𝑡 ∙ log(𝑝𝑖

𝑠)  )𝐾
𝑖                 eq. 5.5                                   

where 𝑝𝑖
𝑠 and 𝑞𝑖

𝑡 are the final extracted features after temperature softmax from the student and 

the teacher respectively while K equals to the features’ dimensionality. 

In our implementation of S-T FKD framework, the above Response regularization term is 

evaluated either in conjunction with classification loss or other KD losses, or as a single loss term 

of the training procedure.  

5.3.3.ii     Response Distillation based on cross-correlation: 

The cross-correlation between two different signals can be used as a technique for comparing 

two signals. A commonly used extension of the simple cross-correlation is normalized cross-

correlation which can detect the correlation of two signals with different amplitudes. The cross-

correlation matrix of two vectors in the ℝ𝐾  space is a matrix with elements the cross-correlations 

of all pairs of elements of the vectors. In particular, the cross-correlation matrix 𝐶 between the 

normalized responses from the teacher (𝑧𝑡 ∈ ℝ1×𝐾) and the student (𝑧𝑠 ∈ ℝ1×𝐾) is computed 

by the following formula:  

                                                 𝐶𝑖𝑗 ≜
∑ 𝑧𝑖

𝑠∙𝑧𝑗
𝑡𝐾

√∑ (𝑧𝑖
𝑠)2𝐾 √∑ (𝑧𝑗

𝑡)2𝐾
                                          eq. 5.6                                   

where 𝐶𝑖𝑗 is the correlation between i-th element (𝑧𝑖
𝑠) of normalized student’s vector (𝑧𝑠 ∈

ℝ1×𝐾) with the j-th element (𝑧𝑗
𝑡) of normalized teacher’s vector (𝑧𝑡 ∈ ℝ1×𝐾), while the above 

relation could be also applied to vectors normalized via z-score standardization across batch, 

during the training of the proposed S-T framework. 

An objective function which tries to make two feature vectors similar while reducing the 

redundancy between their components, can be expressed by enforcing their cross-correlation 

matrix as close to the identity matrix as possible. For this purpose, the Barlow Twins loss function 

[266] has been proposed as a self-supervised learning approach, comparing the embeddings of 

two distorted versions of an input image by the same network. In our work, we exploit a similar 

logic, but comparing the features extracted from two different networks instead, (i.e., teacher 
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and student) for the same input image. Thus, the cross-correlation matrix between the feature 

responses of the teacher and student CNNs is computed, creating an S-T FKD scheme where the 

Response Loss for the final features is defined as:  

  

                                      𝑅𝑒𝑠𝑝𝐿ʙᴛ = ∑ ( 1 −  𝐶𝑖𝑖 )
2 + 𝜆 𝐾

𝑖 ∑ ∑ (𝐶𝑖𝑗)
2

𝑗≠𝑖
𝐾
𝑖                    eq. 5.7                                   

with a trade-off parameter 𝜆 ≥ 0 that controls the importance between the two terms of the 

loss, with the first term trying to pull the diagonal elements of the cross-correlation matrix 

towards 1 and the second term trying to minimize the off-diagonal elements. The features are 

centered and normalized to unit variance along the batch dimension before the calculation of 

the cross-correlation matrix.  

In addition to the aforementioned loss term, we also evaluate a more relaxed version that 

offers some additional degrees of freedom to the student model’s response, and is more 

compatible with the context of S-T distillation. Whilst the Response loss in Barlow Twins tries to 

match the response in the i-th element of student’s vector to the i-th element of teacher’s vector, 

the relaxed version tries to match the i-th element of student’s vector with the element of 

teacher’s vector with which it has the maximum correlation. The rationale behind this option is 

that since the different architectures of the student and teacher networks do not share 

parameters as in a Barlow Twins self-supervision setting, the two models could produce similar 

responses but within an arbitrary permutation of their features’ elements. Hence, the utilized 

loss should facilitate such behavior and not necessarily enforce element-wise correspondence 

between the student’s and teacher responses. Therefore, we opted for a loss function that 

accentuates the maximum correlation for each feature component. Ultimately, the proposed 

Response Loss of the final features in the S-T FKD scheme is defined as:  

 

𝑅𝑒𝑠𝑝𝐿ʙᴄ = ∑ ( 1 −  max𝑗(𝐶𝑖𝑗) )
2

+ 𝜆 𝐾
𝑖 ∑ ∑ (𝐶𝑖𝑗)

2
𝑗≠𝑎𝑟𝑔𝑚𝑎𝑥𝑗(𝐶𝑖𝑗)  𝐾

𝑖      eq. 5.8 

 

As in the previous case, the parameter 𝜆 ≥ 0 is a coefficient that adjusts the balance between 

the invariance term which enhances the maximum activations between the compared features, 

and the redundancy reduction term that decorrelates all the remaining components of the 

features. For this relaxation of the Barlow loss function we will use the term Barlow Colleagues 

(BC), in contrast to the unmodified Barlow Twins (BT). 

5.3.4     Building the Student-Teacher Knowledge Distillation (S-T FKD) Architecture 

Figure 5-1 presents the proposed S-T FKD scheme which distils the knowledge via an offline 

approach, where the teacher model is fixed, and the knowledge is transferred using both the 

feature maps of intermediate layers and the final features, to leverage the local and global 

information respectively.  
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Figure 5-1: The S-T scheme presents the produced representations as data pass the sequential operations of student and teacher 

CNNs. The student CNN has a fully connected layer at the end of its topology that serves the classification task (classL) using the 

predicted classification scores (Pr). The teacher model provides the neighborhood masks (M1t and M2t) for any given Feature 

Map (FM1t and FM2t) as well as the final feature vector response with 2048 elements (Rt). Two Feature Maps (FM1s and FM2s) 

as well as the final extracted feature (Rs) of the student model participate in the FKD. The FKD is implemented utilizing the 

geometrical regularization terms from intermediate layers (GeomL1 and GeomL2) and the response regularization term from the 

final extracted features (RespL). Thus, the overall multi-loss function combines the FKD regularizations together with the 

classification loss to supervise the training of the student CNN. 

First, to form the S-T architecture, we utilize as the teacher CNN the original SigNet feature 

extractor proposed by Hafemann et al. in [102]. The used SigNet model provides a feature 

representation for any input image and not a predicted classification result whereas a 

classification score depends on the number of classes of the corresponding training dataset. 

Thus, for any input image, the SigNet produces a feature vector of 2048-dimensions. While the 

teacher SigNet is built on the base of AlexNet architecture, the student CNN follows a more 

modern architecture based on the ResNet-18 topology. Taking advantage from its residual skip 

connections via the four residual blocks, the student model is much deeper than the teacher 

model even though they have approximately equal number of learned parameters given the 

addendum of one fully connected layer with 2048 neurons in the student CNN as its penultimate 

layer for feature extraction before the final classification layer. The inclusion of the fully 

connected layer for feature extraction has as input the feature map of the previous layer without 
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using any spatial pyramid layer. The architectures and sizes of activations both for the teacher 

and student models are presented in Table 5-2.  

Table 5-2: Architectures and activations’ size for teacher (SigNet) and student (ResNet18) models. 

SigNet ResNet-18 

Layer/Block 

Name 
Activation size 

Layer/Block 

Name 

Activation 

size 

Input 150 × 220 × 1 Input 150 × 220 × 1 

conv1 35 × 53 × 96  conv 72 × 107 × 64 

pool1 17 × 26 × 256  pool  35 × 53 × 64 

conv2 (FM1t) 17 × 26 × 256   block1  35 × 53 × 64 

pool2  8 × 12 × 256  block2 (FM1s)  17 × 26 × 128 

conv3  8 × 12 × 384  block3 (FM2s)  8 × 12 × 256 

conv4  8 × 12 × 384  block4  3 × 5 × 256 

conv5 (FM2t)  8 × 12 × 256  fc1 (Rs)  2048 

pool5  3 × 5 × 256  fc2 #classes 

fc6  2048   

fc7 (Rt)  2048    

fc8 #classes   

 

Secondly, the geometrical regularization requires to define the positions of distillation in the 

two models while the unique meeting condition is the same spatial resolution of the two 

connected feature maps. We select to utilize the final representation for each spatial resolution 

assuming that incorporates its optimal knowledge. For an input image of 150 × 220 pixels, the 

spatial pixel resolutions during the pass inside the teacher SigNet model are 35 × 53 (conv1-bn1-

relu1), 17 × 26 (maxpool1 or conv2-bn2-relu2), 8 × 12 (maxpool2 or conv3-bn3-relu3, conv4-bn4-

relu4, conv5-bn5-relu5), and 3 × 5 (maxpool5). Given the four different spatial resolutions 

founded along teacher SigNet‘s layers, the output from the first convolutional layer (i.e., 35 × 53) 

presumably captures primordial information and the smallest representation (i.e., 3 × 5) is 

degenerated; thus both they are deregistered. Hence, two spatial sizes, the 17 × 26 and 8 × 12 

resolutions, are remaining. We opt to make use of the output after the consecutive operations 

of convolution, batch-normalization, and relu non-linearity supposing that this representation 

includes the best possible information as well as makes easier the correspondence with the 

output of a residual block in the student model. In this manner, the spatial resolutions lead to 

utilize the feature map representations produced as the output of the second and third residual 

block in the student’s ResNet-18 model. Finally, the one geometrical regularization (GeomL1) is 

utilized the teacher’s FM of size 17 × 26 × 256 and the student’s FM of size 17 × 26 × 128 while 

the other geometrical regularization (GeomL2) uses the volumes with size 8 × 12 × 256 from the 

teacher and the student respectively. The response regularization (respL) is computed with the 
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final extracted features, which are provided from the CNNs’ layer when the classification output 

score is removed (i.e., if the classification task is not considered) and incorporate the total global 

knowledge of the network. Thus, the feature vector from the output of the feature extractor 

teacher (layer fc7 at SigNet model) and the feature vector from the fully connected layer (layer 

fc1 at ResNet-18 model) of the student CNN are utilized. Both features have 2048 elements and 

produced after the consecutive operations of fully convolution, batch-normalization, and relu 

non-linearity in the two models.  

The Geometrical Loss (GeomL) of the intermediate feature maps (FM) from two different 

distillation positions (FM1t, FM1s and FM2t, FM2s) and the Response Loss (RespL) of the final 

extracted features (Rt, Rs) are implemented as regularization terms of the S-T FKD training. These 

are considered together with the typical (cross-entropy) Classification Loss (classL or CL) of the 

ground truth labels (Lb) and predicted classes (Pr), to form an overall multi-loss function that 

supervises the training of the student CNN. Thus, the overall multi-loss function of the S-T scheme 

is defined as:  

 

                        ℒ =  𝑙1 ∙ 𝐺𝑒𝑜𝑚𝐿1 +  𝑙2 ∙ 𝐺𝑒𝑜𝑚𝐿2 +  𝑔 ∙ 𝑅𝑒𝑠𝑝𝐿 +  𝑐 ∙ 𝑐𝑙𝑎𝑠𝑠𝐿            eq. 5.9                                   

 

with coefficients 𝑙1, 𝑙2, 𝑔, 𝑎𝑛𝑑 𝑐 representing the weights for each term that contributes to the 

overall loss, where 𝑐 = 1 to allow compiling relative relations with the other terms. 

5.4     Experimental Evaluation 

5.4.1     Datasets 

5.4.1.i     Offline signature datasets for evaluation 

The CNN models trained via the FKD processes are applied on three most popular OffSV datasets 

to assess their efficiency. As mentioned above, in OffSV setting, the CNN models are utilized for 

feature extraction, while WD classifiers undertake the final signature verification stage. The 

CEDAR, MCYT75, and GPDS300GRAY offline signature datasets are evaluated to measure the 

performance of the models as feature extractors. The three datasets include signatures scanned 

from documents as grayscale images. 

The CEDAR dataset (Centre of Excellence for Document Analysis and Recognition) includes 55 

writers with 24 genuine and 24 forgeries signatures per writer [56]. The forgeries are a mixture 

of random, simple, and skilled simulated signatures since they are contributed by some writers 

of the dataset that asked to forge three other writers’ signatures, eight times per subject. The 

offline CEDAR dataset is publicly available. 

The MCYT75 (Ministerio de Ciencia Y Tecnologia, Spanish Ministry of Science and Technology, 

MCYT75 Offline Signature Baseline Corpus (“Database”)) has 75 enrolled writers with 15 genuine 
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and 15 forgeries signatures per writer [57], [59]. The forgeries generated by 3 different user-

specific forgers and thus, they are skilled simulated signatures. The offline handwritten signature 

dataset MCYT75 is publicly available. 

The GPDS300GRAY is a standard subset of GPDS960 corpus (Digital Signal Processing Group) 

with 253 writers and each of them has 24 genuine and 30 forgeries signatures [246], [262], [311]. 

The forgeries signatures marked as skilled since they made by 10 forgers from 10 randomly 

selected genuine specimens and the forger was allowed to practice the signature without time 

limit. Although the GPDS960 database is no longer publicly available due to the General Data 

Protection Regulation (EU) 2016/679 (“GDPR”), we utilize the GPDS300GRAY dataset only for 

evaluation to measure the performance and to accomplish comparisons with other works that 

report results on this dataset [81], [83], [265]. 

Preprocessing signature images: 

The grayscale signature images are subjected to some simple preprocessing steps dedicated to 

normalization, noise removal and size correction, since scanned images may contain noise and 

also the methods require the images in a fixed size. The normalization process shares the same 

steps as many previous works on OffSV [83], [84], [102], [103], something that also enables fair 

performance comparisons. The preprocessing includes the following steps: gaussian filtering and 

OTSU thresholding to remove background noise, centering into a large blank canvas of a 

predefined size of 952 × 1360 pixels (Height × Width) -common for all datasets- by aligning the 

signatures’ center of mass to the center of the canvas so as not to affect the width of strokes and 

to present the original aspect ratio, inverting the images to have black background and grayscale 

foreground by subtracting the maximum brightness (i.e., white value of 255), and resizing the 

images to the input size of the CNNs that is 150 × 220 pixels (Height × Width). 

5.4.1.ii     Handwritten Text data for Training in S-T configuration 

Training in a S-T configuration is realized using text data that work as information carrier to 

transfer the knowledge from the teacher into the student. Taking into consideration the 

biometric qualities of handwriting, the handwritten text data from the auxiliary domain are 

processed by a specially designed procedure to create an auxiliary task. The auxiliary task was 

designed so as its data to resemble more to those of the target domain of handwritten signature 

images. The text data come from the publicly available CVL-database, where 310 writers fill in 5-

10 lines of predefined text on page-forms [312]. The text data are processed according to the 

procedure proposed by Tsourounis et al. in [264] to generate text images that resemble the 

distributions of signature images and use them as the training data of a CNN that solves a writer 

identification problem. In brief, the handwritten text documents are first converted to grayscale, 

then the lines of text are isolated as Solid Stripes of Text (SSoT), and finally, the SSoT are cropped 

into vertical intervals to generate the text images. Subsequently, the text images are 
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preprocessed as signature images, following the same preprocessing steps detailed above. Given 

the findings in [264] about the effects of cropping and canvas dimensions of the text data, the 

random choice of parameters is more favorable offering better generalization.  Hence, in this 

work the utilized training text set is obtained by each SSoT with random aspect ratio and using 

all available canvas sizes. In the context of this work though, the increased computational load 

needed for each training image -given the estimation of the Neighborhood Affinity Contrast 

(NAC) for some Feature Maps (FMs) as well as the calculation of the MST from the side of the 

teacher- led us to reduce the training set by sampling one text image for each canvas. Ultimately, 

about sixty thousand training and twenty-five thousand validation images are used for the 

training of S-T schemes (the training set could be downloaded from the official repository of our 

work4). 

5.4.2     Experimental Setup and Protocols 

In the context of this work, the trained CNN models are utilized as feature extractors, and the 

produced descriptors of the input signatures are consumed by binary classifiers that distinguish 

the genuine from the forgery signatures. Hence, the generalization performance of the CNN 

models is measured using the evaluation metrics obtained from the classifiers in the verification 

task. In this work, we follow the Writer Dependent (WD) approach and thus, a Support Vector 

Machine (SVM) classifier is trained for each writer. The implementation of WD classifiers is based 

on the work of Hafemann et al. [102]. In this manner and for fair comparisons, we utilized the 

implementation provided in the official repository5 of [102] for the partition into training and test 

sets, the training of the classifiers, and the calculation of evaluation metrics.  

5.4.2.i     Experimental Protocol 

Initially, a number of genuine signatures for every writer, denoted as the number of reference 

signatures NREF, is selected to form the training set for the SVMs. In this manner, for each writer’s 

SVM, the positive training class consists of the reference signatures from the writer while the 

negative training class is composed of the reference signatures from all other writers of the 

evaluated dataset (also called random forgeries). The test set for each writer includes the 

remaining genuine signatures from the writer and a number of the corresponding skilled 

forgeries. Following the works of [74], [84], [102], the number of training and testing samples 

used for evaluation on each dataset, is summarized in Table 5-3. Preferably, the number of 

genuine test samples would be equal to the test skilled forgeries (without diminishing the test 

set) for the two populations to have equal contributions to the error. The chosen number of the 

reference signatures per subject is in line with the most common experimental protocols in the 

literature [44]. For each experiment, ten (10) repetitions with WD classifiers trained using 

 
4 https://github.com/dimTsourounis/FKD 
5 https://github.com/luizgh/sigver 
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randomly selected splits of data are performed (with different reference signatures), and the 

results are presented in terms of the average and standard deviation values across these 10 

iterations. 

Table 5-3: The partition into training and test sets for the WD classifiers using the signature datasets. 

OffSV Dataset  Training set Test set 

Name Writers Genuine 
Skilled 

Forgeries 

Genuine 

(writer’s  

REF) 

Random 

Forgeries 

(others’  

REF) 

Genuine 

(Rest) 

Skilled 

Forgeries 

CEDAR 55 24 24 12 12 × 54 10 10 

MCYT75 75 15 15 10 10 × 74 5 15 

GPDS300GRAY 253 24 30 12 12 × 252 10 10 

 

5.4.2.ii     Writer Dependent classifiers (WD SVM) 

The WD classifiers were trained using soft margin binary Support Vector Machine (SVM) with 

Radial Basis Function (RBF) kernel, while the two associated hyper-parameters (cost parameter 

C and scaling parameter gamma), were set to constant values of 𝐶 = 1 𝑎𝑛𝑑 𝛾 = 2−11. Also, more 

weight to the positive class is used in order to correct for the class imbalance, given that the 

positive training class consists of only a few genuine signatures and the negative training class 

has much more signatures due to the usage of samples from many writers. So, the weight for the 

negative class is set to 1 and the weight for the positive class is the ratio of the number of negative 

training examples to the number of positive training examples. 

5.4.2.iii     Evaluation Metrics 

The number of reference signatures specifies the genuine signatures of a writer, used to 

construct the positive class during the training of its corresponding SVM, while the negative 

training class is created from the reference signatures of all other writers of the dataset. After 

the training of an SVM, a decision threshold should be defined to distinguish any query test 

signature as genuine or forgery. Mainly one of two approaches is followed to determine the 

decision threshold; either utilizing all the available training signatures of the datasets (from all 

the users) or using just the training signatures that correspond to each specific user, in order to 

select the threshold closest to FPR = 1 – TPR (i.e., False Positive Rate equals to one minus True 

Positive Rate). The first approach sets one optimum global decision threshold (a posteriori) that 

is common for all the writers’ SVMs, and the second approach sets user-specific thresholds by 

using the optimal decision threshold for each writer’s SVM individually. For calculating the False 

Acceptance Rate (FAR: misclassifying a forgery as being genuine) and False Rejection Rate 

(FARskilled: misclassifying a genuine as being skilled forgery), the global decision threshold is used. 
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The Equal Error Rate (EER) for each user is calculated considering only skilled forgeries (not 

random forgeries) when FRR equals to FARskilled and using two forms, the global decision threshold 

to report EERglobalthreshold and the user-specific threshold to report EERuserthreshold. In both cases, the 

reported EER is the average value from all the writers of the dataset and after the ten repetitions 

of experiment with different reference samples for every writer in each iteration. Finally, the 

mean Area Under the Curve (AUC) is often used as a metric measured on the ROC curves created 

for each user individually. 

5.4.3     Implementation Details of S-T training 

The only parameter of the utilized geometric regularization is the radius of r that defines the 

neighborhood size on each respective MST. In the following, we use a radius of 𝑟 = 5, a value 

resulted as the most reliable setting for good performance in a small set of preliminary 

experiments with the selected teacher model. Also, following the observation made in [306], 

[307] that training is more stable when earlier layers have a smaller contribution in the overall 

loss than the deeper ones, we set the contribution coefficients 𝑙1 = 10 𝑎𝑛𝑑 𝑙2 = 100   

throughout the evaluation, since these values provided good results in the same preliminary 

experiments. The response regularization is implemented in three different ways, using the cross-

entropy loss of temperature scaled features (T-CE), the cross-correlation matrix of normalized 

features based on Barlow Twins loss (BT), and the novel version of the latter named Barlow 

Colleagues (BC). For the first case, we ran a search for the temperature factor 𝜏 as well as the 

coefficient of contribution 𝑔 and found the best results for 𝜏 = 10 and 𝑔 = 0.001 . For the other 

two cases, the trade-off parameter 𝜆 = 0.0001 and coefficient 𝑔 = 0.0001 are set after a grid 

search. Our observations suggest that a downscale (approximately two or three orders of 

magnitude) of the response distillation loss term relative to the classification loss, is beneficial to 

the overall performance. Additionally, the utilization of the regularization terms together with 

the classification term from the beginning of the training, produced better results than applying 

a warmup training with only the classification loss. 

The S-T framework was trained using the Stochastic Gradient Descent (SGD) optimizer with 

initial learning rate of 0.01 which is reduced by a factor of 10 every 20 epochs for a total of 60 

epochs, using Nesterov Momentum with a momentum factor of 0.9. The batch size was 64 

according to the maximum capacity of the utilized GeForce RTX 2070 GPU. Each S-T training took 

approximately 30 hours. Implementation of the proposed FKD method is available for download 

at the official repository6. 

 
6 https://github.com/dimTsourounis/FKD 
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5.4.4     Results and Analysis 

5.4.4.i     Proof-of-concept (SigNet-to-SigNet) 

Α goal of this work is to demonstrate teacher-to-student knowledge transfer using exclusively 

auxiliary data. The first setting we investigated as a proof-of-concept is when the teacher and 

student models follow the same architecture. In this manner, we investigate only if the transfer 

of knowledge is effective, without any performance contributions stemming from architectural 

differences. In this experiment, the teacher model is a SigNet, which is trained on signature 

images [102] and is not updated during S-T training, while the student model follows the SigNet’s 

architecture with random parameters initialized using the Xavier sampling [313]. The student 

model is trained on the task of text-based writer identification, utilizing different combinations 

of distillation losses along with the main classification loss (CL). The evaluation of the trained 

student model was performed on the signature verification task, using WD classifiers that trained 

on the features extracted from layer fc7 of the student model and following the user threshold 

approach to calculate the performance metrics. Specifically, the Equal Error Rates (EER) are 

reported for the three evaluation datasets. Table 5-4 summarizes the obtained EER values from 

the CNN models trained in both standard identification task (CL), as on the various S-T training 

configurations. The results obtained using the teacher model as well as the student model at its 

initial conditions (i.e., with Random Weights) are also reported as baseline performance. 

Table 5-4: Performance of the WD classifiers with user-threshold on the SigNet-to-SigNet FKD schemes. 

Method 

Overall loss EER (user threshold) 

𝒍𝟏 𝒍𝟐 𝒈 𝒄 
CEDAR 

(REF = 12) 

MCYT75 

(REF = 10) 

GPDS300GRAY 

(REF = 12) 

Teacher – SigNet 

(fixed) 
- - - - 4.33±0.66 3.14±0.60 3.29±0.24 

Student – SigNet 

(Random Weights) 
- - - - 11.95±0.81 10.71±1.17 9.53±0.39 

CL (w/o KD) 0 0 0 1 3.91±0.60 8.27±0.67 4.28±0.17 

CL + KD: GEOM 10 100 0 1 3.58±0.24 7.30±0.74 3.39±0.17 

CL + KD: T-CE 0 0 0.001 1 2.94±0.34 8.26±1.42 4.11±0.19 

CL + KD: BT 0 0 0.0001 1 2.94±0.34 4.76±0.97 4.46±0.38 

CL + KD: BC 0 0 0.0001 1 3.78±0.56 7.92±0.81 3.78±0.24 

CL + KD: GEOM & T-CE 10 100 0.001 1 3.02±0.34 7.49±1.20 3.37±0.19 

CL + KD: GEOM & BT 10 100 0.0001 1 3.73±0.56 7.55±1.29 3.40±0.27 

CL + KD: GEOM & BC 10 100 0.0001 1 3.51±0.32 7.02±1.26 3.17±0.16 
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As can be easily inferred by the results of Table 5-4, the utilization of any feature knowledge 

distillation (FKD) technique together with classification loss (CL) is beneficial in apposition to sole 

CL. Also, training only on the textual task alone (CL) produces a model with less discriminative 

features for the OffSV task, delivering inferior performance to the teacher model, but superior to 

randomly initialized model as expected. Since many experiments provide EER values with small 

differences, statistical tests for the ten repetitions in each setting using both Friedman and paired 

signed-rank Wilcoxon with p<0.05 were performed to clarify the comparisons against the teacher 

model. First, we can observe that the trained student model is statistically better in the CEDAR 

dataset for all the FKD schemes, while all variations are statistically on par with the teacher model 

in the GPDS dataset. Secondly, the results in the MCYT dataset are inconclusive both for the 

standard CL training and on the S-T schemes. An exception in the above is the case when 

classification loss and response distillation with BT loss (i.e., CL + KD: BT) is applied, where worse 

performance in GPDS dataset and better in MCYT are observed. An explanation behind this 

behavior could be that the architecture between teacher and student CNNs is the same. Finally, 

the large EERs in MCYT dataset meaning there is a trammel that degrade the performance, and 

this could be caused by the utilized text data that cannot adequately simulate the distribution of 

signatures on this dataset, with the limited capability of the student CNN having also a negative 

impact. In the following experiments, the same training regime is retained but the student CNN 

is changed from the AlexNet-based SigNet topology to the modern and efficient ResNet-18 

architecture. 

5.4.4.ii     Model-to-Model Experiments (SigNet-to-ResNet) 

Once the functionality of the proposed mechanism for knowledge transfer is established, our 

main goal is to train and evaluate new models with the ResNet-18 architecture. Additionally, we 

examine the effects of local and/or global distillation terms in conjunction with the baseline CL 

loss. The classification loss term CL is utilized throughout all experiments, since it is beneficial to 

the overall performance of the teacher model, as has also been indicated in several related 

studies in the literature [302], [306], [307].  

The Table 5-5 includes the experimental results (EER with user threshold) for the three offline 

signature datasets following the Writer Dependent (WD) evaluation with the trained ResNet-18 

models for feature extraction. In order to provide a baseline, in the same Table we also report 

the results obtained by the ResNet-18 model with randomly initialized weights using Xavier 

initialization [313]). For completeness, the model trained only with the classification objective 

(CL loss only) is also presented in the Table 5-5.  
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Table 5-5: Performance of the WD classifiers with user threshold on the SigNet-to-ResNet FKD schemes. 

Method 

Overall loss EER (user threshold) 

𝒍𝟏 𝒍𝟐 𝒈 𝒄 
CEDAR 

(REF = 12) 

MCYT75 

(REF = 10) 

GPDS300GRAY 

(REF = 12) 

Teacher (fixed) - - - - 4.33±0.66 3.14±0.60 3.29±0.24 

Student (RW) - - - - 9.86±1.31 10.44±0.99 8.57±0.31 

CL (w/o KD) 0 0 0 1 2.39±0.36 3.98±0.75 3.68±0.27 

CL + KD: GEOM 10 100 0 1 2.24±0.45 3.67±0.73 2.95±0.24 

CL + KD: T-CE 0 0 0.001 1 1.92±0.32 4.53±1.04 3.44±0.34 

CL + KD: BT 0 0 0.0001 1 2.37±0.38 4.25±0.77 3.65±0.28 

CL + KD: BC 0 0 0.0001 1 2.07±0.43 3.22±0.63 2.89±0.28 

CL + KD: GEOM & T-CE 10 100 0.001 1 2.19±0.38 3.52±0.74 2.87±0.20 

CL + KD: GEOM & BT 10 100 0.0001 1 1.85±0.32 4.31±0.94 2.97±0.29 

CL + KD: GEOM & BC 10 100 0.0001 1 2.25±0.24 3.29±0.62 2.74±0.28 

 

Comparison between KD and CL losses: 

As can be easily inferred from the results, the exploitation of any FKD method together with the 

CL is advantageous for the student’s performance, since the combined optimization of any of the 

KD terms along with CL is better than CL alone. Also, the combination of local and global KD along 

with the classification task is the most effective KD method (i.e., CL + KD: GEOM & RESP) 

considering the performance on all the three datasets. Furthermore, the settings where global 

KD is realized via our proposed adaptation of Barlow Colleagues (BC) loss achieves the best 

overall performance for the three signature databases, while Barlow Twins (BT) loss or 

temperature scaling (T-CE) loss exhibit better results in only one dataset, while degrading results 

in the others (e.g., CL + KD: T-CE or CL + KD: GEOM & BT).  

These conclusions are verified with statistical tests (Friedman and Wilcoxon with p-value at 

0.05 on the ten repetitions of classifiers’ EERs), comparing the results of S-T training against the 

sole classification training. In this manner, the KD with BC either in combination with geometrical 

loss (CL + KD: GEOM & BC) or alone (CL + KD: BC) results to statistically significant improvement 

of EER on all three datasets while the geometrical regularization alone (CL + KD: GEOM) 

demonstrates significant difference only on GPDS dataset. The other two response regularization 

methods (CL + KD: BT, CL + KD: T-CE) as well as their combination with geometric regularization 

(CL + KD: GEOM & BT, CL + KD: GEOM & T-CE) produce results which are statistically equivalent 

to those achieved by using only CL loss. Finally, it is interesting to observe that the ResNet model 

trained only with CL loss, has better results than the SigNet architecture from the previous 

experiment (Table 5-4), proving the greater capability of ResNet architecture and confirming the 

need to utilize more contemporary architectures for OffSV. Weak evidence on that can also be 
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derived from the comparison of the two architectures with random weights, where the ResNet 

(RW) is superior to SigNet (RW). Ultimately, the S-T scheme provides feature extraction models 

superior to those obtained by training only to the task of text classification, yet utilizing the same 

data sources but inducting the prior knowledge of teacher on the OffSV task. 

Comparison between KD and Teacher’s performance: 

The student model resulted from S-T training with FKD via geometrical and response 

regularizations together with the CL loss, clearly outperforms the teacher in both GPDS and 

CEDAR datasets. Since the best results obtained when utilizing both local and global based KD, 

the teacher model is initially compared with these three student models. An in previous, 

Friedman’s test and Wilcoxon paired signed-rank test were used again, with a 5% level of 

significance, for the ten repetitions of classifiers, using the same permutations of reference and 

test signatures for the comparisons. The exploitation of geometrical and global KD along with the 

CL (i.e., CL + KD: GEOM & RESP (of BC, BT, or T-CE)) achieves statistically better performance than 

the teacher SigNet model for the GPDS and CEDAR datasets while delivering statistical equivalent 

results in two out of the three cases for the MCYT dataset. For example, the CL + KD: GEOM & BT 

combination has a bad effect in the performance that can be justified from the different CNN 

architectures between student and teacher, similar to the comments on the proof-of-concept 

section above. For completeness, the teacher’s performance is also compared to the each of the 

KD versions individually. The student exhibits statistical difference in performance for all the 

cases expect that of temperature scaling loss (CL + KD: T-CE) in the GPDS, and the Barlow Twins 

loss (CL + KD: BT) in the MCYT dataset. Thus, we can observe that the most efficient single KD 

schemes are those utilizing geometrical loss (CL + KD: GEOM) and BC loss (CL + KD: BC), where 

the EER values are either lower or not statistically different than those of the teacher. Finally, the 

ResNet-18 model trained only with CL loss (without KD) is statistically inferior to the teacher 

model for the GPDS and MCYT datasets and statistically superior to the teacher for the CEDAR 

dataset. For the case of CEDAR, it is notable that the teacher has degraded performance anyway, 

probably due to the large canvas size since used universally for all three datasets, in an aim to 

eliminate unrealistic dataset-dependent pre-processing parameters. At last, the S-T training and 

specifically the setting with CL + KD: GEOM & BC losses outperforms the teacher on the OffSV 

problem, without using any signature images for training the feature extraction model. 

Comparison between KD methods: 

According to the above, FKD methods using geometrical loss and/or BC response loss are the 

most beneficial for training feature extraction models. In this section we compare the different 

KD methods using additional statistical tests to characterize the differences among them. Seven 

different S-T KD versions in the three signature datasets are compared, and an overview of the 

findings is provided. The geometrical loss (CL + KD: GEOM) is statistically in tie with the BC 
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response loss (CL + KD: BC) as well as with the two combinations of geometrical and response BT 

or T-CE losses (CL + KD: GEOM & BT/T-CE) for all the three datasets. Besides, the combination of 

geometrical and BC losses is statistically superior in the GPDS dataset and statistically equivalent 

to the other two datasets as compared to using solely geometrical loss. Between the response 

losses, the BC approach is statistically better than the other two losses in GPDS and MCYT, while 

it has statistically equivalent results with BT and worse than T-CE in CEDAR. Furthermore, the 

utilization of BC in the combination of local and global KD has statistically better performance in 

the GPDS and MCYT datasets as well as statistically equivalent results to T-CE and worse behavior 

than BT in CEDAR dataset. As a general conclusion, the local information seems to have significant 

importance for the final performance, and also the exploitation of BC regularization in the overall 

loss reflects a safe and efficient solution across datasets. The regularization of local features on 

earlier layers guides the training to a higher degree, avoiding the divergence of learning process 

such could be induced by KD methods relying only on global information where the regularization 

is applied deeper in the network. Nevertheless, an appropriate response regularization loss could 

conflate global and local information and capitalize on the joint power of local and global 

features, as in the case of the BC loss that cooperates efficiently with the geometrical 

regularization allowing multiple degrees of freedom during the student’s training. After all, the 

greater performance of student over teacher in two out of three datasets (GPDS and CEDAR) and 

the tantamount of student and teacher results in the other dataset (MCYT) confirms the 

efficiency of the proposed S-T framework. Also, our choice to utilize a modern ResNet-based 

architecture (changing from AlexNet-based) has a good impact in order to exploit optimal the 

knowledge of the teacher. Ultimately, the proposed FKD methods enable the expert CNN 

(teacher) in signature signals to supervise the learning of the ResNet student without the need 

to utilize signatures during training and finally provide an effective CNN-based feature extractor 

for OffSV. 

Label-free FKD: 

Although the classification loss only requires the information that a text document from which 

we extract the text images is written by a specific writer, the unsupervised version of the S-T FKD 

framework is fully disengaged from the writers’ IDs. Thus, the unsupervised FKD configuration 

eliminates the need for labeled data, making the multi-loss function solely consist of knowledge 

distillation (KD) terms without the classification loss (CL). This means that the specific writers of 

the handwritten texts do not need to be known, allowing for a large abundance of handwritten 

text data from various sources to be easily accessed and used for training the S-T scheme. This 

unsupervised S-T scheme aligns well with real-world conditions where handwritten text data can 

be utilized for training without the need to identify the writer. Consequently, the unsupervised 

S-T KD scheme facilitates the transfer of knowledge to a different CNN architecture for the OffSV 

task and also serves the most practical scenario. Figure 5-2 presents the box plots of the EER 
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values following the Writer Dependent approach with user-specific thresholds for three signature 

datasets and three different cases where the geometrical loss and the response loss (KD: GEOM 

& RESP, using BC, BT, or T-CE) are utilized as the loss functions during S-T training. 

The absence of a specific recognition problem, such as classification, and the use of feature 

regularizations as loss functions provide increased flexibility during training of the student model. 

The flexibility, coupled with the relaxed response loss, introduces the risk of training divergence. 

This could explain why the utilization of the BC loss yields the poorest results compared to the 

other two cases, which impose stricter constraints. In particular, the BT case demonstrates the 

best overall performance under the unsupervised FKD scheme. It is evident that the performance 

of the student model in the unsupervised case is inferior to that of the teacher model and the 

sole classification approach (CL (w/o KD)). However, the small difference (approximately 1% for 

the best unsupervised case) encourages further research in this direction. The practical 

advantage of the unsupervised approach lies in its ability to avoid the need for writer 

identification in the utilized handwritten text. However, exploring this aspect falls beyond the 

scope of the current work. 

 

Figure 5-2: Comparison of the performance among three unsupervised FKD settings with different response losses in the S-T 
scheme. The models employ FKD with a combination of geometrical loss and one of the following response losses: BC loss, BT loss, 
or T-CE loss. 
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5.4.4.iii     Summary of state-of-the-art WD OffSV systems 

In this section we summarize the state-of-the-art (SoTA) methods for Writer Dependent (WD) 

OffSV systems, evaluating their performance to the proposed system. Given the inherent 

differences between various methods, there are many additional variables in the implementation 

of the systems’ stages that renders the task of fairly comparing all of them very difficult. Hence, 

the purpose of the presentation of SoTA literature is to provide a general overview for the WD 

OffSV field, denoting the most important results in the three most popular datasets of CEDAR, 

MCYT75, and GPDS300GRAY. 

The Table 5-6 presents a summary of the related SoTA works for WD OffSV task using the EER 

metric. Also, it includes the number of reference signatures used to form the positive class for 

training the WD classifiers. A common number of reference signatures could be found across 

methods for each dataset, despite the differences between methods as well as the different 

approaches for selecting these reference signatures. 

Table 5-6: Summary of state-of-the-art OffSV Systems in terms of EER metric, for the CEDAR, MCYT75, and GPDS300GRAY 
datasets. 

Refs 
OffSV system CEDAR MCYT75 GPDS300GRAY  

Authors, Year Method REF EER REF EER REF EER 

[233] Soleimani et al., 2016 HOG + DMML - - 10 9.86 10 20.94 

[253] Serdouk et al., 2017 HOT - - 10 10.60 12 9.30 

[73] Diaz et al., 2017 Duplicator - - 12 9.12 12 14.58 

[102] 
Hafemann et al., 
2017 

SigNet 12 4.76 10 2.87 12 3.15 

[102] 
Hafemann et al., 
2017 

SigNet-F 12 4.63 10 3.00 12 1.69 

[103] 
Hafemann et al., 
2018 

SigNet-SPP 10 3.60 10 3.64 12 0.41 

[276] Lai and Jin, 2018 PDSN 10 4.37 10 3.78 - - 

[91] Zois et al., 2019 SR – KSVD/OMP 10 0.79 10 1.37 12 0.70 

[251] Bhunia et al., 2019 Hybrid Texture 10 6.66 10 9.26 12 8.03 

[77] Maergner et al., 2019 
CNN-Triplet and 

Graph edit distance 
10 5.91 10 3.91 - - 

[100] 
Shariatmadari et al., 
2019 

HOCCNN 12 4.94 12 5.46 - - 

[263] Mersa et al., 2019 
ResNet trained 

with text 
- - 10 3.98 - - 

[101] 
Masoudnia et al., 
2019 

MLSE - - 10 2.93 - - 

[70] Zois et al., 2020 
Visibility Motif 

profiles 
10 0.51 10 1.54 - - 
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Refs 
OffSV system CEDAR MCYT75 GPDS300GRAY  

Authors, Year Method REF EER REF EER REF EER 

[74] 
Maruyama et al., 
2020 

SigNet-F classifier 
gauss augments 

3 0.82 3 0.01 3 0.20 

[274] Liu et al., 2021 MSDN 10 1.75 - - - - 

[193] Yapici et al., 2021 Cycle-GAN - - 10 2.58 - - 

[72] Zheng et al., 2021 
micro 

deformations 
12 2.76 - - - - 

[264] 
Tsourounis et al., 
2022 

CNN-CoLL 10 1.66 10 1.62 12 2.12 

[84] Viana et al., 2023 MT-SigNet (Triplet) 12 3.50 10 2.71 - - 

[84] Viana et al., 2023 
MT-SigNet (NT-

Xent) 
12 3.32 10 3.22 - - 

 Proposed 
S-T FKD 

(CL + KD:  
GEOM & BC) 

12 2.25 10 3.29 12 2.74 

 

The OffSV systems consist of three stages: the preprocessing, the feature extraction, and the 

classifier. These stages are designed according to the characteristics of each method and thus, 

many influential technicalities exist, like different preprocessing steps (e.g., such as different data 

preparation procedures of [91], [102], different input image size [72], [274], etc.), types of 

classifiers (e.g., like using SVM [84], [91], [101], [102], [253], one-class SVM [251], [276], Artificial 

Neural Networks (ANN)  [100], [193], thresholding [77], [233], etc.) as well as major differences 

such as the type of training data (e.g., different training signature datasets [102], [251], private 

dataset [274], auxiliary data [263], [264], augmentation or synthetic data [73], [74], [84], [193], 

etc.). Although we have chosen so that the presented OffSV systems do not utilize skilled forgery 

signatures in the classifier’s training and the number of reference signatures be common in many 

cases, the varying amount of the negative training class at the classifier has a major impact in the 

performance too (as also reported in the works of [102] and [74]). Additionally, the number of 

test samples differs since some methods utilize all the available signatures, considering the rest 

of the genuine and all the skilled forgeries (e.g., [91]), while other methods use equal number of 

test genuine and skilled forgery signatures -by selecting randomly the test skilled forgeries- (e.g., 

our implementation,[74], [84], [102]). Hence, easy comparisons between methods could be 

misleading and just a general outlook should be extracted. In this manner, we could argue that 

the proposed OffSV system proves the feasibility of achieving a low verification error, which is at 

least comparable to the state-of-the-art methods in all three datasets, despite nor using any 

signatures for training the feature extraction model.  
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5.4.4.iv     Comparisons with SigNets 

Finally, in this section we extensively compare the obtained models with two variants of SigNet: 

the teacher SigNet model and the SigNet-F model that used both genuine and skilled forgery 

signatures during its training (with the now defunct GPDS960 corpus) [102]. The comparisons are 

performed following identical preprocessing steps and utilizing the same partition of training and 

test signatures for the evaluated models to cast the comparisons as fair as possible. Thus, the 

respective classifiers are developed with common training and test sets across compared models. 

In this manner, the comparisons focus on the performance of the feature extraction stage and 

reveal the models’ efficiency. Additionally, the calculation of multiple metrics provides a detailed 

performance analysis. 

Table 5-7 provides a comprehensive evaluation of the performance achieved by the three 

compared feature extraction models:  the SigNet-F, the SigNet (teacher) and our proposed model 

(ResNet from S-T KD with CL + KD: GEOM & BC) in the three signature datasets. The evaluation 

encompasses five different metrics, including the False Rejection Rate (FRR), the False 

Acceptance Rate (FAR) on skilled forged signatures, the EER values when global and user-specific 

thresholds are utilized, and the mean Area Under Curve (AUC) using the Receiver Operating 

Characteristic (ROC) curves. Additionally, the evaluation considers varying numbers of reference 

signatures (NREF), ranging from 3, 5, 10, up to 12 signatures, to examine the model performance 

under different reference set sizes. 

Table 5-7: Detailed comparison with SigNet and SigNet-F. All the reported metrics were obtained using WD classifiers while the 
FRR and FAR-skilled metrics are measured when the threshold is set to zero. 

Dataset Method REF FRR FAR skilled 
EER 

 global 
threshold 

EER  
user 

thresholds 
AUC 

CEDAR 

SigNet-F 

3 
16.29 (± 

0.68) 
16.29 (± 

0.79) 
16.29 (± 

0.73) 
9.52 (± 0.95) 

93.92 
(± 0.88) 

5 
14.02 (± 

1.00) 
14.13 (± 

1.04) 
14.07 (± 

1.02) 
8.78 (± 1.05) 

94.76 
(± 1.00) 

10 
10.80 (± 

0.78) 
10.84 (± 

0.91) 
10.82 (± 

0.85) 
6.54 (± 0.97) 

96.19 
(± 0.67) 

12 
10.60 (± 

0.59) 
10.60 (± 

0.54) 
10.60 (± 

0.56) 
5.99 (± 0.64) 

96.66 
(± 0.49) 

SigNet 
(Teacher) 

3 
13.51 (± 

0.71) 
13.47 (± 

0.79) 
13.49 (± 

0.75) 
6.75 (± 1.23) 

96.27 
(± 0.79) 

5 
11.22 (± 

0.68) 
11.18 (± 

0.71) 
11.20 (± 

0.68) 
5.92 (± 0.47) 

97.04 
(± 0.28) 

10 8.33 (± 0.37) 8.36 (± 0.41) 8.35 (± 0.38) 4.34 (± 0.72) 
97.84 

(± 0.27) 

12 7.98 (± 0.55) 7.98 (± 0.58) 7.98 (± 0.56) 4.33 (± 0.66) 
97.84 

(± 0.39) 
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Dataset Method REF FRR FAR skilled 
EER 

 global 
threshold 

EER  
user 

thresholds 
AUC 

ResNet 
S-T FKD 

(Student) 

3 7.85 (± 1.06) 7.85 (± 1.05) 7.85 (± 1.05) 3.39 (± 0.47) 
98.50 

(± 0.41) 

5 6.35 (± 0.90) 6.24 (± 0.81) 6.29 (± 0.85) 2.85 (± 0.27) 
98.70 

(± 0.29) 

10 4.78 (± 0.43) 4.71 (± 0.36) 4.75 (± 0.39) 2.20 (± 0.33) 
99.11 

(± 0.16) 

12 4.16 (± 0.36) 4.13 (± 0.37) 4.15 (± 0.36) 2.25 (± 0.24) 
99.10 

(± 0.19) 

MCYT75 

SigNet-F 

3 
10.05 

(± 0.45) 
10.09 (± 

0.47) 
10.07 (± 

0.44) 
5.99 (± 0.69) 

97.16 
(± 0.54) 

5 7.36 (± 0.68) 7.40 (± 0.65) 7.38 (± 0.66) 3.77 (± 0.71) 
98.32 

(± 0.39) 

10 6.32 (± 0.55) 6.30 (± 0.55) 6.31 (± 0.54) 3.19 (± 0.52) 
98.52 

(± 0.33) 

12 5.42 (± 0.52) 5.48 (± 0.69) 5.45 (± 0.58) 2.20 (± 0.58) 
98.95 

(± 0.35) 

SigNet  
(Teacher) 

3 9.49 (± 0.77) 9.46 (± 0.75) 9.48 (± 0.76) 4.79 (± 0.87) 
97.68 

(± 0.45) 

5 7.15 (± 0.75) 7.05 (± 0.79) 7.10 (± 0.76) 3.86 (± 0.74) 
98.21 

(± 0.54) 

10 6.51 (± 0.40) 6.35 (± 0.38) 6.43 (± 0.38) 3.14 (± 0.60) 
98.69 

(± 0.21) 

12 6.09 (± 0.63) 6.19 (± 0.64) 6.14 (± 0.62) 2.73 (± 0.80) 
98.80 

(± 0.35) 

ResNet 
S-T FKD 

(Student) 

3 
13.31 (± 

1.21) 
13.32 (± 

1.29) 
13.32 (± 

1.24) 
7.94 (± 1.24) 

94.70 
(± 1.18) 

5 
10.51 (± 

0.46) 
10.55 (± 

0.46) 
10.53 (± 

0.46) 
5.84 (± 0.86) 

96.18 
(± 1.08) 

10 7.12 (± 0.57) 6.03 (± 0.34) 6.49 (± 0.34) 3.29 (± 0.62) 
98.43 

(± 0.25) 

12 6.84 (± 0.92) 7.01 (± 1.07) 6.93 (± 0.99) 3.13 (± 0.66) 
98.03 

(± 0.52) 

GPDS 
300GRAY 

SigNet-F 

3 6.26 (± 0.26) 6.25 (± 0.27) 6.25 (± 0.26) 2.61 (± 0.30) 
99.10 

(± 0.12) 

5 5.01 (± 0.16) 5.01 (± 0.17) 5.01 (± 0.16) 2.04 (± 0.21) 
99.37 

(± 0.08) 

10 4.06 (± 0.16) 4.06 (± 0.17) 4.06 (± 0.16) 1.68 (± 0.08) 
99.55 

(± 0.05) 

12 3.93 (± 0.16) 3.92 (± 0.16) 3.92 (± 0.16) 1.53 (± 0.15) 
99.57 

(± 0.06) 

SigNet 
(Teacher) 

3 9.29 (± 0.25) 9.29 (± 0.24) 9.29 (± 0.24) 4.79 (± 0.31) 
97.92 

(± 0.14) 

5 7.81 (± 0.24) 7.79 (± 0.25) 7.80 (± 0.25) 4.12 (± 0.26) 
98.32 

(± 0.12) 
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Dataset Method REF FRR FAR skilled 
EER 

 global 
threshold 

EER  
user 

thresholds 
AUC 

10 6.28 (± 0.19) 6.27 (± 0.18) 6.27 (± 0.18) 3.42 (± 0.21) 
98.65 

(± 0.13) 

12 6.02 (± 0.30) 6.05 (± 0.30) 6.04 (± 0.30) 3.29 (± 0.24) 
98.72 

(± 0.08) 

ResNet 
S-T FKD 

(Student) 

3 8.76 (± 0.30) 8.77 (± 0.31) 8.76 (± 0.30) 4.76 (± 0.31) 
98.05 

(± 0.16) 

5 7.33 (± 0.23) 7.34 (± 0.24) 7.33 (± 0.23) 3.76 (± 0.33) 
98.55 

(± 0.14) 

10 5.49 (± 0.17) 5.51 (± 0.16) 5.50 (± 0.16) 2.86 (± 0.23) 
98.93 

(± 0.13) 

12 5.23 (± 0.23) 5.26 (± 0.20) 5.25 (± 0.22) 2.74 (± 0.28) 
99.01 

(± 0.10) 

 

For each setting, Table 5-7 provides different qualities of the system’s performance across 

the horizontal direction via the five calculated metrics while the varying number of reference 

signatures provides a different view of classifier’s effectiveness. In this manner, we could derive 

a few important observations. First, the number of reference signatures has a critical impact on 

the performance of an OffSV system since decreasing the reference samples causes shrinkage on 

both the positive and the negative training class of the SVM. Hence, only a robust and 

discriminative feature extractor could assist the classifier to address the problem with a small 

amount of training samples. Secondly, the SigNet is clearly better than SigNet-F in CEDAR dataset 

and worse than SigNet-F in GPDS dataset. The inferior performance of SigNet in GPDS dataset 

though, is something totally reasonable because the knowledge of forged signatures from the 

same dataset is implicitly encoded in the SigNet-F offering a performance edge, given the later 

was trained with both genuine and skilled forgeries, even they originated from different writers 

of GPDS960 corpus (note that GPDS300 is a subset of GPDS960). For the MCYT dataset, the 

reported results are more complicated since the OffSV system using SigNet exhibits better 

performance on some metrics (e.g., global threshold for 3 or 5 references) and on the system 

based on SigNet-F on some other metrics (e.g., user-specific threshold for 3 references), while 

both systems are equivalent when 10 reference signatures are utilized. In the case of 12 

reference signatures, only 3 genuine signatures remain for testing and consequently, the 

evaluation depends mainly on the test skilled forgery samples that is a less reliable indicator of 

performance (but it is included in the table for consistency with the other two datasets). In this 

manner, the performance disparity in MCYT dataset, given the amount of reference samples, 

relies on the classifier’s effectiveness too, meaning that the SVM demands more training 

signatures to generalize well for all the cases. Ultimately, based on the above observations we 

can conclude that the SigNet exhibits greater generalization ability than SigNet-F across datasets 

and is actually a better choice as a single teacher in a S-T scheme.  
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In the light of the above, we finally compare the performance of ResNet to that of SigNet and 

SigNet-F on all datasets. The ResNet model trained with the proposed scheme is statistically 

superior to SigNet and statistically inferior to SigNet-F for the GPDS dataset for the same reasons 

mentioned above, while ResNet’s higher performance is unambiguous for the CEDAR dataset. 

Thus, the student model achieves to surpass the teacher in both evaluated datasets.  In fact, the 

utilization of a supplementary teacher, like SigNet-F, in a multiple-teachers FKD scheme maybe 

has positive impact and opens an interesting new path, but it is out of the scope of the current 

work. Lastly for the MCYT dataset, the ResNet has statistically equivalent performance with 

SigNet and SigNet-F for 10 reference signatures, whereas the system based on ResNet has inferior 

performance if the classifier needs to be trained with 3 or 5 genuine samples for the positive 

class. In conclusion, the experimental evidence from the three datasets support that the 

proposed FKD scheme comprises an adequate solution to transfer the knowledge from an expert 

CNN in the field of OffSV into a new (and modern) architecture, without the need fof any 

signature images, thus helping to create a new generation of models that could offer an excellent 

initial baseline for further research in Deep-Learning techniques for the OffSV problem. 

5.5     Conclusions 

In this work, we proposed a Feature-based Knowledge Distillation (FKD) learning framework 

applied to the OffSV problem. In the presented Student-Teacher (S-T) learning configuration, the 

knowledge is transferred from a benchmark CNN that provides efficient feature representations 

for signature images (acting as the teacher) into a new CNN model of different architecture 

(acting as the student). The only compatibility requirement between the teacher and student 

models are the spatial matching for at least some of intermediate activations and the common 

global feature dimensionality. We distilled knowledge through multiple layers via multiple 

connections among student and teacher topologies in order to incorporate both local and global 

information. We expressed the local information utilizing a manifold-to-manifold distance 

function that is designed to match the manifolds of local activations at the different layers of 

teacher and student models through geometric criteria of dissimilarity. Additionally, we 

promoted similarity in the feature responses of the student and teacher models by using loss 

functions that incorporate temperature-scaled cross-entropy or normalized cross-correlation to 

force the student’s global features to imitate those of the teacher. The latter approach also 

included a novel loss function that leverages the cross-correlation matrix between the global 

features extracted from the student and teacher models respectively, considering the different 

architectures between the two CNNs. Hence, we presented, for the first time, a solution to inherit 

the prior knowledge of an effective CNN model into a new CNN model for signature 

representation learning through a KD method.  

Since we did not have access to the signatures that the teacher model is trained on, we used 

auxiliary data from a related domain, such as images of handwritten text, as a source of 
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information for KD. In this manner, we take advantage from the resemblance between 

handwriting in both texts and signatures, to overcome the lack of large amount of signature 

images that are required for the S-T training. The proposed S-T FKD framework is strengthened 

by utilizing knowledge from multiple layers and advanced relation-based distillation algorithms. 

These capture the correlations and higher-order output dependencies between the teacher and 

student models, enabling the student model to acquire the knowledge from a fixed teacher to a 

very large extent. Hence, when the response loss, calculated using the proposed Barlow-

Colleagues (BC) cross-correlation function, is combined with the geometric loss, based on 

manifold-to-manifold distance, the student model becomes at least as efficient as the teacher, if 

not more so.  

A significant motivation for this work was to enable the use of modern deep-learning models 

in OffSV, despite the current unavailability of a large signature dataset. Our FKD scheme serves 

as an excellent starting point for further research, as it incorporates knowledge from efficient 

OffSV models and addresses the lack of publicly available signature datasets. The presented 

OffSV system also shares common pre-processing and decision stages with other state-of-the-art 

methods, allowing for fair comparisons and emphasizing the unique contributions of each 

approach.  

However, there are certain limitations in our study. The dependence on specific pre-

processing steps for both signatures and text images restricts the flexibility of the system, as the 

teacher model has learned to encode information from pre-processed signatures. Nevertheless, 

we tried to mitigate the impact using common parameters during the signature pre-processing 

for all the evaluating datasets. We did not extensively analyze scale variations between raw text 

and signature images, limiting our understanding in that aspect since we addressed this implicitly 

by applying different canvas sizes during the generation of the training text images. Additionally, 

designing the student architecture with (spatially) matching intermediate activations and global 

feature dimension consistency with the teacher model, could pose some challenges for some 

architectures which may be a limiting factor from an architectural design perspective. 

Ultimately, the main contribution of this work is the efficient knowledge transfer from a 

teacher model to any new architecture, as demonstrated with the use of a ResNet student. This 

allows for the leveraging of the efficiency of a basic and outdated teacher architecture, and the 

transfer of that knowledge into a deeper and more advanced student architecture for the 

efficient encoding of signatures. As a result, the student CNN can provide efficient feature 

representations for the OffSV task, even without utilizing any signature images during the FKD 

process. 

Future work will include investigation of additional knowledge distillation methods and 

different distillation strategies. We believe that combining multiple teachers and multi-loss 

approaches could be promising for the OffSV task since they could improve the generalization 

ability of the student model and make it more effective across signature datasets and languages. 
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Additionally, future plans could incorporate synthetic signatures, using both existing synthetic 

datasets and generative methods to generate new signature images, during training a KD 

scheme. However, the main challenge in this research direction is the difference between the 

distributions of original and synthetic signatures, resulting in models that are only efficient on 

one or the other type of data. Another useful research approach is to develop CNN-based 

schemes that leverage diverse pre-processing steps, allowing for the decoupling of specialized 

preprocessing techniques tailored to specific datasets. This approach can be further enhanced by 

incorporating synthetic samples to augment the training process, particularly where a large 

number of real signatures is not available. All the aforementioned approaches could be also 

organized on a comprehensive study that involves a variety of KD methods for the OffSV problem, 

including both WI and WD evaluation phases for optimal deliberation. Finally, including few-shot 

learning techniques into a S-T framework would be an interesting area of future research. 
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6. Summary and future directions 

Various approaches have been investigated in this PhD thesis, aiming to address the challenges 

of small sample-size learning (SSSL) problem. The output of this research effort includes methods 

operating in the input domain, model domain, and feature domain of the overall learning tasks. 

By exploring different approaches, this research aspired to contribute to the existing body of 

knowledge on SSSL, offering some insights into effective strategies for handling limited data 

scenarios. While the majority of the proposed methods were developed in the context of the 

offline signature verification (OffSV) task, since it provided a useful ground for testing our 

methods in an intrinsically data-limited domain, it is important to note that the developed 

techniques are not inherently restricted to this specific application domain.  

First, shallow representation models were investigated, employing traditional techniques 

aimed at addressing the challenge of limited sample size in offline signature verification task. 

Traditional methods heavily depend on hand-crafted features, demanding meticulous selections 

to align with the specific problem at hand. First and foremost, these methods necessitate 

expertise in feature engineering to select the most suitable technique for extracting features 

based on the characteristics of the underlying problem. Moreover, traditional approaches 

necessitate problem-specific preprocessing steps, often with writer-specific parametrization. 

Also, these methods often require the incorporation of an additional mechanism for encoding 

local descriptors, adding further complexity to the pipeline. However, shallow representation 

methods capture local image characteristics and provide low-level features which have shown 

effectiveness in recognition tasks, despite that their effectiveness often relies heavily on the 

careful selection of various design parameters by the user. In this PhD research, both hand-

crafted and learned shallow (local) representations were studied in an effort to establish a 

performance baseline in the field of OffSV, producing noteworthy research outputs along the 

way.  

 
   
 
  Chapter 6 
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Transitioning from shallow learning to deep learning, since this is the main domain of this 

dissertation, a hybrid approach was proposed that combines SIFT-descriptors and CNNs. This 

approach encompasses a hand-crafted feature generation process that transforms the pixel-wise 

image representation into relationships between statistical properties of the pixel regions 

resulting in a more compact representation of the information in the input image. The hypothesis 

is that the more informative representation can be beneficial to the training of CNNs with limited 

data. Results indicated that indeed this approach has a positive impact in effectively addressing 

the challenges posed by SSSL in various applications. However, it is important to acknowledge 

the limitations of this approach, especially when color plays a significant role in discrimination, 

since the utilized descriptor is essentially a gradient-encoding scheme. To overcome this 

limitation, a promising solution is the late fusion of global feature representations from both SIFT-

CNN and pixel-CNN, treating them as two distinct streams within the framework. This fusion 

technique enables the combination of complementary information during the end-to-end 

training process, offering a potential direction for enhanced performance. By leveraging the 

strengths of both SIFT-CNN and pixel-CNN, this approach aims to exploit the advantages of each 

method and compensate for the limitations. 

One of the significant practical challenges identified during the course of this PhD research 

was the retraction of the only publicly accessible large offline signature database, which was the 

only large enough dataset for training deep models. This event hindered the efforts of all research 

community around OffSV, to develop new deep architectures for addressing this problem. Such 

unique circumstances provided a useful testbed for this PhD research to develop methods that 

can circumnavigate such issues, thus we prioritized the design of efficient methods for the OffSV 

problem to address this current challenge.  

The methods developed on that front were based in the idea of harnessing auxiliary, possibly 

unlabeled, data.  Therefore, the primary task was to collect relevant training data from a similar 

domain with data abundance. Since handwritten text utilizes similar mechanics with signing, and 

there are ample data of digitized documents with handwriting in the wed, we focused on 

leveraging such data within a sophisticated training procedure, aimed at enhancing performance 

in the target problem of OffSV, using only limited training (signature) samples. To accomplish 

this, a specially designed preprocessing procedure was implemented, utilizing handwritten text 

documents to generate samples with similar signal characteristics to signature images. The 

handwriting information was extracted from the entire handwritten text document, enabling the 

generation of handwritten text training images without relying on word-oriented processing. This 

approach eliminates the need for word-level annotation and requires only the knowledge that 

the writer of the whole document is the same person.  The preprocessing is simple and fast, 

making it highly suitable for large-scale data processing. While utilizing external handwritten text 

data during CNN training shows potential, additional domain adaptation techniques were 

employed to achieve comparable, if not superior, performance to models trained on the 
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retracted datasets with thousands of signature images. Two approaches we developed: explicit 

domain adaptation and implicit domain adaptation. In the first case, the proposed method uses 

metric learning with a separate mapping layer - trained via contrastive loss- to embed the global 

features of the CNN in a new latent space. In the other case, the domain adaptation is achieved 

with the supervision of training by a teacher model, via a Feature-based Knowledge Distillation 

(FKD) scheme that utilizes both local and global information from intermediate representations. 

This method was proposed in an aim to demonstrate that public-domain trained models can be 

efficiently utilized into SSSL problems, even if their training data are not accessible. The proposed 

approaches effectively address the SSSL problem in the OffSV task, operating either on the 

feature space or the model space using auxiliary data in the input space. However, their main 

limitation lies in the reliance on specific preprocessing steps for input signatures, such as 

predefined parameters for canvas size in each dataset. In the model obtained from the FKD, an 

effort is made to alleviate this impact by using common parameters during the signature 

preprocessing for all evaluation datasets. The well performance model of the proposed method 

acts as proof of its generalization ability, highlighting its potential as a promising research 

direction not only in the current field but also in adapting to other domains. Therefore, our future 

plans include to assess the effectiveness of the proposed Knowledge Distillation loss functions 

on a large-scale benchmark. 

In conclusion, during the course of this PhD research, we tried to approach the SSSL problem 

from multiple perspectives, developing methods that cover a wide range of circumstances. 

Although the proposed methods have been evaluated on specific applications, we consider them 

as contributions to the general SSSL research, and parts of which could serve as an initial 

steppingstone towards further research in the domain of generalized incremental few-shot 

learning (GIFSL), which represents one of the most cutting-edge and challenging learning 

scenarios within the field of machine learning. An exciting future research direction entails 

incorporating the proposed geometric criteria and loss functions of FKD developed in this thesis 

into GIFSL configurations, exploring new research directions and applications. 

 

  



Chapter 6 | Summary and future directions  

140 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

141 
 

References 
 

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, Art. no. 7553, 

May 2015, doi: 10.1038/nature14539. 

[2] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing 

Systems, Curran Associates, Inc., 2017. Accessed: Jul. 01, 2023. [Online]. Available: 

https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-

Abstract.html 

[3] I. Goodfellow et al., “Generative Adversarial Nets,” in Advances in Neural Information 

Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. 

Weinberger, Eds., Curran Associates, Inc., 2014, pp. 2672–2680. [Online]. Available: 

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf 

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” 2016 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015. 

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time 

Object Detection.” arXiv, May 09, 2016. doi: 10.48550/arXiv.1506.02640. 

[6] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image 

Segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 

2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., in Lecture Notes in Computer 

Science. Cham: Springer International Publishing, 2015, pp. 234–241. doi: 10.1007/978-3-319-

24574-4_28. 

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional 

Neural Networks,” in Proceedings of the 25th International Conference on Neural Information 

Processing Systems - Volume 1, in NIPS’12. USA: Curran Associates Inc., 2012, pp. 1097–1105. 

[Online]. Available: http://dl.acm.org/citation.cfm?id=2999134.2999257 

[8] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training by reducing 

internal covariate shift,” in Proceedings of the 32nd International Conference on International 

Conference on Machine Learning - Volume 37, in ICML’15. Lille, France: JMLR.org, Jul. 2015, pp. 

448–456. 

[9] R. Keshari, S. Ghosh, S. Chhabra, M. Vatsa, and R. Singh, “Unravelling Small Sample Size 

Problems in the Deep Learning World,” in 2020 IEEE Sixth International Conference on 

Multimedia Big Data (BigMM), Sep. 2020, pp. 134–143. doi: 10.1109/BigMM50055.2020.00028. 



References 

142 
 

[10] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” 

Journal of Big Data, vol. 6, no. 1, p. 60, Jul. 2019, doi: 10.1186/s40537-019-0197-0. 

[11] S. Yang, W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen, “Image Data Augmentation for Deep 

Learning: A Survey.” arXiv, Apr. 18, 2022. doi: 10.48550/arXiv.2204.08610. 

[12] L. Taylor and G. Nitschke, “Improving Deep Learning with Generic Data Augmentation,” in 2018 

IEEE Symposium Series on Computational Intelligence (SSCI), Nov. 2018, pp. 1542–1547. doi: 

10.1109/SSCI.2018.8628742. 

[13] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “AutoAugment: Learning 

Augmentation Policies from Data,” 2019. Accessed: Jul. 05, 2023. [Online]. Available: 

https://arxiv.org/pdf/1805.09501.pdf 

[14] S. Kingra, N. Aggarwal, and N. Kaur, “LBPNet: Exploiting texture descriptor for deepfake 

detection,” Forensic Science International: Digital Investigation, vol. 42–43, p. 301452, Oct. 

2022, doi: 10.1016/j.fsidi.2022.301452. 

[15] K. Man and J. Chahl, “A Review of Synthetic Image Data and Its Use in Computer Vision,” 

Journal of Imaging, vol. 8, no. 11, Art. no. 11, Nov. 2022, doi: 10.3390/jimaging8110310. 

[16] B. Jena, G. K. Nayak, and S. Saxena, “Convolutional neural network and its pretrained models 

for image classification and object detection: A survey,” Concurrency and Computation: Practice 

and Experience, vol. 34, no. 6, p. e6767, 2022, doi: 10.1002/cpe.6767. 

[17] L. Ruan and Q. Jin, “Survey: Transformer based video-language pre-training,” AI Open, vol. 3, 

pp. 1–13, Jan. 2022, doi: 10.1016/j.aiopen.2022.01.001. 

[18] Z. Zeng et al., “Knowledge Transfer via Pre-training for Recommendation: A Review and 

Prospect,” Frontiers in Big Data, vol. 4, 2021, Accessed: Jul. 05, 2023. [Online]. Available: 

https://www.frontiersin.org/articles/10.3389/fdata.2021.602071 

[19] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural 

networks?,” in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. 

Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., Curran Associates, Inc., 2014, 

pp. 3320–3328. [Online]. Available: http://papers.nips.cc/paper/5347-how-transferable-are-

features-in-deep-neural-networks.pdf 

[20] S. Tariyal, A. Majumdar, R. Singh, and M. Vatsa, “Deep Dictionary Learning,” IEEE Access, vol. 4, 

pp. 10096–10109, 2016, doi: 10.1109/ACCESS.2016.2611583. 

[21] R. Keshari, M. Vatsa, R. Singh, and A. Noore, “Learning Structure and Strength of CNN Filters for 

Small Sample Size Training,” presented at the 2018 IEEE/CVF Conference on Computer Vision 



References 

143 
 

and Pattern Recognition (CVPR), IEEE Computer Society, Jun. 2018, pp. 9349–9358. doi: 

10.1109/CVPR.2018.00974. 

[22] R. N. D’souza, P.-Y. Huang, and F.-C. Yeh, “Structural Analysis and Optimization of Convolutional 

Neural Networks with a Small Sample Size,” Sci Rep, vol. 10, no. 1, Art. no. 1, Jan. 2020, doi: 

10.1038/s41598-020-57866-2. 

[23] J. Kukačka, V. Golkov, and D. Cremers, “Regularization for Deep Learning: A Taxonomy,” Feb. 

2018, Accessed: Jul. 05, 2023. [Online]. Available: 

https://openreview.net/forum?id=SkHkeixAW 

[24] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge Distillation: A Survey,” Int J Comput Vis, 

vol. 129, no. 6, pp. 1789–1819, Jun. 2021, doi: 10.1007/s11263-021-01453-z. 

[25] J. Lu, J. Hu, and J. Zhou, “Deep Metric Learning for Visual Understanding: An Overview of Recent 

Advances,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 76–84, Nov. 2017, doi: 

10.1109/MSP.2017.2732900. 

[26] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a Few Examples: A Survey on Few-

shot Learning,” ACM Comput. Surv., vol. 53, no. 3, p. 63:1-63:34, Jun. 2020, doi: 

10.1145/3386252. 

[27] H. Xuan, A. Stylianou, X. Liu, and R. Pless, “Hard Negative Examples are Hard, but Useful,” in 

Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds., in Lecture 

Notes in Computer Science. Cham: Springer International Publishing, 2020, pp. 126–142. doi: 

10.1007/978-3-030-58568-6_8. 

[28] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality Reduction by Learning an Invariant 

Mapping,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition (CVPR’06), Jun. 2006, pp. 1735–1742. doi: 10.1109/CVPR.2006.100. 

[29] K. Q. Weinberger and L. K. Saul, “Distance Metric Learning for Large Margin Nearest Neighbor 

Classification,” J. Mach. Learn. Res., vol. 10, pp. 207–244, Jun. 2009. 

[30] X. Wang, Y. Hua, E. Kodirov, G. Hu, R. Garnier, and N. M. Robertson, “Ranked List Loss for Deep 

Metric Learning,” presented at the Proceedings of the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, 2019, pp. 5207–5216. Accessed: Jul. 05, 2023. [Online]. Available: 

https://openaccess.thecvf.com/content_CVPR_2019/html/Wang_Ranked_List_Loss_for_Deep_

Metric_Learning_CVPR_2019_paper.html 

[31] A. K. Jain, A. A. Ross, and K. Nandakumar, Introduction to Biometrics. New York: Springer, 2011. 



References 

144 
 

[32] S. Jabin and F. J. Zareen, “Biometric signature verification,” International Journal of Biometrics, 

vol. 7, no. 2, pp. 97–118, Jan. 2015, doi: 10.1504/IJBM.2015.070924. 

[33] J. Espinal-Enríquez, R. A. Mejía-Pedroza, and E. Hernández-Lemus, “Chapter 13 - Computational 

Approaches in Precision Medicine,” in Progress and Challenges in Precision Medicine, M. Verma 

and D. Barh, Eds., Academic Press, 2017, pp. 233–250. doi: 10.1016/B978-0-12-809411-

2.00013-1. 

[34] X. Jiang et al., “Biomedical Imaging: A Computer Vision Perspective,” in Computer Analysis of 

Images and Patterns, R. Wilson, E. Hancock, A. Bors, and W. Smith, Eds., in Lecture Notes in 

Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 1–19. doi: 10.1007/978-3-642-40261-

6_1. 

[35] A. S. Wiik, M. Høier-Madsen, J. Forslid, P. Charles, and J. Meyrowitsch, “Antinuclear antibodies: 

A contemporary nomenclature using HEp-2 cells,” Journal of Autoimmunity, vol. 35, no. 3, pp. 

276–290, Nov. 2010, doi: 10.1016/j.jaut.2010.06.019. 

[36] P. L. Meroni and P. H. Schur, “ANA screening: an old test with new recommendations,” Annals 

of the Rheumatic Diseases, vol. 69, no. 8, pp. 1420–1422, Aug. 2010, doi: 

10.1136/ard.2009.127100. 

[37] J. Iacovacci and L. Lacasa, “Visibility Graphs for Image Processing,” IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 42, no. 4, pp. 974–987, Apr. 2020, doi: 

10.1109/TPAMI.2019.2891742. 

[38] Z. Gao, Y. Wu, M. Harandi, and Y. Jia, “A Robust Distance Measure for Similarity-Based 

Classification on the SPD Manifold,” IEEE Transactions on Neural Networks and Learning 

Systems, vol. 31, no. 9, pp. 3230–3244, Sep. 2020, doi: 10.1109/TNNLS.2019.2939177. 

[39] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing overcomplete 

dictionaries for sparse representation,” IEEE Transactions on Signal Processing, vol. 54, no. 11, 

pp. 4311–4322, Nov. 2006, doi: 10.1109/TSP.2006.881199. 

[40] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online Learning for Matrix Factorization and Sparse 

Coding,” J. Mach. Learn. Res., vol. 11, pp. 19–60, Mar. 2010. 

[41] Y. He, K. Kavukcuoglu, Y. Wang, A. Szlam, and Y. Qi, “Unsupervised Feature Learning by Deep 

Sparse Coding,” in Proceedings of the 2014 SIAM International Conference on Data Mining, 

Society for Industrial and Applied Mathematics, Apr. 2014, pp. 902–910. doi: 

10.1137/1.9781611973440.103. 



References 

145 
 

[42] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal 

of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004, doi: 

10.1023/B:VISI.0000029664.99615.94. 

[43] C. Liu, J. Yuen, and A. Torralba, “SIFT Flow: Dense Correspondence across Scenes and Its 

Applications,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 5, pp. 

978–994, May 2011, doi: 10.1109/TPAMI.2010.147. 

[44] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Offline handwritten signature verification — 

Literature review,” in 2017 Seventh International Conference on Image Processing Theory, Tools 

and Applications (IPTA), Nov. 2017, pp. 1–8. doi: 10.1109/IPTA.2017.8310112. 

[45] L. Wang and K.-J. Yoon, “Knowledge Distillation and Student-Teacher Learning for Visual 

Intelligence: A Review and New Outlooks,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 44, no. 6, pp. 3048–3068, Jun. 2022, doi: 10.1109/TPAMI.2021.3055564. 

[46] M. M. Hameed, R. Ahmad, M. L. M. Kiah, and G. Murtaza, “Machine learning-based offline 

signature verification systems: A systematic review,” Signal Processing: Image Communication, 

vol. 93, p. 116139, Apr. 2021, doi: 10.1016/j.image.2021.116139. 

[47] R. Plamondon and G. Lorette, “Automatic signature verification and writer identification — the 

state of the art,” Pattern Recognition, vol. 22, no. 2, pp. 107–131, Jan. 1989, doi: 10.1016/0031-

3203(89)90059-9. 

[48] R. Plamondon and S. N. Srihari, “Online and off-line handwriting recognition: a comprehensive 

survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 63–

84, 2000. 

[49] D. Impedovo and G. Pirlo, “Automatic Signature Verification: The State of the Art,” IEEE 

Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, vol. 38, no. 5, 

pp. 609–635, 2008, doi: 10.1109/TSMCC.2008.923866. 

[50] S. Pal, M. Blumenstein, and U. Pal, “Off-line signature verification systems: a survey,” presented 

at the Proceedings of the International Conference; Workshop on Emerging Trends in 

Technology, 1980163: ACM, 2011, pp. 652–657. doi: 10.1145/1980022.1980163. 

[51] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Transactions on 

Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, Jan. 1979, doi: 

10.1109/TSMC.1979.4310076. 

[52] G. Peyré, “Manifold models for signals and images,” Computer Vision and Image Understanding, 

vol. 113, no. 2, pp. 249–260, Feb. 2009, doi: 10.1016/j.cviu.2008.09.003. 



References 

146 
 

[53] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuño, “From time series to complex 

networks: The visibility graph,” Proceedings of the National Academy of Sciences, vol. 105, no. 

13, pp. 4972–4975, Apr. 2008, doi: 10.1073/pnas.0709247105. 

[54] B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, “Horizontal visibility graphs: Exact results for 

random time series,” Phys. Rev. E, vol. 80, no. 4, p. 046103, Oct. 2009, doi: 

10.1103/PhysRevE.80.046103. 

[55] J. Iacovacci and L. Lacasa, “Sequential visibility-graph motifs,” Phys. Rev. E, vol. 93, no. 4, p. 

042309, Apr. 2016, doi: 10.1103/PhysRevE.93.042309. 

[56] M. K. Kalera, S. Srihari, and A. Xu, “Offline signature verification and identification using 

distance statistics,” Int. J. Patt. Recogn. Artif. Intell., vol. 18, no. 07, pp. 1339–1360, Nov. 2004, 

doi: 10.1142/S0218001404003630. 

[57] J. Ortega-Garcia et al., “MCYT baseline corpus: a bimodal biometric database,” IEE Proceedings 

Vision, Image and Signal Processing, vol. 150, no. 6, pp. 395–401, 2003, doi: 10.1049/ip-

vis:20031078. 

[58] S. Chen and S. Srihari, “A New Off-line Signature Verification Method based on Graph,” in 18th 

International Conference on Pattern Recognition (ICPR’06), Aug. 2006, pp. 869–872. doi: 

10.1109/ICPR.2006.125. 

[59] J. Fierrez-Aguilar, N. Alonso-Hermira, G. Moreno-Marquez, and J. Ortega-Garcia, “An Off-line 

Signature Verification System Based on Fusion of Local and Global Information,” in Biometric 

Authentication, D. Maltoni and A. K. Jain, Eds., in Lecture Notes in Computer Science, vol. 3087. 

Springer Berlin Heidelberg, 2004, pp. 295–306. doi: 10.1007/978-3-540-25976-3_27. 

[60] E. N. Zois, L. Alewijnse, and G. Economou, “Offline signature verification and quality 

characterization using poset-oriented grid features,” Pattern Recognition, vol. 54, pp. 162–177, 

Jun. 2016, doi: 10.1016/j.patcog.2016.01.009. 

[61] Y. Serdouk, H. Nemmour, and Y. Chibani, “New off-line Handwritten Signature Verification 

method based on Artificial Immune Recognition System,” Expert Systems with Applications, vol. 

51, pp. 186–194, Jun. 2016, doi: 10.1016/j.eswa.2016.01.001. 

[62] J. F. Vargas, M. A. Ferrer, C. M. Travieso, and J. B. Alonso, “Off-line signature verification based 

on grey level information using texture features,” Pattern Recognition, vol. 44, no. 2, pp. 375–

385, 2011, doi: 10.1016/j.patcog.2010.07.028. 

[63] R. K. Bharathi and B. H. Shekar, “Off-line signature verification based on chain code histogram 

and Support Vector Machine,” in 2013 International Conference on Advances in Computing, 



References 

147 
 

Communications and Informatics (ICACCI), Aug. 2013, pp. 2063–2068. doi: 

10.1109/ICACCI.2013.6637499. 

[64] S. Y. Ooi, A. B. J. Teoh, Y. H. Pang, and B. Y. Hiew, “Image-based handwritten signature 

verification using hybrid methods of discrete Radon transform, principal component analysis 

and probabilistic neural network,” Applied Soft Computing, vol. 40, pp. 274–282, Mar. 2016, 

doi: 10.1016/j.asoc.2015.11.039. 

[65] M. Okawa, “Offline Signature Verification Based on Bag-of-VisualWords Model Using KAZE 

Features and Weighting Schemes,” in 2016 IEEE Conference on Computer Vision and Pattern 

Recognition Workshops (CVPRW), Jun. 2016, pp. 252–258. doi: 10.1109/CVPRW.2016.38. 

[66] M. Okawa, “From BoVW to VLAD with KAZE features: Offline signature verification considering 

cognitive processes of forensic experts,” Pattern Recognition Letters, vol. 113, pp. 75–82, Oct. 

2018, doi: 10.1016/j.patrec.2018.05.019. 

[67] G. Ganapathi and R. Nadarajan, “A Fuzzy Hybrid Framework for Offline Signature Verification,” 

in Pattern Recognition and Machine Intelligence, P. Maji, A. Ghosh, M. N. Murty, K. Ghosh, and 

S. K. Pal, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 

121–127. doi: 10.1007/978-3-642-45062-4_16. 

[68] A. Gilperez, F. Alonso-Fernandez, S. Pecharroman, J. Fierrez, and J. Ortega-Garcia, “Off-line 

Signature Verification Using Contour Features,” presented at the Proceedings 11th 

International Conference on Frontiers in Handwriting Recognition, Montreal, 2008. 

[69] E. N. Zois, I. Theodorakopoulos, and G. Economou, “Offline Handwritten Signature Modeling 

and Verification Based on Archetypal Analysis,” presented at the 2017 IEEE International 

Conference on Computer Vision (ICCV), Oct. 2017, pp. 5515–5524. doi: 10.1109/ICCV.2017.588. 

[70] E. N. Zois, E. Zervas, D. Tsourounis, and G. Economou, “Sequential Motif Profiles and 

Topological Plots for Offline Signature Verification,” presented at the Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13248–13258. 

Accessed: Dec. 21, 2020. [Online]. Available: 

https://openaccess.thecvf.com/content_CVPR_2020/html/Zois_Sequential_Motif_Profiles_and

_Topological_Plots_for_Offline_Signature_Verification_CVPR_2020_paper.html 

[71] A. Alaei, S. Pal, U. Pal, and M. Blumenstein, “An Efficient Signature Verification Method Based 

on an Interval Symbolic Representation and a Fuzzy Similarity Measure,” IEEE Transactions on 

Information Forensics and Security, vol. 12, no. 10, pp. 2360–2372, 2017, doi: 

10.1109/TIFS.2017.2707332. 



References 

148 
 

[72] Y. Zheng, B. K. Iwana, M. I. Malik, S. Ahmed, W. Ohyama, and S. Uchida, “Learning the Micro 

Deformations by Max-pooling for Offline Signature Verification,” Pattern Recognition, p. 

108008, May 2021, doi: 10.1016/j.patcog.2021.108008. 

[73] M. Diaz, M. A. Ferrer, G. S. Eskander, and R. Sabourin, “Generation of Duplicated Off-Line 

Signature Images for Verification Systems,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 39, no. 5, pp. 951–964, May 2017, doi: 10.1109/TPAMI.2016.2560810. 

[74] T. M. Maruyama, L. S. Oliveira, A. S. Britto, and R. Sabourin, “Intrapersonal Parameter 

Optimization for Offline Handwritten Signature Augmentation,” IEEE Transactions on 

Information Forensics and Security, vol. 16, pp. 1335–1350, 2021, doi: 

10.1109/TIFS.2020.3033442. 

[75] J. Jiang, S. Lai, L. Jin, Y. Zhu, J. Zhang, and B. Chen, “Forgery-free signature verification with 

stroke-aware cycle-consistent generative adversarial network,” Neurocomputing, vol. 507, pp. 

345–357, Oct. 2022, doi: 10.1016/j.neucom.2022.08.017. 

[76] E. N. Zois, S. Said, D. Tsourounis, and A. Alexandridis, “Subscripto multiplex: A Riemannian 

symmetric positive definite strategy for offline signature verification,” Pattern Recognition 

Letters, vol. 167, pp. 67–74, Mar. 2023, doi: 10.1016/j.patrec.2023.02.002. 

[77] P. Maergner et al., “Combining graph edit distance and triplet networks for offline signature 

verification,” Pattern Recognition Letters, vol. 125, pp. 527–533, Jul. 2019, doi: 

10.1016/j.patrec.2019.06.024. 

[78] L. Liu, L. Huang, F. Yin, and Y. Chen, “Offline signature verification using a region based deep 

metric learning network,” Pattern Recognition, vol. 118, p. 108009, Oct. 2021, doi: 

10.1016/j.patcog.2021.108009. 

[79] Y. Zhu, S. Lai, Z. Li, and L. Jin, “Point-to-Set Similarity Based Deep Metric Learning for Offline 

Signature Verification,” in 2020 17th International Conference on Frontiers in Handwriting 

Recognition (ICFHR), Sep. 2020, pp. 282–287. doi: 10.1109/ICFHR2020.2020.00059. 

[80] A. Hamadene and Y. Chibani, “One-Class Writer-Independent Offline Signature Verification 

Using Feature Dissimilarity Thresholding,” IEEE Transactions on Information Forensics and 

Security, vol. 11, no. 6, pp. 1226–1238, 2016, doi: 10.1109/TIFS.2016.2521611. 

[81] T. Longjam, D. R. Kisku, and P. Gupta, “Writer independent handwritten signature verification 

on multi-scripted signatures using hybrid CNN-BiLSTM: A novel approach,” Expert Systems with 

Applications, vol. 214, p. 119111, Mar. 2023, doi: 10.1016/j.eswa.2022.119111. 



References 

149 
 

[82] V. L. F. Souza, A. L. I. Oliveira, R. M. O. Cruz, and R. Sabourin, “A white-box analysis on the 

writer-independent dichotomy transformation applied to offline handwritten signature 

verification,” Expert Systems with Applications, vol. 154, p. 113397, Sep. 2020, doi: 

10.1016/j.eswa.2020.113397. 

[83] T. B. Viana, V. L. F. Souza, A. L. I. Oliveira, R. M. O. Cruz, and R. Sabourin, “Contrastive Learning 

of Handwritten Signature Representations for Writer-Independent Verification,” in 2022 

International Joint Conference on Neural Networks (IJCNN), Jul. 2022, pp. 01–09. doi: 

10.1109/IJCNN55064.2022.9892428. 

[84] T. B. Viana, V. L. F. Souza, A. L. I. Oliveira, R. M. O. Cruz, and R. Sabourin, “A multi-task approach 

for contrastive learning of handwritten signature feature representations,” Expert Systems with 

Applications, vol. 217, p. 119589, May 2023, doi: 10.1016/j.eswa.2023.119589. 

[85] M. S. Hanif and M. Bilal, “A Metric Learning Approach for Offline Writer Independent Signature 

Verification,” Pattern Recognit. Image Anal., vol. 30, no. 4, pp. 795–804, Oct. 2020, doi: 

10.1134/S1054661820040173. 

[86] H. Li, P. Wei, and P. Hu, “AVN: An Adversarial Variation Network Model for Handwritten 

Signature Verification,” IEEE Transactions on Multimedia, vol. 24, pp. 594–608, 2022, doi: 

10.1109/TMM.2021.3056217. 

[87] C. Li, F. Lin, Z. Wang, G. Yu, L. Yuan, and H. Wang, “DeepHSV: User-Independent Offline 

Signature Verification Using Two-Channel CNN,” in 2019 International Conference on Document 

Analysis and Recognition (ICDAR), Sep. 2019, pp. 166–171. doi: 10.1109/ICDAR.2019.00035. 

[88] P. Wei, H. Li, and P. Hu, “Inverse Discriminative Networks for Handwritten Signature 

Verification,” presented at the Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, 2019, pp. 5764–5772. 

[89] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust Face Recognition via Sparse 

Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, 

pp. 210–227, Feb. 2009, doi: 10.1109/TPAMI.2008.79. 

[90] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for 

image classification,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 

2009, pp. 1794–1801. doi: 10.1109/CVPR.2009.5206757. 

[91] E. N. Zois, D. Tsourounis, I. Theodorakopoulos, A. L. Kesidis, and G. Economou, “A 

Comprehensive Study of Sparse Representation Techniques for Offline Signature Verification,” 

IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 1, no. 1, pp. 68–81, Jan. 

2019, doi: 10.1109/TBIOM.2019.2897802. 



References 

150 
 

[92] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary Robust invariant scalable keypoints,” 

in 2011 International Conference on Computer Vision, Nov. 2011, pp. 2548–2555. doi: 

10.1109/ICCV.2011.6126542. 

[93] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, “Proximal methods for sparse hierarchical 

dictionary learning,” in Proceedings of the 27th International Conference on International 

Conference on Machine Learning, in ICML’10. Madison, WI, USA: Omnipress, Jun. 2010, pp. 

487–494. 

[94] E. N. Zois, M. Papagiannopoulou, D. Tsourounis, and G. Economou, “Hierarchical Dictionary 

Learning and Sparse Coding for Static Signature Verification,” presented at the Proceedings of 

the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 432–

442. 

[95] D. Tsourounis, I. Theodorakopoulos, and E. N. Zois, “Handwritten Signature Verification via 

Deep Sparse Coding Architecture,” presented at the 2018 IEEE 13th Image, Video, and 

Multidimensional Signal Processing Workshop (IVMSP), IEEE, 2018, pp. 1–5. 

[96] A. Soleimani, K. Fouladi, and B. N. Araabi, “UTSig: A Persian offline signature dataset,” IET 

Biometrics, vol. 6, no. 1, pp. 1–8, 2016, doi: 10.1049/iet-bmt.2015.0058. 

[97] D. L. Donoho, “For most large underdetermined systems of equations, the minimal ℓ1-norm 

near-solution approximates the sparsest near-solution,” Communications on Pure and Applied 

Mathematics, vol. 59, no. 7, pp. 907–934, 2006, doi: 10.1002/cpa.20131. 

[98] D. Donoho, “Neighborly Polytopes And Sparse Solution Of Underdetermined Linear Equations,” 

2005. Accessed: May 25, 2023. [Online]. Available: 

https://www.semanticscholar.org/paper/Neighborly-Polytopes-And-Sparse-Solution-Of-Linear-

Donoho/626703b4b5d8f2188ec53d82d8cb9e6868edc145 

[99] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A Survey of Sparse Representation: Algorithms and 

Applications,” IEEE Access, vol. 3, pp. 490–530, 2015, doi: 10.1109/ACCESS.2015.2430359. 

[100] S. Shariatmadari, S. Emadi, and Y. Akbari, “Patch-based offline signature verification using one-

class hierarchical deep learning,” International Journal on Document Analysis and Recognition 

(IJDAR), vol. 22, no. 4, pp. 375–385, Dec. 2019, doi: 10.1007/s10032-019-00331-2. 

[101] S. Masoudnia, O. Mersa, B. N. Araabi, A.-H. Vahabie, M. A. Sadeghi, and M. N. Ahmadabadi, 

“Multi-Representational Learning for Offline Signature Verification using Multi-Loss Snapshot 

Ensemble of CNNs,” Expert Systems with Applications, vol. 133, pp. 317–330, 2019. 



References 

151 
 

[102] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Learning features for offline handwritten 

signature verification using deep convolutional neural networks,” Pattern Recognition, vol. 70, 

pp. 163–176, 2017. 

[103] L. G. Hafemann, L. S. Oliveira, and R. Sabourin, “Fixed-sized representation learning from offline 

handwritten signatures of different sizes,” International Journal on Document Analysis and 

Recognition (IJDAR), vol. 21, no. 3, pp. 219–232, 2018. 

[104] E. N. Zois, I. Theodorakopoulos, D. Tsourounis, and G. Economou, “Parsimonious Coding and 

Verification of Offline Handwritten Signatures,” presented at the Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 134–143. 

Accessed: Sep. 18, 2020. [Online]. Available: 

https://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/html/Zois_Parsimonious_C

oding_and_CVPR_2017_paper.html 

[105] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features,” in Computer Vision 

– ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds., Berlin, Heidelberg: Springer Berlin 

Heidelberg, 2006, pp. 404–417. doi: 10.1007/11744023_32. 

[106] D. Hutchison et al., “BRIEF: Binary Robust Independent Elementary Features,” in Computer 

Vision – ECCV 2010, K. Daniilidis, P. Maragos, and N. Paragios, Eds., Berlin, Heidelberg: Springer 

Berlin Heidelberg, 2010, pp. 778–792. doi: 10.1007/978-3-642-15561-1_56. 

[107] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005 IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Jun. 2005, 

pp. 886–893 vol. 1. doi: 10.1109/CVPR.2005.177. 

[108] R. Arandjelovic and A. Zisserman, “All About VLAD,” in 2013 IEEE Conference on Computer 

Vision and Pattern Recognition, Jun. 2013, pp. 1578–1585. doi: 10.1109/CVPR.2013.207. 

[109] J. Sivic and A. Zisserman, “Efficient Visual Search of Videos Cast as Text Retrieval,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 4, pp. 591–606, Apr. 

2009, doi: 10.1109/TPAMI.2008.111. 

[110] D. Kastaniotis, F. Fotopoulou, I. Theodorakopoulos, G. Economou, and S. Fotopoulos, “HEp-2 

cell classification with Vector of Hierarchically Aggregated Residuals,” Pattern Recognition, vol. 

65, pp. 47–57, May 2017, doi: 10.1016/j.patcog.2016.12.013. 

[111] H. Jegou, M. Douze, C. Schmid, and P. Perez, “Aggregating local descriptors into a compact 

image representation,” IEEE, Jun. 2010, pp. 3304–3311. doi: 10.1109/CVPR.2010.5540039. 



References 

152 
 

[112] H. Jegou, F. Perronnin, M. Douze, J. S&#x00E1;nchez, P. Perez, and C. Schmid, “Aggregating 

Local Image Descriptors into Compact Codes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, 

no. 9, pp. 1704–1716, Sep. 2012, doi: 10.1109/TPAMI.2011.235. 

[113] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional 

Neural Networks,” in Proceedings of the 25th International Conference on Neural Information 

Processing Systems - Volume 1, in NIPS’12. USA: Curran Associates Inc., 2012, pp. 1097–1105. 

[Online]. Available: http://dl.acm.org/citation.cfm?id=2999134.2999257 

[114] “Multi-scale Orderless Pooling of Deep Convolutional Activation Features | SpringerLink.” 

https://link.springer.com/chapter/10.1007/978-3-319-10584-0_26 (accessed Jan. 14, 2021). 

[115] C. Liu, J. Yuen, and A. Torralba, “Nonparametric scene parsing: Label transfer via dense scene 

alignment,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2009, 

pp. 1972–1979. doi: 10.1109/CVPR.2009.5206536. 

[116] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document 

recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998, doi: 

10.1109/5.726791. 

[117] Y. LeCun et al., “Comparison of Learning Algorithms for Handwritten Digit Recognition,” in 

INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 1995, pp. 53–60. 

[118] P. Foggia, G. Percannella, A. Saggese, and M. Vento, “Pattern recognition in stained HEp-2 cells: 

Where are we now?,” Pattern Recognition, vol. 47, 2014, doi: 10.1016/j.patcog.2014.01.010. 

[119] S. Liu, M. Li, Z. Zhang, B. Xiao, and T. S. Durrani, “Multi-Evidence and Multi-Modal Fusion 

Network for Ground-Based Cloud Recognition,” Remote Sensing, vol. 12, no. 3, Art. no. 3, Jan. 

2020, doi: 10.3390/rs12030464. 

[120] S. Liu, M. Li, Z. Zhang, X. Cao, and T. S. Durrani, “Ground-Based Cloud Classification Using Task-

Based Graph Convolutional Network,” Geophysical Research Letters, vol. 47, no. 5, p. 

e2020GL087338, 2020, doi: https://doi.org/10.1029/2020GL087338. 

[121] J. S. Chung and A. Zisserman, “Lip reading in the wild,” in Asian Conference on Computer Vision, 

Springer, 2016, pp. 87–103. 

[122] L. Zheng, Y. Yang, and Q. Tian, “SIFT Meets CNN: A Decade Survey of Instance Retrieval,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 5, pp. 1224–1244, May 

2018, doi: 10.1109/TPAMI.2017.2709749. 

[123] H. Wang and S. Hou, “Facial Expression Recognition based on The Fusion of CNN and SIFT 

Features,” in 2020 IEEE 10th International Conference on Electronics Information and 



References 

153 
 

Emergency Communication (ICEIEC), Jul. 2020, pp. 190–194. doi: 

10.1109/ICEIEC49280.2020.9152361. 

[124] W. Lin, K. Hasenstab, G. Moura Cunha, and A. Schwartzman, “Comparison of handcrafted 

features and convolutional neural networks for liver MR image adequacy assessment,” Sci Rep, 

vol. 10, no. 1, Art. no. 1, Nov. 2020, doi: 10.1038/s41598-020-77264-y. 

[125] A. Tripathi, T. V. A. Kumar, T. K. Dhansetty, and J. S. Kumar, “Real Time Object Detection using 

CNN,” International Journal of Engineering & Technology, vol. 7, no. 2.24, Art. no. 2.24, Apr. 

2018, doi: 10.14419/ijet.v7i2.24.11994. 

[126] A. Dudhal, H. Mathkar, A. Jain, O. Kadam, and M. Shirole, “Hybrid SIFT Feature Extraction 

Approach for Indian Sign Language Recognition System Based on CNN,” in Proceedings of the 

International Conference on ISMAC in Computational Vision and Bio-Engineering 2018 (ISMAC-

CVB), D. Pandian, X. Fernando, Z. Baig, and F. Shi, Eds., in Lecture Notes in Computational Vision 

and Biomechanics. Cham: Springer International Publishing, 2019, pp. 727–738. doi: 

10.1007/978-3-030-00665-5_72. 

[127] T. Connie, M. Al-Shabi, W. P. Cheah, and M. Goh, “Facial Expression Recognition Using a Hybrid 

CNN–SIFT Aggregator,” in Multi-disciplinary Trends in Artificial Intelligence, S. Phon-Amnuaisuk, 

S.-P. Ang, and S.-Y. Lee, Eds., in Lecture Notes in Computer Science. Cham: Springer 

International Publishing, 2017, pp. 139–149. doi: 10.1007/978-3-319-69456-6_12. 

[128] A. Kumar, N. Jain, C. Singh, and S. Tripathi, “Exploiting SIFT Descriptor for Rotation Invariant 

Convolutional Neural Network,” in 2018 15th IEEE India Council International Conference 

(INDICON), Dec. 2018, pp. 1–5. doi: 10.1109/INDICON45594.2018.8987153. 

[129] C. Weiyue, J. Geng, and K. Lin, “Facial Expression Recognition with Small Samples Under 

Convolutional Neural Network,” in 6GN for Future Wireless Networks, S. Shi, R. Ma, and W. Lu, 

Eds., in Lecture Notes of the Institute for Computer Sciences, Social Informatics and 

Telecommunications Engineering. Cham: Springer International Publishing, 2022, pp. 383–396. 

doi: 10.1007/978-3-031-04245-4_34. 

[130] M. K. Vidhyalakshmi, E. Poovammal, V. Bhaskar, and J. Sathyanarayanan, “Novel Similarity 

Metric Learning Using Deep Learning and Root SIFT for Person Re-identification,” Wireless Pers 

Commun, vol. 117, no. 3, pp. 1835–1851, Apr. 2021, doi: 10.1007/s11277-020-07948-1. 

[131] Q. Zhao et al., “A CNN-SIFT Hybrid Pedestrian Navigation Method Based on First-Person Vision,” 

Remote Sensing, vol. 10, no. 8, Art. no. 8, Aug. 2018, doi: 10.3390/rs10081229. 



References 

154 
 

[132] S. K. Park, J. H. Chung, T. K. Kang, and M. T. Lim, “Binary dense sift flow based two stream CNN 

for human action recognition,” Multimed Tools Appl, vol. 80, no. 28, pp. 35697–35720, Nov. 

2021, doi: 10.1007/s11042-021-10795-2. 

[133] D. Varga, “No-Reference Quality Assessment of Authentically Distorted Images Based on Local 

and Global Features,” Journal of Imaging, vol. 8, no. 6, Art. no. 6, Jun. 2022, doi: 

10.3390/jimaging8060173. 

[134] P. K. R. Yelampalli, J. Nayak, and V. H. Gaidhane, “Daubechies wavelet-based local feature 

descriptor for multimodal medical image registration,” IET Image Processing, vol. 12, no. 10, pp. 

1692–1702, Apr. 2018, doi: 10.1049/iet-ipr.2017.1305. 

[135] S. Luan et al., “Gabor Convolutional Networks,” in 2018 IEEE Winter Conference on Applications 

of Computer Vision (WACV), Mar. 2018, pp. 1254–1262. doi: 10.1109/WACV.2018.00142. 

[136] E. Oyallon, E. Belilovsky, and S. Zagoruyko, “Scaling the Scattering Transform: Deep Hybrid 

Networks,” 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5619–5628, Oct. 

2017, doi: 10.1109/ICCV.2017.599. 

[137] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “PCANet: A Simple Deep Learning Baseline 

for Image Classification?,” IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5017–

5032, Dec. 2015, doi: 10.1109/TIP.2015.2475625. 

[138] R. Zeng, J. Wu, L. Senhadji, and H. Shu, “Tensor object classification via multilinear discriminant 

analysis network,” in 2015 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), Apr. 2015, pp. 1971–1975. doi: 10.1109/ICASSP.2015.7178315. 

[139] Y. Gan, J. Liu, J. Dong, and G. Zhong, “A PCA-Based Convolutional Network.” arXiv, May 14, 

2015. doi: 10.48550/arXiv.1505.03703. 

[140] D. Wu, J. Wu, R. Zeng, L. Jiang, L. Senhadji, and H. Shu, “Kernel principal component analysis 

network for image classification.” arXiv, Dec. 20, 2015. doi: 10.48550/arXiv.1512.06337. 

[141] Y. Zhou, Q. Ye, Q. Qiu, and J. Jiao, “Oriented Response Networks,” IEEE, Jul. 2017, pp. 4961–

4970. doi: 10.1109/CVPR.2017.527. 

[142] M. Jaderberg, K. Simonyan, A. Zisserman, and  koray kavukcuoglu, “Spatial Transformer 

Networks,” in Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, 

D. D. Lee, M. Sugiyama, and R. Garnett, Eds., Curran Associates, Inc., 2015, pp. 2017–2025. 

[Online]. Available: http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf 

[143] F. Guc and Y. Chen, “Sensor Fault Diagnostics Using Physics-Informed Transfer Learning 

Framework,” Sensors, vol. 22, no. 8, Art. no. 8, Jan. 2022, doi: 10.3390/s22082913. 



References 

155 
 

[144] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-informed 

machine learning,” Nat Rev Phys, vol. 3, no. 6, Art. no. 6, Jun. 2021, doi: 10.1038/s42254-021-

00314-5. 

[145] G.-S. Xie, X.-Y. Zhang, S. Yan, and C.-L. Liu, “Hybrid CNN and Dictionary-Based Models for Scene 

Recognition and Domain Adaptation,” IEEE Transactions on Circuits and Systems for Video 

Technology, vol. 27, no. 6, pp. 1263–1274, Jun. 2017, doi: 10.1109/TCSVT.2015.2511543. 

[146] F. Perronnin and D. Larlus, “Fisher vectors meet Neural Networks: A hybrid classification 

architecture,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 

2015, pp. 3743–3752. doi: 10.1109/CVPR.2015.7298998. 

[147] M. Xi, L. Chen, D. Polajnar, and W. Tong, “Local binary pattern network: A deep learning 

approach for face recognition,” in 2016 IEEE International Conference on Image Processing 

(ICIP), Sep. 2016, pp. 3224–3228. doi: 10.1109/ICIP.2016.7532955. 

[148] S. Chen, “LBPNet: Inserting Local Binary Patterns into Neural Networks to Enhance 

Manipulation Invariance of Fake Face Detection,” in 2021 International Conference on Digital 

Society and Intelligent Systems (DSInS), Dec. 2021, pp. 212–217. doi: 

10.1109/DSInS54396.2021.9670608. 

[149] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond Bags of Features: Spatial Pyramid Matching for 

Recognizing Natural Scene Categories,” in 2006 IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition (CVPR’06), Jun. 2006, pp. 2169–2178. doi: 

10.1109/CVPR.2006.68. 

[150] I. Theodorakopoulos, D. Kastaniotis, G. Economou, and S. Fotopoulos, “HEp-2 cells classification 

via sparse representation of textural features fused into dissimilarity space,” Pattern 

Recognition, vol. 47, no. 7, pp. 2367–2378, 2014, doi: 

https://doi.org/10.1016/j.patcog.2013.09.026. 

[151] S. Kornblith, J. Shlens, and Q. V. Le, “Do Better ImageNet Models Transfer Better?,” 

arXiv:1805.08974 [cs, stat], May 2018, Accessed: Jun. 02, 2018. [Online]. Available: 

http://arxiv.org/abs/1805.08974 

[152] I. Nigam, S. Agrawal, R. Singh, and M. Vatsa, “Revisiting HEp-2 Cell Image Classification,” IEEE 

Access, vol. 3, pp. 3102–3113, 2015, doi: 10.1109/ACCESS.2015.2504125. 

[153] P. Agrawal, M. Vatsa, and R. Singh, “HEp-2 Cell Image Classification: A Comparative Analysis,” in 

Machine Learning in Medical Imaging, G. Wu, D. Zhang, D. Shen, P. Yan, K. Suzuki, and F. Wang, 

Eds., Springer International Publishing, 2013, pp. 195–202. 



References 

156 
 

[154] S. Ensafi, S. Lu, A. A. Kassim, and C. L. Tan, “A Bag of Words Based Approach for Classification of 

HEp-2 Cell Images,” in Proceedings of the 2014 1st Workshop on Pattern Recognition 

Techniques for Indirect Immunofluorescence Images, in I3AWORKSHOP ’14. Washington, DC, 

USA: IEEE Computer Society, 2014, pp. 29–32. doi: 10.1109/I3A.Workshop.2014.11. 

[155] S. Ensafi, S. Lu, A. A. Kassim, and C. L. Tan, “Accurate HEp-2 cell classification based on sparse 

bag of words coding,” Computerized Medical Imaging and Graphics, vol. 57, pp. 40–49, 2017, 

doi: https://doi.org/10.1016/j.compmedimag.2016.08.002. 

[156] G. Csurka, “Visual categorization with bags of keypoints,” undefined, 2004, Accessed: Jun. 24, 

2022. [Online]. Available: https://www.semanticscholar.org/paper/Visual-categorization-with-

bags-of-keypoints-Csurka/b91180d8853d00e8f2df7ee3532e07d3d0cce2af 

[157] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant 

texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 24, no. 7, pp. 971–987, Jul. 2002, doi: 10.1109/TPAMI.2002.1017623. 

[158] Z. Guo, L. Zhang, and D. Zhang, “A Completed Modeling of Local Binary Pattern Operator for 

Texture Classification,” IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 1657–1663, 

Jun. 2010, doi: 10.1109/TIP.2010.2044957. 

[159] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image 

Recognition,” CoRR, vol. abs/1409.1556, 2014. 

[160] J. Zhang, P. Liu, F. Zhang, and Q. Song, “CloudNet: Ground-Based Cloud Classification With Deep 

Convolutional Neural Network,” Geophysical Research Letters, vol. 45, no. 16, pp. 8665–8672, 

2018, doi: 10.1029/2018GL077787. 

[161] D. Tsourounis, D. Kastaniotis, C. Theoharatos, A. Kazantzidis, and G. Economou, “SIFT-CNN: 

When Convolutional Neural Networks Meet Dense SIFT Descriptors for Image and Sequence 

Classification,” Journal of Imaging, vol. 8, no. 10, Art. no. 10, Oct. 2022, doi: 

10.3390/jimaging8100256. 

[162] M. Li, S. Liu, and Z. Zhang, “Dual Guided Loss for Ground-Based Cloud Classification in Weather 

Station Networks,” IEEE Access, vol. 7, pp. 63081–63088, 2019, doi: 

10.1109/ACCESS.2019.2916905. 

[163] S. Liu, L. Duan, Z. Zhang, and X. Cao, “Hierarchical Multimodal Fusion for Ground-Based Cloud 

Classification in Weather Station Networks,” IEEE Access, vol. 7, pp. 85688–85695, 2019, doi: 

10.1109/ACCESS.2019.2926092. 



References 

157 
 

[164] W. Zhu et al., “Classification of Ground-Based Cloud Images by Improved Combined 

Convolutional Network,” Applied Sciences, vol. 12, no. 3, Art. no. 3, Jan. 2022, doi: 

10.3390/app12031570. 

[165] S. Agrawal, V. R. Omprakash, and Ranvijay, “Lip reading techniques: A survey,” in 2016 2nd 

International Conference on Applied and Theoretical Computing and Communication 

Technology (iCATccT), Jul. 2016, pp. 753–757. doi: 10.1109/ICATCCT.2016.7912100. 

[166] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal Convolutional Networks for 

Action Segmentation and Detection,” presented at the Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 2017, pp. 156–165. Accessed: Sep. 14, 2020. 

[Online]. Available: 

https://openaccess.thecvf.com/content_cvpr_2017/html/Lea_Temporal_Convolutional_Netwo

rks_CVPR_2017_paper.html 

[167] Y. Jining, M. Lin, L. Wang, R. Rajiv, and A. Y. Zomaya, “Temporal Convolutional Networks for the 

Advance Prediction of ENSO,” Scientific Reports (Nature Publisher Group), vol. 10, no. 1, 2020. 

[168] B. Martinez, P. Ma, S. Petridis, and M. Pantic, “Lipreading Using Temporal Convolutional 

Networks,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), May 2020, pp. 6319–6323. doi: 10.1109/ICASSP40776.2020.9053841. 

[169] D. Kastaniotis, D. Tsourounis, and S. Fotopoulos, “Lip Reading modeling with Temporal 

Convolutional Networks for medical support applications,” 2020 13th International Congress on 

Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2020, doi: 

10.1109/CISP-BMEI51763.2020.9263634. 

[170] J. S. Chung, A. Senior, O. Vinyals, and A. Zisserman, “Lip Reading Sentences in the Wild,” in 2017 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 3444–3453. 

doi: 10.1109/CVPR.2017.367. 

[171] S. Petridis, T. Stafylakis, P. Ma, F. Cai, G. Tzimiropoulos, and M. Pantic, “End-to-End Audiovisual 

Speech Recognition,” in 2018 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), Apr. 2018, pp. 6548–6552. doi: 10.1109/ICASSP.2018.8461326. 

[172] T. Stafylakis and G. Tzimiropoulos, “Combining Residual Networks with LSTMs for Lipreading,” 

in Interspeech 2017, ISCA, Aug. 2017, pp. 3652–3656. doi: 10.21437/Interspeech.2017-85. 

[173] S. Cheng et al., “Towards Pose-Invariant Lip-Reading,” in ICASSP 2020 - 2020 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020, pp. 4357–4361. doi: 

10.1109/ICASSP40776.2020.9054384. 



References 

158 
 

[174] C. Wang, “Multi-Grained Spatio-temporal Modeling for Lip-reading.,” in 30th British Machine 

Vision Conference 2019, BMVC 2019, Cardiff, UK, September 9-12, 2019, 2019, p. 276. [Online]. 

Available: https://bmvc2019.org/wp-content/uploads/papers/1211-paper.pdf 

[175] L. Courtney and R. Sreenivas, “Learning from Videos with Deep Convolutional LSTM Networks,” 

arXiv:1904.04817 [cs], Apr. 2019, Accessed: Apr. 05, 2021. [Online]. Available: 

http://arxiv.org/abs/1904.04817 

[176] M. Luo, S. Yang, S. Shan, and X. Chen, “Pseudo-Convolutional Policy Gradient for Sequence-to-

Sequence Lip-Reading,” 2020 15th IEEE International Conference on Automatic Face and 

Gesture Recognition (FG 2020), 2020, doi: 10.1109/FG47880.2020.00010. 

[177] X. Weng and K. Kitani, “Learning Spatio-Temporal Features with Two-Stream Deep 3D CNNs for 

Lipreading.,” in 30th British Machine Vision Conference 2019, BMVC 2019, Cardiff, UK, 

September 9-12, 2019, 2019, p. 269. [Online]. Available: https://bmvc2019.org/wp-

content/uploads/papers/0016-paper.pdf 

[178] J. Xiao, S. Yang, Y.-H. Zhang, S. Shan, and X. Chen, “Deformation Flow Based Two-Stream 

Network for Lip Reading,” 2020 15th IEEE International Conference on Automatic Face and 

Gesture Recognition (FG 2020), 2020, doi: 10.1109/FG47880.2020.00132. 

[179] X. Zhao, S. Yang, S. Shan, and X. Chen, “Mutual Information Maximization for Effective Lip 

Reading,” 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition 

(FG 2020), 2020, doi: 10.1109/FG47880.2020.00133. 

[180] Y.-H. Zhang, S. Yang, J. Xiao, S. Shan, and X. Chen, “Can We Read Speech Beyond the Lips? 

Rethinking RoI Selection for Deep Visual Speech Recognition,” 2020 15th IEEE International 

Conference on Automatic Face and Gesture Recognition (FG 2020), 2020, doi: 

10.1109/FG47880.2020.00134. 

[181] D. Feng, S. Yang, S. Shan, and X. Chen, “Learn an Effective Lip Reading Model without Pains.,” 

CoRR, vol. abs/2011.07557, 2020, [Online]. Available: https://arxiv.org/abs/2011.07557 

[182] X. Pan, P. Chen, Y. Gong, H. Zhou, X. Wang, and Z. Lin, “Leveraging Unimodal Self-Supervised 

Learning for Multimodal Audio-Visual Speech Recognition,” in Proceedings of the 60th Annual 

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, 

Ireland: Association for Computational Linguistics, May 2022, pp. 4491–4503. doi: 

10.18653/v1/2022.acl-long.308. 

[183] M. Kim, J. Hong, S. J. Park, and Y. M. Ro, “Multi-Modality Associative Bridging Through Memory: 

Speech Sound Recollected From Face Video,” presented at the Proceedings of the IEEE/CVF 

International Conference on Computer Vision, 2021, pp. 296–306. Accessed: Sep. 02, 2022. 



References 

159 
 

[Online]. Available: https://openaccess.thecvf.com/content/ICCV2021/html/Kim_Multi-

Modality_Associative_Bridging_Through_Memory_Speech_Sound_Recollected_From_Face_ICC

V_2021_paper.html 

[184] D. Tsourounis, D. Kastaniotis, and S. Fotopoulos, “Lip Reading by Alternating between 

Spatiotemporal and Spatial Convolutions,” Journal of Imaging, vol. 7, no. 5, Art. no. 5, May 

2021, doi: 10.3390/jimaging7050091. 

[185] M. Kim, J. H. Yeo, and Y. M. Ro, “Distinguishing Homophenes Using Multi-Head Visual-Audio 

Memory for Lip Reading.” arXiv, Apr. 04, 2022. doi: 10.48550/arXiv.2204.01725. 

[186] A. Koumparoulis and G. Potamianos, “Accurate and Resource-Efficient Lipreading with 

Efficientnetv2 and Transformers,” in ICASSP 2022 - 2022 IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), May 2022, pp. 8467–8471. doi: 

10.1109/ICASSP43922.2022.9747729. 

[187] S. J. Raudys and A. K. Jain, “Small sample size effects in statistical pattern recognition: 

recommendations for practitioners,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 13, no. 3, pp. 252–264, Mar. 1991, doi: 10.1109/34.75512. 

[188] M. Diaz, M. A. Ferrer, G. S. Eskander, and R. Sabourin, “Generation of Duplicated Off-Line 

Signature Images for Verification Systems,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 39, no. 5, pp. 951–964, May 2017, doi: 10.1109/TPAMI.2016.2560810. 

[189] M. A. Ferrer, J. F. Vargas, A. Morales, and A. Ordonez, “Robustness of Offline Signature 

Verification Based on Gray Level Features,” IEEE Transactions on Information Forensics and 

Security, vol. 7, no. 3, pp. 966–977, Jun. 2012, doi: 10.1109/TIFS.2012.2190281. 

[190] J. F. Vargas, M. A. Ferrer, C. M. Travieso, and J. B. Alonso, “Off-line Handwritten Signature 

GPDS-960 Corpus,” presented at the Document Analysis and Recognition, 2007. ICDAR 2007. 

Ninth International Conference on, Sep. 2007, pp. 764–768. doi: 10.1109/ICDAR.2007.4377018. 

[191] M. Parmar, N. Puranik, D. Joshi, and S. Malpani, “Image Processing Based Signature Duplication 

and its Verification.” Rochester, NY, Apr. 30, 2020. doi: 10.2139/ssrn.3645426. 

[192] A. Natarajan, B. S. Babu, and X.-Z. Gao, “Signature warping and greedy approach based offline 

signature verification,” Int. j. inf. tecnol., vol. 13, no. 4, pp. 1279–1290, Aug. 2021, doi: 

10.1007/s41870-021-00689-9. 

[193] M. M. Yapıcı, A. Tekerek, and N. Topaloğlu, “Deep learning-based data augmentation method 

and signature verification system for offline handwritten signature,” Pattern Anal Applic, vol. 

24, no. 1, pp. 165–179, Feb. 2021, doi: 10.1007/s10044-020-00912-6. 



References 

160 
 

[194] D. C. Yonekura and E. B. Guedes, “Offline Handwritten Signature Authentication with 

Conditional Deep Convolutional Generative Adversarial Networks,” in Anais do Encontro 

Nacional de Inteligência Artificial e Computacional (ENIAC), SBC, Nov. 2021, pp. 482–491. doi: 

10.5753/eniac.2021.18277. 

[195] M. Diaz, M. A. Ferrer, D. Impedovo, M. I. Malik, G. Pirlo, and R. Plamondon, “A Perspective 

Analysis of Handwritten Signature Technology,” ACM Comput. Surv., vol. 51, no. 6, p. 117:1-

117:39, Jan. 2019, doi: 10.1145/3274658. 

[196] D. Bertolini, L. S. Oliveira, E. Justino, and R. Sabourin, “Reducing forgeries in writer-independent 

off-line signature verification through ensemble of classifiers,” Pattern Recognition, vol. 43, no. 

1, pp. 387–396, Jan. 2010, doi: 10.1016/j.patcog.2009.05.009. 

[197] J.-P. Drouhard, R. Sabourin, and M. Godbout, “A neural network approach to off-line signature 

verification using directional PDF,” Pattern Recognition, vol. 29, no. 3, pp. 415–424, Mar. 1996, 

doi: 10.1016/0031-3203(95)00092-5. 

[198] J. Fierrez-Aguilar, N. Alonso-Hermira, G. Moreno-Marquez, and J. Ortega-Garcia, “An Off-line 

Signature Verification System Based on Fusion of Local and Global Information,” in Biometric 

Authentication, D. Maltoni and A. K. Jain, Eds., in Lecture Notes in Computer Science. Berlin, 

Heidelberg: Springer, 2004, pp. 295–306. doi: 10.1007/978-3-540-25976-3_27. 

[199] R. Ghosh, “A Recurrent Neural Network based deep learning model for offline signature 

verification and recognition system,” Expert Systems with Applications, p. 114249, Nov. 2020, 

doi: 10.1016/j.eswa.2020.114249. 

[200] J. Ji, C. Chen, and X. Chen, “Off-Line Chinese Signature Verification: Using Weighting Factor on 

Similarity Computation,” in 2010 2nd International Conference on E-business and Information 

System Security, May 2010, pp. 1–4. doi: 10.1109/EBISS.2010.5473588. 

[201] A. Nordgaard and B. Rasmusson, “The likelihood ratio as value of evidence—more than a 

question of numbers,” Law, Probability and Risk, vol. 11, no. 4, pp. 303–315, Dec. 2012, doi: 

10.1093/lpr/mgs019. 

[202] D. Rivard, E. Granger, and R. Sabourin, “Multi-feature extraction and selection in writer-

independent off-line signature verification,” IJDAR, vol. 16, no. 1, pp. 83–103, Mar. 2013, doi: 

10.1007/s10032-011-0180-6. 

[203] B. Schafer and S. Viriri, “An off-line signature verification system,” in 2009 IEEE International 

Conference on Signal and Image Processing Applications, Nov. 2009, pp. 95–100. doi: 

10.1109/ICSIPA.2009.5478727. 



References 

161 
 

[204] T. Steinherz, D. Doermann, E. Rivlin, and N. Intrator, “Offline Loop Investigation for Handwriting 

Analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 

193–209, Feb. 2009, doi: 10.1109/TPAMI.2008.68. 

[205] P. S. Deng, H.-Y. M. Liao, C. W. Ho, and H.-R. Tyan, “Wavelet-Based Off-Line Handwritten 

Signature Verification,” Computer Vision and Image Understanding, vol. 76, no. 3, pp. 173–190, 

Dec. 1999, doi: 10.1006/cviu.1999.0799. 

[206] A. Foroozandeh, Y. Akbari, M. J. Jalili, and J. Sadri, “Persian Signature Verification Based on 

Fractal Dimension Using Testing Hypothesis,” in 2012 International Conference on Frontiers in 

Handwriting Recognition, Sep. 2012, pp. 313–318. doi: 10.1109/ICFHR.2012.254. 

[207] V. Kiani, R. Pourreza, and H. R. Pourreza, “Offline signature verification using local radon 

transform and support vector machines,” International Journal of Image Processing, vol. 3, no. 

5, pp. 184–194, 2009. 

[208] A. Dutta, U. Pal, and J. Lladós, “Compact correlated features for writer independent signature 

verification,” in 2016 23rd International Conference on Pattern Recognition (ICPR), Dec. 2016, 

pp. 3422–3427. doi: 10.1109/ICPR.2016.7900163. 

[209] J. Hu and Y. Chen, “Offline Signature Verification Using Real Adaboost Classifier Combination of 

Pseudo-dynamic Features,” in 2013 12th International Conference on Document Analysis and 

Recognition, Aug. 2013, pp. 1345–1349. doi: 10.1109/ICDAR.2013.272. 

[210] M. I. Malik, M. Liwicki, A. Dengel, S. Uchida, and V. Frinken, “Automatic Signature Stability 

Analysis and Verification Using Local Features,” in 2014 14th International Conference on 

Frontiers in Handwriting Recognition, Sep. 2014, pp. 621–626. doi: 10.1109/ICFHR.2014.109. 

[211] M. I. Malik, S. Ahmed, M. Liwicki, and A. Dengel, “FREAK for Real Time Forensic Signature 

Verification,” in 2013 12th International Conference on Document Analysis and Recognition, 

Aug. 2013, pp. 971–975. doi: 10.1109/ICDAR.2013.196. 

[212] M. Okawa, “From BoVW to VLAD with KAZE features: Offline signature verification considering 

cognitive processes of forensic experts,” Pattern Recognition Letters, vol. 113, pp. 75–82, Oct. 

2018, doi: 10.1016/j.patrec.2018.05.019. 

[213] J. Ruiz-del-Solar, C. Devia, P. Loncomilla, and F. Concha, “Offline Signature Verification Using 

Local Interest Points and Descriptors,” in Progress in Pattern Recognition, Image Analysis and 

Applications, J. Ruiz-Shulcloper and W. G. Kropatsch, Eds., in Lecture Notes in Computer 

Science. Berlin, Heidelberg: Springer, 2008, pp. 22–29. doi: 10.1007/978-3-540-85920-8_3. 



References 

162 
 

[214] Y. Serdouk, H. Nemmour, and Y. Chibani, “Topological and textural features for off-line 

signature verification based on artificial immune algorithm,” presented at the Soft Computing 

and Pattern Recognition (SoCPaR), 2014 6th International Conference of, Aug. 2014, pp. 118–

122. doi: 10.1109/SOCPAR.2014.7007991. 

[215] M. B. Yilmaz, B. Yanikoglu, C. Tirkaz, and A. Kholmatov, “Offline signature verification using 

classifier combination of HOG and LBP features,” in 2011 International Joint Conference on 

Biometrics (IJCB), Oct. 2011, pp. 1–7. doi: 10.1109/IJCB.2011.6117473. 

[216] E. N. Zois, I. Theodorakopoulos, D. Tsourounis, and G. Economou, “Parsimonious Coding and 

Verification of Offline Handwritten Signatures,” presented at the 2017 IEEE Conference on 

Computer Vision and Pattern Recognition Workshops (CVPRW), Jul. 2017, pp. 636–645. doi: 

10.1109/CVPRW.2017.92. 

[217] E. N. Zois, I. Theodorakopoulos, and G. Economou, “Offline Handwritten Signature Modeling 

and Verification Based on Archetypal Analysis,” presented at the Proceedings of the IEEE 

International Conference on Computer Vision, 2017, pp. 5514–5523. Accessed: Nov. 10, 2020. 

[Online]. Available: 

https://openaccess.thecvf.com/content_iccv_2017/html/Zois_Offline_Handwritten_Signature_

ICCV_2017_paper.html 

[218] D. Gumusbas and T. Yildirim, “Offline Signature Identification and Verification Using Capsule 

Network,” in 2019 IEEE International Symposium on INnovations in Intelligent SysTems and 

Applications (INISTA), Jul. 2019, pp. 1–5. doi: 10.1109/INISTA.2019.8778228. 

[219] M. B. Yılmaz and K. Öztürk, “Recurrent Binary Patterns and CNNs for Offline Signature 

Verification,” in Proceedings of the Future Technologies Conference (FTC) 2019, K. Arai, R. 

Bhatia, and S. Kapoor, Eds., in Advances in Intelligent Systems and Computing. Cham: Springer 

International Publishing, 2020, pp. 417–434. doi: 10.1007/978-3-030-32523-7_29. 

[220] B. Ribeiro, I. Gonçalves, S. Santos, and A. Kovacec, “Deep Learning Networks for Off-Line 

Handwritten Signature Recognition,” in Progress in Pattern Recognition, Image Analysis, 

Computer Vision, and Applications, C. San Martin and S.-W. Kim, Eds., in Lecture Notes in 

Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 523–532. doi: 10.1007/978-3-642-

25085-9_62. 

[221] Khalajzadeh Hurieh, M. Mansouri, and M. Teshnehlab, “Persian Signature Verification using 

Convolutional Neural Networks,” International Journal of Engineering Research and Technology 

(IJERT), vol. 1, no. 2, pp. 7–12, 2012. 



References 

163 
 

[222] Z. Zhang, X. Liu, and Y. Cui, “Multi-phase Offline Signature Verification System Using Deep 

Convolutional Generative Adversarial Networks,” in 2016 9th International Symposium on 

Computational Intelligence and Design (ISCID), Dec. 2016, pp. 103–107. doi: 

10.1109/ISCID.2016.2033. 

[223] S. Dey, A. Dutta, J. I. Toledo, S. K. Ghosh, J. Lladós, and U. Pal, “Signet: Convolutional siamese 

network for writer independent offline signature verification,” arXiv preprint arXiv:1707.02131, 

2017. 

[224] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Writer-independent feature learning for offline 

signature verification using deep convolutional neural networks,” presented at the 2016 

International Joint Conference on Neural Networks (IJCNN), IEEE, 2016, pp. 2576–2583. 

[225] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Characterizing and evaluating adversarial 

examples for Offline Handwritten Signature Verification,” IEEE Transactions on Information 

Forensics and Security, vol. 14, no. 8, pp. 2153–2166, 2019. 

[226] L. G. Hafemann, R. Sabourin, and L. Oliveira, “Meta-Learning for Fast Classifier Adaptation to 

New Users of Signature Verification Systems,” IEEE Transactions on Information Forensics and 

Security, 2020, doi: 10.1109/TIFS.2019.2949425. 

[227] T. M. Maruyama, L. S. Oliveira, A. S. Britto Jr, and R. Sabourin, “Intrapersonal Parameter 

Optimization for Offline Handwritten Signature Augmentation,” arXiv:2010.06663 [cs], Oct. 

2020, Accessed: Nov. 02, 2020. [Online]. Available: http://arxiv.org/abs/2010.06663 

[228] M. B. Yilmaz and K. Öztürk, “Hybrid User-Independent and User-Dependent Offline Signature 

Verification with a Two-Channel CNN,” in 2018 IEEE/CVF Conference on Computer Vision and 

Pattern Recognition Workshops (CVPRW), Jun. 2018, pp. 639–6398. doi: 

10.1109/CVPRW.2018.00094. 

[229] O. Mersa, F. Etaati, S. Masoudnia, and B. Araabi, “Learning Representations from Persian 

Handwriting for Offline Signature Verification, a Deep Transfer Learning Approach,” 2019 4th 

International Conference on Pattern Recognition and Image Analysis (IPRIA), 2019, doi: 

10.1109/PRIA.2019.8785979. 

[230] T. Younesian, S. Masoudnia, R. Hosseini, and B. N. Araabi, “Active Transfer Learning for Persian 

Offline Signature Verification,” arXiv preprint arXiv:1903.06255, 2019. 

[231] A. Bellet, A. Habrard, and M. Sebban, “A Survey on Metric Learning for Feature Vectors and 

Structured Data,” arXiv:1306.6709 [cs, stat], Feb. 2014, Accessed: Dec. 17, 2020. [Online]. 

Available: http://arxiv.org/abs/1306.6709 



References 

164 
 

[232] H. Rantzsch, H. Yang, and C. Meinel, “Signature embedding: Writer independent offline 

signature verification with deep metric learning,” presented at the International symposium on 

visual computing, Springer, 2016, pp. 616–625. 

[233] A. Soleimani, B. N. Araabi, and K. Fouladi, “Deep multitask metric learning for offline signature 

verification,” Pattern Recognition Letters, vol. 80, pp. 84–90, 2016. 

[234] J. Chapran, “Biometric writer identification: feature analysis and classification,” Int. J. Patt. 

Recogn. Artif. Intell., vol. 20, no. 04, pp. 483–503, Jun. 2006, doi: 10.1142/S0218001406004831. 

[235] F. Kleber, S. Fiel, M. Diem, and R. Sablatnig, “CVL-DataBase: An Off-Line Database for Writer 

Retrieval, Writer Identification and Word Spotting,” in 2013 12th International Conference on 

Document Analysis and Recognition, Aug. 2013, pp. 560–564. doi: 10.1109/ICDAR.2013.117. 

[236] M. Sharif, M. A. Khan, M. Faisal, M. Yasmin, and S. L. Fernandes, “A Framework for Offline 

Signature Verification System: Best Features Selection Approach,” Pattern Recognition Letters, 

2018, doi: 10.1016/j.patrec.2018.01.021. 

[237] M. R. Pourshahabi, M. H. Sigari, and H. R. Pourreza, “Offline Handwritten Signature 

Identification and Verification Using Contourlet Transform,” in 2009 International Conference of 

Soft Computing and Pattern Recognition, Dec. 2009, pp. 670–673. doi: 

10.1109/SoCPaR.2009.132. 

[238] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in 

Proceedings of the 27th International Conference on International Conference on Machine 

Learning, in ICML’10. Madison, WI, USA: Omnipress, Jun. 2010, pp. 807–814. 

[239] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework for Contrastive Learning 

of Visual Representations,” Proceedings of the International Conference on Machine Learning, 

vol. 1, 2020, Accessed: Oct. 08, 2020. [Online]. Available: 

https://proceedings.icml.cc/paper/2020/hash/36452e720502e4da486d2f9f6b48a7bb 

[240] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum Contrast for Unsupervised Visual 

Representation Learning,” presented at the Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, 2020, pp. 9729–9738. Accessed: Oct. 08, 2020. 

[Online]. Available: 

https://openaccess.thecvf.com/content_CVPR_2020/html/He_Momentum_Contrast_for_Unsu

pervised_Visual_Representation_Learning_CVPR_2020_paper.html 

[241] I. Misra and L. van der Maaten, “Self-Supervised Learning of Pretext-Invariant Representations,” 

presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, 2020, pp. 6707–6717. Accessed: Oct. 08, 2020. [Online]. Available: 



References 

165 
 

https://openaccess.thecvf.com/content_CVPR_2020/html/Misra_Self-

Supervised_Learning_of_Pretext-Invariant_Representations_CVPR_2020_paper.html 

[242] J. Wang et al., “Learning Fine-Grained Image Similarity with Deep Ranking,” in 2014 IEEE 

Conference on Computer Vision and Pattern Recognition, Jun. 2014, pp. 1386–1393. doi: 

10.1109/CVPR.2014.180. 

[243] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980 [cs], 

Jan. 2017, Accessed: Oct. 09, 2020. [Online]. Available: http://arxiv.org/abs/1412.6980 

[244] R. Sabourin, R. Plamondon, and G. Lorette, “Off-line Identification With Handwritten Signature 

Images: Survey and Perspectives,” in Structured Document Image Analysis, H. S. Baird, H. 

Bunke, and K. Yamamoto, Eds., Berlin, Heidelberg: Springer, 1992, pp. 219–234. doi: 

10.1007/978-3-642-77281-8_10. 

[245] J. Galbally, M. Gomez-Barrero, and A. Ross, “Accuracy evaluation of handwritten signature 

verification: Rethinking the random-skilled forgeries dichotomy,” in 2017 IEEE International 

Joint Conference on Biometrics (IJCB), Oct. 2017, pp. 302–310. doi: 

10.1109/BTAS.2017.8272711. 

[246] M. Blumenstein, M. A. Ferrer, and J. F. Vargas, “The 4NSigComp2010 Off-line Signature 

Verification Competition: Scenario 2,” in 2010 12th International Conference on Frontiers in 

Handwriting Recognition, Nov. 2010, pp. 721–726. doi: 10.1109/ICFHR.2010.117. 

[247] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level 

Performance on ImageNet Classification,” in 2015 IEEE International Conference on Computer 

Vision (ICCV), Dec. 2015, pp. 1026–1034. doi: 10.1109/ICCV.2015.123. 

[248] K. Stapor, P. Ksieniewicz, S. García, and M. Woźniak, “How to design the fair experimental 

classifier evaluation,” Applied Soft Computing, vol. 104, p. 107219, Jun. 2021, doi: 

10.1016/j.asoc.2021.107219. 

[249] R. V. Hogg and J. Ledolter, Engineering statistics. Macmillan Publishing Company, 1987. 

[250] M. M. Kumar and N. B. Puhan, “Off-line signature verification: upper and lower envelope shape 

analysis using chord moments,” IET Biometrics, vol. 3, no. 4, pp. 347–354, 2014, doi: 

10.1049/iet-bmt.2014.0024. 

[251] A. K. Bhunia, A. Alaei, and P. P. Roy, “Signature verification approach using fusion of hybrid 

texture features,” Neural Comput & Applic, vol. 31, no. 12, pp. 8737–8748, Dec. 2019, doi: 

10.1007/s00521-019-04220-x. 



References 

166 
 

[252] J. Wen, B. Fang, Y. Y. Tang, and T. Zhang, “Model-based signature verification with rotation 

invariant features,” Pattern Recognition, vol. 42, no. 7, pp. 1458–1466, Jul. 2009, doi: 

10.1016/j.patcog.2008.10.006. 

[253] Y. Serdouk, H. Nemmour, and Y. Chibani, “Handwritten signature verification using the quad-

tree histogram of templates and a Support Vector-based artificial immune classification,” Image 

and Vision Computing, vol. 66, pp. 26–35, Oct. 2017, doi: 10.1016/j.imavis.2017.08.004. 

[254] M. Okawa, “Synergy of foreground–background images for feature extraction: Offline signature 

verification using Fisher vector with fused KAZE features,” Pattern Recognition, vol. 79, pp. 480–

489, Jul. 2018, doi: 10.1016/j.patcog.2018.02.027. 

[255] M. A. Ferrer, J. B. Alonso, and C. M. Travieso, “Offline geometric parameters for automatic 

signature verification using fixed-point arithmetic,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 27, no. 6, pp. 993–997, Jun. 2005, doi: 10.1109/TPAMI.2005.125. 

[256] V. Nguyen, M. Blumenstein, and G. Leedham, “Global Features for the Off-Line Signature 

Verification Problem,” in 2009 10th International Conference on Document Analysis and 

Recognition, Jul. 2009, pp. 1300–1304. doi: 10.1109/ICDAR.2009.123. 

[257] M. B. Yılmaz and B. Yanıkoğlu, “Score level fusion of classifiers in off-line signature verification,” 

Information Fusion, vol. 32, pp. 109–119, Nov. 2016, doi: 10.1016/j.inffus.2016.02.003. 

[258] M. Parodi, J. C. Gomez, and A. Belaïd, “A Circular Grid-Based Rotation Invariant Feature 

Extraction Approach for Off-line Signature Verification,” in 2011 International Conference on 

Document Analysis and Recognition, Sep. 2011, pp. 1289–1293. doi: 10.1109/ICDAR.2011.259. 

[259] G. Pirlo and D. Impedovo, “Cosine similarity for analysis and verification of static signatures,” 

IET Biometrics, vol. 2, no. 4, pp. 151–158, 2013, doi: 10.1049/iet-bmt.2013.0012. 

[260] G. Pirlo and D. Impedovo, “Verification of Static Signatures by Optical Flow Analysis,” IEEE 

Transactions on Human-Machine Systems, vol. 43, no. 5, pp. 499–505, 2013, doi: 

10.1109/THMS.2013.2279008. 

[261] Y. Serdouk, H. Nemmour, and Y. Chibani, “A New Handwritten Signature Verification System 

Based on the Histogram of Templates Feature and the Joint Use of the Artificial Immune System 

with SVM,” in Computational Intelligence and Its Applications, A. Amine, M. Mouhoub, O. Ait 

Mohamed, and B. Djebbar, Eds., in IFIP Advances in Information and Communication 

Technology. Cham: Springer International Publishing, 2018, pp. 119–127. doi: 10.1007/978-3-

319-89743-1_11. 



References 

167 
 

[262] F. Vargas, M. Ferrer, C. Travieso, and J. Alonso, “Off-line Handwritten Signature GPDS-960 

Corpus,” in Ninth International Conference on Document Analysis and Recognition (ICDAR 

2007), Sep. 2007, pp. 764–768. doi: 10.1109/ICDAR.2007.4377018. 

[263] O. Mersa, F. Etaati, S. Masoudnia, and B. N. Araabi, “Learning Representations from Persian 

Handwriting for Offline Signature Verification, a Deep Transfer Learning Approach,” 2019 4th 

International Conference on Pattern Recognition and Image Analysis (IPRIA), pp. 268–273, Mar. 

2019, doi: 10.1109/PRIA.2019.8785979. 

[264] D. Tsourounis, I. Theodorakopoulos, E. N. Zois, and G. Economou, “From text to signatures: 

Knowledge transfer for efficient deep feature learning in offline signature verification,” Expert 

Systems with Applications, vol. 189, p. 116136, Mar. 2022, doi: 10.1016/j.eswa.2021.116136. 

[265] N. Arab, H. Nemmour, and Y. Chibani, “A new synthetic feature generation scheme based on 

artificial immune systems for robust offline signature verification,” Expert Systems with 

Applications, vol. 213, p. 119306, Mar. 2023, doi: 10.1016/j.eswa.2022.119306. 

[266] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow Twins: Self-Supervised Learning via 

Redundancy Reduction,” in Proceedings of the 38th International Conference on Machine 

Learning, PMLR, Jul. 2021, pp. 12310–12320. Accessed: Mar. 22, 2022. [Online]. Available: 

https://proceedings.mlr.press/v139/zbontar21a.html 

[267] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a" 

siamese" time delay neural network,” presented at the Advances in neural information 

processing systems, 1994, pp. 737–744. 

[268] D. Avola, M. J. Bigdello, L. Cinque, A. Fagioli, and M. R. Marini, “R-SigNet: Reduced space writer-

independent feature learning for offline writer-dependent signature verification,” Pattern 

Recognition Letters, vol. 150, pp. 189–196, Oct. 2021, doi: 10.1016/j.patrec.2021.06.033. 

[269] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition 

and clustering,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 

Jun. 2015, pp. 815–823. doi: 10.1109/CVPR.2015.7298682. 

[270] W. Chen, X. Chen, J. Zhang, and K. Huang, “Beyond Triplet Loss: A Deep Quadruplet Network for 

Person Re-Identification,” presented at the Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, 2017, pp. 403–412. Accessed: Apr. 27, 2023. [Online]. Available: 

https://openaccess.thecvf.com/content_cvpr_2017/html/Chen_Beyond_Triplet_Loss_CVPR_20

17_paper.html 



References 

168 
 

[271] Q. Wan and Q. Zou, “Learning Metric Features for Writer-Independent Signature Verification 

using Dual Triplet Loss,” in 2020 25th International Conference on Pattern Recognition (ICPR), 

Jan. 2021, pp. 3853–3859. doi: 10.1109/ICPR48806.2021.9413091. 

[272] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional 

Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 

2017, pp. 2261–2269. doi: 10.1109/CVPR.2017.243. 

[273] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation Networks,” in 2018 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, Jun. 2018, pp. 7132–7141. doi: 

10.1109/CVPR.2018.00745. 

[274] L. Liu, L. Huang, F. Yin, and Y. Chen, “Offline signature verification using a region based deep 

metric learning network,” Pattern Recognition, vol. 118, p. 108009, Oct. 2021, doi: 

10.1016/j.patcog.2021.108009. 

[275] L. Liu, L. Huang, F. Yin, and Y. Chen, “Off-Line Signature Verification Using a Region Based Metric 

Learning Network,” in Pattern Recognition and Computer Vision, J.-H. Lai, C.-L. Liu, X. Chen, J. 

Zhou, T. Tan, N. Zheng, and H. Zha, Eds., in Lecture Notes in Computer Science. Cham: Springer 

International Publishing, 2018, pp. 74–86. doi: 10.1007/978-3-030-03398-9_7. 

[276] S. Lai and L. Jin, “Learning Discriminative Feature Hierarchies for Off-Line Signature 

Verification,” in 2018 16th International Conference on Frontiers in Handwriting Recognition 

(ICFHR), Aug. 2018, pp. 175–180. doi: 10.1109/ICFHR-2018.2018.00039. 

[277] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE conference on 

computer vision and pattern recognition, 2015, pp. 1–9. 

[278] V. Ruiz, I. Linares, A. Sanchez, and J. F. Velez, “Off-line handwritten signature verification using 

compositional synthetic generation of signatures and Siamese Neural Networks,” 

Neurocomputing, vol. 374, pp. 30–41, Jan. 2020, doi: 10.1016/j.neucom.2019.09.041. 

[279] E. Parcham, M. Ilbeygi, and M. Amini, “CBCapsNet: A novel writer-independent offline signature 

verification model using a CNN-based architecture and capsule neural networks,” Expert 

Systems with Applications, vol. 185, p. 115649, Dec. 2021, doi: 10.1016/j.eswa.2021.115649. 

[280] F. Chollet, “Xception: Deep Learning With Depthwise Separable Convolutions,” presented at the 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 

1251–1258. Accessed: Dec. 12, 2022. [Online]. Available: 

https://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CV

PR_2017_paper.html 



References 

169 
 

[281] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated Residual Transformations for Deep 

Neural Networks,” presented at the Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition, 2017, pp. 1492–1500. Accessed: Dec. 12, 2022. [Online]. Available: 

https://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transform

ations_CVPR_2017_paper.html 

[282] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-ResNet and the 

impact of residual connections on learning,” in Proceedings of the Thirty-First AAAI Conference 

on Artificial Intelligence, in AAAI’17. San Francisco, California, USA: AAAI Press, Feb. 2017, pp. 

4278–4284. 

[283] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision 

Applications,” ArXiv, vol. abs/1704.04861, 2017. 

[284] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transferable Architectures for Scalable 

Image Recognition,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 

Jun. 2018, pp. 8697–8710. doi: 10.1109/CVPR.2018.00907. 

[285] X. Lu, L. Huang, and F. Yin, “Cut and Compare: End-to-end Offline Signature Verification 

Network,” in 2020 25th International Conference on Pattern Recognition (ICPR), Jan. 2021, pp. 

3589–3596. doi: 10.1109/ICPR48806.2021.9412377. 

[286] Y.-J. Xiong and S.-Y. Cheng, “Attention Based Multiple Siamese Network for Offline Signature 

Verification,” in Document Analysis and Recognition – ICDAR 2021, J. Lladós, D. Lopresti, and S. 

Uchida, Eds., in Lecture Notes in Computer Science. Cham: Springer International Publishing, 

2021, pp. 337–349. doi: 10.1007/978-3-030-86334-0_22. 

[287] D. Engin, A. Kantarci, S. Arslan, and H. Kemel Ekenel, “Offline Signature Verification on Real-

World Documents,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition Workshops, 2020, pp. 808–809. 

[288] T. Younesian, S. Masoudnia, R. Hosseini, and B. N. Araabi, “Active Transfer Learning for Persian 

Offline Signature Verification,” in 2019 4th International Conference on Pattern Recognition and 

Image Analysis (IPRIA), Mar. 2019, pp. 234–239. doi: 10.1109/PRIA.2019.8786013. 

[289] A. Jain, S. K. Singh, and K. Pratap Singh, “Multi-task learning using GNet features and SVM 

classifier for signature identification,” IET Biometrics, vol. 10, no. 2, pp. 117–126, 2021, doi: 

10.1049/bme2.12007. 

[290] N. Çalik, O. C. Kurban, A. R. Yilmaz, T. Yildirim, and L. Durak Ata, “Large-scale offline signature 

recognition via deep neural networks and feature embedding,” Neurocomputing, vol. 359, pp. 

1–14, Sep. 2019, doi: 10.1016/j.neucom.2019.03.027. 



References 

170 
 

[291] R. Ghosh, “A Recurrent Neural Network based deep learning model for offline signature 

verification and recognition system,” Expert Systems with Applications, p. 114249, Nov. 2020, 

doi: 10.1016/j.eswa.2020.114249. 

[292] M. B. Yılmaz and K. Öztürk, “Recurrent Binary Patterns and CNNs for Offline Signature 

Verification,” in Proceedings of the Future Technologies Conference (FTC) 2019, K. Arai, R. 

Bhatia, and S. Kapoor, Eds., in Advances in Intelligent Systems and Computing. Cham: Springer 

International Publishing, 2020, pp. 417–434. doi: 10.1007/978-3-030-32523-7_29. 

[293] H. Li, P. Wei, and P. Hu, “Static-Dynamic Interaction Networks for Offline Signature 

Verification,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 3, Art. 

no. 3, May 2021, doi: 10.1609/aaai.v35i3.16284. 

[294] P. R. Prajapati, S. Poudel, M. Baduwal, S. Burlakoti, and S. P. Panday, “Signature Verification 

using Convolutional Neural Network and Autoencoder,” Journal of the Institute of Engineering, 

vol. 16, no. 1, Art. no. 1, Apr. 2021, doi: 10.3126/jie.v16i1.36533. 

[295] H. Li, P. Wei, and P. Hu, “AVN: An Adversarial Variation Network Model for Handwritten 

Signature Verification,” IEEE Transactions on Multimedia, pp. 1–1, 2021, doi: 

10.1109/TMM.2021.3056217. 

[296] H. Li, H. Li, H. Zhang, and W. Yuan, “Black-box attack against handwritten signature verification 

with region-restricted adversarial perturbations,” Pattern Recognition, vol. 111, p. 107689, Mar. 

2021, doi: 10.1016/j.patcog.2020.107689. 

[297] S. Roy, D. Sarkar, S. Malakar, and R. Sarkar, “Offline signature verification system: a graph 

neural network based approach,” J Ambient Intell Human Comput, Nov. 2021, doi: 

10.1007/s12652-021-03592-0. 

[298] J.-X. Ren, Y.-J. Xiong, H. Zhan, and B. Huang, “2C2S: A two-channel and two-stream transformer 

based framework for offline signature verification,” Engineering Applications of Artificial 

Intelligence, vol. 118, p. 105639, Feb. 2023, doi: 10.1016/j.engappai.2022.105639. 

[299] S. Manna, S. Chattopadhyay, S. Bhattacharya, and U. Pal, “SWIS: Self-Supervised Representation 

Learning For Writer Independent Offline Signature Verification,” arXiv:2202.13078 [cs, eess], 

Feb. 2022, Accessed: Mar. 30, 2022. [Online]. Available: http://arxiv.org/abs/2202.13078 

[300] S. Chattopadhyay, S. Manna, S. Bhattacharya, and U. Pal, “SURDS: Self-Supervised Attention-

guided Reconstruction and Dual Triplet Loss for Writer Independent Offline Signature 

Verification.” arXiv, Jun. 26, 2022. doi: 10.48550/arXiv.2201.10138. 



References 

171 
 

[301] M. Hussain, J. J. Bird, and D. R. Faria, “A Study on CNN Transfer Learning for Image 

Classification,” in Advances in Computational Intelligence Systems, A. Lotfi, H. Bouchachia, A. 

Gegov, C. Langensiepen, and M. McGinnity, Eds., Springer International Publishing, 2019, pp. 

191–202. 

[302] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural Network.” arXiv, Mar. 

09, 2015. doi: 10.48550/arXiv.1503.02531. 

[303] J. Ba and R. Caruana, “Do Deep Nets Really Need to be Deep?,” in Advances in Neural 

Information Processing Systems, Curran Associates, Inc., 2014. Accessed: Jul. 06, 2022. [Online]. 

Available: 

https://proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e06eb187f10666d-

Abstract.html 

[304] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning: A Review and New 

Perspectives.” arXiv, Apr. 23, 2014. doi: 10.48550/arXiv.1206.5538. 

[305] I. Theodorakopoulos, G. Economou, S. Fotopoulos, and C. Theoharatos, “Local manifold 

distance based on neighborhood graph reordering,” Pattern Recognition, vol. 53, pp. 195–211, 

May 2016, doi: 10.1016/j.patcog.2015.12.006. 

[306] I. Theodorakopoulos, F. Fotopoulou, and G. Economou, “Geometric Regularization of Local 

Activations for Knowledge Transfer in Convolutional Neural Networks,” Information, vol. 12, no. 

8, Art. no. 8, Aug. 2021, doi: 10.3390/info12080333. 

[307] I. Theodorakopoulos, F. Fotopoulou, and G. Economou, “Local Manifold Regularization for 

Knowledge Transfer in Convolutional Neural Networks,” in 2020 11th International Conference 

on Information, Intelligence, Systems and Applications (IISA, Jul. 2020, pp. 1–8. doi: 

10.1109/IISA50023.2020.9284400. 

[308] J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman 

Problem,” Proceedings of the American Mathematical Society, vol. 7, no. 1, pp. 48–50, 1956, 

doi: 10.2307/2033241. 

[309] R. Zemel and M. Carreira-Perpiñán, “Proximity Graphs for Clustering and Manifold Learning,” in 

Advances in Neural Information Processing Systems, MIT Press, 2004. Accessed: Apr. 10, 2023. 

[Online]. Available: 

https://proceedings.neurips.cc/paper/2004/hash/dcda54e29207294d8e7e1b537338b1c0-

Abstract.html 

[310] I. Theodorakopoulos and D. Tsourounis, “A Geometric Perspective on Feature-Based 

Distillation,” in Advancements in Knowledge Distillation: Towards New Horizons of Intelligent 



References 

172 
 

Systems, 1st ed.in Studies in Computational Intelligence, no. 1100. Springer Nature, 2023, pp. 

33–63. [Online]. Available: https://doi.org/10.1007/978-3-031-32095-8_2 

[311] M. A. Ferrer, J. F. Vargas, A. Morales, and A. Ordonez, “Robustness of Offline Signature 

Verification Based on Gray Level Features,” IEEE Transactions on Information Forensics and 

Security, vol. 7, no. 3, pp. 966–977, Jun. 2012, doi: 10.1109/TIFS.2012.2190281. 

[312] F. Kleber, S. Fiel, M. Diem, and R. Sablatnig, “CVL-DataBase: An Off-Line Database for Writer 

Retrieval, Writer Identification and Word Spotting,” in 2013 12th International Conference on 

Document Analysis and Recognition, Aug. 2013, pp. 560–564. doi: 10.1109/ICDAR.2013.117. 

[313] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural 

networks,” in Proceedings of the Thirteenth International Conference on Artificial Intelligence 

and Statistics, JMLR Workshop and Conference Proceedings, Mar. 2010, pp. 249–256. Accessed: 

Jul. 20, 2022. [Online]. Available: https://proceedings.mlr.press/v9/glorot10a.html 

 


