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Abstract

The aim of this doctoral thesis is the development of stochastic epidemic mod-

els focused on disease outbreaks in humans, as well as livestock. Statistical

methodology is developed aimed at informing public health policies and their

communication as implemented by the governing organizations, specifically

at a time of crisis like the Covid-19 pandemic.

The second section is concerned with the results of a simulation-based

evaluation of several policies for vaccine roll-out. Particular focus is placed

upon on the effects of delaying the second dose of two-dose vaccines. In

the presence of limited vaccine supply, the specific policy choice was a

pressing issue for several countries worldwide, and the adopted course of

action affected the extension or easing of non-pharmaceutical interventions

(NPIs). We used a suitably generalised, age-structured, stochastic SEIR

(Susceptible → Exposed → Infectious → Removed) epidemic model that

accommodates quantitative descriptions of the major effects resulting from

distinct vaccination strategies. The different rates of social contacts among

distinct age-groups (as well as other model parameters) are informed by a
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recent survey conducted in Greece, but the conclusions are widely applicable.

The results are summarised and evaluated in terms of the total number of

deaths and infections as well as life years lost.

A number of NPIs had been implemented in order to reduce transmission,

thus leading to multiple phases of transmission. The disease reproduction

number Rt , a way of quantifying transmissibility, has been a key part in

assessing the impact of such interventions. In the third chapter of this thesis

we discuss the distinct types of transmission models used and how they are

linked. We consider a hierarchical stochastic epidemic model with piece-wise

constant Rt , appropriate for modelling the distinct phases of the epidemic and

quantifying the true disease magnitude. The location and scale of Rt changes

are inferred directly from data while the number of transmissibility phases is

allowed to vary. We determine the model complexity via appropriate Poisson

point process and Dirichlet process-type modelling components. The models

are evaluated using synthetic data sets and the methods are applied to freely

available data from the United Kingdom and Greece as well as California and

New York states. We estimate the true infected cases and the corresponding

Rt , among other quantities, and independently validate the proposed approach

using a large seroprevalence study.

Chapter four is concerned with a class of models where the Ornstein-

Uhlenbeck (OU) process is embedded within Poisson-type point processes.
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We utilise a general OU model with Student’s t-distribution marginals and a

Cox-Ingersoll-Ross model for the latent infection rate of the spatio-temporal

model. We also propose a class of Bayesian Neural Nets using horseshoe

priors for the weights. Real data from Foot and Mouth and Sheep-pox

outbreaks in livestock within the Evros region of Greece are studied. The

predictive ability of each model is being assessed using proper scoring rules

within the prequential analysis framework. Our investigation concludes that

the Student-t OU and the CIR models improve upon the previously introduced

models with Gaussian OU for the latent rate of the Poisson-type point process.



Περίληψη

Στόχος της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη στοχαστικών

επιδημικών μοντέλων με έμφαση στις μολυσματικές ασθένειες σε ανθρώπους

και ζώα. Αναπτύσσεται συγκεκριμένη στατιστική μεθοδολογία για να ενημερώνει

καλύτερα τις δημόσιες πολιτικές υγείας και τις επικοινωνίες που υλοποιούνται

από τις κυβερνητικές οργανώσεις, ειδικά κατά τη διάρκεια κρίσεων, όπως η

πανδημία του Covid-19.

Η δεύτερη ενότητα αφορά τα αποτελέσματα μιας αξιολόγησης που βασίζε-

ται σε προσομοίωση πολλών πολιτικών για την ανάπτυξη εμβολίων. Ιδιαίτερη

έμφαση δίνεται στις επιπτώσεις της καθυστέρησης της δεύτερης δόσης των

εμβολίων δύο δόσεων. Παρουσία περιορισμένης προμήθειας εμβολίων, η συγ-

κεκριμένη επιλογή πολιτικής ήταν ένα πιεστικό ζήτημα για πολλές χώρες

παγκοσμίως και η υιοθέτηση πορείας δράσης επηρέασε την επέκταση ή τη

χαλάρωση των μη φαρμακευτικών παρεμβάσεων. Χρησιμοποιήσαμε ένα κατάλληλα

γενικευμένο, ηλικιακά δομημένο, στοχαστικό μοντέλο επιδημίας SEIR (Ευ-

άλωτοι → Εκτεθειμένοι → Μολυσματικοί → Αφαιρεθέντες) που περιλαμ-

βάνει ποσοτικές περιγραφές των κύριων επιπτώσεων που προκύπτουν από δι-

αφορετικές στρατηγικές εμβολιασμού. Τα διαφορετικά ποσοστά κοινωνικών

επαφών μεταξύ διαφορετικών ηλικιακών ομάδων (καθώς και άλλες παραμέτρους

του μοντέλου) ενημερώνονται από μια πρόσφατη έρευνα που διεξήχθη στην

Ελλάδα, αλλά τα συμπεράσματα είναι ευρέως εφαρμόσιμα. Τα αποτελέσματα
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συνοψίζονται και αξιολογούνται ως προς τον συνολικό αριθμό θανάτων και

μολύνσεων καθώς και τα χαμένα χρόνια ζωής.

Στο τρίτο κεφάλαιο αυτής της διατριβής συζητάμε τους διαφορετικούς

τύπους μοντέλων μετάδοσης που χρησιμοποιούνται και πώς συνδέονται. Θεω-

ρούμε ένα ιεραρχικό στοχαστικό επιδημικό μοντέλο με αποσπασματική στα-

θερά Rt , κατάλληλο για τη μοντελοποίηση των διακριτών φάσεων της επιδημίας

και τον ποσοτικό προσδιορισμό του πραγματικού μεγέθους της νόσου. Η

θέση και η κλίμακα των αλλαγών Rt συνάγονται απευθείας από τα δεδομένα,

ενώ ο αριθμός των φάσεων μεταδοτικότητας επιτρέπεται να ποικίλλει.Καθορίζουμε

την πολυπλοκότητα του μοντέλου μέσω κατάλληλων διαδικασιών Poisson και

Dirichlet. Τα μοντέλα αξιολογούνται χρησιμοποιώντας συνθετικά σύνολα δε-

δομένων και οι μέθοδοι εφαρμόζονται σε ελεύθερα διαθέσιμα δεδομένα από το

Ηνωμένο Βασίλειο και την Ελλάδα καθώς και από τις πολιτείες της Καλιφόρ-

νια και της Νέας Υόρκης. Υπολογίζουμε τα πραγματικά μολυσμένα κρούσ-

ματα και το αντίστοιχο Rt , μεταξύ άλλων ποσοτήτων, και επικυρώνουμε ανεξάρτητα

την προτεινόμενη προσέγγιση χρησιμοποιώντας μια μεγάλη μελέτη οροεπιπο-

λασμού.

Το τέταρτο κεφάλαιο ασχολείται με μια κατηγορία μοντέλων όπου η δι-

αδικασία Ornstein-Uhlenbeck (OU) είναι ενσωματωμένη σε διαδικασίες τύπου

Poisson. Χρησιμοποιούμε ένα γενικό μοντέλο OU με μεταβατική πυκνότητα

πιθανότητας Student-t και ένα μοντέλο Cox-Ingersoll-Ross για το ποσοστό
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μόλυνσης του χωροχρονικού μοντέλου. Προτείνουμε επίσης μια κατηγορία

νευρωνικών διχτυών Bayes που χρησιμοποιούν εκ των προτέρων κατανομές

τύπου horseshoe. Μελετώνται πραγματικά δεδομένα από επιδημίες αφθώ-

δους πυρετού και ευλογιάς σε ζώα στην περιοχή του ΄Εβρου στην Ελλάδα. Η

προγνωστική ικανότητα κάθε μοντέλου αξιολογείται χρησιμοποιώντας τους

κατάλληλους κανόνες βαθμολόγησης εντός του πλαισίου προκαταρκτικής ανάλυσης.

Η έρευνά μας καταλήγει στο συμπέρασμα ότι τα μοντέλα Student-t OU και

CIR βελτιώνουν τα μοντέλα που εισήχθησαν προηγουμένως με την Gaussian

OU για τον ρυθμό της διαδικασίας Poisson.
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Chapter 1

Introduction

1.1 Introduction

Epidemiology is the study and analysis of the distribution and factors of health

and disease conditions in defined populations. It is the foundation of public

health and shapes policy decisions and evidence-based practice by identifying

risk factors for disease and preventive healthcare. In the era of Covid19, it is

evident more than ever that disease outbreak modelling is a crucial arrow in the

quiver of health organizations worldwide. Epidemic modelling has flourished

as a research area in the years before this global pandemic, thus enabling

evidence-based decision-making. At the start of 2020, the emergence of the

Covid-19 pandemic brought unprecedented challenges and conditions across

the globe. In the absence of pharmaceutical options, nonpharmaceutical

interventions (NPIs) have been implemented in order to reduce transmission.

The reproduction number Rt , a way of quantifying transmissibility, has been
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a key part in assessing the efficiency of these interventions. However, due to

severe under-reporting and bias of reported cases, the true prevalence of the

disease remains unknown.

Since the emergence of multiple vaccines, a gradual transition towards

some form of ’normality’ was initiated with the disease moving towards

endemicity. A unified framework encapsulating the distinct phases of the

pandemic in Greece and other European countries is represented in Chapter 2

of this thesis.

Standard epidemic theory (Andersson and Britton, 2000) suggests that in

order to prevent major outbreaks, a proportion of at least 1− 1
R will have to

become immune (either through vaccination or previous infection). In addi-

tion to social distancing (Lewnard and Lo, 2020) and mass testing (Taipale

et al., 2021), the fair allocation of scarce medical interventions, such as vac-

cine distribution early on, presents ethical challenges as there are different

allocation options like treating everyone equally, favouring the most vulnera-

ble, maximising total benefit and no single principle can address all morally

relevant considerations (Emanuel et al., 2020; Persad et al., 2009). Modelling

studies broadly agree that when vaccine supply is limited, prioritising the

most vulnerable (the elderly in the case of covid) is the optimal strategy to

reduce COVID-19 mortality [10,11]. This is in agreement with epidemic

theory (Andersson and Britton, 2000) which suggests that the focus for dis-
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ease control should be based on a combination of targeting susceptibility and

infectivity. In this work, we focus on the problem which many European

countries were facing in the spring of 2021 whence the prioritisation of vac-

cines was of the essence. Due to supply constraints, it was decided in the UK

and Canada to try and cover a larger fraction of the population by delaying

the administration of the second dose since the first dose of the SARS-CoV-2

vaccine offers considerable protection (GOV.CA, 2021; GOV.UK, 2021).

In Chapter 2 we performed a simulation study using a novel stochastic age-

structured compartmental model that accounts for distinct vaccination states.

The model, termed S(V)EIR (Susceptible-Vaccinated-Infected-Removed)

accounts for the age composition of the population, the social mixing rates of

different age groups, the intention to get vaccinated as well as the appropriate

risk of death for each age group. This model was used in order to evaluate

different vaccination strategies and the associated reduction in Covid19-

related mortality by delaying the timing of the second dose of the vaccine

in order to administer the vaccine to a larger population fraction as early as

possible. This work has been sent as a technical report to the Greek Covid19

response authorities and has been accepted for publication in PLOS ONE.

The reproduction number, R, of an epidemic, is a measure of the transmissi-

bility of the disease and is of vital importance for informing the interventions

to mitigate disease spread. In a covid-like outbreak, where interventions
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affect disease transmissibility, it is advantageous to estimate the instanta-

neous reproduction number Rt . A wide range of methods have been proposed

for estimating Rt from disease surveillance data. The Wallinga and Teunis

method (Wallinga and Teunis, 2004) requires only case incidence data and the

distribution of the serial interval (the time between the onset of symptoms in

a primary case and the onset of symptoms of secondary cases) for estimating

Rt . The drawback of this method is that in order to calculate Rt at day t one

needs data beyond day t. The authors in Cori et al. (2013) amended this

technique using branching processes building on the work of Fraser (2007)

where the incidence on day t is calculated as the weighted average of the

incidences on the previous days multiplied by the instantaneous reproduction

number Rt . The authors further extend this methodology by using a hierar-

chical Bayesian model which allowed them to work with the reported death

cases and estimate the true disease prevalence. A detailed presentation of the

compartmental stochastic epidemic model is given in both chapters 2 and 3.

Also, Chapter 3 contains a thorough presentation of the equivalence of the

stochastic Susceptible-Infected-Recovered model with the renewal process

epidemic models.

Statistical inference for the models entertained in this thesis is mostly

performed under the Bayesian paradigm. An inherent problem with epidemic

models is that the required data are never fully observed. This issue is further
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exacerbated in the case of SARS-CoV2 where a large proportion of the

population remains asymptomatic and there is under-ascertainment of the true

number of infections. In Chapter 3, We opt to use a Bayesian hierarchical

model, where the source of information is the daily reported deaths which

are likely less prone to under-reporting. We build upon the work of Flaxman

et al. (2020) and amend their methodology by using a Dirichlet process

and a Poisson process prior (Blackwell and MacQueen, 1973; Ishwaran and

Zarepour, 2002) to facilitate the semi-automatic determination of the number

of transmission waves. We infer the position and the magnitude of changes

in the transmission rate and predict the phases of the epidemic directly from

the data. Alternative constructions of the Dirichlet process are employed and

compared in terms of statistical accuracy and computational efficiency. The

complexity of the developed models necessitates the use of state-of-the-art

learning techniques and to this end, we use Hamiltonian Monte Carlo and

related methods implemented in R and Python programming languages.

Epidemic models for animal diseases such as foot and mouth (FMD) or

sheep-pox are typically used in order to characterise disease transmission and

inform the decision-making process of the relevant organizations. The highly

contagious nature of such viruses results in dire consequences on the ani-

mals’ well-being and significant economic consequences for the professionals

involved in animal husbandry. Therefore, it is crucial for epidemiological
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models to accurately predict the course of outbreaks and mitigate disease

spread.

In Chapter 4 our work on livestock epidemics builds upon the work of

Malesios et al. (2017). The authors used a log Gaussian Cox process (Møller

et al., 1998) to perform inference and variable selection on the number of in-

fected farms in Evros, Greece. In particular, they used an Ornstein-Uhlenbek

(OU) process (Uhlenbeck and Ornstein, 1930) embedded inside a Poisson

process. The use of Gaussian processes is popular in the relevant literature

(Diggle et al., 2013), especially in the presence of temporal dependence in

the data. The authors extended the model to account for the spatial nature

of the data using appropriate kernel functions. Variable selection was per-

formed using the methodology presented in Dellaportas et al. (2002). We

further extend these models with the introduction of OU-type processes with

Student’s t-distribution transition densities and the Cox-Ingersoll-Ross type

model for the latent rate of the Cox process. These models are compared

against Bayesian non-parametric models involving Bayesian artificial neural

networks using prequential analysis (Dawid, 1984).
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1.2 Bayesian Methodology

1.2.1 Bayesian Inference

In this section, we will present at a non-technical level the basic concepts of

the Bayesian methodology. For a more detailed analysis, we direct the reader

to the book of Bernardo and Smith (1994).

Under the Bayesian paradigm, in addition to defying a model for the ob-

served data y = (y1,y2, ...,yn) in the form of the likelihood function L(y|θ)

given the vector of the random parameters θ , we also define the prior distri-

butions of these parameters π(θ). The prior distributions can demonstrate

previous knowledge about these parameters or a complete lack thereof (non-

informative priors). Then inference about θ is performed through the Bayes’

theorem and their posterior distribution:

π(θ |y) = L(y|θ)π(θ)∫
L(y|θ)π(θ)

(1.1)

The appeal of sampling from the posterior distribution lies in the fact that

we can estimate any desired statistic of a posterior distribution by ergodic

averages, given that we have N samples from that distribution. Hence for every

function of the parameter of interest G(θ), we can calculate the posterior

mean for example by simply:

• Generating a sample θ1,θ2, ...,θT from the posterior distribution π(θ |y).
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• Calculate the sample mean of G(θ) by simply calculating the quantity:

1
T

T

∑
i=1

G(θi) (1.2)

The main problem in the above-mentioned procedure is how to generate

from the posterior density π(θ |y). In most cases, it is not straightforward,

since the integral in the denominator is not analytically available in all but

the most simple cases, where there is conjugacy between the prior and the

likelihood functions. The generality and flexibility of Markov chain-based

simulation techniques can overcome these difficulties. We will present some

generic Markov Chain Monte Carlo (MCMC) algorithms that have been

pivotal in the emergence and development of Bayesian inference.

1.2.2 Bayesian Computation

When the posterior distribution is not analytically available, MCMC algo-

rithms are used to construct a Markov chain, which has the desired posterior

distribution as its equilibrium. By simulating the Markov chain for a sufficient

amount of time, the samples generated eventually converge to samples from

the posterior distribution. It dates back to the pioneering paper of Metropolis

et al. (1953) although there was a lack of computational power available at the

time. The generalization of the sampling method was proposed by Hastings

(1970) in the Metropolis-Hastings algorithm that is presented below.
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Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm generates samples from a target density

π(θ), which is only known up to a normalizing constant. The samples are

generated through a user-selected and calibrated proposal function q(θ) and

are accepted or rejected after a Metropolis acceptance step. The proper

selection of the proposal ensures the irreducibility and aperiodicity of the

Markov chain and as a result the sampling of the correct posterior distribution.

The selection of the proposal distribution also affects the convergence rate of

the Markov chain to the target distribution. The algorithm is shown below:

Algorithm 1 Metropolis-Hastings Algorithm
1: Start with an arbitrary initial value θ0

2: for n = 0,1,2, . . . do

3: Generate ξ ∼ q(ξ |θn)

4: Evaluate α = min
(

1, π(ξ )q(θn|ξ )
π(θn)q(ξ |θn)

)
5: Set

6: θn+1 =


ξ , with probability α,

θn, otherwise.
7: end for

Gibbs sampling

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm.

When the conditional densities of each parameter are analytically available,

we can sample sequentially each parameter conditional to the rest of the
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parameters and acquire a sample from the target distribution. In real-world

problems, the full conditionals may not be available or tractable. These steps

can be substituted by a Metropolis-Hastings step. These mixtures of Gibbs

and Metropolis-Hastings samplers are used by widely available programming

languages like WinBUGS, JAGS or the R package nimble. The Gibbs sampler

algorithm is shown below:

Algorithm 2 Gibbs Sampling Algorithm
1: Input: θ0,M

2: Set θ ← θ0

3: for m = 1 to M do

4: for i = 1 to n do

5: Sample θi ∼ p(θi|θ−i)

6: end for

7: Set θ ← θ1,θ2, . . . ,θn

8: end for

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC), also known as Hybrid Monte Carlo, is an

MCMC method that uses the spatial characteristics of the target distribution,

through its derivatives, in order to generate efficient transitions and samples

spanning the space of the posterior (Betancourt and Girolami, 2013; Neal,

2011). It uses numerical integration on an approximate Hamiltonian dynamics

system, which is then corrected using a Metropolis acceptance step. HMC
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contrary to the Metropolis-Hastings and Gibbs algorithms avoids the random

walk behaviour when exploring the posterior distribution. In order for HMC

to generate an independent sample from a target distribution of dimension

D is approximately O(D
5
4 ), which stands in sharp contrast with the O(D2)

cost of random-walk Metropolis (Hoffman and Gelman, 2014). The main

drawback of HMC is the high computational cost of each iteration since the

Hamiltonian dynamics must be calculated, which requires the derivatives of

the target distribution up to a normalizing constant. These derivatives in many

applications-models can be cumbersome to calculate or even impossible. This

problem is facilitated through the use of automatic differentiation.

HMC introduces auxiliary momentum variables ρ and together with the po-

sition variables θ , the parameters of the model, they define the joint posterior

density:

p(ρ,θ |y) = p(ρ|θ ,y)p(θ |y) (1.3)

The joint density p(ρ,θ |y) defines a Hamiltonian:

H(ρ,θ |y) =−log(ρ,θ |y) (1.4)

H(ρ,θ |y) =− log(ρ,θ |y)

=− logp(ρ|θ ,y)− logp(θ |y)

=T (ρ|θ ,y)+V (θ |y)
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where the term T (ρ|θ ,y) =−logp(ρ|θ ,y) is called kinetic energy and the

term V (θ |y) =−logp(θ |y) is called potential energy. The potential energy

under the Bayesian paradigm is the log-likelihood plus the logarithm of the

prior of the parameters θ .

Starting from the current value of the parameters, a transition to a new state

is generated in two stages before being subjected to a Metropolis acceptance

step. First, a value for the momentum is drawn independently of the current

parameter values.

ρ ∼ N(0,Σ) (1.5)

Thus momentum does not persist across iterations. Next, the joint system

p(ρ,θ |y) made up of the current parameter values θ and new momentum ρ

is evolved via Hamilton’s equations.

dθ

dt
=+

∂H
∂ρ

=+
∂T
∂ρ

dρ

dt
=− ∂H

∂θ
=

∂V
∂θ

With the momentum density being independent of the target density and the

data, p(ρ|θ ,y) = p(ρ), the first term in the momentum time derivative ∂T
∂θ

is

zero.

This two-state differential equation is solved by using the leapfrog in-

tegrator. The leapfrog integrator is a numerical integration algorithm that
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is specifically adapted to provide stable results for Hamiltonian system of

equations. The leapfrog integrator takes discrete steps of some small time

integral ε . It begins by drawing a momentum value from the ρ density and

the alternate half-step updates of the momentum and full-step updates of the

position.

ρ ←ρ− ε

2
∂V
∂θ

θ ←θ + ερ

ρ ←ρ− ε

2
∂V
∂θ

After L leapfrog steps are applied, a total of Lε time is simulated. At the

end, in order to account for numerical errors during integration, we apply a

Metropolis acceptance step. The complete HMC algorithm is shown below:
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Algorithm 3 Hamiltonian Monte Carlo
1: Input: θ0, ε , L, L, M

2: for m = 1 to M do

3: Sample ρ0 ∼ N(0, I)

4: Set θm← θm−1, θ̃ ← θm−1, ρ̃ ← ρ0

5: for i = 1 to L do

6: Set θ̃ , ρ̃ ← Leapfrog(θ̃ , ρ̃,ε)

7: end for

8: Compute acceptance probability α = min
(

1,
exp(L(θ̃)− 1

2 ρ̃·ρ̃)
exp(L(θm−1)− 1

2 ρ0·ρ0)

)
9: if α ≥ Uniform(0,1) then

10: Set θm← θ̃ , ρm←−ρ̃

11: end if

12: end for

Algorithm 4 Leapfrog
1: function Leapfrog(θ ,ρ,ε)

2: Set ρ̃ ← ρ +
(

ε

2

)
∇θ L(θ)

3: Set θ̃ ← θ + ερ̃

4: Set ρ̃ ← ρ̃ +
(

ε

2

)
∇θ L(θ̃)

5: return θ̃ , ρ̃

6: end function

No-U-Turn Sampler

HMC’s increased efficiency in sampling comes at an increased cost. HMC

requires that the user specify the step size ε and the number of steps L

for which to run a simulated Hamiltonian system. The selection of these
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parameters is crucial in order to reap the benefits of the HMC but in reality,

they are difficult to calibrate. A poor choice of either of these parameters will

result in a dramatic drop in HMC’s efficiency. Proper calibration requires

many trial runs increasing the computational cost, as well as deep knowledge

and understanding of the algorithm in order to interpret the results of these

trial runs. If ε is too large, the simulation will be inaccurate, on the other

hand, if ε is too small, the computation will be wasted taking many small

steps. If L is too small, successive samples will be too close resulting in

random walk behaviour and slow mixing. If L is too large, then HMC will

generate trajectories that loop back and retrace the steps. The No-U turn

sampler (NUTS) was introduced, an MCMC sampler that retains HMC’s

ability to overcome random walk behaviour and eliminates the need to tune

these parameters making the HMC available for even the uninitiated users.

NUTS starts by introducing a slice variable u with conditional distribu-

tion p(u|θ ,ρ) = Uniform([0,expL(θm−1)− 1
2ρ ·ρ]), which renders the con-

ditional distribution of θ and ρ given u Uniform. After sampling u|θ ,ρ NUTS

uses the leapfrog integrator to simulate trajectories forward or backwards in

time, first 1 step forward or backwards, then 2 steps forwards or backwards,

then 4 steps etc. The resulting binary tree has leaf nodes corresponding to

momentum-position states. The process stops when the sub trajectory from

the leftmost to the rightmost nodes of any balanced subtree of the overall
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binary tree starts to backtrack on itself (i.e., makes a “U-turn”). Then a state

from the ones generated is randomly chosen by using a transition kernel that

leaves invariant the uniform distribution over the set of all the states we can

transition without violating the balance (i.e. their joint probability is above

the slice variable u). By running the Hamiltonian simulation both forward and

backward in time NUTS ensures the reversibility of the Markov chain and

guarantees convergence to the target distribution. The NUTS algorithm was

used in this thesis through its implementation in probabilistic programming

language Stan (Stan Development Team, 2023). The complete algorithm is

shown below:
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Algorithm 5 No-U-Turn Sampler (NUTS)
1: Input: θ0,ε,L,M

2: for m = 1 to M do

3: Resample ρ0 ∼ N(0, I)

4: Resample u∼ Uniform([0,expL(θm−1)− 1
2ρ0 ·ρ0])

5: Initialize θ− = θm−1,θ+ = θm−1,ρ− = ρ0,ρ+ = ρ0, j = 0,θm = θm−1,n = 1,s = 1

6: while s = 1 do

7: Choose a direction v j ∼ Uniform(−1,1)

8: if v j =−1 then

9: θ−,ρ−,−,−,θ0,n0,s0← BuildTree(θ−,ρ−,u,v j, j,ε)

10: else

11: −,−,θ+,ρ+,θ0,n0,s0← BuildTree(θ+,ρ+,u,v j, j,ε)

12: end if

13: if s0 = 1 then

14: With probability min1, n0
n , set θm← θ0

15: end if

16: n← n+n0

17: s← s0× I[(θ+−θ−) ·ρ− ≥ 0]× I[(θ+−θ−) ·ρ+ ≥ 0]

18: j← j+1

19: end while

20: end for
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Algorithm 6 BuildTree Function
1: function BuildTree(θ ,ρ,u,v, j,ε)

2: if j = 0 then

3: Base case - take one leapfrog step in the direction v

4: θ0,ρ0← Leapfrog(θ ,ρ,v,ε)

5: n0← I[u≤ expL(θ0)− 1
2ρ0 ·ρ0]

6: s0← I[L(θ0)− 1
2ρ0 ·ρ0 > logu−∆max]

7: return θ0,ρ0,θ0,ρ0,θ0,n0,s0

8: else

9: Recursion - implicitly build the left and right subtrees

10: θ−,ρ−,θ+,ρ+,θ0,n0,s0← BuildTree(θ ,ρ,u,v, j−1,ε)

11: if s0 = 1 then

12: if v =−1 then

13: θ−,ρ−,−,−,θ00,n00,s00← BuildTree(θ−,ρ−,u,v, j−1,ε)

14: else

15: −,−,θ+,ρ+,θ00,n00,s00← BuildTree(θ+,ρ+,u,v, j−1,ε)

16: end if

17: With probability n00
n0+n00

, set θ0← θ00

18: s0← s00× I[(θ+−θ−) ·ρ− ≥ 0]× I[(θ+−θ−) ·ρ+ ≥ 0]

19: n0← n0 +n00

20: end if

21: return θ−,ρ−,θ+,ρ+,θ0,n0,s0

22: end if

23: end function
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Adaptively Tuning the step size ε

Having shown how to automatically set the number of steps L in HMC using

the NUTS algorithm, we will now focus on the step size parameter e. This is

performed by using stochastic optimization using a statistic Ht that describes

the behaviour of an MCMC algorithm at iteration t. Usually, a function of the

acceptance probability of the MCMC is used as Ht but the NUTS algorithm

does not have an accept-reject step. For each iteration we define the statistic

HNUT S
t and its expectation when the chain has reached its equilibrium:

HNUT S
t ≡ 1

B f inal
t

∑
θ ,ρ∈B f inal

t

min
{

1,
p(θ ,ρ)

p(θ t−1,ρ t,0)

}
; hNUT S ≡ E[HNUT S

t ]

(1.6)

where B f inal
t is the set of all states explored in the final doubling of the binary

tree and θ t−1,ρ t,0 are the initial position and resampled momentum of the tth

iteration. HNUT S can be understood as the average acceptance probability that

HMC would give to the position-momentum states explored during the final

doubling iteration of the NUTS algorithm. We set Ht ≡ δ −HNUT S where δ

is a pre-specified desirable value we wish to achieve.

The STAN programming language that implements the NUTS uses the

dual averaging scheme of Nesterov (2007), an algorithm for non-smooth

and stochastic convex optimization to update the step size automatically.
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Assuming that we want to find a setting of a parameter x ∈ R such that

h(x)≡ Et [Ht |x] = 0, we can apply the updates:

xt+1← µ−
√

t
γ

1
t + t0

; x̄t+1← ηtxt+1 +(1−ηt)x̄t (1.7)

where µ is a freely chosen point that the iterates xt are shrunk towards,γ > 0

is a free parameter that controls the amount of shrinkage towards µ , t0 ≥ 0 is

a free parameter that stabilizes the initial iterations of the algorithm, ηt ≡ t−k

and we define x̄1 = x1 and x≡ logε . In STAN the user only defines the value

of the parameter δ and the step size is automatically adjusted.



Chapter 2

Evaluating the effects of second-dose

vaccine-delay policies

2.1 Introduction

Since December 2019, COVID-19 has presented a global threat to public

health and to the worldwide economy, and it will likely continue to disrupt

livelihoods until a high percentage of the population is vaccinated. High

vaccination rates will be necessary to reach herd immunity in a short period

of time. Standard theory (Andersson and Britton, 2000) suggests that a

proportion approximately equal to 1− 1
R0

of the population will have to

become immune (either through vaccination or previous infection) in order

to effectively suppress disease transmission, where R0 is the virus’ basic

reproduction number. The actual vaccination coverage required is likely

to vary due to population heterogeneity, previous levels of the spread of
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infection, and other local factors. In addition, the exact value of R0 for

SARS-CoV-2 under “normal” conditions remains quite uncertain since there

has been very little disease spread without some mitigation effort due to

non-pharmaceutical-interventions (NPIs), and also due to the appearance of

new variants. Therefore, constrained scenarios are likely to give a realistic

estimate of the effect of distinct vaccination policies and this approach is

adopted in the present paper.

Assuming a vaccination coverage between 60%-80% of the population,

3.1-4.1 billion people worldwide will need to be vaccinated (Wang et al.,

2020). With several seemingly highly efficacious vaccines available (efficacy

estimated at 94.1%, 95% and 62% for Moderna, Pfizer-BioNTech and Oxford-

AstraZeneca respectively) against COVID-19 disease (Baden et al., 2021;

FDA, 2020; Polack et al., 2020; Skowronski and De Serres, 2021; Voysey

et al., 2020) it appears that a return to near-normality for society and for the

economy may soon be possible. Unfortunately, limited supply is currently an

impediment to achieving high vaccination coverage rapidly (Bollyky, 2021).

In addition to social distancing (Lewnard and Lo, 2020) and mass testing

(Taipale et al., 2021), the fair allocation of scarce medical interventions such as

vaccines presents ethical challenges as there are different allocation principles

– treating people equally, favouring the worst-off, maximising total benefits,

and promoting and rewarding social usefulness – and no single principle can
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address all morally relevant considerations (Emanuel et al., 2020; Persad et al.,

2009). Modelling studies broadly agree that when vaccine supply is limited,

prioritising the elderly is a necessary strategy to reduce COVID-19 mortality,

whereas the prioritisation of younger individuals would have an impact on

reducing transmission (Bubar et al., 2021; Matrajt et al., 2021a). This agrees

with epidemic theory (Andersson and Britton, 2000) which suggests that

the focus for disease control should be based on a combination of targeting

susceptibility and infectivity. Therefore, assuming very scarce resources, it

makes sense to focus on the most vulnerable individuals in the population.

On the other extreme is the presence of a nearly unlimited vaccine supply,

whence aiming for achieving herd immunity is straightforward. In this work,

we focus on the intermediate problem that many European countries are

currently facing, and the prioritisation of vaccines is of the essence.

Due to supply constraints, it was decided in the UK and Canada to delay

the administration of the second dose of all vaccines, based on the rationale

that SARS-CoV-2 vaccination offers considerable protection after the first

dose and that more people could benefit (GOV.CA, 2021; GOV.UK, 2021).

Although this approach seems appealing, the impact of delaying the second

dose is not straightforward as it depends on several parameters such as the

efficacy of the first dose in time, the levels of transmission in the popula-

tion, vaccination rollout, and the vaccine profile (reduction in symptoms or
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in symptoms and infection) (Matrajt et al., 2021b; Paltiel et al., 2021a,b).

Country-specific information on the age distribution of the population and

social mixing patterns are also necessary to obtain realistic estimates.

The main contribution of this work is the evaluation of different vacci-

nation strategies and their potential benefits, primarily based on data from

Greece, a typical country of the EU area in terms of vaccine availability and

administration, with a population of around 10.8 million people (ELSTAT,

2021). The current strategy (strategy I) is to give the second vaccine dose

three weeks after the first for the Pfizer vaccine, which currently consists

of the largest portion of the available vaccines in the EU. We consider an

alternative policy (strategy II) where, after the vaccination of medical per-

sonnel and those over 75, a portion of the available vaccines is distributed

with a three-month time interval between the two doses. The prioritization

of the medical personnel and those over 75 years old is kept constant for

every strategy. Our methodology examines scenarios where the two different

vaccination schedules are combined in different proportions, allowing us

to explore the optimal portion of the population that should be vaccinated

using the extended three-month time interval between the two doses. This

is something that has not been extensively explored in the literature since

earlier studies primarily focus on finding the optimal timing of the second

dose, considering that the entire population will follow the same schedule
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(Ferreira et al., 2021; Moore et al., 2021; Silva et al., 2021). Extending the

time interval between doses to three months aims for faster partial coverage

of economically active individuals, therefore offering indirect protection to a

larger proportion of the population and ultimately potentially reducing the

pandemic cost to public health and society. This is implicitly informed by

aiming for a combined effect of reducing susceptibility and infectivity in

the population. Different scenarios of vaccine availability and transmission

rates are considered, as well as different scenarios for the acquired immunity

after the first dose for strategy II. We assess our results through simulation

of an age-structured stochastic SEIR (Susceptible→ Exposed→ Infectious

→ Removed) epidemic model, suitably modified to account for the number

of vaccinated individuals with different protocols. We opted for a stochastic

model because the most effective way to describe the spread of a disease is

stochastic, based on the specification of the probability of disease transmis-

sion between two individuals. One may incorporate additional sources of

stochasticity in the length of latent and infectious periods, but it is well known

that such uncertainty is immaterial in terms of its effect on the outcome of

an epidemic, particularly in a large population setting such as country-level

studies; see for example Diekmann et al. (2013). Since the writing of this

paper, related modelling techniques using deterministic dynamics have been

proposed, that use optimization techniques to infer the model parameters and
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find the optimal dosing schedule (Ferreira et al., 2021; Silva et al., 2021).

An extension of a discrete-time, deterministic susceptible-infected-recovered

model was used in Parino et al. (2021) to plan the scheduling of first and

second vaccine doses, with the underlying objective of the optimization prob-

lem being the concurrent minimization of both the healthcare impact of the

epidemic and of the socio-economic impact due to the implementation of

NPIs. A similarly extended SEIR model was also used to measure (through

simulation) whether the effect of a standard vaccination schedule for different

uptake scenarios is enough to stop the epidemic without the need of NPIs

(Moore et al., 2021).

2.2 Materials and methods

2.2.1 The multitype S(V)EIR model and simulation description

The model used for the simulation of different vaccination strategies is an age-

structured stochastic SEIR model that accounts for different vaccinated popu-

lations and vaccinated states, termed S(V)EIR henceforth. A schematic repre-

sentation of the model is given in Figure 2.1. In order to evaluate the effects of

different vaccination strategies, this model also accounts for the age composi-

tion of the population, the social mixing rates of different age groups, the inten-

tion to get vaccinated, as well as the different risk of death of each age group.
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The code for simulating the model is publicly available at: https://github.com/

pbarmpounakis/Evaluating-the-effects-of-vaccine-rollout-policies-in-European-countries-A-simulation-study

Figure 2.1 Schematic representation of the S(V)EIR epidemic model for the baseline scenario
of immunity waning.

A detailed description of the model follows, while a summary of the

quantitative assumptions made is given in Section 2.4.

States and vaccination effect assumptions

Two groups are considered for the vaccinated people representing the two

distinct vaccination categories. In vaccination group 1, individuals receive

the 2nd dose of the vaccine after 3 months while in vaccination group 2 it is

given after 3 weeks. In both vaccination groups, individuals who received

the 1st dose of the vaccine move to states V11 and V21 respectively and

https://github.com/pbarmpounakis/Evaluating-the-effects-of-vaccine-rollout-policies-in-European-countries-A-simulation-study
https://github.com/pbarmpounakis/Evaluating-the-effects-of-vaccine-rollout-policies-in-European-countries-A-simulation-study
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remain fully susceptible. Two weeks after the 1st dose individuals from both

vaccination groups move to the second stage (V12, V22 respectively), whence

immunity jumps to 68% (Voysey et al., 2020). Individuals from vaccination

group 2 remain at V22 for another 7 days when they take their 2nd dose and

move to state 3 (V23) with their immunity jumping at 95% after two weeks.

Individuals from vaccination group 1 take their second dose 78 days after

entering V12 and then move to state V15 with their immunity changing based

on different waning immunity scenarios described below. The stages V13,

V14 and V15 account for the drop of immunity due to waning vaccine efficacy

26, 52 and 78 days after the first dose, respectively. They move to V16 14

days later when their immunity jumps to 95%, pertaining to the reported

efficacy of the mRNA-based vaccines which are mostly used in European

countries (Baden et al., 2021; FDA, 2020; Polack et al., 2020; Skowronski

and De Serres, 2021; Voysey et al., 2020).

Transmission model assumptions

New infections from each state s and age group i follow a Binomial distribu-

tion with size given by the number of people in state s and age group i, and in-

fection probability (1− immunitys)∗ (1− e
−∑

n_groups
j=1 λi j∗

I j
N j ), where immunitys

is the level of immunity at stage s, I j is the number of infectious individuals at

age group j, N j is the total number of individuals at age group j, λi j is the i, j

entry in the transmission matrix λ , and ngroups is the total number of different
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age groups(Andersson and Britton, 2000). Following infection, individuals of

age group i follow the Exposed (Ei)→ In f ectious(Ii)→ Removed(Ri) path

with a constant exposure time of 2 days, based on an average incubation

time of approximately 5 days (Lauer et al., 2020; Li et al., 2020b; Liu et al.,

2020) and assuming that infectiousness starts approximately 2 days prior to

the occurrence of symptoms (Ganyani et al., 2020; He et al., 2020; Li et al.,

2020a). The infectious period is also assumed constant and set at 6 days

for non-vaccinated individuals (Bi et al., 2020; Cereda et al., 2021; Lavezzo

et al., 2020) and 2 or 3 days for vaccinated ones, depending upon the scenario

of immunity waning and vaccine efficacy in reducing the infectious period

(de Gier et al., 2021; Singanayagam et al., 2022). The choices of these values

are conservative assuming that in reality people experiencing influenza-like

symptoms will get tested and self-isolate, resulting in a lower effective in-

fectious period. The total number of deaths is computed by multiplying the

number in Ri with the infection fatality ratio (IFR) of each age group for the

unvaccinated individuals as it was reported by CDC (2020) and with IFR x

5% for those vaccinated (Haas et al., 2021).

Different scenarios for Rt and immunity

Transmission levels corresponding to a constant effective reproduction num-

ber Rt = 1.2 and Rt = 1.4 are considered along with various levels of immu-

nity at each stage of vaccination for group 1. These choices of Rt suggest
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moderate transmission levels without the presence of a ‘hard lockdown’ for

extended periods of time, closely resembling the policy that most European

counties implement regarding social distancing measures during the vaccina-

tion period. Rt is calculated as the largest eigenvalue of the next-generation

matrix, using an appropriate contact matrix. The next generation matrix G

has elements gi j = λi jE(I) = ξ ci jE(I), where E(I) is the average period an

individual remains infectious for, ξ is the chance of getting infected upon

contact and ci j is the i, j element of contact matrix C. Rt is set to a specific

value by changing ξ . The contact matrices used for the calculations of the

values of Rt were based on a social contacts survey assessing contacts in

Greece; we have used the data collected in the second half of September 2020.

This contact matrix informs the relative infectivity between age groups but,

importantly, the scale is set by the value of Rt . We consider reduced infection

probability for children by 48% (Haas et al., 2021).

We ran 1000 simulations for each scenario and computed the median

as well as 90% equal-tailed uncertainty intervals. As precise data are not

available for the precise course of infectivity and acquired immunity, three

scenarios are considered.

Worst Case Scenario: It is assumed that, during the three months between the

first and second dose (strategy II), the acquired immunity drops linearly
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to 34% (Figure 2.5). The effective infectious period of those vaccinated

is reduced by 50% to 3 days.

Baseline Scenario: Here it is assumed that during the three months between

the two doses (strategy II) the acquired immunity drops linearly to 50%

and the infectious period of those vaccinated is set at 2 days (Fig 1).

Optimistic Scenario: In this case, a constant immunity of 68% is assumed

for the entire time between the first and second dose, and the infectious

period lasts 2 days (Figure 2.4)).

Fraction of vaccines given to general population

Different percentages are considered for the proportion of the available vac-

cines distributed under strategy II. These are set to 0% (strategy I), 20%, 50%

and 100% (strategy II); the resulting number of deaths and life years lost are

computed in each of these cases. Moreover, in the model we assume that

individuals due for the second dose have priority over those waiting to have

their first dose, keeping the time interval between the two doses intact. The

remaining doses available each day are given to unvaccinated individuals.

Initial conditions

We assume that the number of susceptibles at the start of the simulations is

Sinitial = [N−Rinitial−Iinitial], where Rinitial is the estimated number of people
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having gotten infected and recovered or died ∼620000 and N = 10816287,

the total population of Greece. The active infectious population Iinitial is

assumed ∼60000. These assumptions are informed by using the total number

of deaths in Greece for each age group and the corresponding infection fatality

ratio (IFR) in November of 2020, around 6 months after the first confirmed

Covid-19 related death. These conditions are the same for all the scenarios

for Rt and immunity.

Vaccine availability

Two levels of vaccine availability are considered; a baseline level and a limited

level with a reduced number of vaccines, see Table 2.6.

Intention to get vaccinated

The populations’ intention to get vaccinated is informed by a telephone sur-

vey contacted by Sypsa et al. (2021a); see Table 2.7. We assume that after

the vaccination coverage of an age group reaches the percentage of people

answering ‘Probably/Definitely Yes’ to whether they intend to get vaccinated,

the vaccination rollout continues to the next (younger) age group. The per-

centage of people answering ‘Probably/Definitely No’ remains unvaccinated.

The individuals answering ‘Don’t know/Don’t answer’ are distributed among

the two other groups according to their respective adjusted percentages.
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2.3 Results

Our main finding is that the optimal strategy in terms of the reduction in

cumulative number of deaths (Figure 2.2) and number of years lost, is the

one where all available vaccine doses are given under strategy II, using a time

interval of three months between the two doses (Table 2.1).

The results vary between different immunity waning scenarios and dif-

ferent values of Rt , but they are robust in that the optimal strategy is always

found to be the one that allocates 100% of the available doses under strategy

II. The intermediate allocations of 20% or 50% of the available doses for

strategy II show similar mortality for the whole population with Strategy I.

But because fewer younger people get infected and die, there is a reduction

in total life years lost (see Section 2.4). The total number of years of life lost

is computed by summing over the different age-groups the corresponding dµ

product, where d denotes the number of deaths in each age-group and µ is

the difference between the total life expectancy in Greece (82 years) and the

average age of each age group.

Next, we examine the resulting figures for cumulative number of deaths,

daily deaths, life years lost, and daily infections, under the baseline immunity

waning scenario, with Rt = 1.2, and with standard vaccine availability (Fig-

ures 2.2,2.3, 2.6, 2.7); detailed summaries of simulation results are presented

in Section 2.4; several additional results based on both the optimistic and
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worst-case scenarios are summarised in a web supplement at:

https://github.com/pbarmpounakis/Evaluating-the-effects-of-vaccine-rollout-policies-in-European-countries-A-simulation-study

Table 2.1 Comparison of strategy I and strategy II (at 100% doses given) for 2021 with
Rt = 1.2, under the baseline immunity scenario and standard vaccine availability. “Gain”
refers to the number of fewer deaths and life years lost under strategy II (extended interval
between doses).)

Strategy II vs. strategy I
Total (%) reduction under strategy II during January-December 2021

Gain in number of deaths 579 (9.04%)
Gain in years of life 14802 (10.65%)

Figure 2.2 Cumulative number of deaths over time when different percentages of doses are
allocated under strategy II, with R0 = 1.2, immunity drop between the two vaccine doses is
at the Baseline scenario, and with standard vaccine availability.

https://github.com/pbarmpounakis/Evaluating-the-effects-of-vaccine-rollout-policies-in-European-countries-A-simulation-study


2.3 Results 35

Figure 2.3 Number of new daily deaths, when different percentages of doses are allocated
under strategy II, Rt = 1.2, immunity drop is at the baseline scenario, and with standard
vaccine availability.
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2.4 Model assumptions and extra reults

Figure 2.4 Schematic representation of the S(V)EIR epidemic model for the optimistic
scenario of immunity waning.

Table 2.2 Age specific infection-fatality-ratios

Age specific infection fatality ratios (IFR)

0-17: 0.00003

18-39: 0.00020

40-64: 0.00500

65+: 0.05400

Data from CDC (2020).

Age specific infection fatality ratios (IFR) for vaccinated people

0-17: 01.5e-06

18-39: 1.0e-05

40-64: 2.5e-04

65+: 2.7e-03

We consider vaccinated people
are 95% less probable of dying
(Haas et al., 2021).



2.4 Model assumptions and extra reults 37

Table 2.3 Assumptions for the S(V)EIR model

Parameters Value Comments-References

Rt

1.2

1.4

Set to assess different levels of transmission.

Rt is calculated as the largest eigenvalue

of the next generation matrix, using

an appropriate contact matrix (see below).

We consider reduced infection probability
for children by 48% (Koh et al., 2020).

Total population 10816287
Data from the Greek Statistics Authority
(ELSTAT, 2021) .

Population by age goup

0-17: 1908003 (17.6%)

18-39: 3200713 (29.5%)

40-64: 3539972 (32.7%)

65+: 2167599 (20%)

Data from ELSTAT (2021).

Sinitial = [N−Rinitial − Iinitial ]

Rinitial ∼ 620000

Iinitial ∼ 60000.

Medical personnel population Around 250000
Rough estimate form data from
ELSTAT (2021)

Exposed period 2 days for non-vaccinated and vaccinated people

Based on an average incubation time of
approximately 5 days

(Lauer et al., 2020; Li et al., 2020b)
(Liu et al., 2020)
and assuming that infectiousness

starts approximately 2 days

prior to the occurrence of symptoms .

(Ganyani et al., 2020; He et al., 2020)
(Li et al., 2020a).

Duration of infectious period for non-vaccinated people 6 days

Serial interval of approximately 6 days

(Bi et al., 2020; Cereda et al., 2021)
(Lavezzo et al., 2020).

Duration of infectious period for vaccinated persons
3 days (worst case scenario)

2 days (baseline scenario and optimistic scenario)

Assuming, that vaccinations
decrease the infectious period
to one third (baseline scenario
and optimistic scenario regarding
vaccine efficiency) and to one half
(worst case scenario).

(de Gier et al., 2021)
(Singanayagam et al., 2022)

Table 2.4 Matrix of contacts between age groups

0-17 18-39 40-64 65+
0-17 16.76 4.34 3.59 0.46
18-39 2.55 6.71 3.47 0.86
40-64 1.88 3.10 5.42 0.98
65+ 0.41 1.32 1.67 1.41
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Figure 2.5 Schematic representation of the S(V)EIR epidemic model for the pessimistic
scenario of immunity waning.

Table 2.5 Vaccine efficacy assumptions

Parameters related to vaccine efficacy and roll-out

Vaccine efficacy following the 1st dose and before the 2nd dose 68%

52.4% -92.6% (FDA, 2020; Polack et al., 2020; Voysey et al., 2020)
(Baden et al., 2021; Skowronski and De Serres, 2021).

[Assuming also reduction in the probability of acquiring infection].

This efficacy is reached 14 days post-vaccination.

Vaccine efficacy after the 2nd dose 95%

Vaccine efficacy in symptomatic infection

(FDA, 2020; Polack et al., 2020; Voysey et al., 2020)
(Baden et al., 2021; Skowronski and De Serres, 2021).

Assuming also reduction in the probability of acquiring infection.

This efficacy is reached 14 days post-vaccination.

Table 2.6 Available vaccine doses over time

Period Doses under normal vaccine availability Doses under reduced vaccine availability
12/2020 81000 81000
01/2021 350000 35000
02/2021 900000 90000
03/2021 2500000 100000
Q2 2021 5800000 5800000
Q3 2021 6300000 6300000
Q4 2021 3700000 3700000
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Table 2.7 Intention to get vaccinated table. Assessed in a sample of 1,097 adults (Sypsa et al.,
2021a)

Age group Total Probably/Definitely Yes Probably/Definitely No Don’t know/ Don’t answer
18-39 329 193 (58.7 %) 88 (26.8 %) 48 (14.6 %)
40-64 418 288 (68.9 %) 75 (17.9 %) 55 (13.2 %)
65+ 350 277 (79.1 %) 36 (10.3 %) 37 (10.6 %)

Table 2.8 Cumulative number of deaths, when 0% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.2.

Cumulative number of deaths
Age group End of March End of June End of August End of October End of December

0-17 6 (6-6) 14 (14-14) 15 (15-15) 16 (16-16) 17 (17-17)
18-39 75 (74-75) 143 (143-144) 146 (145-146) 146 (146-146) 146 (146-146)
40-64 1854 (1846-1863) 3649 (3646-3652) 3747 (3745-3749) 3748 (3746-3750) 3749 (3747-3751)

65+ 1897 (1886-1906) 2384 (2373-2393) 2425 (2416-2436) 2461 (2451-2471) 2495 (2485-2505)
Total Deaths 3832 (3812-3850) 6190 (6176-6203) 6333 (6321-6346) 6371 (6359-6383) 6407 (6395-6419)

Total Years Lost 73352.5 (72982-73685.5) 134837.5 (134670.5-135044) 138298.5 (138122-138435.5) 138654 (138524-138784) 138995.5 (138865.5-139125.5)

Table 2.9 Cumulative number of deaths, when 20% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.2.

Cumulative number of deaths
Age group End of March End of June End of August End of October End of December

0-17 6 (6-6) 14 (14-14) 15 (15-15) 16 (16-16) 17 (17-17)
18-39 75 (74-75) 139 (139-139) 141 (141-141) 141 (141-141) 141 (141-141)
40-64 1852 (1844-1859) 3550 (3547-3552) 3632 (3630-3634) 3634 (3631-3635) 3635 (3632-3636)

65+ 1910 (1900-1919) 2498 (2488-2506) 2542 (2533-2551) 2580 (2571-2589) 2617 (2609-2626)
Total Deaths 3843 (3824-3859) 6201 (6188-6211) 6330 (6319-6341) 6371 (6359-6381) 6410 (6399-6420)

Total Years Lost 73383.5 (73020-73656.5) 132451.5 (132291.5-132567.5) 135400 (135277-135523) 135799.5 (135646.5-135892.5) 136162 (136016-136255)

Table 2.10 Cumulative number of deaths, when 50% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.2.

Cumulative number of deaths
Age group End of March End of June End of August End of October End of December

0-17 6 (6-6) 13 (13-13) 15 (15-15) 16 (16-16) 17 (17-17)
18-39 74 (74-75) 131 (131-132) 132 (132-132) 132 (132-132) 132 (132-132)
40-64 1847 (1838-1853) 3366 (3363-3369) 3419 (3417-3422) 3422 (3419-3424) 3423 (3420-3425)

65+ 1928 (1919-1941) 2723 (2713-2735) 2772 (2762-2784) 2816 (2806-2827) 2858 (2848-2869)
Total Deaths 3855 (3837-3875) 6233 (6220-6249) 6338 (6326-6353) 6386 (6373-6399) 6430 (6417-6443)

Total Years Lost 73306 (72973-73630.5) 128005 (127845-128232.5) 130138.5 (130008.5-130312.5) 130610 (130450-130747) 131007.5 (130847.5-131144.5)

Table 2.11 Cumulative number of deaths, when 100% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.2.

Cumulative number of deaths
Age group End of March End of June End of August End of October End of December

0-17 6 (6-6) 13 (13-13) 15 (15-15) 16 (16-16) 17 (17-17)
18-39 75 (74-75) 129 (129-130) 130 (130-130) 130 (130-130) 130 (130-130)
40-64 1854 (1846-1862) 3304 (3300-3309) 3311 (3307-3316) 3313 (3310-3319) 3314 (3311-3319)

65+ 1881 (1870-1889) 2278 (2268-2286) 2312 (2302-2320) 2340 (2330-2348) 2367 (2357-2375)
Total Deaths 3816 (3796-3832) 5724 (5710-5738) 5768 (5754-5781) 5799 (5786-5813) 5828 (5815-5841)

Total Years Lost 73240.5 (72870-73536.5) 122923 (122733-123182.5) 123571.5 (123381.5-123777.5) 123901 (123741-124137) 124193.5 (124033.5-124399.5)
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Table 2.12 Cumulative number of infections, when 0% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.2.

Cumulative number of infections
Age group End of March End of June End of August End of October End of December

0-17 205692 (201056-210308) 407403 (395412-419507) 449126 (434390-464064) 483022 (465868-500426) 514726 (495223-534530)
18-39 355723 (349647-361850) 657034 (642333-671954) 675324 (658976-691931) 678502 (661464-695861) 681604 (663874-699700)
40-64 354386 (348331-360467) 668880 (654066-683859) 695936 (679082-713033) 699982 (682338-717904) 703266 (684908-721941)

65+ 42180 (40320-44094) 57708 (54237-61357) 59220 (55278-63394) 60525 (56142-65195) 61809 (56997-66971)

Table 2.13 Cumulative number of infections, when 20% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.2.

Cumulative number of infections
Age group End of March End of June End of August End of October End of December

0-17 205563 (201024-210191) 403485 (391605-415485) 445046 (430414-459859) 479322 (462237-496643) 511262 (491857-531012)
18-39 355280 (349268-361332) 643554 (628986-658220) 662802 (646528-679252) 668244 (651052-685670) 671562 (653659-689750)
40-64 353940 (347968-360029) 655699 (641042-670620) 682914 (666185-699958) 689238 (671522-707328) 693104 (674617-712012)

65+ 42170 (40289-44097) 58765 (55217-62461) 60310 (56284-64541) 61671 (57194-66410) 63013 (58098-68248)

Table 2.14 Cumulative number of infections, when 50% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.2.

Cumulative number of infections
Age group End of March End of June End of August End of October End of December

0-17 205382 (200846-210114) 396362 (384695-408329) 437560 (423185-452361) 472510 (455670-489830) 504882 (485694-524631)
18-39 354592 (348511-360648) 618118 (603982-632366) 638982 (623014-655121) 646856 (629797-664156) 650152 (632378-668213)
40-64 353262 (347216-359440) 630735 (616477-645284) 658194 (641843-674894) 667522 (649974-685486) 671722 (653378-690546)

65+ 42128 (40257-44041) 60744 (57067-64557) 62360 (58188-66723) 63826 (59184-68701) 65248 (60157-70642)

Table 2.15 Cumulative number of infections, when 100% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.2.

Cumulative number of infections
Age group End of March End of June End of August End of October End of December

0-17 205698 (201113-210283) 394808 (383203-406569) 434849 (420571-449360) 470048 (453294-487112) 502502 (483371-521985)
18-39 355640 (349658-361635) 611915 (598340-625688) 638422 (622750-654357) 645310 (628653-662313) 648467 (631115-666220)
40-64 354362 (348317-360332) 623402 (609535-637325) 651674 (635668-667804) 661004 (643853-678331) 664376 (646514-682482)

65+ 42111 (40235-44022) 59390 (55683-63234) 61865 (57562-66355) 63053 (58343-68022) 64212 (59091-69658)

Table 2.16 Cumulative number of deaths, when 0% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.4.

Cumulative number of deaths
Age group End of March End of June End of August End of October End of December

0-17 12 (12-12) 18 (18-18) 19 (19-19) 20 (20-20) 21 (21-21)
18-39 131 (131-131) 182 (183-182) 182 (183-182) 182 (183-182) 182 (183-182)
40-64 3336 (3336-3337) 4755 (4763-4746) 4778 (4787-4769) 4779 (4788-4770) 4780 (4789-4771)

65+ 3925 (3915-3935) 4383 (4377-4390) 4389 (4383-4395) 4395 (4389-4401) 4401 (4395-4406)
Total Deaths 7404 (7394-7415) 9338 (9341-9336) 9368 (9372-9365) 9376 (9380-9373) 9384 (9388-9380)

Total Years Lost 135445.5 (135375.5-135545.5) 184391 (184642.5-184170) 185196.5 (185478-184968.5) 185342 (185623.5-185114) 185487.5 (185769-185252.5)
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Table 2.17 Cumulative number of deaths, when 20% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.4.

Cumulative number of deaths
Age group End of March End of June End of August End of October End of December

0-17 12 (12-12) 18 (18-18) 19 (19-19) 20 (20-20) 20 (21-20)
18-39 131 (131-131) 178 (179-178) 179 (179-178) 179 (179-178) 179 (179-178)
40-64 3331 (3331-3331) 4665 (4674-4655) 4681 (4690-4671) 4682 (4691-4672) 4683 (4692-4673)

65+ 3949 (3937-3962) 4533 (4525-4540) 4541 (4535-4549) 4550 (4543-4556) 4558 (4552-4564)
Total Deaths 7423 (7411-7436) 9394 (9396-9391) 9420 (9423-9417) 9431 (9433-9426) 9440 (9444-9435)

Total Years Lost 135463.5 (135379.5-135554.5) 182527 (182794.5-182276) 183190 (183418-182892.5) 183356.5 (183577.5-183045) 183442.5 (183744-183131)

Table 2.18 Cumulative number of deaths, when 50% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.4.

Cumulative number of deaths
Age group End of March End of June End of August End of October End of December

0-17 12 (12-12) 18 (18-18) 19 (19-19) 20 (20-20) 20 (20-20)
18-39 130 (130-130) 172 (172-171) 172 (172-172) 172 (172-172) 172 (172-172)
40-64 3322 (3323-3325) 4502 (4512-4495) 4508 (4518-4501) 4510 (4520-4502) 4511 (4520-4503)

65+ 3984 (3970-3994) 4806 (4797-4813) 4821 (4811-4827) 4834 (4825-4840) 4848 (4840-4853)
Total Deaths 7448 (7435-7461) 9498 (9499-9497) 9520 (9520-9519) 9536 (9537-9534) 9551 (9552-9548)

Total Years Lost 135385 (135317-135545) 179227 (179464-179012.5) 179585.5 (179815.5-179417.5) 179810 (180047-179612) 179938 (180152-179733)

Table 2.19 Cumulative number of deaths, when 100% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.4.

Cumulative number of deaths
Age group End of March End of June End of August End of October End of December

0-17 12 (12-12) 18 (18-18) 19 (19-19) 20 (20-20) 20 (20-20)
18-39 131 (131-131) 174 (174-173) 174 (174-173) 174 (174-173) 174 (174-173)
40-64 3336 (3336-3336) 4518 (4528-4509) 4524 (4534-4515) 4525 (4535-4517) 4526 (4536-4517)

65+ 3895 (3886-3905) 4272 (4266-4279) 4278 (4272-4285) 4280 (4274-4287) 4282 (4276-4289)
Total Deaths 7374 (7365-7384) 8982 (8986-8979) 8995 (8999-8992) 8999 (9003-8997) 9002 (9006-8999)

Total Years Lost 135235.5 (135172.5-135305.5) 176076 (176334-175801.5) 176371.5 (176629.5-176097) 176489 (176747-176244.5) 176533 (176791-176258.5)

Table 2.20 Cumulative number of infections, when 0% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.4.

Cumulative number of infections
Age group End of March End of June End of August End of October End of December

0-17 345538 (339485-351500) 486384 (474256-498460) 515664 (501285-530060) 541945 (525450-558486) 566778 (548240-585388)
18-39 545224 (537607-552807) 742948 (728423-757418) 748351 (732956-763753) 750946 (734926-767032) 753508 (736869-770276)
40-64 561893 (554253-569683) 780841 (765997-796008) 791470 (775350-807974) 794336 (777550-811551) 797174 (779727-815089)

65+ 79840 (77276-82458) 93771 (89792-97888) 94662 (90329-99199) 95516 (90822-100454) 96370 (91315-101703)

Table 2.21 Cumulative number of infections, when 20% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.4.

Cumulative number of infections
Age group End of March End of June End of August End of October End of December

0-17 345436 (339414-351463) 483856 (471866-495903) 513237 (498968-527611) 539750 (523376-556309) 564698 (546294-583358)
18-39 544712 (537032-552297) 732614 (718311-746885) 740627 (725203-756066) 744388 (728208-760631) 746981 (730180-763904)
40-64 561348 (553654-569210) 770428 (755638-785499) 782618 (766466-799109) 787262 (770268-804652) 790152 (772497-808256)

65+ 79833 (77256-82447) 94773 (90708-98951) 95714 (91280-100312) 96624 (91828-101621) 97528 (92371-102919)
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Table 2.22 Cumulative number of infections, when 50% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.4.

Cumulative number of infections
Age group End of March End of June End of August End of October End of December

0-17 345146 (339213-351116) 479122 (467421-490989) 508804 (494847-522989) 535650 (519561-552022) 560812 (542663-579303)
18-39 543699 (536184-551261) 713605 (699927-727448) 726805 (711674-742144) 731324 (715384-747529) 733946 (717374-750836)
40-64 560468 (552777-568128) 751466 (737117-765883) 766841 (750920-782865) 773003 (756131-790043) 775891 (758361-793658)

65+ 79766 (77186-82341) 96574 (92398-100835) 97625 (93050-102326) 98616 (93665-103757) 99592 (94274-105169)

Table 2.23 Cumulative number of infections, when 100% of vaccines allocated to ages 18–74,
baseline scenario—vaccine availability—Rt = 1.4.

Cumulative number of infections
Age group End of March End of June End of August End of October End of December

0-17 345613 (339630-351653) 480140 (468358-492100) 510030 (495966-524334) 536800 (520574-553305) 561906 (543620-580525)
18-39 545279 (537571-552874) 718430 (704623-732223) 739286 (723640-754978) 742840 (726473-759305) 745458 (728456-762604)
40-64 561980 (554198-569644) 752790 (738433-767005) 776176 (759876-792396) 781252 (764110-798373) 784117 (766319-801958)

65+ 79743 (77156-82354) 94982 (90747-99326) 96988 (92242-101914) 97767 (92674-103073) 98526 (93102-104218)
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2.5 Discussion

After the vaccination of medical personnel, high-risk individuals, and people

aged over 75 years old with a time interval of 3–4 weeks between doses,

the strategy of vaccinating the rest of the population with an interval of

three months between the two doses (strategy II) can result in a significantly

reduced number of deaths and years of life lost. When only 20% or 50%

of the available vaccines are distributed using strategy II, the results are

not significantly different to strategy I in terms of deaths, although they do

provide an improvement in the number of life years saved. In conclusion,

rolling out 100% of the available vaccines using the delayed second dose

strategy appears to be the most effective option.

In the absence of detailed social contact data between different groups,

we accounted for age groups as a surrogate for population composition, and

we used the contact rate data between different age-groups from the recent

survey (Sypsa et al., 2021b). Therefore, the results reported here offer a

conservative assessment since no attempt is made to prioritize individuals

with many contacts such as mass transit employees, those working in the

hospitality industry, super-markets and so on. Consequently, in practice,

the benefits are expected to be even greater if a more targeted approach is

adopted.
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Figure 2.6 Total number of years of life lost when different percentages of doses are allocated
under strategy II, Rt = 1.2, immunity drop is at the baseline scenario, and with standard
vaccine availability.

We used a multitype, age-structured, stochastic epidemic model with con-

stant transmission rate and constant exposed and infectious periods. Although

this approach of course has some limitations, they are not expected to materi-

ally affect the results. First, in our model, we assumed that vaccine efficacy

was mediated by a reduction in infections and not just in clinical disease.

Recent modelling studies suggest that, if vaccines reduce symptomatic infec-

tion only, then the optimal protection for minimising deaths is obtained by

prioritising older individuals (Matrajt et al., 2021b). This assumption is real-

istic especially in view of recent data suggesting that COVID-19 vaccines are

indeed effective in the prevention of infection at least before the occurrence

of the Delta strain (Amit et al., 2021; Thompson et al., 2021). Second, we
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Figure 2.7 New daily infections when different percentages of doses are allocated under
strategy II, Rt = 1.2, immunity drop is at the baseline scenario, and with standard vaccine
availability.
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assessed two scenarios for viral transmission rates (Rt = 1.2 and Rt = 1.4).

For higher transmission levels, a recent study similarly found that vaccinat-

ing high-risk groups first constituted the optimal use of available vaccines

(Matrajt et al., 2021b). On the other hand, moderate transmission levels are

a more realistic scenario as most counties continue to implement moderate

social distancing measures during vaccination. Alternative scenarios may be

considered for the transmission rate, but the overall outcomes are not expected

to be substantially influenced as the current assumptions regarding Rt may

be thought of as an “average” version of a time-varying rate. In addition, it

is known (Andersson and Britton, 2000) that the final size of a stochastic

epidemic is invariant to the presence of an exposed period and to different

distributional assumptions on the infectious period duration. Hence, these

assumptions will not alter the conclusions of this work. Other recent relevant

results supporting our assumptions include Tuite et al. (2021); Vasileiou et al.

(2021).

The main conclusions of the present study and all relevant assumptions

made about vaccine efficacy are in broad agreement with the results obtained

using optimization techniques for a model calibrated using data from Italy

(Parino et al., 2021), despite the fact that the authors only allowed for the

vaccine to protect against transmission and not disease. Recent results from

Israel suggest that there is also protection against hospitalization and death
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(Amit et al., 2021) and therefore these results may be conservative. Similar

conclusions are reported when varying vaccine availability and using alter-

native efficacy assumptions (Ferreira et al., 2021). Assuming that efficacy

remains constant after the first dose, Moghadas et al. (2021) used simulation

and showed that the effectiveness of vaccination programmes in reducing

infections, hospitalizations and deaths is maximized with a delay of 12 to 15

weeks for both the Pfizer and Moderna vaccines. Similar recommendations

on delaying the second dose for individuals below the age of 65 are made in

Romero-Brufau et al. (2021).

Although we have chosen to primarily emphasize the results of the pro-

posed approach in terms of quantities of interest in public health, additional

gains are to be expected in terms of social and economic aspects of public

life by offering faster vaccine coverage to the economically active population.

An empirical application of the proposed approach is effectively followed in

the United Kingdom and Canada, and the outcome seems to be a significantly

faster reduction in SARS-CoV-2 circulation.

Overall, our results clearly indicate that, in the presence of a limited

vaccine supply, distributing all available doses with a 3-month intermediate

time interval could offer important advantages in terms of public health as

well as to the wider society and the economy.





Chapter 3

A stochastic epidemic model for

multiphasic infectious diseases

3.1 Introduction

The emergence on early 2020 of Covid-19, an infectious disease caused

by the virus SARS-CoV2, has placed health systems around the globe un-

der immense pressure. On March 2020, the World Health Organization

declared Covid-19 as a global pandemic, and as of the end of September

2022 more than 6.5 million have died due to illness or complications of it.

At the beginning of the pandemic in the absence of available vaccines or

suitable medication the majority of governments around the globe resorted to

Non-Pharmaceutical-Interventions (NPIs) in an attempt to stop the exponen-

tial spreading of the virus and reduce transmissibility. Such NPIs involved
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measures like work-from-home policies, school and university closures, stay-

at-home guidance for people in high-risk groups and full lockdowns.

These measures had an effect on reducing the transmissibility and resulted

in spreading trajectories that could not be properly described by the standard

epidemic models due to the resulting multiphasic nature of transmission. The

first systematic technique to assess these interventions was due to Flaxman

et al. (2020) who proposed a renewal equation model whose infection dy-

namics were modelled through a multilevel framework incorporating NPIs.

We amend this model by inferring the points in time that the transmissibility

changes as well as the magnitude of infectiousness in a data-driven man-

ner. We determine the model complexity by using appropriate stochastic

processes based upon variations of the Poisson process (PP) and Dirichlet

process (DP)-based priors via their stick-breaking constructions (Miller and

Harrison (2018); Sethuraman (1994)).

Several models have been proposed in the literature for the estimation of

multiphasic infectious diseases, particularly Covid-19. Briefly, a stochastic

Susceptible-Exposed-Infectious-Removed (SEIR) model with a regression

framework for the effect of the NPIs on transmissibility is used in Knock et al.

(2021) while Birrell et al. (2021), Li et al. (2021) and Chatzilena et al. (2022)

use stochastic SEIR models where the transmission mechanism is described

by a system of non-linear ordinary differential equations and the transmission
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rate is modelled by a diffusion process. Modelling the transmission rate as

a random walk facilitates gradual and smooth changes in time. A piecewise

linear quantile trend model was proposed by Jiang et al. (2021), a kernel-

based SIR model distinguishing the different phases of the transmissibility

in space was developed by Geng et al. (2021) while Wistuba et al. (2022)

incorporated splines to estimate the reproduction number in Germany.

Simpler forms of deterministic and stochastic multiphasic epidemic mod-

els have been considered before. In the context of modelling SARS-CoV2

transmission Flaxman et al. (2020) used an approach with fixed number,

location and scale of the Rt change. Related work based upon variations of

Dirichlet process mixtures is presented in Hu and Geng (2021) and Creswell

et al. (2023). In the former, the authors used a Mixture of finite mixtures

(MFM) model on a Susceptible-Infected-Recovered-Susceptible model, while

in the latter the authors used a suitably modified Pitman-Yor process but only

for the scenario of fitting to the observed cases, thus dispensing with the effort

to estimate the complete epidemic burden and the suitable adjustment for

the reproduction number. The main advantage of the proposed methodology

is the intuitive characterization of the epidemic in terms of multiple phases

of transmissibility. The number and magnitude of the distinct phases are

determined purely by data without explicitly using information about policy

changes and NPIs. This approach should be central to a retrospective assess-
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ment of the NPIs: an evidence-based method for estimating the timing and

effect of those interventions, minimising the risk of introducing several types

of bias.

This chapter is organized as follows. In section 3.2 we define the proposed

compartmental process, elucidate its equivalence with renewal process-based

models and describe the observation regimes of the data. In section 3.3 we

complete the model definition by complexity regime. Section 3.4 assesses the

proposed models via simulation experiments while section 3.5 contains the

application to data from California and New York state, the United Kingdom

and Greece. In section 3.7 we present the generalized versions of our proposed

models. Information about computation, and software and the convergence

of the MCMC can be found in sections 3.8 and 3.9, respectively. The chapter

concludes with a discussion.

3.2 Modelling Disease Transmission

3.2.1 Model Definition and Related Characterisations

The methodology for modelling the time-varying disease transmissibility has

been implemented under two distinct but equivalent models, the compartmen-

tal Susceptible-Infectious-Removed (SIR) model and the seemingly simpler

time-since-infection model with population susceptibility reduction. Here we

define both models and delineate their equivalence.
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In both models we assume that the population has size that equals n and is

closed, no births or deaths unrelated to the disease occur during the time frame

we observe the epidemic. Also, it is homogeneous in terms of susceptibility,

meaning that each individual has the same chance of getting infected and

we assume that the population mixes homogeneously, as most of the works

on modelling SARS-COV2 transmission. This may be appropriate for large

populations such as working at the state or country level since functional

central limit theorems can reasonably be applied, e.g. (e.g., Andersson and

Britton, 2000) and no data on the household level are typically available.

Further extensions of this work can be applied in multitype epidemic models,

where the population mixing is separated into different age classes or the

transmissibility can be modelled globally and between each household. In the

case of Covid19, there is a lack of available data for household transmission

and the imposition of NPIs changed the contact patterns of the population.

In the stochastic SIR model, an infected individual makes contact with

any other individual on day t at the points of a time-homogeneous Poisson

process with time-varying intensity λt
n . This scaling is commonly adopted

as it makes the contact rate of meeting any individual independent of the

size of the population, as this is a superposition of n independent Poisson

processes resulting in rate λt∗n
n =λt (e.g., Andersson and Britton, 2000). If

these (close) contacts of an infected individual occur with a susceptible they
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result in an infection. Each individual remains infectious for a random time

period Y , which implies that the infectivity of an infected person develops

in time without individual variation. An infected individual makes contact

with all the susceptibles at day t with rate St ∗ λt
n , where St is the number of

susceptible individuals on day t. This is the rate of the superposition of all

the Poisson processes at time points at which an infectious individual makes

contact with a susceptible. All Poisson processes in this construction are

assumed to be independent. The time-dependent disease reproduction number

is defined as Rt = λt ∗E[Y ], t = 1, . . . ,T where T is the time horizon of the

study. The Rt can be described as the expected number of possible infectious

contacts an infected individual makes during their infectious period at day t.

For this model the expected number of new infections ct+1 at day t +1 is

given by:

E[ct+1] = St ∗
λt

n
∗ It ∗∆t+1−t , (3.1)

with It denoting the active set of infectious individuals:

It =
t

∑
s=0

cs

∑
j=1

P(Y j > t− s) (3.2)

and P(Y j > t− s) the probability that individual j infected on day s remains

infectious on day t. This probability is implicitly determined by the disease
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characteristics. Then (3.8) can be rewritten as

E[ct+1] = St ∗
Rt

n
∗

∑
t
s=0 ∑

cs
j=1 P(Y j > t− s)

E[Y ]
=

St

n
∗Rt ∗

t

∑
s=0

cs ∗gs(t), (3.3)

where gs(t) =
P(Y>t−s)

E[Y ] is called the generation interval which defines the

time from infection of an individual until the first infection they generate. We

assume that all the people infected at day s have the same probability of still

being infectious at day t.

Both the probability of a large outbreak and its final size depend on the

distribution of the reproduction number and not the generation interval. The

generation interval determines how fast the epidemic will grow. The epidemic

curve increases at an exponential rate defined by the Malthusian parameter

r, which is the solution to the Euler-Lotka equation R0
∫

∞

0 exp(−rt)gs(t) = 1

(Åke Svensson, 2015). As a result, the generation intervals and the epidemic

growth specify the appropriate value of the reproductive number, and there-

fore, the required control effort to contain the epidemic. This means that

health policy need to be informed by infectious disease surveillance systems

about these quantities on the required control effort (Wallinga and Lipsitch,

2007). The authors in Åke Svensson (2007) show that sampling schemes and

the disease spread dynamics, which are always changing due to the depletion

of the susceptible population, are model dependent. The equivalence of the

Erlang-distributed SEIR model with the renewal equation models is being
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studied in Champredon et al. (2018). Note that equation (3.3) is used in the

commonly adopted technique of Cori et al. (2013) for estimating the instan-

taneous reproduction number. In that approach, the term St
n which accounts

for the depletion of the susceptible population is ignored since the aim is

somewhat different.

One should also consider potential ‘superspreading’ events when cer-

tain individuals infected unusually large numbers of secondary cases, as

it was highlighted during the global emergence of severe acute respiratory

syndrome (SARS) (Shen et al., 2004; Lipsitch et al., 2003). Having ne-

glected this individual variation and assuming that all the infectors have the

same reproduction number, new cases at day t: ct ∼ Poisson(E[ct ]). We

account for this variability assuming that the individual reproduction num-

ber is gamma distributed with mean Rt and dispersion parameter k, yielding

ct ∼ NegativeBinomial(E[ct ],k) (Lloyd-Smith et al., 2005). From a mod-

elling perspective, this formulation allows us to model the disease transmis-

sion in a more robust way allowing for a higher variance of the data.

The Disease Reproduction Number

The reproduction number Rt is of great practical interest as it is used to

assess if the epidemic is growing or shrinking. Here we consider two distinct

instances of reproduction number. The effective reproduction number Re(t) =

St ∗Rt describes the expected number of secondary cases generated by an
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infectious individual. Then Re(t)> 1 and Re(t)< 1 indicate that the epidemic

is growing or shrinking respectively and reducing Re(t) below unity is the

typical target of public health authorities. In contrast, Rt quantifies contacts an

infected individual makes during their infectious period at day t that may not

always result in new infections, due to mixing with the immune proportion of

the population. Therefore, Rt > 1 does not necessarily mean that the epidemic

is growing due to contacts with a probably immune population, but in a fully

susceptible population, the contact rates of the population would be sufficient

for an outbreak. The Rt is crucial at the beginning of the epidemic called

R0, when the population is fully susceptible for which results for branching

process theory exist and state that the epidemic will become extinct (no

more infective individuals that can transmit the disease remaining) when

R0 ≤ 1.On the other hand if R0 > 1 then the epidemic becomes extinct with

probability q where q is the solution to the equation q = Πλ (q) and Πλ is

the probability generating function of the contact rate λ and with probability

1−q the epidemic results in a major outbreak (Andersson and Britton, 2000).

The effective reproduction number Re(t) is the one that should be targeted

by the health authorities to remain below 1 through the implementation of

NPIs to reduce the term Rt or vaccination programs to reduce the term St . A

detailed discussion about reproduction numbers can be found in Pellis et al.

(2022).
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3.2.2 Observation Regimes

We consider two distinct observation regimes, one where the observed number

of cases corresponds to the total number of infections, explained below, and

whence the total number of infections is indirectly estimated, outlined in

3.2.2.

Observed Infections

The regime where the total number of infections is observed may be of interest

in its own right but may also be used for certain transmissible diseases, for

example in the analysis of influenza-like illness data when seroprevalence

study information is available. Epidemic models are attractive for analysing

such data and are naturally defined in terms of infector-infectee pair and the

timing of such events. In reality, however, this type of data is rarely available.

Disease monitoring is based on the daily reported infections, which are

known to be susceptible to multiple problems, including a time lag between

the timing of infection and symptom onset or testing positive.

In the case of Covid-19 a large proportion of the population experiences

asymptomatic or mild disease (Ward et al., 2021) leading to severe under-

reporting. Inference about the reproduction number can be robust when the

reported cases are used if depletion of the susceptible population is accounted

for, or if the observed proportion of cases remains constant over time. One
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way to validate this assumption is by sequentially performing seroprevalence

studies to estimate the true disease prevalence and the proportion of unre-

ported incidences. However, regular information was not available in most

countries. In the following subsection, we describe an alternative approach

that dispenses with the need for this assumption.

Unobserved Cases

The case where infections may not be directly observed has been studied in

a different context by Demiris et al. (2014). In the case of the pandemic, it

became immediately apparent that the observed number of infections only

partially accounts for the complete epidemic burden. An alternative technique

was proposed by Flaxman et al. (2020) where the true cases were estimated

by back-calculating infections from the daily reported deaths which are likely

less prone to under-reporting. This method has the additional advantage of

yielding an estimate of St and consequently the total burden of the disease.

We adopt this approach for the second level of our model and the daily deaths

are linked with the true cases via:

dt ∼ NegativeBinomial(E[dt ],k)

E[dt ] = IFR∗
t−1

∑
i=0

ct ∗π(i)
(3.4)
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Accurate estimates of the infection fatality ratio (IFR) and time-from-infection-

to-death distribution (π(i)) are necessary for estimating incidence, treated

here as a latent parameter. The IFR and π(i) parameters may be calculated

independently from external data or in a single stage, leveraging additional

evidence from seroprevalence studies as illustrated in 3.5.

3.3 Epidemic Complexity Determination

The number of phases may be treated as a fixed but unknown integer or as a

random quantity to be modelled and estimated from data. We describe two

such models in the following two subsections.

3.3.1 Deterministic Number of Phases

One way to perform model selection is to fit an adequate number of models

with different complexity and select the best one by using appropriate model

information criteria or scoring rules, hoping that the best model is among

the ones fitted. In the case of our model with the transmission mechanism

described above the term ’model complexity’ refers to the number of phases

of the transmission of the disease studied. In Flaxman et al. (2020) considered

an a-priori selected number of phases. Furthermore, the points in time that the

control reproduction number Rt changed were also predefined. The locations

of these points were informed by NPIs implemented by each government. The
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intuition behind that is that the NPIs have a direct effect on transmissibility.

This intuition generates new questions about the time period it takes to

observe these changes in the data. Flaxman et al. (2020) also assumed that the

reproduction number Rt is a piece-wise constant function. In our proposed

models we also consider that Rt is a piece-wise constant function and we

amend this transmission mechanism by inferring the location and magnitude

of Rt changes, using an appropriate model to perform change-point detection

directly from the data. In our methodology, the number of phases K of the

epidemic is also predefined. Different fits of the model are examined for

different values of K and the model that best describes the data is selected

using the Watanabe–Akaike information criterion (WAIC) (Watanabe, 2013)

and Leave-one-out cross-validation (LOO) (Vehtari et al., 2017). The model

is defined as follows:

Rt =



r1, t ≤ T1

...

r j+1, Tj < t ≤ Tj+1

...

rK, TK−1 < t ≤ T
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r j ∼ f (·), r j ∈ (0,∞), j = 1, ...,K

Ti+1 = Ti + ei

T1 ∼ Uniform(3,T )

ei ∼ Uniform(0,100) , i = 1, ...,K−1

(3.5)

3.3.2 Stochastic Number of Phases

Under the Bayesian paradigm, a natural but not trivial way is to treat the

model complexity, in our case the number of phases of the epidemic K, as

a random parameter, assigning a suitable prior distribution (mostly Poisson

or a Categorical distribution, or any distribution in 1,2,...) to it and perform

inference through its posterior distribution. The weights of each phase then

follow a Dirichlet(γ1,γ2, ..,γK), with γi = 1 not dependent on K, in order

for the phases to be a-priori uniform. This approach increases the model

complexity but eliminates the need for multiple runs for varying model

complexity and the use of information criteria for model selection. This is

an area with extended literature with contributions primarily on Bayesian

mixture modelling and clustering, as well as in semi-parametric density

estimation. Several MCMC methods, such as the ’reversible jump’, which

was introduced by Green and Richardson (2001), and Richardson and Green

(1997), have been used in order to explore the parameter space. The novelty

of this general algorithm is that it allows the birth or death of new parameters
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at each iteration, but it can be difficult to use since it requires the statistician

to design good proposals for the reversible jumps. Although it has been

used with great success in many contexts, this difficult characteristic of the

algorithm has sustained it from being used in areas beyond clustering.

In our work, we learn the number of phases K via modelling K as a char-

acteristic of particular stochastic processes using generic MCMC algorithms

implemented in two widely used software, Nimble and Stan, facilitating the

usage of these epidemic models without the need for reversible jumps. We

use Finite Mixture Modelling with an unknown number of parameters by

assigning a Poisson process (PP) prior with rate λ . Also as an alternative, we

use Bayesian non-parametric methods and specifically the Dirichlet process

(DP) prior with scale parameter θ (Ferguson, 1973).

Formal Definition of Poisson process: A Poisson process on a measurable

set S is a random countable subset Π of S, such that

• for any disjoint measurable subsets A1,A2, ...,An of S the random vari-

ables

N(A1),N(A2), ...,N(An) are independent and

• N(A) has the Poisson distribution with mean rate λ , where λ = λ (A)

lies in 0≤ λ ≤ ∞.

Formal Definition of Dirichlet process: Given a measurable set S, a

base probability distribution G and a positive real number θ , the Dirichlet
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process DP(G,θ) is a stochastic process whose realisations drawn from the

process are probability distributions over S, such that the following holds. For

any measurable finite partition of S, denoted {Bi}n
i=1, if X ∼ DP(G,θ), then

(X(B1), ...,X(Bn))∼ Dirichlet(θG(B1), ...,θG(Bn)).

For both processes, we use the stick-breaking representation. The stick-

breaking representation of the PP is presented in Miller and Harrison (2013)

and of DP in Sethuraman (1994). We opted to use a Poisson process prior

instead of the widely used ’simpler’ Poisson prior in Finite Mixture Modelling,

in order to account for the time dependence of the epidemic data and allow

more phases as time moves forward and new data points appear. This property

allows the Finite mixture model to be more consistent with the properties of

the DP model.

The Dirichlet process prior has been applied extensively in the bibliography

in many Machine Learning applications (Quintana et al., 2020) in order

to perform semi-parametric density estimation on data where they tend to

repeat in a ’rich get richer’ fashion. The distributions realized by a DP prior

are almost surely discrete and the scaling parameter θ specifies the level

of discretisation. In the limit θ → 0, the realizations from the DP are all

concentrated in a single value, thus allowing us to model even epidemic

diseases with only one transmission phase. On the other hand, when θ → ∞

the realisations become continuous. For the values of θ between the two
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limits the realisations are discrete distributions, with a positive probability of

ties. We consider these a desirable characteristic in epidemic modelling as

it allows for piece-wise constant Reproduction numbers and another way of

modelling the seasonality of disease outbreaks.

Figure 3.1 Directed acyclic graph of the model. Ellipses denote parameters to be learned by
the model. The number of phases K is estimated by the DP/PP model or via model selection
criteria.

Estimating the number of phases of the epidemic and the associated lo-

cation and magnitude of the Rt changes can lead to identifiability problems

for Rt and its generative quantities, notably the total number of infections.

In order to overcome such issues we explore both a single and a multi-stage
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modelling procedure (e.g., Bhatt et al., 2020). In the latter, at the first stage,

the latent disease cases are estimated using a Gaussian Process (GP) model

and then the medians of these latent cases are treated as data with likelihood

given in (3.3). The GP for the estimation of cases is presented in Section

3.6.2.

Poisson Point Process-based Model

We consider that the arrival of new phases in the time horizon (0,T] is driven

by a time-homogeneous Poisson process with rate λ , with K growing linearly

with time. Hence, following the first epidemic phase, the number, K-1, of

new phases follows a Poisson distribution with rate λ ∗T while the duration

of each phase a-priori follows an Exponential distribution with rate λ . We

follow Miller and Harrison (2013) and use the stick-breaking representation,

where the length of the stick is the horizon T we observe the epidemic and

each phase breaks length equal to Exponential(λ ) from the stick:
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Rt = rzt

r j ∼ f (·), r j ∈ (0,∞), j = 1, ...,K

zt ∼ Categorical(π1:K) , t = 1, ...,T

πK = 1−
K

∑
k=1

πk, K = min{ j :
j

∑
i=1

Ti ≥ T}

πk =
Tk

T
, k = 1, ...,K−1

Ti ∼ Exponential(λ ) , i = 1, ...,Kmax

λ ∼ Gamma(0.02,1)

(3.6)

truncating K at Kmax = 100, far higher than data-supported estimates.

Dirichlet Process-based Model

An alternative model for the number of phases is based on the DP and its

stick-breaking construction:
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Rt = rzt

r j ∼ f (·), r j ∈ (0,∞), j = 1, ...,L

zt ∼ Categorical(w1:L) , t = 1, ...,T

wL = ∏
k<L

(1− vk), K =
L

∑
k=1

I{wk ≥ 0}

wl = vl ∗
l−1

∏
j=1

(1− v j), l = 2,3, ...,L−1

w1 = v1, vi ∼ Beta(1,θ) , i = 1, ...,L−1

θ ∼ Gamma(1,1)

(3.7)

where L is the truncation point of the DP, set here to 36. Here K is increasing

with the scaling parameter θ .

3.4 Simulation Experiments

Simultaneously learning the parameters and the dimension of a model is typi-

cally a challenging statistical task. We assess the performance of our methods

by simulating epidemics of various characteristics for 250 days. The epidemic

model defined in (3.2) was used for simulating daily infections and deaths.

The population size was set at 108 with IFR = 2%. The discretized infectious

period and the infection-to-death interval are described in the Section 3.6.1.

The epidemic was simulated with 5 distinct increasing/decreasing phases
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resembling the observed Covid 19 outbreaks. The time-varying reproduction

number was set as follows:

Rt =



1.5, t ≤ 60

0.95, 60 < t ≤ 100

1.35, 100 < t ≤ 150

0.8, 150 < t ≤ 200

1.8, 200 < t ≤ 250

Using the model in (3.5) and the daily deaths as data the lowest WAIC and

LOO selected 5 changepoints. Models with varying (3, 4, 5 and 6) number

of changepoints incorrectly identified the first 10 days of the simulation as a

distinct phase (Figure 3.2). This can be attributed to the lack of information

at the start, a common issue in epidemic models. Following this period the

model with 5 changepoints correctly identifies the different epidemic phases,

including their timing and magnitude of change. The total daily infections

(Figure 3.2) are also accurately recovered. Inference was initiated the day

that 10 cumulative deaths were observed. Plots for the other models may be

found in Section 3.6.1.

In addition to the findings that the models correctly select the right com-

plexity, it is interesting to summarise the model behaviour when investigating

model misspecification. Broadly, these findings may be summarised as fol-

lows; when we fix the number of phases to be smaller than the true one then
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(a) Simulated (triangles) and estimated daily in-
fections with 95% Cr.I. (line).

(b) Real (solid line) and estimated reproduction
number Rt with 95% Cr.I. (dashed line).

Figure 3.2 Simulation and estimates based on observing deaths

(a) Dirichlet process model (b) Poisson Process model

Figure 3.3 True (solid line) and estimated reproduction number Rt with 95% Cr.I. (dashed
line) based on observing infections

the model is correctly recovering the early ones while it is averaging the

final phases leading to poorly fitted models. In contrast, when fixing K to be

larger than the true one then we essentially recover the true patterns and get a
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good fit. Hence, slightly overestimating model complexity is not materially

affecting the recovery of the true signal.

When fitting the models with a stochastic number of phases to daily

infections, both the PP and DP models are precisely estimating the number

of epidemic phases, the time of change and the true Rt value (Figure 3.3).

The model was run for 100000 iterations and 8 chains. The analysis based

on observing deaths is included in Section 3.6.1. Briefly, the intermediate

phases of the epidemic are well estimated while the first and final phases are

recovered with noise. The level of smoothing introduced by the cubic spline

affects the noisy estimation of the cases; the lower the degrees of freedom the

smoother the estimation of cases and subsequently the reproduction number.

3.5 Real-data Application

3.5.1 Data Description and Prepocessing

The models were fitted to daily reported deaths from two US states, California

and New York and two European countries, the United Kingdom and Greece.

The data are accessible from John Hopkins University and ECDC and the

time horizon ran to the end of June 2021 when many NPIs were lifted. Due

to lack of data availability, the model does not account for reinfections. The

age-standardized IFR for each country was informed by the meta-analysis

from COVID-19 Forecasting Team (2022) accounting for time, geography
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and population characteristics. We allowed the IFR to vary over time, ac-

counting for the age structure of those infected, the burden of health systems

and amendments in treating the disease. The infection-to-death time and

generation interval were given a Gamma distribution with (mean, standard

deviation) set to (19, 8.5) and (6.5, 4.4) days respectively as used by Flaxman

et al. (2020).

3.5.2 Analyses and Results

California was one of the first US states reporting cases on the 26th of January,

2020. A state of emergency was declared on March 4, 2020 and mass/social

gatherings were banned while a mandatory statewide stay-at-home order

was issued on March 19, 2020. We fitted the model to daily deaths and

using WAIC/LOO selected 6 changepoints. Figures 3.4 and 3.5 suggest that

Re(t) was reduced after imposing restrictions and fell below the critical value

of 1 after April 2020 when school closure was decided for the remainder

of the 2019–2020 academic year. The epidemic remained under control

until summer 2020 when Re(t) jumped slightly above 1 following a gradual

relaxation of measures. On August 31, 2020, a new set of measures called

‘Blueprint for a Safer Economy’ was applied and all models show that they

were effective, alongside the gained immunity of the population, at reducing

the effective reproduction number below one and keeping the epidemic under



3.5 Real-data Application 73

(a) California state (b) New York state

(c) The United Kingdom (d) Greece

Figure 3.4 Estimation of Effective Reproduction Number Re(t) with 50% Cr.I. (solid and
dashed lines) based on observing deaths, fixed number of phases model.

control until the first half of October 2020. All models estimate a sharp

increase in Re(t), which resulted in an increase in the daily reported cases

and deaths between November 2020 and January 2021. Nighttime curfew

and regional stay-at-home orders were announced at the start of December

2020 whence Re(t) remained stable and began declining. The initiation of the
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vaccination program on early 2021 brought the epidemic under control with

Re(t) remaining below 1.

New York state had, by April 10 2020, more confirmed cases than any

country outside the US and was heavily affected at the start of the pandemic,

with daily recorded deaths reaching a thousand in April. On March 15 all

New York City schools were closed and on March 20 state-wide stay-at-home

order was declared. As a result, the models show a drop of Re(t) below 1

from mid-March 2020 until August 2020 (Figures 3.4 and 3.5). The best-

performing models based on WAIC and LOO had 7 changepoints (8 distinct

phases). This model estimates that after the summer of 2020 Re(t) remained

above 1 up until the start of 2021 with a small increase during November and

the holiday season. The DP and PP models show similar estimates for Re(t)

(Figure 3.5).

For the United Kingdom a model with 8 changepoints was selected by

WAIC and LOO. Until early March 2020, when a lockdown was imposed

we estimate that Rt ≈ 3.5 (Figure 3.4). These measures were lifted early

June and during the lockdown Re(t) remained below 1, and therefore under

control. After the summer Re(t) increased above 1 and the so-called rule

of six was imposed while on November 5, 2020 the second lockdown was

announced. The number of reported deaths was reduced after the initiation of
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(a) California state - DP model (b) California state - PP model

(c) New York state - DP model (d) New York state - PP

Figure 3.5 Estimation of Effective Reproduction Number Re(t) with 95% Cr.I. (solid and
dashed lines) based on observing deaths, multi-stage approach.

the vaccination program on January 4 2021. Virtually identical estimates for

the UK Re(t) are inferred by the DP and PP models (Figure 3.6).

We conducted an independent (or ‘external’) validation of the model

performance based upon REACT-2, an antibody prevalence study conducted

in the UK with the participation of more than 100000 adults (Ward et al.,
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(a) The United Kingdom - DP model (b) The United Kingdom - PP model

(c) Greece - DP model (d) Greece - PP

Figure 3.6 Estimation of Effective Reproduction Number Re(t) with 95% Cr.I. (solid and
dashed lines) based on observing deaths, multi-stage approach.

2021). This is a unique opportunity as it took place on early July 2020 when

waning immunity was unlikely and provides a reasonable estimate of the

total disease burden up to that time. The estimated prevalence for the adult

population (children were excluded) was 6.0% (95% CI: 5.8, 6.1) and our
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Figure 3.7 Cumulative sum of estimated daily infections with 95% Cr.I. (dashed lines) and
the estimation of REACT-2 with 95% C.I. (solid lines) for the United Kingdom

estimate for the whole population is 7.5% (95% Cr.I.: 5.7, 10.) (Figure 3.7)

well compatible with that independent estimate.

For Greece WAIC and LOO selected the 7-changepoint model. At the

starting phase, we estimate Re(t) = 3.36 (sd = 0.88) and a decrease below

1 in the first half of March 2020 (Figure 3.4). On March 10 the government

suspended most activities, including educational, shopping and recreational

while a week later all nonessential movement was restricted. The Re(t) esti-

mate remained below 1 until early June 2020 when it increased following the
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(a) California state (b) New York state

(c) The United Kingdom (d) Greece

Figure 3.8 Reported (triangles) and estimated deaths with 50% Cr.I. (solid and dashed lines)
based on observing deaths, fixed number of phases model.

lifting of restrictions. During summer Re(t) remained over 1 until November

2020 since a case spike in October led to new measures. Similar estimates for

the Re(t) are obtained by the DP and PP models (Figure 3.6).

The results of our simulation experiments corroborate the findings of the

application to real data from different areas. The time-ordering of the data
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facilitates avoiding label-switching problems typically encountered when

fitting mixture models. By selecting the number of phases we capture mor-

tality changes in all the real-world examples (Figure 3.8). The DP and PP

models can infer a slightly higher number of phases but the conclusions

are not materially affected. This observation is in line with Rousseau and

Mengersen (2011) who show a generally stable behaviour of such so-called

overfitted mixture models, theoretically verifying the robust behaviour of

the developed models. The computation time was similar for the PP and

DP models with the DP being faster. More importantly, we get valuable

insights on the effectiveness of the measures imposed by the governments.

For New York and the UK it appears that the NPIs predate the reductions in

transmissibility. California and Greece adopted the measures before a large

first wave, like other EU countries and US states. All regions were similar

when these measures were relaxed: multiple epidemic waves emerged and

the estimated Re(t) remained above 1.

3.6 Sensitivity analyses

3.6.1 Selecting the number of phases

For our simulated datasets we observed that when fixing the number of phases

lower than the true one the model is able to identify the first phases of the

epidemic but then averages out the transmissibility for the remaining ones,
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Fig 3.9. This behaviour to model mis-specification appears reasonable and the

averaging of transmissibility has an effect on the daily estimated infections

and as a result the models fail to capture properly the second peak of the

simulated epidemic (Fig 3.10). Also, the fit of the model on the daily deaths

(Fig 3.11) suffers from this type of model mis-specification.

We started training our model for a low number of phases and kept increas-

ing the complexity until the WAIC and LOO values (which initially were

decreasing) started rising again. The values of the information criteria are

summarized in Table 3.1 for the simulated dataset, and in Tables 3.2, 3.3,

3.4 and 3.5 for California and New York states, and for the United Kingdom

and Greece, respectively. Briefly, increasing the model complexity after a

certain point does not seem to offer any benefits, since the estimations of

the transmissibility (i.e. the effective reproduction number) and of the daily

infections remain quite similar (Figures 3.12, 3.13, 3.14 and 3.15), in line

with our observations above on the robust behaviour of the model under

mis-specification.

Table 3.1 Fixed number of phases - Simulated dataset

Number of phases WAIC LOO
5 phases 3635.0 3635.1
6 phases 2252.9 2253.4
7 phases 2260.6 2261.8
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(a) 5 fixed phases (b) 6 fixed phases (c) 7 fixed phases

Figure 3.9 True (black line) and estimated reproduction number Rt with 50% Cr.I. (red line),
based on observing deaths in the simulated dataset.

(a) 5 fixed phases (b) 6 fixed phases (c) 7 fixed phases

Figure 3.10 Simulated (black triangles) and estimated daily infections with 50% Cr.I. (red
line), based on observing deaths.

(a) 5 fixed phases (b) 6 fixed phases (c) 7 fixed phases

Figure 3.11 Simulated (black triangles) and estimated daily deaths with 50% Cr.I. (red line).
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Table 3.2 Fixed number of phases - California state

Number of phases WAIC LOO
6 phases 5099.4 5099.5
7 phases 5064.8 5064.9
8 phases 5066.8 5068.2

(a) 6 fixed phases (b) 7 fixed phases (c) 8 fixed phases

Figure 3.12 Estimation of the effective reproduction number Re(t) with 50% Cr.I. for the
California state.

Table 3.3 Fixed number of phases - New York state

Number of phases WAIC LOO
7 phases 4441.5 4439.4
8 phases 4401.6 4401.7
9 phases 4431.0 4415.2

(a) 7 fixed phases (b) 8 fixed phases (c) 9 fixed phases

Figure 3.13 Estimation of the effective reproduction number Re(t) with 50% Cr.I. for the
New York state.
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Table 3.4 Fixed number of phases - United Kingdom

Number of phases WAIC LOO
8 phases 4974.6 4974.7
9 phases 4961.7 4961.8

10 phases 4962.8 4963.0

(a) 8 fixed phases (b) 9 fixed phases (c) 10 fixed phases

Figure 3.14 Estimation of the effective reproduction number Re(t) with 50% Cr.I. for the
United Kingdom.

Table 3.5 Fixed number of phases - Greece

Number of phases WAIC LOO
7 phases 2852.6 2852.7
8 phases 2579.9 2579.9
9 phases 2580.4 2579.8

(a) 7 fixed phases (b) 8 fixed phases (c) 9 fixed phases

Figure 3.15 Estimation of the effective reproduction number Re(t) with 50% Cr.I. for Greece.
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3.6.2 Selecting the level of smoothing in the multi-stage approach

For the estimation of the transmissibility of the DP and PP models based

on daily deaths, in addition to a single-stage procedure we used a multi-

stage modelling procedure. In the first stage, the latent disease infections

are estimated using a Gaussian Process model and then the medians of these

latent infections are treated as data with likelihood given in equation 3.4 and

time-from-infection-to-death as shown in Figure 3.16. The model for the

estimation of cases is presented below.

(a) Discretized time-from-infection-to-death dis-
tribution for simulated experiments.

(b) Discretized generation interval for simulated
experiments.

Figure 3.16 Intervals used in the simulation experiments.
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dt ∼ NegativeBinomial(i f r ∗
t−1

∑
i=0

ct ∗π(i))

ct ∼ N(ct−1,s), t = ninitial +1, ...,N

ct ∼ Poisson(λ ), t = 1, ...,ninitial

λ ∼ Γ(1,0.00001)

s∼ Γ(1,0.00001)

(3.8)

The parameter ninitial is the total number of initial cases that we seed at

the beginning of this Gaussian Process. Due to the seemingly spiky estimates

we examined smoothed versions of the estimated cases ct , by using a cubic

smoothing spline fitted to the median estimate of ct . We applied the multi-

stage procedure to the simulated data in order to select an appropriate level of

smoothing. The model 3.8 does capture the trend on the daily deaths (Figure

3.17). The estimated cases returned from this model appear in Figure 3.18 (a).

The level of smoothing was selected heuristically by visually comparing the

estimated cases with the true ones in Figure 3.18, as well as by comparing

the estimated Rt with the true one (Figure 3.19). The estimations of the

control reproduction numbers from DP and PP models are fairly close for

both models. We used 35 degrees of freedom in the cubic splines in both the

Dirichlet process and the Poisson process model as lower degrees of freedom

resulted in loss of information due to over-smoothing and the elimination of
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some epidemic phases while degrees of freedom higher than 45 resulted in

noisy estimates.

We fitted model 3.8 to the data of the Covid19 epidemic in California and

New York states, the United Kingdom, and Greece up until the first month

of the summer of 2021. The fit for each country/state is presented in Figures

3.20, 3.23, 3.26 and 3.29 and the estimated daily infections for various levels

of smoothing in Figures 3.21, 3.24, 3.27 and 3.30. As in the simulated dataset,

the model does capture daily deaths well and the estimations of the effective

reproduction number are similar between the two models (Figures 3.22, 3.25,

3.28 and 3.31).

3.7 Extension of the models

3.7.1 Time inhomogeneous Poisson process

One natural extension of the time homogeneous Poisson process we used

to model the number of phases is to assume the rate is not constant for the

duration we observe the epidemic. We consider that the new phases (minus 1,

K̃ = K(t)−1) arrive at the points of a time-inhomogeneous Poisson process

with rate λ (t) = vevt

µ+evt . Equivalently, the number of phases K - 1 follows a

Poisson distribution with rate Λ(t) =
∫ t

0 λ (u)du = log(µ + evt)+ log(µ +1).

A useful observation from the simulation viewpoint is to notice that for

this one dimensional point process the times between the arrival of each
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Figure 3.17 Simulated (black triangles) and estimated deaths with 95% Cr.I. (red line) from
the model in Equation 3.8.

(a) Two stage approach - No
smoothing applied

(b) Cubic spline with 35 degrees
of freedom

(c) Cubic spline with 15 degrees
of freedom

Figure 3.18 Simulated (black triangles) and estimated daily infections with 95% Cr.I. (red
line) from the model in Equation 3.8.
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(a) DP model - No smoothing
applied

(b) DP model - Cubic spline
with 35 degrees of freedom

(c) DP model - Cubic spline
with 15 degrees of freedom

(d) PP model - No smoothing
applied

(e) PP model - Cubic spline
with 35 degrees of freedom

(f) PP model - Cubic spline
with 15 degrees of freedom

Figure 3.19 True (black line) and estimated reproduction number Rt with 50% Cr.I. (red line)
based on observing deaths - multi-stage approach.
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Figure 3.20 Reported (black triangles) and estimated deaths with 95% Cr.I. (blue line) for
the California state from the model in Equation 3.8.
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(a) Two stage approach - No
smoothing applied

(b) Cubic spline with 35 degrees
of freedom

(c) Cubic spline with 15 degrees
of freedom

Figure 3.21 Reported (black triangles) and estimated daily infections with 95% Cr.I. (blue
line) for the California state from the model in Equation 3.8.

(a) DP model - No smoothing
applied

(b) DP model - Cubic spline
with 35 degrees of freedom

(c) DP model - Cubic spline
with 15 degrees of freedom

(d) PP model - No smoothing
applied

(e) PP model - Cubic spline
with 35 degrees of freedom

(f) PP model - Cubic spline
with 15 degrees of freedom

Figure 3.22 Estimation of the effective reproduction number Re(t) with 50% Cr.I. for the
California state based on observing deaths - multi-stage approach.
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Figure 3.23 Reported (black triangles) and estimated deaths with 95% Cr.I. (blue line) for
the New York state from the model in Equation 3.8.
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(a) Two stage approach - No
smoothing applied

(b) Cubic spline with 35 degrees
of freedom

(c) Cubic spline with 15 degrees
of freedom

Figure 3.24 Reported (black triangles) and estimated daily infections with 95% Cr.I. (blue
line) for the New York state from the model in Equation 3.8.

(a) DP model - No smoothing
applied

(b) DP model - Cubic spline
with 35 degrees of freedom

(c) DP model - Cubic spline
with 15 degrees of freedom

(d) PP model - No smoothing
applied

(e) PP model - Cubic spline
with 35 degrees of freedom

(f) PP model - Cubic spline
with 15 degrees of freedom

Figure 3.25 Estimation of the effective reproduction number Re(t) with 50% Cr.I. for the
New York state based on observing deaths - multi-stage approach.
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Figure 3.26 Reported (black triangles) and estimated deaths with 95% Cr.I. (blue line) for
the United Kingdom from the model in Equation 3.8.
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(a) Two stage approach - No
smoothing applied

(b) Cubic spline with 35 degrees
of freedom

(c) Cubic spline with 15 degrees
of freedom

Figure 3.27 Reported (black triangles) and estimated daily infections with 95% Cr.I. (blue
line) for the United Kingdom from the model in Equation 3.8.

(a) DP model - No smoothing
applied

(b) DP model - Cubic spline
with 35 degrees of freedom

(c) DP model - Cubic spline
with 15 degrees of freedom

(d) PP model - No smoothing
applied

(e) PP model - Cubic spline
with 35 degrees of freedom

(f) PP model - Cubic spline
with 15 degrees of freedom

Figure 3.28 Estimation of the effective reproduction number Re(t) with 50% Cr.I. for the
United Kingdom based on observing deaths - multi-stage approach.
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Figure 3.29 Reported (black triangles) and estimated deaths with 95% Cr.I. (blue line) for
Greece from the model in Equation 3.8.
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(a) Two stage approach - No
smoothing applied

(b) Cubic spline with 35 degrees
of freedom

(c) Cubic spline with 15 degrees
of freedom

Figure 3.30 Reported (black triangles) and estimated daily infections with 95% Cr.I. (blue
line) for Greece from the model in Equation 3.8.

(a) DP model - No smoothing
applied

(b) DP model - Cubic spline
with 35 degrees of freedom

(c) DP model - Cubic spline
with 15 degrees of freedom

(d) PP model - No smoothing
applied

(e) PP model - Cubic spline
with 35 degrees of freedom

(f) PP model - Cubic spline
with 15 degrees of freedom

Figure 3.31 Estimation of the effective reproduction number Re(t) with 50% Cr.I. for Greece
based on observing deaths - multi-stage approach.
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phase Ti, i = 1, ...,K are distributed as Λ−1(E +Λ(Ti−1)) with E drawn from

Exponential(1) (Devroye, 1986).

We will use the stick-breaking representation for our model:

Rt = rzt

r j ∼ f (·), supp( f ) = (0,∞), j = 1, ...,K

zt ∼ Categorical(π1:K) , t = 1, ...,T

πK = 1−
K

∑
k=1

πk

πk =
Tk

N
, k = 1, ...,K−1

K = min{ j :
j

∑
i=1

Ti ≥ N}

Ti = Λ
−1(Ei +Λ(Ti−1))

Ei ∼ Exponential(1) , i = 1, ...,Kmax

µ ∼ Gamma(1,1)

v∼ Gamma(1,1)

(3.9)

setting Kmax = 100 as a predefined maximum number of phases.

This time-inhomogeneous Poisson process model is generally harder to es-

timate and can depend upon the initial values for the different MCMC chains.

As a result some chains may fail to correctly estimate transmissibility (Figure

3.33). This is not entirely surprising since the K parameter is the one that is
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Figure 3.32 True (black line) and estimated reproduction number Rt with 95% Cr.I. (red line)
based on observing infections - Non-Homogeneous Poisson process
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Figure 3.33 True (black line) and estimated reproduction number Rt with 95% Cr.I. (red line)
based on observing infections - Non-Homogeneous Poisson process
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further from the observed data. Therefore, considering the model hierarchy

one may reasonably select the more parsimonious time homogeneous process

as the preferred model component.

3.7.2 Two parameter Poisson-Dirichlet process

The two-parameter Poisson–Dirichlet distribution, also known as Pitman-Yor

process denoted here as PY (α,θ) was introduced in Pitman and Yor (1997).

It can be thought of as a two-parameter extension of the Dirichlet process

with 0 ≤ α < 1 and θ > −α . Therefore PY (0,θ) reduces to the Dirichlet

process with parameter θ introduced by Ferguson in Ferguson (1973).
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Figure 3.34 True (black line) and estimated reproduction number Rt with 95% Cr.I. (red line)
based on observing infections - Pitman-Yor process
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Figure 3.35 True (black line) and estimated reproduction number Rt with 95% Cr.I. (red line)
based on observing infections - Pitman-Yor process
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We present the stick-breaking construction of the PY:

Rt = rzt

r j ∼ f (·), supp( f ) = (0,∞), j = 1, ...,L

zt ∼ Categorical(w1:L) , t = 1, ...,T

wL = ∏
j<L

(1− v j), K =
L

∑
j=1

I{w j ≥ 0}

wl = vl ∗
l−1

∏
j=1

(1− v j), l = 2, ...,L−1

w1 = v1

vi ∼ Beta(1−α,θ + i∗α) , i = 1, ...,L−1

α ∼ Beta(1,1)

θ ∼ Gamma(1,1)

(3.10)

where L = 36 is the truncation point of the PY process.

In summary, the Pitman-Yor process gives comparable results to the Dirich-

let process model. It correctly estimates the points in time when transmis-

sibility changes, as well as the magnitude of change. Overall, we keep the

DP model since it gives similar inference while it retains parsimony and it is

easier to interpret.
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3.8 Computation and software

We adopted the Bayesian paradigm to inference and used freely available

software like Rstan and Nimble using the statistical programming language R.

In Rstan we used the No-U-Turn-Sampler (NUTS) algorithm and in Nimble

we used a mix of Random walk Metropolis-Hastings sampler and categorical

sampler for the allocation parameters zt .

The implementation of the models is possible in both software packages.

We implemented the Dirichlet process (DP) and Poisson process (PP) models

in Nimble and the fixed number of phases model in Rstan. The implementa-

tion of DP and PP models in Rstan requires marginalization of the allocation

parameters since we cannot sample discrete parameters with the NUTS algo-

rithm. We found in our simulation studies that the implementation in Nimble

is 10-fold faster than Rstan for the DP and PP models for similar results, with

the computational time of the DP model being lower than the PP model.

3.9 Convergence of the algorithms

Markov chain Monte Carlo algorithms for posterior sampling can suffer from

convergence issues, especially for high dimensional non-linear models like

the ones presented in this chapter. Here we run the models for multiple chains

to check for convergence problems. In particular, we used 8 chains for both
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Figure 3.36 Estimation of the reproduction number Rt for the DP model for different chains
of the same run based on observing infections.
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Figure 3.37 Estimation of the reproduction number Rt for the PP model for different chains
of the same run based on observing infections.
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models and each chain was initiated with different random values and was

run for 100000 iterations using the first half of them as warm-up. Both the

DP and the PP models seem robust approaches, suggesting convergence in all

chains, see (Figures 3.36 and 3.37) for R(t).

(a) 5 fixed phases (b) 6 fixed phases (c) 7 fixed phases

Figure 3.38 Trace plots for the time points of the transmissibility change - fixed number of
phases model for the simulated dataset.

For the deterministic number of phases model, we checked for convergence

of the Hamiltonian Monte Carlo algorithm by running 3 chains in parallel and

investigating the trace and the autocorrelation plots of the returned samples.

We run each chain for 30000 iterations with the first half being used as warm-

up. Inspecting the trace plots of our samples (Figure 3.38) suggests that when

the complexity of the model is higher than the one with the lower WAIC or

LOO, there is multimodality for the points in time that the transmissibility

changes. When the complexity is lower, the latter phases are entirely ignored

by the model. The model with the lower WAIC or LOO values do not show
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multimodality for the time that changepoints occur and have low within chain

autocorrelation (Figure 3.39).

(a) 5 fixed phases (b) 6 fixed phases (c) 7 fixed phases

Figure 3.39 Autocorrelation plots for the time points of the transmissibility change - fixed
number of phases model for the simulated dataset.

3.10 Discussion

In this chapter, we propose 3 models for the transmission mechanism of

infectious diseases with multiple epidemic phases. We use freely available

data to estimate the points in time when transmissibility changes and the

realised magnitude of the NPI effects. We adopt this approach since many of

these interventions coexist or overlap and identifiability issues can arise when

disentangling individual effects and the associated time lags. Essentially,

one may retrospectively assess the effect of the NPIs by comparing the

changes in the reproduction number with the dates that these measures were

imposed. Selecting the number of phases requires multiple runs and the
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computation time can be an issue when nowcasting is essential for decision-

making. Estimating model complexity via the DP and PP models represents

an alternative approach that is computationally efficient.

The DP and PP models can estimate more epidemic phases and this issue

is discussed in detail in Miller and Harrison (2013). In our setting, this effect

essentially relates to the start and end of the epidemic and is inherently difficult

due to limited information. At the start of the epidemic, such uncertainty

dictates that estimates should be interpreted with caution. For the end this is

less of an issue and is mostly due to the time lag between cases and deaths.

When one is working with the observed infections these issues are largely

removed and inference is typically accurate throughout the duration of the

data as indicated by the simulation experiments. Our models can naturally be

extended when more detailed information is available and this is the subject

of further future research.





Chapter 4

Bayesian spatio-temporal regression

models for the analysis of infectious

diseases

4.1 Introduction

Epidemiology is the study and analysis of the distribution and factors of health

and disease conditions in defined populations. Epidemic modelling is the

foundation of public health and shapes policy decisions and evidence-based

practice by identifying risk factors for disease transmission and allowing

the assessment of preventive and curative healthcare. Epidemic models are

applied for animal diseases such as Sheep-pox, and Foot and Mouth (FMD)

viruses to describe outbreaks in certain countries or even in specific regions

of a country. Due to the highly contagious nature of these viruses, the severe
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consequences they have on animals’ well-being and the significant economic

consequences for people involved in animal husbandry, due to reduced milk

production and weight of the livestock, it is crucial for the epidemic models

to be able to predict large outbreaks to help in the virus’ spread prevention.

In the literature, suitable SIR models have been used for the analysis of

these types of viruses (see Jewell et al. (2009) and references within). We will

use Bayesian hierarchical Poisson models embedded with stochastic processes

based on stochastic differential equations similar to the work in Malesios

et al. (2017, 2016). We will extend the proposed Ornstein-Uhlenbeck (OU)

model by introducing a more general OU model with Student’s t-distribution

marginals. We will also examine the usage of the Cox-Ingersoll-Ross (CIR)

model for the latent infectious rate of the model. The CIR model was intro-

duced in 1985 by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross

as an extension of the Vasicek model (Cox et al., 1985; Vasicek, 1977). The

authors used the CIR model to study the term structure of interest rates which

can be used in the valuation of interest rates derivatives but we think that it is

underused outside the field of economics, especially in epidemic modelling.

The authors in Shakiba et al. (2021) used the CIR process to model the contin-

uous and random environmental effects on the transmission parameters of the

MERS and Ebola diseases. These stochastic processes evolved around means
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that are correlated with a number of covariates, including meteorological

parameters and a spatial transmission kernel.

Our framework is specified in continuous time facilitating the usage of

different time intervals providing flexibility based on the available data. For

the Sheep-pox dataset in order to overcome the possible measurement errors

of the exact infection or reporting time of disease occurrences, we will use

a weekly discretization of time. The extra zeros that are generated through

this discretization are suitably modelled through zero inflation probability

distributions. We use contemporary Bayesian methods to perform variable

selection using suitable hyper g-priors and Bayesian neural networks with

horseshoe priors for the parameters of the hidden layers. For the Foot and

Mouth data, we will use a daily discretization of time.

The models are applied to data from Northern Greece and especially the

Northern Evros prefecture (Malesios et al., 2017, 2016). A major outbreak

of sheep-pox was reported in Evros on November 1994 and lasted up until

December 1998, which also resulted in several outbreaks in the neighbour

prefectures and 249 infected premises. In 2000 Evros also experienced a

FMD outbreak between July and September, where 5600 cattle, 4300 sheep/

goats and 360 pigs were culled during the course of the outbreak. Prevention

measurements for this outbreak did not include vaccination of livestock.

Farm-level data for the Sheep-pox and FMD epidemics were provided by the
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Veterinary Directorate of Northern Evros Prefecture (VDNEP). Sheep-pox

and FMD are widely distributed in Asia and North and East Africa, while

most of Europe and America are virus free. However, the outbreaks were

possible in Evros due to its unique geological position. It is a natural passage

between Asia and Europe and there is a constant movement of livestock and

people between Greece and Turkey. The above result in fertile ground for the

transmission of diseases endemic in Western Asia and the Middle East.

4.2 Modelling epidemic data

4.2.1 Zero-inflation model

Zero inflation models are models based on zero-inflated distributions, i.e.

distributions that account for frequent zero-valued data and they have been

widely used in the analysis of problems with excess zero data. Zero-inflated

models for count data, i.e. data ∈ {0,1,2...}, are mainly mixture models

of Poisson or Negative-Binomial distributions. Typical use cases of these

models are the modelling of the number of visits a patient makes to the

emergency room in one year or the number of fish caught in one day in

one lake (Bilder and Loughin, 2014). Other examples of count data are the

number of hits recorded by a Geiger counter in one minute, the length of

hospital stays of patients in days, goals scored in a soccer game, (Hilbe, 2011)
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and the number of hypoglycemic episodes per year for a patient suffering

with diabetes (Lachin, 2000).

In epidemic modelling, especially, zero-inflation models have been used

for diseases that experience seasonality in their epidemic and endemic phases.

It is common for these diseases to have zero new incidences for many months

and then a new epidemic to evolve. Typical models without the ability

to account for the excess zeros fail to catch these peaks of transmission,

which is the most crucial part of disease monitoring and surveillance and

guidelines of mitigation strategies imposed by health authorities. Furthermore,

the information provided on the extra zeros can be useful in estimating the

parameters that generate disease-free environments. In our methodology,

we link environmental and spatial information on the probability of zero

incidences. Zero-inflated models for count data are mainly mixture models of

Poisson or Negative-Binomial distributions.

We opt to use a zero-inflated Poisson process in the spirit of Malesios

et al. (2017) where the log rate of Poisson distribution is modelled through

various stochastic differential equations such as Ornstein-Uhlenbeck-type

processes and Cox-Inglesson-Ross model. We also use Bayesian neural nets

to associate different covariates with the rate of the Poisson point process or

the zero-inflation probability. The Poisson processes, where the rate is also

a stochastic process, are called Cox processes (Cox, 1955). A subclass of
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Cox processes where the log rate is modelled through a Gaussian process

is the Log-Gaussian-Cox-Processes (LGCPs) and have been primarily used

in the modelling of spatial and spatio-temporal count data of infectious

diseases (Diggle et al., 2013). The authors in Malesios et al. (2017) used

the aggregated spatial information through the use of kernel functions in a

time-series regression framework. A different approach was used in (Diggle

et al., 2013), where the lattice data of new disease incidences of the disease

with prespecified positions in a R2 grid are modelled through LGCPs with

the spatial connection between two different regions being modelled through

its covariance function. We opted to use the former approach to include a

spatial component in our models since in non-Gaussian cases the covariance

matrix can be difficult to determine.

The likelihood of the model for modelling disease occurrences yi at time i

is as follows:

yi ∼ g(yi|Λi, pi)

g(yi|Λi, pi) = piI{yi=0}+(1− pi) f (yi|Λi)

(4.1)

where f (·) is the probability mass function of the Poisson distribution and Λi

is the rate.
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4.2.2 Infection rate modelling

The Ornstein-Uhlenbeck (OU) process (Uhlenbeck and Ornstein, 1930) is a

stochastic process used originally in physics as a model for the velocity of a

massive Brownian particle under the influence of friction. It is also used in

financial mathematics and modelling, especially in the Vasicek model of the

interest rate (Vasicek, 1977). A stochastic process Z(t) is said to be of OU

type if it satisfies a stochastic differential equation (SDE) of the form:

dZt =−φZtdt +dY (t) (4.2)

where Y (t) is the background driving Lévy process (BDLP).

Gaussian Ornstein-Uhlenbeck

We will assume that the log rate of the Poisson distribution follows an OU

process with an additional drift term and the BDLP being the Brownian

motion.

Λi =
∫ t

t−1
exp(λs)ds, i = 1, ...,T

dλt = φ(λt−µt)+σdWt

(4.3)

where Wt is the standard Wiener process, i.e. the Brownian motion, φ is the

drift rate of the differential equation and µ is the mean reversion level. How



118 Bayesian spatio-temporal regression models for the analysis of infectious diseases

strong the influence of Wt on the stochastic differential equation is indicated

by the term σ .

Solution of the differential equation: The differential equation in 4.3 can

be explicitly solved, even if it cannot be represented integral-free. Multiplying

with eφ t the differential equation, and using the lemma of Itō (Itô, 1944)

and the chain rule of differential calculus, we arrive at the solution λt =

λ0e−φ t +µt(1− e−φ t)+σ
∫ t

0 e−φ(t−s)dWs.

The conditional expectation is E[λt |λ0] = µt +(λ0−µt)e−φ t .

The conditional variance is Var[λt |λ0] =
σ2

2φ
(1− e−2φ t).

Thus the transition density of λt is:

λt+1|λt ∼ N(µt+1 +(λt−µt)e−φ ,
σ2

2φ
(1− e−2φ )) (4.4)

Ornstein-Uhlenbeck with Student’s t-distribution marginals

We extend the previous framework by assigning a suitable prior on the vari-

ance of the transition densities to obtain Student’s t transition density distri-

butions. The Student’s t- distribution is symmetric and ball-shaped like the

normal distribution but with heavier tails, thus allowing us to model parame-

ters that are further from their mean, being more robust with possible outliers.

The Student’s t-distribution with ν degrees of freedom includes a wide range

of symmetric probability distributions with power tails, ranging from the

Cauchy distribution for ν = 1 and the Normal distribution for ν → ∞. The
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probability distribution function of the symmetric Student’s t- distribution T

with ν degrees of freedom :

fT (x) =
Γ(1

2(n+1))

δ
√

πΓ(1
2n)[1+((x− µ̃)/δ )2](ν+1)/2

(4.5)

where δ > 0 is a scaling parameter and µ̃ ∈ R is a location parameter.

E[T ] = µ̃ for ν > 1 and Var[T ] = δ 2 ν

ν−2 for ν > 2.

A random variable X ∼ T (ν , µ̃,δ ) can be represented as T D
= µ̃ + σ̃ε where

the independent random variables ε and σ̃2 have the standard normal distri-

bution N(0,1) and the inverse (reciprocal) gamma distribution RΓ(1
2ν , 1

2δ 2),

respectively (Heyde and Leonenko, 2005; West, 1987).

The transition density of λt is:

λt+1|λt ∼ T (ν , µ̃t+1,δ )

µ̃t+1 = µt+1 +(λt−µt)e−φ

δ
2 =

σ2

2φ
(1− e−2φ )

(4.6)

The degrees of freedom ν are assigned an non-informative prior Gamma(0.2,0.1).

This process is different in construction than the Student’s t-OU process

presented in Heyde and Leonenko (2005). The authors used a non Brownian
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motion BDLP Y (t) in equation 4.2 with cumulant transform

κY (1)(ζ ) = logE{exp[iζY (1)]}, ζ ∈ R, ζ ̸= 0 (4.7)

such that Zt satisfies the SDE (4.2) for all φ > 0 and has the solution:

Zt = e−φ tX0 + e−φ t
∫ t

0
eφsdY (φs) (4.8)

then Zt has marginal t-distribution T (ν ,δ ,µ). We think our approach is more

intuitive in conception and construction without the need to calculate the

BDLP.

Cox–Ingersoll–Ross model

The CIR model specifies that the rate λt follows the following stochastic

differential equation:

Λi =
∫ t

t−1
λsds, i = 1, ...,T

dλt = α(eµt −λt)+σ

√
λtdWt

(4.9)

where Wt is the standard Wiener process, α is the speed to adjustment to

mean level eµt and σ corresponds to volatility. The drift factor, α(eµt −λt) is

exactly the same as in the OU model. It ensures ultimately the mean reversion

of the rate λt towards the value eµt , with the speed of adjustment controlled by

the strictly positive parameter α . The standard deviation factor σ
√

λt ensures
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the rate λt > 0 and for this reason, we did not transform it in the exponential

scale in equation 4.9, contrary to the approach in the OU models (equation

4.3), but instead we exponentiate the term µt , which is the regression to

covariates to keep the notation consistent. A zero value is prevented if the

condition 2αeµt ≥ σ2 is met. When t becomes really small the term σ
√

λt

also becomes small neutralizing the effect of the randomness of the Wiener

process and the process λt is guided towards equilibrium by the drift rate α .

The transition density of λt is:

λt+T |λt =
Yt

2c
(4.10)

where Yt follows a non-central chi-square distribution with 4αeµt

σ2 degrees

of freedom and non-centrality parameter 2cλte−αT The probability density

function is:

f (λt+T |λt ,a,µt ,c) = ce−c(λte−αT+λt+T ) λt+T

λte−αT Iq(2c
√

λt+T λte−αT ) (4.11)

where Iq(·) is a modified Bessel function of the first kind of order q

Due to mean reversion as t → ∞, the distribution of λ∞ approaches a

Gamma distribution with shape equal to 2αeµ∞

σ2 and rate equal to 2α

σ2 . The CIR

model presented above with zero-inflated Poisson process likelihood can be

seen as an approximated zero-inflated negative-binomial process. A point



122 Bayesian spatio-temporal regression models for the analysis of infectious diseases

process is a negative binomial process if it is a mixed Poisson process with

intensity parameter following a Gamma distribution.

In order to simulate from the non-central chi-square distribution we use

the property:

J ∼ Poisson(
1
2

λ̃ ), then χ
2
k+2J ∼ χ

′2
k (λ̃ ) (4.12)

where χ2
k+2J is the standard chi-square distribution with k+ 2J degrees of

freedom and χ ′2k (λ̃ ) is the non-central chi-square distribution with k degrees

of freedom and non-centrality parameter λ̃ .

4.2.3 Association with meteorological parameters and spatial informa-

tion

Linear predictor

µt = Xtβ +by +K(dt ,Θk)

logit(pt) = Xtβ
z +bz

y +K(dt ,Θ
z
k)

(4.13)

where the design matrix Xt is the standardized covariate matrix containing

the number of villages infected the previous week, rain, average temperature,

minimum temperature, maximum temperature, humidity, wind and soil tem-

perature of the previous week. It also contains information about the number

of sheep and cows in each farm. The terms by, y = 1, ...,5 are random
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effects for each year. The first column X0 is assigned a unit vector and β0 and

β
z
0 are the intercepts.

The vector β is the vector of the coefficients for the design matrix and

is assigned a g-prior f (β−0|β0)∼ Normal(0, geβ0

n (XT
−0X−0)

−1) with f (β0)∼

Normal(0,104) and g
1+g ∼ Beta(1,1).

Similarly, for the zero-inflation part, the vector of the coefficients β z is as-

signed a g-prior f (β z
−0|β

z
0)∼Normal(0, gzeβ0

n(1+eβ0)2 (X
T
−0X−0)

−1) with f (β0)∼

Normal(0,104) and gz

1+gz ∼ Beta(1,1).

The term K(di,Θk) is an infection kernel used to model the spatial compo-

nent of disease transmission, where di = {dkl : k ∈ Si, l ∈ Ii− j}, is the set of all

Euclidean distances between uninfected farms k ∈ Si at time i and previously

infected farms l ∈ Ii− j within the typical exposed and infectious time of the

disease. The sets Si and Ii denote the sets of the susceptible and infectious

farms at time i. This spatial kernel reflects the total burden of the disease

accounting for the position between probable pairs of infector-infectee and

the chance of transmission based on a function of their in-between distance.

The same kernel function was used for the zero-inflation probability with a

different set of parameters Θ
z
k. We use a parametric function, assuming a

3-week expose and infectious window, of the form:
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K(di,Θk)=


1
|di| ∑

k∈Si

∑
l∈Ii− j

bexp{(−dkl
a )c}, if at least one yi− j > 0, (j = 1, 2, 3)

bexp{(−dmin
a )c}, if all yi− j = 0, (j = 1, 2, 3)

(4.14)

where |di| is the cardinality of di and dmin is the minimum distance beyond

which transmission cannot occur set at 250km.

4.2.4 Bayesian Neural Network

We will use a Bayesian neural net (BNN) with one hidden layer and a hyper-

bolic tangent activation function. The weights on the hidden layer and the

output weights will follow a horseshoe prior distribution. We will check the

best model fit for a varying number of nodes in the hidden layer based on

WAIC. The BNN is applied in the mean of the Poisson or in the zero-inflated

probability. When the BNN is applied in the mean the zero-inflation probabil-

ity is a linear regression with the covariates and the kernel (BNNLR model).

When the BNN is applied to the zero-inflation probability, the log-mean of

the Poisson follows a Gaussian OU, where its mean is a linear regression with

the covariates and the kernel (BNNZIP model). As the number of hidden

nodes increases, the prior over the function described by the neural network

converges to a Gaussian process.
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Below we present first the formulation of the BNN for the mean of the

Poisson process.

Λi =
∫ t

t−1
exp(λs)ds, i = 1, ...,T

λt = w′hnt +bias′

hnt, j = g(Xtw j +bias j +K(dt ,Θk)), j = 1, ...,nn

(4.15)

where w′ = {w′1, ...,w′nn} is the vector containing the weights of the output

layer, nn is the number of nodes in the hidden layer, w j = {w j1, ...,w jnc}

is the vector of weights of that correspond to hidden node j and nc is the

number of columns of the design matrix X . The hyperbolic tangent activation

function: g(x) = e2x−1
e2x+1

Figure 4.1 presents the neural network structure graphically.

The weights of the hidden and output layers are assigned horseshoe priors,

exchangeable between the weights of each layer.
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Figure 4.1 Directed acyclic graph of the Bayesian Neural Network model. Ellipses denote
parameters to be learned by the model. Rectangles denote data.

w′j ∼ Normal(0,k′jτ
′), j = 1, ...,nn

bias′ ∼ Normal(0,k′biasτ
′)

k′j ∼ Cauchy(0,1), k′j > 0

k′bias ∼ Cauchy(0,1), k′bias > 0

τ
′ ∼ Gamma(1,1)

w jl ∼ Normal(0,k jlτ), l = 1, ...,6

bias j ∼ Normal(0,kbias jτ)

k jl ∼ Cauchy(0,1), k jl > 0

kbias j ∼ Cauchy(0,1), kbias j > 0

τ ∼ Gamma(1,1)

(4.16)
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where k and k′ are the local shrinkage parameters, and t and t ′ are the global

ones.

A similar structure with horseshoe prior is also chosen when the BNN is

applied to the zero-inflation probability.

logit(pt) = wz′hnz
t +biasz′

hnz
t, j = g(Xtwz

j +biasz
j +K(dt ,Θk)), j = 1, ...,nn

(4.17)

The weights of the hidden and output layers are assigned horseshoe priors,

exchangeable between the weights of each layer.

wz′
j ∼ Normal(0,kz′

jτ
z′), j = 1, ...,nn

biasz′ ∼ Normal(0,k′bias
z
τ
′)

kz′
j ∼ Cauchy(0,1), kz′

j > 0

kz′
bias ∼ Cauchy(0,1), kz′

bias > 0

τ
z′ ∼ Gamma(1,1)

wz
jl ∼ Normal(0,kz

jlτ
z), l = 1, ...,6

biasz
j ∼ Normal(0,kz

bias jτ)

kz
jl ∼ Cauchy(0,1), kz

jl > 0

kz
bias j ∼ Cauchy(0,1), kz

bias j > 0

τ
z ∼ Gamma(1,1)

(4.18)
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where kz and kz′ are the local shrinkage parameters, and tz and tz′ are the

global ones.

4.3 Prequential Analysis

4.3.1 Prequential Methodology

In many areas of statistical modelling, the purpose of statistical inference is

mostly concentrated on forecasts on new observations given the data already

observed, rather than inference on model parameters (Dawid, 1984). The

prequential methodology works on a similar premise with cross-validation,

where out-of-sample predictions are used in order to access a models predic-

tion ability or access a strategies outcome, but bases its prediction for data

point yt on all previous outcomes, rather than on all outcomes distinct from yt .

The term “prequential”, derives from the words predictive and sequential, and

describes a general framework for assessing and comparing the predictive

performance of a forecasting system of a sequential nature like a time-series

model. Prequential analysis methodologies have been extensively used in

the field of meteorological forecasting and in medical diagnosis problems, a

review of these fields can be found on Dawid (1992).

The use of out-of-sample predictions, contrary to the methods of infor-

mation criteria, has a theoretical and a practical basis. We do not want the

data point yt to influence its own prediction and there are also cases where
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yt has not yet been observed. This is especially true in the case of epidemic

modelling, where forecasts about future disease incidences guide policy de-

cisions and evidence-based practices of health authorities. Forecasts about

an epidemic progression are used in identifying risk factors and proposing

mitigation strategies before the actual incidences have been observed. Due to

the highly contagious nature of the viruses presented in this thesis, the severe

consequences it has on animals’ well-being and the significant economic

consequences for people involved in animal husbandry, it is crucial for the

epidemic models to be able to predict large outbreaks, before they happen,

to help in the virus’ spread prevention. Probabilistic predictions also have

the added benefit of quantifying the level of uncertainty around the forecast

(quantifying basically how much we do not know), contrary to point estimates

prediction methodologies.

The prequential approach can be generally described by the following

simple sequential steps:

1. Based on the Y = (y1,y2, . . . ,yn) observed data (with n smaller than the

total number of observations), calculate a forecast from a prediction

distribution Pn+1 = Pn(yn+1), for unobserved data point yn+1, where Pn

corresponds to the probability forecast distribution after training with

the n data points. For deterministic scoring rules calculate the point

prediction ŷn+1.
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2. Next, observe value yn+1.

3. Calculate the accumulated prediction error (APE) score for observation

yn+1 based on some scoring rule between Pn+1 (probabilistic scoring

rule) or ŷn+1 (deterministic scoring rule) and yn+1, denoted by S(·).

4. Increase n by 1 and repeat steps 1 to 3 until n reaches N, where N stands

for the last data point.

5. Finally, calculate the mean of all prediction error scores of step 3, to

derive the mean prediction error for, which is given by:

APE =
1

N−n

N

∑
i=n+1

S(Pi,yi) (4.19)

4.3.2 Scoring Rules

The need for the evaluation of a model’s ability to accurately predict future

outcomes gave rise to the theoretical development of scoring rules (Gneiting

et al., 2007; Gneiting and Raftery, 2007). A scoring rule is a measure of the

‘distance’ between a probability forecast and the observed outcome containing

information simultaneously for both the sharpness and calibration of a given

model. Scoring rules framework has been used in various applications in

medicine (Hilden, 2018; Spiegelhalter, 1986) and in meteorology Murphy

and Winkler (1977, 1984), among others. Scoring rules are used as loss
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functions with the intent to minimize or maximise depending on the way they

are defined, and whether they are monotonically increasing or decreasing.

Definition We will give the formal definition of a scoring rule as it was

given in Gneiting et al. (2007); Gneiting and Raftery (2007):

A scoring rule is any function S : (P×Ω)→R∪{−∞,+∞}, which is P-quasi-

integrable ∀P ∈ P, where P is the convex class of probability measures on

(A,Ω).

The expected score under the probability measure Q ∈ P for probabilistic

forecast P can be written as:

S(P,Q) =
∫

S(P,ω)dQ(ω) (4.20)

The scoring rule S is proper relative to P if

S(Q,Q)≥ S(P,Q), ∀P,Q ∈ P (4.21)

and strictly proper relative to P if it is proper and

S(Q,Q) = S(P,Q) ⇐⇒ P = Q (4.22)

Strictly proper scoring rules promote honest forecasts, meaning that the

lowest score is returned when minimizing the scoring rule using as forecast

function the true generator function of the outcome. Strict propriety also
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ensures that both calibration and sharpness are addressed (Winkler et al.,

1996). Calibration refers to the statistical consistency between the probabilis-

tic forecasts and the observations and is a joint property of the predictive

distributions and the observations. Sharpness refers to the concentration of

the predictive distributions and is a property of the forecasts only (Czado

et al., 2009). There is no automatic or clear choice of a proper scoring rule to

be superior in any given situation and it may be appropriate to use a variety

of scores, to take advantage of their differing emphases and strengths.

We will now present the scoring rules for the assessment of count as they

appear in Czado et al. (2009).

Logarithmic scoring rule

The Logarithmic scoring rule is defined as:

logs(P,y) =−logpy (4.23)

This score depends on the predictive distribution P only through its probability

mass function py that it is assigned at the out-of-sample data points. We can

interpret the Logarithmic score as a ’surprisal’ function (how unlikely is to

observe the data points based on the predictive distribution), with the goal

being to minimize the expected surprise. There is also a clear connection

between this score and the predictive deviance dev(P,y) = −2logpy +C,
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where C is a function of data alone and is used as a standardizing term (Czado

et al., 2009; Spiegelhalter et al., 2002). The authors in Gschlöl and Czado

(2007, 2008) have chosen the standardizing term equal to zero, which directly

corresponds to the logarithmic score multiplied by 2. The logarithmic scoring

rule ignores the topology of space and is the only coherent scoring rule under

exchangeability of the data (Fong and Holmes, 2019). In our cases, the data

is time-ordered and we assume dependence between them. The logarithmic

score also appears in the minimum description length principle, which is

a formalization of Occam’s Razor in which the best hypothesis for a given

set of data is the one that permits the shortest encoding of the observed

data together with the prediction model. The minimum description length

principle was introduced by Rissanen (1978); it is important in information

theory and learning theory. The optimality of using the logarithmic score

under the assumption that our candidate models contain the correct model is

shown in Dawid (1992). In cases when this assumption is violated, alternative

prequential criteria-scoring rules also deserve attention.

Brier score

The Brier or quadratic score is defined as:

brs(P,y) =
∞

∑
i=0

(oi− py)
2 = 1−2py + ||p||2 (4.24)
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where oi equals to 1, if y = i and 0 otherwise and ||p||2 = ∑
∞
i=0 pi. The

interpretation of the Brier score is that it is an Euclidean distance in the

probability domain and takes values between 0 and 1 with lower values

meaning better prediction accuracy. The Brier score was originally used

for binary or categorical data (BRIER, 1950), and it was proposed for the

assessment of time series count data in Wecker (1989).

Spherical scoring rule

The spherical scoring rule is defined as:

sphs(P,y) =−
py√
||p||2

(4.25)

A detailed geometric characterization of the spherical scoring rule can be

found in Jose (2007).

Ranked probability score

The ranked probability score was originally introduced in Epstein (1969) and

was used as a scoring system for probability forecasts in ranked categorical

data. We will use the definition given in Czado et al. (2009) for count data:

rps(P,y) =
∞

∑
k=0
{Pk−1(k ≥ y)}2 (4.26)
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The ranked probability score has a similar interpretation to the Brier score

as is the Euclidean distance of the predictive distribution and the empirical

cumulative density function of the observed data. In Gneiting and Raftery

(2007) a different representation was given in terms of expectations:

rps(P,y) = EP|Y − y|− 1
2

EP|Y −Y ′| (4.27)

where Y and Y’ are independent copies of the predictive distribution P. When

P is a point forecast the ranked probability score reduces to the absolute error.

Squared error

A classical measure of predictive ability based on point predictions is the

squared error and it is defined as:

ses(P,y) = (y−µP)
2 (4.28)

where µP is the mean of the predictive distribution. The squared error is the

Euclidean distance between two points in R without any quantification of

the uncertainty of the prediction. This scoring rule is proper but not strictly

proper (Gneiting and Raftery, 2007).
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Normalized squared error

The normalised squared error score is defined as:

nses(P,y) =
(

y−µP

σP

)2

(4.29)

where σP is the standard deviation of the predictive distribution. This scoring

rule accounts also for the predictive uncertainty and it is prefered when we

have probabilistic predictions instead of point ones. The normalized squared

error score is improper since it tends to zero when the σP tends to infinity.

David-Sebastiani score

The David-Sebastiani scoring rule is defined as:

dss(P,y) =
(

y−µP

σP

)2

+2logσP (4.30)

This parametrization was proposed in Gneiting and Raftery (2007) based on

works of Dawid and Sebastiani (1999) and deals with the vanishing error of

the normalised squared error score when the σP gets sufficiently large.

4.4 Results

We trained all five models both on the Sheep-pox dataset, as well as the Foot

and Mouth one. Based on the information criterion WAIC the best performing
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model is the CIR for the Sheep-pox data (Table 4.1). For Foot and Mouth

disease, the model with the lowest WAIC is the Poisson model with the latent

rate following the Student-t OU process. All 5 models are able to estimate

the trend of the infections for both datasets (Figures 4.2-4.7).

(a) Gaussian OU (b) Student-t OU

Figure 4.2 Reported and estimated weekly infections with 95% Cr.I. (solid and dashed lines),
Sheep-pox data.

In order to assess the out-of-sample predictive ability of the proposed

models we performed prequential analyses on both datasets. For the Sheep-

pox dataset, we made out of sample predictions for the last 60 weeks of

disease incidences and for the Foot and Mouth, since it is a smaller dataset we

performed predictions for the last 32 days. We run each model instance for 8

chains in parallel for 200000 iterations, where the first half was used as warm-

up. We used the freely available R package Nimble for the implementation of

all the models, which implements Metropolis-Hastings algorithms.
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Figure 4.3 Reported and estimated weekly infections with 95% Cr.I. (solid and dashed lines),
CIR model, Sheep-pox data.

Table 4.1 WAIC for Sheep-pox dataset

Model WAIC
Gaussian OU 289
Student OU 280

CIR 272
BNNZIP 294
BNNLR 296
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(a) BNNZIP (b) BNNLR

Figure 4.4 Reported and estimated weekly infections with 95% Cr.I. (solid and dashed lines),
Sheep-pox data.

(a) Gaussian OU (b) Student-t OU

Figure 4.5 Reported and estimated weekly infections with 95% Cr.I. (solid and dashed lines),
Foot and Mouth data.
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Figure 4.6 Reported and estimated weekly infections with 95% Cr.I. (solid and dashed lines),
CIR model, Foot and Mouth data.

Table 4.2 WAIC for Foot and Mouth dataset

Model WAIC
Gaussian OU 167
Student OU 144

CIR 162
BNNZIP 168
BNNLR 175
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(a) BNNZIP (b) BNNLR

Figure 4.7 Reported and estimated weekly infections with 95% Cr.I. (solid and dashed lines),
Foot and Mouth data.

In the Sheep-pox data, the Gaussian OU model has the lowest Standardize

square and David and Sebastiani scores (Table 4.3). The Student-t OU

performs similarly to the Gaussian OU while having the lowest Quadratic

score. The main difference between the two models is observed in the

Squared scoring rule, which is the only scoring rule that does not account for

the variance of the predictions. The CIR model that had the lowest WAIC is

not favourable by any scoring rule, although it has close Logarithmic, Ranked

and Squared score values to the BNNLR, which has the lowest ones (Table

4.3). The BNNZIP presents the worst scores in this dataset.

For the Foot and Mouth dataset, the Student-t OU model has the lowest

Logarithmic, Spherical, Ranked and Squared error scores. The Gaussian OU

model performs identically in terms of Spherical score with the Student-t OU
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Table 4.3 Scoring rules results for Sheep-pox dataset

Model Scoring rules
Logarithmic Spherical Quadratic Ranked Squared Standardized square David & Sebastiani

Gaussian OU 4.589 -0.617 0.496 3.844 154.221 0.678 0.799
Student OU 4.814 -0.621 0.493 4.047 206.459 0.952 1.059

CIR 2.447 -0.604 0.553 1.461 13.034 1.235 3.744
BNNZIP 7.590 -0.6059 0.505 6.715 566.315 0.828 1.343
BNNLR 2.187 -0.6363 0.5147 1.2985 10.177 2.420 2.403

Table 4.4 Scoring rules results for Foot and Mouth dataset

Model Scoring rules
Logarithmic Spherical Quadratic Ranked Squared Standardized square David & Sebastiani

Gaussian OU 1.316 -0.622 0.573 0.662 2.261 0.459 3.086
Student OU 1.270 -0.622 0.574 0.632 1.997 0.093 2.812

CIR 4.648 -0.426 0.734 3.830 85.009 0.073 5.449
BNNZIP 1.331 -0.591 0.627 0.672 2.152 0.265 2.757
BNNLR 1.563 -0.484 0.744 0.849 2.627 0.482 3.005

and has similar values on all the other scores. The CIR model presents the

lowest standardized squared score, although it has the highest squared error.

The BNNZIP has the lowest David & Sebastiani score(Table 4.4).

4.5 Discussion

In this Chapter, we investigated 5 different models used for modelling disease

outbreaks in livestock for their predictive ability. We used Poisson process

models where the latent rate is described by a series of stochastic differential

equations. We generalised the Gaussian OU model presented in Malesios

et al. (2017) by using its Student-t counterpart with transition densities with

fatter tails, allowing theoretically for higher degrees of overdispersion and

prediction of sudden outbreaks. The same is also true for the CIR model for
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the rate of the point process approximating eventually a Negative Binomial

process.

Both models show improvements over the Gaussian OU model, both in

terms of WAIC and in the prequential analysis. For the majority of the scoring

rules, the two models score better or similarly with the Gaussian OU. The

main drawback of the CIR model was the higher computational time needed

and for many Markov chains, the convergence was not achieved, rendering

them unusable. The initial values must be properly selected to overcome this

issue. The two OU models did not suffer from this problem.

The two Bayesian Neural net models did not show any improvement over

the Gaussian OU one based on WAIC for the two datasets. In the Foot and

Mouth dataset, the BNNZIP has a similar performance with the Gaussian

OU, although slightly worse, while in the Sheep-pox dataset is the worst-

performing model based on all the scoring rules. The main drawback of the

two Neural net models is the loss of the interpretability of the results and the

way that the disease is transmitted. Furthermore, both models also suffered

from slow convergence and in some instances no convergence at all. The

initial values of the parameters need to be carefully selected, something not

trivial given the complicated structure of these models.





Chapter 5

Discussion

In this thesis, we developed stochastic epidemic models focused on disease

outbreaks in humans, as well as livestock. We developed specific statistical

methodology that can mitigate the efforts of health authorities both in epi-

demic surveillance through the quantification of the virus transmissibility and

through strategies of optimal vaccination policies for the general population.

We examined different plans of action for the vaccination regarding the effects

of delayed distribution of subsequent vaccine doses for infectious diseases.

These approaches can be implemented during moments of crisis, such as the

Covid19 pandemic, in order to achieve incomplete herd immunity in a faster

time frame.

In Chapter 1 we gave a general introduction to the main subjects of this

thesis. We shared a general overview of the Bayesian methodology we

followed for Chapters 3 and 4. We also presented the various algorithms
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we used in order to perform Bayesian inference with an extra focus on

the No-U-Turn-Sampler, an advanced variant of Hamiltonian Monte Carlo,

which automatically selects an appropriate number of leapfrog steps in each

iteration in order to allow the proposals to traverse the posterior without doing

unnecessary work, by avoiding the random-walk behaviour that arises in

random-walk Gibbs or Metropolis-Hastings samplers.

In Chapter 2 the results of a simulation-based evaluation of several poli-

cies for vaccine rollout are reported, particularly focusing on the effects of

delaying the second dose of two-dose vaccines. In the presence of a limited

vaccine supply, the specific policy choice is a pressing issue for several coun-

tries worldwide, and the adopted course of action will affect the extension or

easing of non-pharmaceutical interventions in the next months. We employ a

suitably generalised, age-structure, stochastic SEIR epidemic model that can

accommodate quantitative descriptions of the major effects resulting from

distinct vaccination strategies. The different rates of social contacts among

distinct age groups (as well as some other model parameters) are informed

by a recent survey conducted in Greece, but the conclusions are much more

widely applicable. The results are summarised and evaluated in terms of the

total number of deaths and infections as well as life years lost. The optimal

strategy is found to be one based on fully vaccinating the elderly/at risk as

quickly as possible, while extending the time interval between the two vaccine
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doses to 12 weeks for all individuals below 75 years old, in agreement with

epidemic theory which suggests targeting a combination of susceptibility and

infectivity. This policy, which is similar to the approaches adopted in the UK

and in Canada, is found to be effective in reducing deaths and life years lost

in the period while vaccination is still being carried out.

In Chapter 3 we developed stochastic epidemic models suitable for es-

timating the disease burden and transmissibility of multiphasic epidemics.

At the onset of the Covid-19 pandemic, a number of non-pharmaceutical

interventions have been implemented in order to reduce transmission, thus

leading to multiple phases of transmission. The disease reproduction number

Rt , a way of quantifying transmissibility, has been a key part in assessing the

impact of such interventions. We discuss the distinct types of transmission

models used and how they are linked. We consider a hierarchical stochastic

epidemic model with piece-wise constant Rt , appropriate for modelling the

distinct phases of the epidemic and quantifying the true disease magnitude.

The location and scale of Rt changes are inferred directly from data while the

number of transmissibility phases is allowed to vary. We determine the model

complexity via appropriate Poisson point process and Dirichlet process-type

modelling components. The models are evaluated using synthetic data sets

and the methods are applied to freely available data from California and New

York states as well as the United Kingdom and Greece. We estimate the
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true infected cases and the corresponding Rt , among other quantities, and

independently validate the proposed approach using a large seroprevalence

study. We plan to further extend our methodology by developing multi-type

models, to account for a more defined structure between populations.

In Chapter 4 we focused our research on Bayesian spatio-temporal regres-

sion models for the analysis of infectious diseases. We used Poisson process

or Negative Binomial models embedded with latent paths based on stochastic

differential equations. We generalised previous research on this field, where

the transmission parameter was based on normal Orstein-Uhlenbeck processes

bu introducing OU-type models with Student’s t-distribution transition densi-

ties. We also used the Cox-Ingersoll-Ross model, which is primarily used in

mathematical finance, to examine if it can improve the predictive ability of

our models. The means of these stochastic processes are associated with a

number of covariates, including meteorological parameters and a spatial trans-

mission kernel. We examined the usage of hyper g-priors and Bayesian neural

networks with horseshoe priors for the parameters of the hidden layers for

performing variable selection and identifying possible covariates that can be

of use to the health authorities. A prequential analysis was performed on data

from N.Evros for two types of infectious diseases, Sheep pox and Foot and

mouth virus. For future research, we would like to develop a continuous time

random graph model where the nodes would be spatiotemporally correlated
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and the whole latent path of the infection could be inferred. Additionally, it

would be particularly interesting to apply sequential monte carlo algorithms

to our proposed models for online learning and compare the computational

and statistical efficiency between different algorithms.
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