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Abstract

The problem of exciting a layered medium with an arbitrary distribution
of (acoustic) point sources or (electric/magnetic) dipoles is considered in
this dissertation. A mathematical formulation based on the topology of
the distribution of the sources/dipoles and their number is employed.

The energy transfer process is investigated by adopting the complex form
of the energy functionals. Energy Conservation Laws that relate the real
part of the power flux with the corresponding scattering cross sections and
the imaginary part of the power flux with the Lagrangian density in the
propagating medium are derived.

The notions of Interaction Scattering Cross Sections (ISCS) and In-
teraction Power Fluxes (IPF) that quantify the effects of interaction be-
tween point sources/dipoles are developed and relevant optical theorems
are established. Physical bounds for the ISCS ratios, the number of point
sources/dipoles and the number of excitation layers are derived as well.

The exact solution of the direct problem in spherical geometry is de-
termined by devising an overall superposition method that combines the
T-Matrix, Sommerfeld’s and Green’s Functions methods. In particular, by
formulating the superposition of the individual fields into an overall field,
exact expressions for the coefficients of the scattered fields are obtained.
An extensive parametric numerical analysis for the behaviour of the energy
functionals and the ISCS ratios is presented.

Finally, the behaviour of the involved fields is further investigated in
the so-called low frequency zone by utilizing tools of asymptotic analysis.
Several inverse problems concerning the number of sources/dipoles, the
physical parameters of the scatterer and/or its geometrical characteristics
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are formulated and solved analytically for the spherical geometry.

Keywords: Scattering, Acoustics, Electromagnetics, Cross Sections,
Energy Conservation, Inverse Problems, Interactions, Layered Medium,
Dipoles, Point Sources, Spherical Waves, Partial Differential Equations



Περίληψη

Το πρόβλημα διέγερσης ενός πολυστρωματικού μέσου από μια αυθαίρετη

κατανομή (ακουστικών) σημειακών πηγών ή (ηλεκτρικών / μαγνητικών) διπό-
λων αποτελεί το βασικό αντικείμενο αυτής της διατριβής. Το προτεινό-
μενο μαθηματικό μοντέλο βασίστηκε στην τοπολογία της κατανομής των

πηγών καθώς και στο πλήθος τους. Συγκεκριμένα, τα εμπλεκόμενα πεδία
ομαδοποιήθηκαν με βάση το στρώμα του σκεδαστή στο οποίο βρίσκονται

οι πηγές/δίπολα στα οποία οφείλονται (q-διεγειρόμενα πεδία) και χαρακ-
τηρίστηκαν ως μεμονωμένα πεδία, q-μερικά πεδία ή καθολικά πεδία ανάλογα
με το αν οφείλονται σε διέγερση από μία πηγή/δίπολο, από ορισμένες πηγές ή
από όλες τις πηγές που διεγείρουν τον σκεδαστή. Τα στρώματα του σκεδαστή
χωρίστηκαν με βάση το αν περιέχουν πηγές/δίπολα (διεγείροντα στρώματα)
ή όχι (μη διεγείροντα στρώματα).
Υιοθετόντας μια προσέγγιση όπου τα ενεργειακά συναρτησοειδή και τα εν-

εργειακά διανύσματα ροής θεωρήθηκαν μιγαδικές συναρτήσεις, μελετήθηκε η
διαδικασία μεταφοράς ενέργειας, από τα διεγείροντα στρώματα του σκεδαστή,
στο εξωτερικό του έως και την ζώνη μακρινού πεδίου. Μέσω αυτής της
προσέγγισης, αποδείχθηκαν Νόμοι Διατήρησης της Ενέργειας, οι οποίοι συν-
δέουν ευθέως την καθολική διατομή σκέδασης με την ενεργό ροή (πραγματικό
μέρος των διανυσμάτων ροής) στο εσωτερικό των διεγειρόντων στρωμάτων.
Επιπλέον, η Λαγκραντζιανή πυκνότητα στο μέσο διάδοσης (εξωτερικό) και
τον σκεδαστή συνδέθηκε άμεσα με την άεργο ισχύ (φανταστικό μέρος των
διανυσμάτων ροής) στα διεγείροντα στρώματα.
Η εισαγωγή των εννοιών των Διατομών Αλληλεπίδρασης και των Ροών

Αλληλεπίδρασης, βοήθησε στην ποσοτικοποίηση της ενέργειας και της ροής
που οφείλεται στην αλληλεπίδραση μεταξύ των εμπλεκόμενων μεμονωμένων
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πεδίων. Συγκεκριμένα, αποδείχθηκαν οπτικά θεωρήματα που συνδέεουν τις
Διατομές Αλληλεπίδρασης με τα q-μερικά πεδία, ενώ αποδείχθηκε ότι τα εν
λόγω θεωρήματα, αποτελούν γενίκευση του Γενικού Θεωρήματος Σκέδασης.
Με χρήση κατάλληλων τεχνικών Συναρτησιακής Ανάλυσης, αποδείχθηκαν
φυσικά φράγματα για το ποσοστό των Διατομών Αλληλεπίδρασης επί της κα-

θολικής διατομής σκέδασης και για το πλήθος των πηγών που διεγείρουν τον

σκεδαστή και των διεγειρόντων στρωμάτων του σκεδαστή. Μέσω ανάλυσης
των εμπλεκόμενων διανυσμάτων ροής, συσχετίστηκαν οι Ροές Αλληλεπί-
δρασης με τις Διατομές Αλληλεπίδρασης και τα q-μερικά πεδία.
Η ακριβής, αναλυτική λύση του ευθέος προβλήματος σκέδασης για την

σφαιρική γεωμετρία επιτυγχάνεται μέσω μιας μεθόδου καθολικής υπέρθεσης,
η οποία συνδυάζει στοιχεία από την μέθοδο Sommerfeld, την T-Matrix
μέθοδο και μεθόδους των Συναρτήσεων Green. Συγκεκριμένα, με την εισ-
αγωγή τελεστών διέγερσης και συναρτήσεων παρατήρησης, η υπέρθεση των
μεμονωμένων πεδίων ομαδοποιείται σε ένα καθολικό πεδίο του οποίου το

ανάπτυγμα περιέχει τους ζητούμενους συντελεστές σκέδασης. Μέσω της T-
Matrix μεθόδου, οι συντελεστές του καθολικού πεδίου σε κάθε στρώμα του
σκεδαστή εκφράζονται συναρτήσει των συντελεστών του καθολικού πεδίου

στο εξωτερικό του σκεδαστή και οι οποίοι με τη σειρά τους, ευρίσκονται με
την βοήθεια των τελεστών διέγερσης. Οι συντελεστές των μεμονωμένων
πεδίων, βρίσκονται (χωρίς επανάληψη της αλγοριθμικής διαδικασίας) μέσω
κατάλληλης αντικατάστασης.
Μέσω κατάλληλης υλοποίησης σε προγραμματιστικό περιβάλλον της ακρι-

βούς λύσης του ευθέος προβλήματος για τη σφαιρική γεωμετρία διενεργείται

εκτενής παραμετρική ανάλυση που εξετάζει την συμπεριφορά των ενεργειακών

ποσοτήτων (διατομές σκέδασης και διατομές αλληλεπίδρασης) σε σύγκριση
με τις μεταβολές των γεωμετρικών χαρακτηριστικών των σκεδαστών, των
φυσικών τους παραμέτρων καθώς του πλήθους ή/και της τοπολογίας των
πηγών/διπόλων που διεγείρουν τον σκεδαστή.
Τέλος, η συμπεριφορά των εμπλεκόμενων πεδίων ερευνάται περαιτέρω στη

λεγόμενη ζώνη χαμηλών συχνοτήτων. Με χρήση εργαλείων και τεχνικών
Ασυμπτωτικής Ανάλυσης, η μορφή των τύπων για αυτήν την κατηγορία προβ-
λημάτων απλοποιείται και μια πληθώρα αντιστρόφων προβλημάτων διατυπώνε-
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ται και επιλύεται αναλυτικά. Τα αντίστροφα προβλήματα αφορούν - μεταξύ
άλλων - τον εντοπισμό πηγών / διπόλων που διεγείρουν τον σκεδαστή, την
εύρεση των φυσικών παραμέτρων του σκεδαστή, ενώ ερευνώνται και μικτά
προβλήματα, όπως π.χ. η εύρεση των φυσικών παραμέτρων μιας σφαίρας που
περιέχει πηγή/δίπολο σε άγνωστη θέση στο εσωτερικό της.

Λέξεις κλειδιά: Σκέδαση, Ακουστική, Ηλεκτρομαγνητισμός, Διατομές
Σκέδασης,Διατήρηση της Ενέργειας, Αντίστροφα Προβλήματα, Αλληλεπιδρά-
σεις, Πολυστρωματικό Μέσο, Δίπολα, Σημειακές Πηγές, Σφαιρικά Κύματα,
Μερικές Διαφορικές Εξισώσεις
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This labour was accomplished through running. Running, and running
again, and running only. So the Hind ran, faster than the hunters’ arrows.
Hercules ran after her. He kept running, tirelessly, like no man had run
before. So should run those who wish to tell the tale. And so should
run—and even more so—those who desire to hear it. Fortunately, running
is done step by step. Even the fastest, the as-swift-as-lightning run, or the
longest, never-ending run, is done, too, step by step. And so, step by step,
shall Hercules run after the Hind of Ceryneia. And step by step he shall
find the way to capture her.

Maria Aggelidou, The Labours of Hercules, Vol. I
translated by Nefelie Kalogeropoulou.
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Introduction

The propagation and scattering of waves has been one of the most funda-
mental scientific fields, even from the early years of science. The elastic-
wave behaviour was studied both theoretically and analytically by many
famous scientists, even from the 19-th century. Well-known and still used
today is the volume-integral formulation devised and analyzed by G. Mie in
his famous paper [1]. However, Mie was not the first to derive a mathemat-
ical formulation suitable for the study of waves, [2]. In particular, many
years before him, Clebsch had developed an analytical method for comput-
ing the exact solution for elastic-wave scattering by a sphere in [3], while
the famous Maxwell’s electromagnetic theory had been already published
[4]. Nicholson addressed in a series of papers the physical and mathemati-
cal aspects of propagation and scattering waves in spherical geometry, [5],
[6], [7], while other scientists like Debye [8], Watson [9], [10] and Walker
[11] provided a rigorous mathematical framework for addressing scattering
and diffraction problems. Furthermore, wave propagation and scattering,
were the major subjects of Lord Rayleigh’s scientific work, [12], [13], [14],
where he studied specific physical problems like Rayleigh scattering and
thoroughly investigated the use of Bessel functions in the mathematical
formulation of wave problems. Ludvig Lorenz - not to be confused with
Hendrik Lorentz - was also a pioneer of electromagnetics and dedicated
most of his scientific work in propagation and scattering of waves, [15],
[16], [17]. Finally, one cannot talk about the history of waves without
mentioning the work of Heaviside and Green. Both scientists, in their ef-
forts to deepen the study of mathematical physics, created scientific tools
and concepts like Green’s theorem and the use of potentials [18], [19], [20]
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or invented new operators (curl, divergence) [21], [22], [23] that acquired
global importance over the years. Furthermore, the necessity of using such
tools in wave-related problems advocated and promoted the use of vector
calculus in other fields of science. In more recent years, technological ad-
vances and the need for even deeper understanding of wave phenomena has
motivated scientists [24], [25], [26] to re-invigorate the interest for analytical
and numerical solutions of scattering problems.

In modern-day real-world applications, the presence of more than one
sources that excite a scatterer is quite custom. In such a case, greater com-
plexity of both the direct and inverse scattering problem occurs, especially
when inhomogeneous media are involved. In the literature, boundary-value
problems concerning the excitation of a layered medium by N sources, are
motivated by important scattering and radiation applications that occur
in diversity and abundance for both acoustic and electromagnetic waves.
Such applications include the stimulation of the brain by the neurons cur-
rents [27], [28], optical diffusion [29], antenna-type scatterers radiating in
a layered background [30], microstrip antennas [31], radiation by multiple
antennas in inhomogeneous backgrounds [32], and techniques for cancer
treatment [33].

Besides, techniques for inverse scattering problems, like field-splitting
decompositions [34], reconstruction of obstacles buried in layered media
[35], beamforming techniques for source localization [36], [37], microphone
array methods [38], [39] and axial fans’ measurements in aeroacoustics [40]
often rely on the corresponding direct problems that involve excitation by
a number of sources. We note that inverse schemes for the identification
of individual fields on spherically-symmetric conductors are investigated in
[41], issues regarding the inverse magneto-electro-encephalography (MEG)
problem are addressed in [42], while point source decomposition is used for
inverse schemes in [43].

When more than one radiation sources emit waves in the same volume,
the various primary and secondary (scattered) generated fields interact, ev-
idently, with each other. In the excitation of a three-dimensional, bounded,
layered scatterer by a distribution of sources that generate spherical waves
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(like a dipole distribution in electromagnetics or a point source distribu-
tion in acoustics), these interactions lead to the generation of interaction-
induced flux, [44], [45]. This fact is demonstrated by the “extra” power flux
that is present but can not be attributed to any specific field, [46].

In this dissertation, we investigate the excitation problem of a layered
medium by an arbitrary number N of sources generating spherical waves.
The sources are arbitrarily distributed inside or outside the medium, for
both acoustic and electromagnetic waves. A layered medium is the type of
scatterer that consists of an arbitrary number P of homogeneous, disjoint
domains that are called layers. The innermost layer is called core while the
domain in which the entire medium lies, is called exterior. Due to physical
limitations, the layers preceding the core, usually satisfy the transmission
boundary conditions and they are called penetrable (acoustic fields) or di-
electric (electromagnetic fields), while the core can satisfy a wider range of
boundary conditions. For P = 1, we have the simpler, yet quite common
case of a homogeneous scatterer.

We note that for electromagnetic waves, we address the case where
the dipole distribution consists of either electric dipoles only or magnetic
dipoles only. This is due to the fact that, when a magnetic dipole ra-
diates at close proximity with an electric dipole, the radiation pattern is
highly assymetric and thus, not uniform propagation is present, see [47].
To address the complexity of these interactions, we adopted a formulation
where we grouped the participating fields with respect to their locations (q-
excitation fields), their type (primary, secondary, total) and their multitude
(individual, overall). In a similar manner, we define also the corresponding
power fluxes and energy functionals. We divided our investigation in two
parts: Part I concerns our findings for acoustic waves, while Part II for
electromagnetic waves.

By utilizing the above-mentioned formulation, in the first section of each
part (sections 1 and 4) we investigated the energy transfer process that
describes the way the power flux “travels” from the source of radiation,
through the scatterer’s layers to the far-field zone. In particular, we ex-
tracted energy conservation laws for both acoustic and electromagnetic
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waves and proved several scattering relations, like the optical theorem.
To extract these laws we introduced interaction scattering cross sections
(ISCS) and interaction power fluxes (IPF) that quantify the power flux
produced by the interaction between participating fields and we adopted
the complex-quantity approach for the energy functionals which enables
the connection between the IPF with the Lagrangian density, [48], [49].
We note that the complex form of the Poynting vector is not something
entirely new in electromagnetics, since it is usually related to the reac-
tive power, [50]. In acoustics however, despite some preliminary efforts to
utilize the complex form of the energy functionals, [51], [52], its potential
use in measurement techniques [53] and its physical relation with reactive
intensity [54], [55] came into light in recent years.

Scattering relations for point-generated spherical acoustic and electro-
magnetic waves were investigated in [56], [57], for a homogeneous scatterer
excited by external sources and in [58], [59] for a layered obstacle excited
by internal sources. Volume-integral formulations were also discussed for
layered particles in [60], while generalizations of the optical theorem for
multipoles have been investigated in [61]. Physical bounds for the bistatic-
radar scattering cross section (SCS) were presented in [62], while physical
bounds for the ISCS were presented in [63] for electromagnetic waves and
in [64] for acoustic waves.

For the solution of the direct scattering problem in the spherical geome-
try, several techniques have been developed over the years and the issue has
been addressed in different analytical and numerical ways depending on the
specifics of each problem, [65], [66], [67], [68], [69], [70], [71], including prob-
lems that involve coated objects [72], [73], [74]. We note that the spherical
geometry has evolved into a “powerhouse” for several physical problems,
where implementing analytical procedures leads to bench-marking conclu-
sions with the ability to be modified easily for more complicated geometries.
The sphere has been used as a realistic model in many applications such as
the the ultrasonic spectrometry for particle sizing [75], the shear-acoustic
interactions for systems of particles [76] and the excitation of a spherical
shell immersed in an acoustic waveguide [77].
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In this dissertation, we chose a method that is based on the decom-
position of the Green’s Function and is combined with the Sommerfeld’s
method and the T-Matrix approach. This method is developed in section 2
(acoustics) and section 5 (electromagnetics). The novelty of our proposed
method is the use of excitation operators and observation functions that
allow the grouping of the unknown coefficients in a simplified form and al-
low the extraction of the individual fields without additional calculations or
re-runs of the same computational algorithm. The behaviour of the various
energy quantities and the physical bounds of ISCS, is thoroughly analyzed
for the spherical geometry. In particular, subsections 2.4 (acoustics) and 5.4
(electromagnetics) contain an extensive parametric analysis for the spher-
ical geometry. This analysis, addresses various aspects of the scattering
phenomena like the variations of the ISCS ratios to the overall SCS, the
behaviour of the values of ISCS and SCS for different core sizes and/or
varying distributions. Additionally, the form of the point source/dipole
distribution affects the behaviour of the involved quantities was examined
for all possible types of excitation: external excitation where all sources lie
in the exterior of the scatterer, internal excitation where all sources lie in
the interior of a scatterer’s shell and mixed excitation where the sources lie
in both the exterior and the interior of the scatterer.

In the final section of each part (section 3 - acoustics and section 6 - elec-
tromagnetics), we address a set of inverse problems, with our main focus
being the so-called low-frequency zone, i.e. k0a1 << 1. Utilizing techniques
of asymptotic analysis, we are able to construct simple approximations of
the exact fields, with high accuracy in the low-frequency zone. Further-
more, these approximations in many occasions remain accurate even as
we deviate from the low-frequency zone. Utilizing the above mentioned
approximations, we formulate and solve a set of inverse problems: identifi-
cation of the number of sources exciting a scatterer, which has been proved
a significant difficulty in beamforming techniques [78], analytical source
localization schemes for the case where 2 and 3 sources excite the sphere,
extraction of the geometrical characteristics of the sphere and determina-
tion of its physical parameters, and finally some combined problems, e.g.,



6 CONTENTS

the problem of a sphere with unknown physical parameters and geometri-
cal characteristics emitting a wave from an unknown source located in its
interior.



Part I:
Acoustic Waves

7



Chapter 1

Energy Transfer Process

1.1 Mathematical Formulation of the Excitation Problem due
to N Point Sources

The layered scatterer V is identified as a bounded and closed subset of R3

with C2 boundary S1, whose interior is divided by P−1 C2 surfaces Sp (p =
2, . . . , P ) into P nested, annuli-like layers Vp (p = 1, . . . , P ), see Fig. 4.1.
Each surface Sp+1 is enclosed by the surface Sp, with dist(Sp, Sp+1)>0, and
is oriented by the outward normal unit vector n̂. The scatterer’s layers Vp,
for p = 1, . . . , P − 1, are homogeneous and isotropic and are character-
ized by real wavenumbers kp, mean compressibilities γp, and mass densities
ρp. The scatterer’s core VP can be soft, hard, resistive or penetrable with
wavenumber kP , mean compressibility γP , and mass density ρP . The exte-
rior V0 of V has wavenumber k0, mean compressibility γ0, and mass density
ρ0.

A distribution of N point sources - which can be internal or external -
excite the scatterer V . Each point source is located at ri. These sources,
are distributed inside Q excitation layers V ex

q , with q = 1, . . . , Q and
Q ≤ P + 1. In the case where the exterior V0 of the scatterer contains
sources, then V ex

1 coincides with V0. If no sources are contained in V0,
then V ex

1 is the outermost layer containing sources. Excitation layer V ex
q

contains nq sources each one of strength Aq,j and position vector rq,j, for
j = 1, . . . , nq. Evidently, it holds that n1 + n2 + · · ·+ nQ = N .

The first-order (linearized) equations of sound propagation in a lossless

8
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Figure 1.1: The considered layered scatterer V excited by multiple external and internal point sources

medium take the following form [79]:

γPt(r, t) +∇ ·V(r, t) = 0 (1.1)
ρVt(r, t) +∇P (r, t) = 0 (1.2)

with P (r, t) denoting the acoustic pressure and with V(r, t) denoting the
acoustic velocity inside the propagating medium. For time-harmonic fields,
the acoustic pressure is of the form

P (r, t) = e−iωtu(r) (1.3)

with u(r) the spatial acoustic pressure. On the other hand, for time-
harmonic dependence, by taking the rotation of equation (1.2) we readily
prove that the acoustic velocity is irrotational and hence, a spatial, scalar
potential ϕ(r) exists such as to hold

V(r, t) = e−iωt∇ϕ(r) (1.4)
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Substituting (1.3), (1.4) to (1.1) and (1.2), we respectively arrive at

u(r) = iωρϕ(r) (1.5)
∇u(r) = iωρ∇ϕ(r) (1.6)

Since (1.6) is a direct consequence of (1.5), we derived that equation (1.5)
constitutes the fundamental equation of time-harmonic sound propagation
in a lossless medium. In the rest of the text, we will restrict the definitions
- unless there is risk of confusion - to the spatial acoustic pressure. Fur-
thermore, we will use the term “fields” when we refer collectively to both
the spatial acoustic pressure and the spatial acoustic velocity potential.

The spatial primary acoustic pressure induced by the point source at rq,j
is given by

uprq,j(r) = Aq,j

(
exp(ikq|r− rq,j|)

|r− rq,j|

)
, r ̸= rq,j, (1.7)

where j = 1, . . . , nq and q = 1, . . . , Q, which is a variation of the funda-
mental solution of the Helmholtz equation, see [80].

If Vp is not an excitation layer, the secondary pressure generated in Vp by
a source at rq,j coincides with the total pressure in Vp and will be denoted
by upq,j. Following Sommerfeld’s method [81], the total pressure induced
in the excitation layer V ex

q due to a single source at rq,j ∈ V ex
q has the

decomposition

uqq,j(r) = uprq,j(r) + usecq,j(r), r ∈ V ex
q \ {rq,j}. (1.8)

Fields due to a single source will be referred to as individual fields. More-
over, the total q-excitation pressure upq of Vp is the superposition of the
total individual fields in Vp due to all sources in V ex

q , i.e.

upq(r) =

nq∑
j=1

upq,j(r). (1.9)

For excitation layers V ex
q , the primary q-excitation pressure uprq and the

secondary q-excitation pressure usecq are defined as the superpositions of the
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corresponding individual pressures due to all sources in V ex
q , i.e.

uℓq(r) =

nq∑
j=1

uℓq,j(r), (1.10)

where ℓ ∈ {pr, sec}. Then, the total q-excitation pressure of Vq is given by

uqq(r) = uprq (r) + usecq (r), r ∈ V ex
q \ {rq,1, . . . , rq,nq

}. (1.11)

Besides, the overall pressure up of Vp is defined as the superposition of
all individual pressures of Vp, i.e.

up(r) =

Q∑
q=1

nq∑
j=1

upq,j(r) =

Q∑
q=1

upq(r). (1.12)

If Vq coincides with an excitation layer, the overall secondary pressure of
Vq is the superposition of all individual secondary pressures of Vq, whereas
the overall pressure of Vq is defined as

uq(r) = uprq (r) + usecq (r) +
∑
s̸=q

uqs(r). (1.13)

Individual, q-excitation, and overall pressures satisfy the scalar Helmholtz
equations; e.g. for the total q-excitation field of Vp, it holds

∇2upq(r) + k2pu
p
q(r) = 0, (1.14)

in Vp, if Vp is not an excitation layer, and in V ex
q \ {rq,1, . . . , rq,nq

} if Vp is
an excitation layer V ex

q .
The (total) individual, q-excitation and overall fields satisfy the trans-

mission conditions

up−1(r) = up(r), (1.15)
∂ϕp−1(r)

∂n
=

∂ϕp(r)

∂n
, (1.16)

on the boundaries of each layer Vp (p = 1, . . . , P − 1). For a penetrable
core VP , conditions (1.15) and (1.16) hold also for p = P . For soft, hard
or resistive core, the following conditions hold on its boundary SP [79]
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uP−1(r) = 0, (1.17)
∂ϕP−1(r)

∂n
= 0, (1.18)

∂ϕP−1(r)

∂n
+

uP−1(r)

ZP−1
= 0. (1.19)

with ZP−1 the acoustic impedance of VP−1. Moreover, the total (individual)
fields in V0 satisfy the Sommerfeld radiation condition [79], [82]

lim
r→∞

(
∂ϕ0

q,j(r)

∂r
+

u0q,j(r)

ζ0

)
= 0, (1.20)

uniformly over all directions r̂ = r/r, with ζ0 denoting the medium admit-
tance of the exterior V0 which is given by

ζ0 =

√
ρ0
γ0
.

Remark 1.1.1 Another form of (1.19) is (see [79], [83])

∂uP−1(r)

∂n
+ ikP−1λu

P−1(r) = 0 (1.21)

which utilizes the dimensionless constant λ, known as characteristic ad-
mittance which is given by

λ =
ζP−1

ZP−1
(1.22)

with ζP−1 the medium admittance of VP−1. Equation (1.19) offers the
physical explanation of acoustic impedance: it constitutes the constant ratio
between the loss in pressure and the gain in speed over the direction of the
outward normal.

Evidently, q-excitation and overall fields satisfy condition (1.20) as well.
Additionally, the acoustic pressure has the following asymptotic expression

u0q,j(r) = gq,j(r̂)h0(k0r) +O(r−2), r = |r| → ∞, (1.23)
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where h0 is the zero-th order spherical Hankel function of the first kind.
The function gq,j(r̂) is the individual far-field in the direction of obser-
vation r̂ due to the source at rq,j ∈ V ex

q . Next, the q-excitation far-field
gq(r̂) and the overall far-field g(r̂) are defined as the superpositions of the
individual far-fields due to all sources within V ex

q and due to all N sources,
respectively; namely it holds

gq(r̂) =

nq∑
j=1

gq,j(r̂), (1.24)

g(r̂) =

Q∑
q=1

gq(r̂). (1.25)

Similarly, the individual cross section σq,j, q-excitation cross section σq,
and overall cross section σ are the scattering cross sections due to a source
at rq,j ∈ V ex

q , all sources in V ex
q , and all N sources, and are, respectively,

given by

σq,j =
1

k20

∫
S2

|gq,j(r̂)|2ds(r̂), (1.26)

σq =
1

k20

∫
S2

|gq(r̂)|2ds(r̂), (1.27)

σ =
1

k20

∫
S2

|g(r̂)|2ds(r̂), (1.28)

where S2 is the unit sphere of R3.
The sum of the individual scattering cross sections due to the excita-

tion by all dipoles and the overall scattering cross section are (in general)
different. For acoustic fields, this was elaborated in [64] for point-source
excitation of a layered medium, and in [84] for multiple scattering due to
plane incident waves. This fact, implies the existence of physical quantities
that remain in quadrature such as reactive sound fields [54] and is mathe-
matically explained by the quadratic form of the scattering cross sections,
[85]. Their presence can be unveiled through examination of the non-linear
nature of the energy functionals and their importance is highlighted by
their connection with active and reactive sound intensity [53].
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For N > 2, we notice that this interaction scattering cross section can
be zero without the involved far-fields being orthogonal.

Now, by means of (1.26)-(1.28), we define the interaction scattering cross
sections (ISCS) and present their basic properties.

Definition 1.1.2 The q-ISCS, σ̃q, is the difference between the q-excitation
cross section σq and the sum of the individual cross sections due to all
dipoles in V ex

q

σ̃q = σq −
nq∑
j=1

σq,j. (1.29)

The indirect ISCS, σI, is the difference between the overall cross section σ

and the sum of the q-excitation cross sections

σI = σ −
Q∑
q=1

σq. (1.30)

The total ISCS, σT, is the difference between the overall cross section σ

and the sum of the individual cross sections due to all N dipoles

σT = σ −
Q∑
q=1

nq∑
j=1

σq,j. (1.31)

By taking into account (1.26)-(1.28), we also derive the following expres-
sions of the above-defined ISCS

σ̃q =
2

k20
Re

[
nq−1∑
j=1

nq∑
ν=j+1

∫
S2

gq,j(r̂)gq,ν(r̂)ds(r̂)

]
, (1.32)

σI =
2

k20
Re

[
Q−1∑
q=1

Q∑
s=q+1

∫
S2

gq(r̂)gs(r̂)ds(r̂)

]
, (1.33)

σT =
2

k20
Re

[
N−1∑
ν=1

N∑
j=ν+1

∫
S2

gν(r̂)gj(r̂)ds(r̂)

]
, (1.34)

where gν(r̂) is the individual far field due to a source at rν.
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1.2 Energy Conservation

1.2.1 Acoustic Intensity and Energy Functionals

The complex acoustic intensity I(r, t) is a measure of the acoustic power
flux [86] and is defined as follows:

I(r, t) = P (r, t)V(r, t). (1.35)

For time-harmonic fields, the complex acoustic intensity coincides with its
spatial part I(r) given by

I(r, t) = u(r)∇ϕ(r) = I(r). (1.36)

Hereafter, for the real part of the acoustic intensity we use the term active
intensity and for the imaginary part the term reactive intensity [52], [53].

Additionally, the kinetic energy density K and the potential energy den-
sity U are defined as follows:

K(r, t) =
ρ

2
|V(r, t)|2, U(r, t) = γ

2
|P (r, t)|2. (1.37)

Under harmonic time dependence, they are real functions that do not de-
pend on time and are given by

K(r) =
ρ

2
|∇ϕ(r)|2, U(r) =

γ

2
|u(r)|2. (1.38)

An important quantity in the energy transfer process is the Lagrangian
density L(r), which is the difference between the kinetic and potential
energy densities, i.e. [87]

L(r) = K(r)− U(r) =
1

2

(
ρ|∇ϕ(r)|2 − γ|u(r)|2

)
. (1.39)

The above discussed energy functionals are –by definition– quadratic
quantities. Hence, the overall acoustic intensity and its corresponding en-
ergy densities is not simply a sum of the corresponding “individual” quan-
tities. As we will elaborate later on, this fact implies that there is flux–and
subsequently, energy–that is induced by the interaction between the “in-
dividual” fields. That was proven for multiple acoustic scattering from
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point-like scatterers [84] and scattering of spherical waves by a layered
medium [64], while the specifics of the behaviur of the power flux is used
in numerical inverse methods, [88]. The induced energy flux or intensity,
might seem evident for q-excitation and overall acoustic fields but we stress
the fact that the quadratic nature of the energy functionals occurs even for
individual acoustic intensities; something discussed for scattering of an
individually-induced acoustic wave by an impenetrable cluster in [89].

In particular, the acoustic intensity in layer Vq due to the source at rq,j
is denoted in accordance with our formulation by Iqq,j(r) and it will hold
for it:

Iqq,j(r) = uprq,j(r)∇ϕpr
q,j(r) + usecq,j(r)∇ϕsec

q,j(r)+

uprq,j(r)∇ϕsec
q,j(r) + usecq,j(r)∇ϕpr

q,j(r). (1.40)

Evidently, the individual primary acoustic intensity induced by the indi-
vidual primary acoustic wave due to the source at rq,j and the individual
secondary acoustic intensity induced by the corresponding individual sec-
ondary wave due to the source at rq,j are defined by

Iprq,j(r) = uprq,j(r)∇ϕpr
q,j(r), (1.41)

Isecq,j(r) = usecq,j(r)∇ϕsec
q,j(r). (1.42)

Equation (1.41) holds for r ∈ Vq \ {rq,j}, while (1.42) holds for r ∈ Vq.
However, inside the layer Vq due to the fact that both the primary and sec-
ondary fields propagate uniformly over all directions, interaction between
the primary field with its own secondary field will occur. This interaction
results in an “extra” acoustic intensity which stems from precisely that
interaction and it will given by:

Iextq,j (r) = uprq,j(r)∇ϕsec
q,j(r) + usecq,j(r)∇ϕpr

q,j(r). (1.43)

Therefore, the individual acoustic intensity in the excitation layer Vq due
to the point source at rq,j is decomposed as follows:

Iqq,j(r) = Iprq,j(r) + Isecq,j(r) + Iextq,j (r) (1.44)



1.2. ENERGY CONSERVATION 17

the q-excitation intensity in the excitation layer Vq is denoted by Iqq and it
holds

Iqq(r) = Iprq (r) + Isecq (r) + Iextq (r) (1.45)

with r ∈ Vq \{rq,1, rq,2, . . . , rq,nq
}. With Iℓq, for ℓ ∈ {pr, sec, ext} we denote

the acoustic intensity in Vq that is caused by the q-excitation primary
fields, the q-excitation secondary fields and the interaction between them,
respectively. In the same spirit the overall intensity in Vq is decomposed
as follows

Iq(r) = Iprq (r) + Isec(r) + Iext(r) (1.46)

for r ∈ Vq \ {rq,1, rq,2, . . . , rq,nq
}, with Iν for ν ∈ {sec, ext} the intensity in

Vq caused by the overall secondary field in Vq and the intensity caused by
the interaction between the primary q-excitation field in Vq with the overall
secondary field in Vq, respectively. We note that the individual, q-excitation
and overall intensities in non-excitation layers Vp, coincide with the inten-
sities caused by the secondary fields "operating" in Vp. For simplicity they
will be denoted by Ipq,j, I

p
q, I

p, respectively.
In the previous section we discussed about the different types of scat-

tering cross sections that measure the intensity radiating in the far-field
due to the interaction between the individual and/or q-excitation fields.
These interactions stem from their corresponding acoustic intensity in the
excitation layers - as we will prove later on. This fact, yields another de-
composition for the q-excitation and overall acoustic intensities in Vp. In
particular, we denote the sum of the individual intensities in Vp with Îpq
and with Ĩpq the q-interaction intensity of Vp. Evidently it holds:

Îpq(r) + Ĩpq(r) = Iprq (r) + Isecq (r) + Iextq (r) = Ipq(r) (1.47)

If Vp is a non-excitation layer, then it holds Iprq (r) = Iextq (r) = 0 in Vp. In a
similar spirit, we denote with IpT the total interaction intensity of Vp, with
IpI the indirect interaction intensity of Vp and with IpD the direct interaction
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intensity of Vp which are given by

IpT = Ip −
Q∑
q=1

nq∑
j=1

Ipq,j (1.48)

IpI = Ip −
Q∑
q=1

Ipq (1.49)

IpD =

Q∑
q=1

Ĩpq (1.50)

By definition, in each layer Vp, it holds

IpT = IpI + IpD (1.51)

1.2.2 Energy Conservation Laws

At this point we will prove a series of theorems that lead to a better un-
derstanding of the process that is involved in "transferring" the energy
from the excitation layers, through the rest of the scatterer’s layers and its
exterior, until it is radiated in the far-field zone. The main mathematical
tool is Green’s first scalar identity combined with appropriate geometri-
cal manipulation. First, we provide a theorem relating the q-excitation
scattering cross section with its corresponding Lagrangian density and in-
tensity through an excitation layer’s surface. This theorem constitutes the
complex form of the energy conservation law for the scattering problem of
a multiple-source induced acoustic wave by a layered scatterer in the case
where all sources lie in the same layer Vq.

Theorem 1.2.1 The q-excitation scattering cross section σq, the Lagrangian
densities Lp

q of a distribution of point sources within a single-excitation
layer Vq and the acoustic intensity Iqq of Vq due to all dipoles in Vq are
connected as follows:

σq = ζ0

(
2iω

q−1∑
p=0

∫
Vp

Lp
q(r)dv(r) +

∫
Sq

n̂ · Iqq(r)ds(r)

)
(1.52)
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Proof. Let Ω the domain of R3 that is bounded by the scatterer’s external
surface S1 and the sphere SR of radius R; see Fig. 1.2. Applying Green’s

Figure 1.2: A layered scatterer V with a single excitation layer Vq, surrounded by a sphere of radius R.

first scalar identity in Ω for the intensity vector I0q of V0 due to the sources
in Vq, yields ∫

SR

r̂ · I0q(r)ds(r)−
∫
S1

n̂ · I0q(r)ds(r) =∫
Ω

(
u0q(r)∇ϕ0

q(r)−∇u0q(r) · ∇ϕ0
q(r)

)
dv(r), (1.53)

Last relation by means of (1.5) takes the form∫
SR

r̂ · I0q(r)ds(r) =
∫
S1

n̂ · I0q(r)ds(r) + 2iω

∫
Ω

L0
q(r)dv(r), (1.54)

where L0
q denotes the Lagrangian density in V0 due to all sources of Vq. Let-

ting r → ∞ we are transferred in the far-field zone. Applying Sommerfeld
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radiation condition (1.20) we arrive at

r̂ · I0q(r) =
1

ζ0k20r
2
|gq(r̂)|2 +O(r−3), (1.55)

Last relation, in conjunction with (1.54) for R → ∞, yields

lim
R→∞

(
1

ζ0k20r
2

∫
SR

|gq(r̂)|2ds(r)
)

=∫
S1

n̂ · I0q(r)ds(r) + 2iω

∫
V0

L0
q(r)dv(r). (1.56)

Taking into account (1.27) we obtain

σq
ζ0

=

∫
S1

n̂ · I0q(r)ds(r) + 2iω

∫
V0

L0
q(r)dv(r). (1.57)

Successive implementation of Green’s first scalar identity in layer Vp, for
p = 1, . . . , q − 1, yields∫

Sp

n̂ · Ipq(r)ds(r) =
∫
Sp+1

n̂ · Ipq(r)ds(r) + 2iω

∫
Vp

Lp
q(r)dv(r) (1.58)

Imposing boundary conditions on the acoustically penetrable surface Sp+1,
leads to

n̂ · Ipq(r) = upq(r)∇ϕp
q(r) = up+1

q (r)∇ϕp+1
q (r) = n̂ · Ip+1

q (r). (1.59)

Applying again Green’s first scalar identity, for p = 1, . . . , q−1 and taking
into consideration (1.58) and (1.59) we get∫

S1

n̂ · I0q(r)ds(r) = 2iω

q−1∑
p=1

∫
Vp

Lp
q(r)dv(r) +

∫
Sq

n̂ · Iqq(r)ds(r) (1.60)

Relation (1.52) is obtained through (1.57) and (1.60).

□

Taking the real part of (1.52), we obtain a generic form of the optical
theorem
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Corollary 1.2.2 The individual scattering cross section and the average
active intensity per unit area out of the excitation layer Vq, are connected
by the relation:

σq = ζ0Re

(∫
Sq

n̂ · Iqq(r)ds(r)

)
. (1.61)

Taking the imaginary parts in (1.52) reveals the role of the reactive power.
In particular, it holds:

Corollary 1.2.3 The reactive intensity directed into the excitation layer
Vq is related with stored energy in all layers of the scatterer prior to Vq by
the relation:

2ω

q−1∑
p=0

∫
Vp

Lp
q(r)dv(r) = −Im

(∫
Sq

n̂ · Iqq(r)ds(r)

)
. (1.62)

For nq = 1, we obtain the corresponding results for the individual quan-
tities. Equation (1.61) demonstrates that the average active intensity
through an excitation layer’s surface is “transferred” directly to the far-
field as intensity manifested by the q-excitation cross section. On the other
hand, Eq. (1.62) states that the reactive intensity is not “transferred” in
the far field. Instead, it is stored as difference between the kinetic energy
and potential energy in the scatterer’s layers enclosing the excitation layer
and allows us to conclude that it acts as an "intensity carrier" that enables
the transfer from the excitation layer to the far-field. The term "energy
transfer process" is clearly explained by relation (1.52). It contains three
terms: A term that concerns the intensity in the excitation layer, a term
that concerns the layers that enclose the excitation layer and finally, a term
that concerns the far-field.

We continue with the investigation of the energy conservation mechanism
and in particular, with the energy transfer "below" an excitation layer, i.e.
for p > q. The following theorem provides a more detailed insight to the
intensity induced in an excitation layer.

Theorem 1.2.4 The acoustic intensity through the surface Sq of excita-
tion layer Vq is connected with the interaction intensities in the interior of
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Vq as follows:∫
Sq

n̂ · Iqq(r)ds(r) =
∫
∂Vq

n̂ ·
(
Iprq (r) + Iextq (r)

)
ds(r)+

2iω
P∑
p=q

∫
Vp

Lp
q(r)dv(r) (1.63)

Proof. Applying Green’s first scalar identity in Vq for the q-excitation
secondary intensity, we get∫

Sq

n̂ · Isecq (r)ds(r) = 2iω

∫
Vq

Lsec
q (r)dv(r)+∫

Sq+1

n̂ · Isecq (r)ds(r) (1.64)

with Lsec
q denoting the Lagrangian density of the secondary fields in Vq.

Imposing boundary conditions on Sq+1 for uqq, ϕq
q, we have∫

Sq+1

n̂ · Isecq (r)ds(r) =∫
Sq+1

n̂ · Iq+1
q (r)ds(r)−

∫
Sq+1

uprq (r)
ϕq+1
q (r)

∂n
ds(r)+∫

Sq+1

n̂ · Iprq (r)ds(r)−
∫
Sq+1

uq+1
q (r)

ϕpr
q (r)

∂n
ds(r) (1.65)

Imposing again the boundary conditions on Sq+1, this time for the fields
uq+1
q , ϕq+1

q , relation (1.65) yields∫
Sq+1

n̂ · Isecq (r)ds(r) =

∫
Sq+1

n̂ · Iq+1
q (r)ds(r)

−
∫
Sq+1

n̂ · Iprq (r)ds(r)−
∫
Sq+1

n̂ · Iextq (r)ds(r). (1.66)

On the other hand, a successive application of Green’s first scalar identity
in Vp for p = q + 1, q + 2, . . . , P yields∫

Sq+1

n̂ · Iqq(r)ds(r) = 2iω
P∑

p=q+1

∫
Vp

Lp
q(r)dv(r), (1.67)



1.3. SCATTERING RELATIONS AND PHYSICAL BOUNDS 23

Relation (1.63) is obtained from (1.64), (1.66) and (1.67) with the help of
(1.46).

□

Taking the real parts of (1.63) we readily conclude that the average active
intensity through the excitation layer’s surface equals the average active
intensity through the excitation layer’s boundary, that is induced by the
interaction between the individual primary and all other individual fields
in Vq. Equation (1.63) in conjunction with (1.52) yields an alternative form
of Theorem 1.2.1

σq = ζ0

(
2iω

P∑
p=0

∫
Vp

Lp
q(r)dv(r) +

∫
∂Vq

n̂ ·
(
Iprq (r) + Iextq (r)

)
ds(r)

)
,

(1.68)

implying that only the interactions related with the primary fields induce
active intensity. The interaction between secondary fields concerns the
reactive intensity which seems to operate as an "intensity-carrier" that
“transfers” the induced energy flow from the excitation layer, through the
scatterer’s layers, to the far-field. Finally, the secondary intensity in all
layers and the q-primary intensity in the excitation layer Vq is manifested
through the difference between kinetic and potential energy in the scat-
terer’s layers. Similar results can be obtained for the overall Lagrangian
densities, scattering cross sections and intensities in the case of mixed ex-
citation, see Chapter 4 of Part II of this dissertation.

1.3 Scattering Relations and Physical Bounds

1.3.1 Scattering Relations

For a layered scatterer, excited by sources in different layers, two types
of interactions occur: direct interaction due to sources contained in the
same excitation layer, and indirect interaction due to sources contained in
different layers. By means of (1.29)-(1.31), we derive the following theorem,
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which concerns a decomposition of the total ISCS into the direct (sum of
the q-interaction cross sections) and indirect ISCS.

Theorem 1.3.1 Interaction cross sections σT, σI, and σ̃q are related as
follows

σT = σD + σI, (1.69)
where

σD =

Q∑
q=1

σ̃q (1.70)

is the direct interaction cross section.

We observe that ISCS follow the same decomposition property as their
corresponding intensities, see (1.51). Next, we establish scattering rela-
tions between the individual, the q-excitation fields and far-field patterns
as well as the respective individual and overall cross sections. Scattering
relations have been used as an important theoretical tool for the physical
understanding in scattering phenomena like single- and multiple-scattering
configurations [24], [90]. First, we give a reciprocity theorem, relating the
total fields in layers V ex

q and V ex
s due to the sources at V ex

s and V ex
q , re-

spectively.

Theorem 1.3.2 The s-excitation field of V ex
q and the q-excitation field of

V ex
s are related by

nq∑
j=1

Aq,ju
q
s(rq,j) =

ns∑
ν=1

As,νu
s
q(rs,ν). (1.71)

Proof. Adapting Theorem 1 of [59] to the present formulation, we conclude
that for any pair of sources lying at different layers it holds

Aq,ju
q
s,ν(rq,j) = As,νu

s
q,j(rs,ν). (1.72)

Relation (1.72) holds for all locations rs,ν. Fixing rq,j and summing for
ν = 1, . . . , ns, we get

Aq,ju
q
s(rq,j) =

ns∑
ν=1

As,νu
s
q,j(rs,ν),
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which, summing for all j = 1 . . . , nq, yields
nq∑
j=1

Aq,ju
q
s(rq,j) =

nq∑
j=1

ns∑
ν=1

As,νu
s
q,j(rs,ν). (1.73)

Changing the summation order in (1.73) and taking into account (1.9), we
arrive at (1.71).

□

Remark 1.3.3 For Q = 2 and n1 = n2 = 1 (i.e. N = 2 dipoles located
in two different excitation layers), Theorem 1.3.2 reduces to Theorem 1
of [59]. For Q = 1 with V ex

1 ≡ V0 and N = 2, Theorem 1.3.2 recovers
Theorem 1.3.6 of [56].

Moreover, we define the individual primary cross section σpr
q,j, q-primary

cross section σpr
q , and primary interaction cross section, σ̃pr

q , as follows:

σpr
q,j =

1

k2q

∫
S2

|gprq,j(r̂)|
2ds(r̂) = 4π|Aq,j|2, (1.74)

σpr
q =

1

k2q

∫
S2

|gprq (r̂)|2ds(r̂), (1.75)

σ̃pr
q =

2

k2q

nq−1∑
j=1

nq∑
ν=j+1

Re

(∫
S2

gprq,j(r̂)g
pr
q,ν(r̂)ds(r̂)

)
, (1.76)

where gprq,j is the primary far-field pattern (for a source at rq,j) defined by

uprq,j(r) = gprq,j(r̂)h0(kqr) +O(r−2), r → ∞. (1.77)

For the primary field (1.7), the primary far-field pattern is given by

gprq,j(r̂) = ikqAq,jexp (−ikqrq,j) . (1.78)

Physically, σ̃pr
q,j,ν represents the average rate of the acoustic intensity per

surface unit area, induced by the interaction between fields generated by
the sources at rq,j and rq,ν under the absence of the scatterer. Note that
unless V ex

q ≡ V0, the primary cross sections are not part of the overall
scattering cross section.
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We, now, prove optical theorems for the overall scattering cross section
and the direct and indirect ISCS.

Theorem 1.3.4 The overall scattering cross section σ due to the excita-
tion of the layered scatterer V by N point sources is given by

σ = 4πζ0Re

(
Q∑
q=1

nq∑
j=1

Aq,jϕ
sec
q (rq,j)

)
+

ζ0
ζq

Q∑
q=1

σpr
q . (1.79)

The direct ISCS σD and indirect ISCS σI are expressed, respectively, by

σD = 4πζ0Re

(
Q∑
q=1

nq∑
j=1

Aq,jϕ̃
sec
q,j(rq,j)

)
+

ζ0
ζq

Q∑
q=1

σ̃pr
q (1.80)

and

σI = 4πζ0Re

(
Q∑
q=1

nq∑
j=1

Aq,jϕ̃
sec
q (rq,j)

)
, (1.81)

where ϕ̃sec
q,j denotes the sum of all individual secondary fields of V ex

q except
the field due to the source at rq,j. ϕ̃sec

q denotes the sum of all q-excitation
secondary fields radiating in V ex

q , except the fields due to the sources of
V ex
q .

Proof. Adapting Theorem 2 of [59], to the present formulation we get that
for any two sources rq,j ∈ V ex

q and rs,ν ∈ V ex
s , it holds

k20ζ0

(
Aq,jϕ

q
s,ν(rq,j) + As,νϕs

q,j(rs,ν)

)
=

1

2π

∫
S2

gq,j(r̂)gs,ν(r̂)ds(r̂). (1.82)

Summing with respect to ν (i.e. for all dipoles in V ex
s ), and then with

respect to j (i.e. for all dipoles in V ex
q ), and using (1.9), we find that the
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velocity potentials in any two layers V ex
q and V ex

s are connected as follows:

k20ζ0

(
nq∑
j=1

Aq,jϕ
q
s(rq,j) +

ns∑
ν=1

As,νϕs
q(rs,ν)

)
=

1

2π

∫
S2

gq(r̂)gs(r̂)ds(r̂). (1.83)

On the other hand, by Theorem 4 of [59], we find that for every two indi-
vidual secondary fields of V ex

q , due to sources at rq,j and rq,ν, holds

k20ζ0

(
Aq,jϕ

sec
q,ν(rq,j) + Aq,νϕsec

q,j(rq,ν)+

2

ζq
Aq,jAq,νsinc(kq|rq,j − rq,ν|)

)
=

1

2π

∫
S2

gq,j(r̂)gq,ν(r̂)ds(r̂). (1.84)

Using the definition (1.27) of σq, and summing (1.84) for all ν, j = 1, . . . , nq,
we obtain

σq = 4πζ0Re

(
nq∑
j=1

Aq,jϕ
sec
q (rq,j)

)
+

ζ0
ζq
σpr
q . (1.85)

Summing (1.83) for both indices q, s by implementation of (1.85) for V ex
q ≡

V ex
s and taking into account definition (1.28) of σ relation (1.79) is obtained.

Adapting Theorem 5 of [59] to the present formulation, we arrive at

σq,j = 4πζ0Re
(
Aq,jϕ

sec
q,j(rq,j)

)
+

ζ0
ζq
σpr
q,j. (1.86)

Equation (1.80) is derived by (1.85) and (1.86) after considering the defi-
nitions (1.29) and (1.70). A summation of (1.85) for all q = 1, . . . , Q with
the help of (1.79) and the definition (1.30), derives (1.81).

□

Remark 1.3.5 The corresponding formula for σT can be obtained by (3.14),
(1.80), and (1.81).
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1.3.2 Physical Bounds on Interaction Scattering Cross Sections

In this section, physical bounds for the ratios of ISCS over the correspond-
ing scattering cross sections are established. The ISCS ratios are a key
factor in determining the additivity of the scattering cross sections. Then,
the behaviors of these ratios as the multitude N of the point sources in-
creases, is investigated.

Theorem 1.3.6 The total ISCS, σT, satisfies

1−N
σmax

σ
≤ σT

σ
≤ min

{
1−N

σmin

σ
, 1− 1

N

}
, (1.87)

where σmin and σmax are the minimum and maximum individual cross sec-
tions of all sources. For

N 2σmin ≤ σ, (1.88)

the minimum involved in (1.87) is 1− 1
N .

Proof. For σmin and σmax, we have

−Nσmax ≤ −
N∑
j=1

σj ≤ −Nσmin, (1.89)

with σj the individual scattering cross section due to a dipole at rj. Then,
by (1.31), we get

1−N
σmax

σ
≤ σT

σ
≤ 1−N

σmin

σ
. (1.90)

By the definition (1.28) of the overall cross section, we find

σ ≤ 1

k20

[
N∑
j=1

∫
S2

|gj(r̂)|2ds(r̂)

]
+

2

k20

[
N−1∑
j=1

N∑
ν=j+1

∣∣∣∣ ∫
S2

gj(r̂)gν(r̂)ds(r̂)

∣∣∣∣
]
. (1.91)
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By Hölder’s inequality, the last relation takes the form

σ ≤
N∑
j=1

σj + 2
N−1∑
j=1

N∑
ν=j+1

(
σj
)1/2(

σν
)1/2

. (1.92)

Since
2
(
σj
)1/2(

σν
)1/2 ≤ σj + σν, (1.93)

from (1.92), we have

σ ≤
N∑
j=1

σj +
N−1∑
j=1

σj(N − j) +
N∑
j=2

σj(j − 1) = N
N∑
j=1

σj. (1.94)

The last inequality in conjunction with the definition (1.31) imply that

σT

σ
≤ 1− 1

N
. (1.95)

Eq. (1.87) is derived from (1.90) and (1.95). Implication (1.88) is obvious.

□

Moreover, since σj ≤ σmax, for j = 1, . . . , N , Eq. (1.92) implies

σ ≤ Nσmax + 2
N−1∑
j=1

N∑
ν=j+1

σmax = N 2σmax. (1.96)

By combining (1.96) with (1.88), we verify the following

Corollary 1.3.7 Condition (1.88) holds if and only if√
σ

σmax
≤ N ≤

√
σ

σmin
. (1.97)

Remark 1.3.8 Inequalities similar to (1.87) and (1.97) can be proved in
the same way for the number nq of the dipoles inside an excitation layer
V ex
q and the ratio of the corresponding q-interaction cross section σ̃q over

the q-excitation cross section σq as well as for the number Q of excitation
layers and the ratio of the corresponding indirect ISCS σI over the overall
cross section σ; see [64]. Additionally, we note that if each layer contains
only one point source, then σ̃q = 0, whereas if there is only one excitation
layer, then σI = 0.
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Remark 1.3.9 If inequality (1.88) is reversed, then the upper bound of
Corollary 1.3.7, becomes a lower bound for N .

1.3.3 Large-N Behavior of Scattering Cross-Sections Ratios

Our main tool for investigating the large-N behavior of the ISCS ratios is
provided from the physical bounds indicated by Theorem 1.3.6. First we
define in a rigorous way the ratios of the individual cross sections and the
total ISCS the overall cross section, respectively, as

Rj
N = σj

N/σN , j = 1, . . . , N, and RT
N = σT

N/σN , (1.98)

The subscript N is included in all the involved cross sections for clarity.
The minimum and maximum ratios Rj

N , for each N , are denoted by Rmin
N

and Rmax
N . By (1.31), we have

RT
N +

N∑
j=1

Rj
N = 1. (1.99)

When σT
N > 0, then Rj

N ∈ (0, 1). The positive sign of σT
N accounts for

the case where the interactions between fields in excitation layers acceler-
ate the flow of active intensity. Taking under consideration the physical
interpretation of the energy conservation law (1.63), we conclude that in
such a case, the active intensity is directed towards the excitation layer.
When a new source is placed sufficiently close to a group of existing N

sources, the individual cross sections remain the same, but the ISCS will -
in general - change. This fact can be explained by the physical meaning of
the non-linear nature of the ISCS: The total ISCS σT

N+1 for N + 1 sources
is the total ISCS σT

N for N sources plus the ISCS that is induced by the
interaction of the new source with the existing N sources, i.e.

σT
N+1 = σT

N +
N∑
j=1

σ̃N+1,j (1.100)

with
σ̃N+1,j =

2

k20
Re

∫
S2

gN+1(r̂)gj(r̂)ds(r̂)
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We will show that under certain conditions, the cross-section ratios ap-
proach limiting values when N exceeds a certain threshold N0. Below,
Rj

N → 0, for N → ∞, is used to describe that σj
N << σN , for N > N0.

Similarly, RT
N → 1, for N → ∞, refers to that σT

N ≃ σN , for N > N0. The
use of ratios instead of the actual values is justified by the fact that actual
values change with each new added source. Total ISCS values might not
stabilize as we keep adding new sources, but their ratios, in some cases,
are stabilized. The following corollary presents certain consequences of
(1.87) that connect the sign of the total ISCS with the behavior of specific
individual cross sections.

Corollary 1.3.10 If σT
N > 0, for N ≥ N0, with N0 a certain number of

sources, then
Rmin

N → 0, for N → ∞. (1.101)
If σT

N < 0 for a fixed number N of sources, then

Rmax
N >

1

N
. (1.102)

If Rmin
N > 1

N for a fixed number N of sources, then

σT
N < 0. (1.103)

If 1−RT
N(δ) = δ, for a fixed δ > 0 and a number N(δ) of sources, then

N(δ) >
1

δ
. (1.104)

□

Remark 1.3.11 The first three relations connect the sign of the total ISCS
with the contribution of individual cross sections. The last relation how-
ever, connects the number of sources with the "distance" δ between total
ISCS and the overall scattering cross section. In particular, implies that
each total ISCS ratio has a corresponding minimum number of sources
required for its appearance.

Next, we show that even if the maximum cross section ratio increases with
N , there is an upper bound depending on the maximum individual cross
section ratio for a certain N0.
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Theorem 1.3.12 If there is a number N0 of sources such that Rmax
N in-

creases for all N ≥ N0, and σT
N > 0 for all N ≥ N0, then

Rmax
N → aRmax

N0
, for N → ∞, (1.105)

where a ∈ [1, N2
0 ], and Rmax

N0
is the maximum cross section ratio for N0

sources.

Proof. Our hypothesis implies that

Rmax
N+1 = aN Rmax

N , N ≥ N0 (1.106)

with aN > 1. A successive implementation of (1.106) for k = N0, N0 +
1, . . . , N + 1 yields

Rmax
N+1 =

(
N∏

k=N0

ak

)
Rmax

N0
. (1.107)

Eq. (1.99), for σT
N > 0, implies that Rmax

N+1 ≤ 1. This fact in conjunction
with (1.107) leads to

N∏
k=N0

ak ≤
1

Rmax
N0

. (1.108)

Thus, sequence
∏N

k=N0
ak is increasing and upper bounded, and, therefore,

convergent. Let a be its limit. Evidently, it holds a ≥ 1. Relation (1.105)
is obtained by combining (1.107) and (1.108). The fact that a ≤ N 2

0 stems
from (1.96) and (1.108). The above proof holds even for a = 1, which
corresponds to the case where Rmax

N is constant after N0 sources.

□

Remark 1.3.13 The maximum individual cross section ratio Rmax
N can

increase with N , when we add a “stronger” source than the existing ones.
Theorem 1.3.12 states that even then, Rmax

N will eventually be stabilized, if
the number N0 of sources exceeds a certain threshold.

Finally, relation (1.87) can be used to extract a set of conditions regard-
ing the approximation of the overall cross section by the total ISCS. In
particular, the following conditions hold:
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Corollary 1.3.14 Condition 1 If for the maximum individual cross sec-
tion ratio there exists an N0, such that

Rmax
N <

1

N
(1.109)

for all N with N ≥ N0, then

RT
N → 1, as N → ∞. (1.110)

Condition 2 The following assertions are equivalent

RT
N → 1, for N → ∞ (1.111)

Rj
N → 0, for N → ∞, with j = 1, . . . , N. (1.112)

□

Remark 1.3.15 Results for the ratios of σ̃q and σI corresponding to those
of Corollary 1.3.14 can be readily obtained by replacing N with nq and Q,
respectively.



Chapter 2

The Layered Sphere Excited by N
Point Sources

2.1 Geometry Setting

We consider a spherical scatterer of radius a1, divided into P nested, con-
centric spherical layers Vp (p = 1, . . . , P ) by P − 1 spherical surfaces Sp,
each of radius ap (p = 2, . . . , P ); see Fig. 5.1. Each layer Vp, defined by
ap+1 < r < ap, is characterized by wavenumbers kp, mass densities ρp
and mean compressibilities γp for (p = 1, . . . , P − 1). The exterior V0 of
the scatterer has wavenumber k0 and mass density ρ0. Of all P layers of
the scatterer, Q of them, with Q ≤ P + 1, host N point sources arbi-
trarily located at rq,j ∈ Vq for j = 1, . . . , nq and q = 1, . . . , Q with nq

the sources contained in excitation layer Vq. These point sources emanate
spherical waves, with their individual primary fields given by (1.7). On the
boundaries of each layer Vp, all total individual and overall fields satisfy for
p = 1, . . . , P − 1 the transmission boundary conditions:

up−1(r) = utp(r), r = ap (2.1)
∂ϕp−1(r)

∂n
=

∂ϕp(r)

∂n
, r = ap. (2.2)

Evidently, the overall field of V0 will also satisfy the Sommerfeld’s radiation
condition. The medium’s core VP can be soft, hard, resistive or penetrable.

34
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Figure 2.1: Layered spherical medium excited by N arbitrarily-located point sources

For a soft, hard or resistive core, the respective boundary conditions are

uP−1(r) = 0, r = aP (2.3)
∂ϕP−1(r)

∂n
= 0, r = aP , (2.4)

∂ϕP−1(r)

∂n
+

uP−1(r)

ZP−1
= 0 r = aP . (2.5)

whereas for a penetrable core, conditions (5.3)-(5.4) hold for VP as well.
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2.2 Excitation Operators and Observation Functions

We choose a spherical coordinate system (r, θ, ϕ) with the sphere’s center
O at the origin. Then, the position vector of each point source will be
given by

rq,j = rq,j r̂+ θq,jθ̂θθ + ϕq,jϕ̂ϕϕ

with rq,j ∈ (aq+1, aq), θq,j ∈ [0, π] and ϕq,j ∈ [0, 2π) for j = 1, . . . , nq. The
individual primary fields have the following expansion [67]

uprq,j(r) = 4πikqAq,j


∑

n,m(−1)mY −m
n (r̂q,j)Y

m
n (r̂)×

hn(kqr)jn(kqrq,j), r > rq,j∑
n,m(−1)mY m

n (r̂q,j)Y
−m
n (r̂)×

jn(kqr)hn(kqrq,j), r < rq,j,

(2.6)

with ∑
n,m

≡
∞∑
n=0

m=n∑
m=−n

On the other hand, the individual secondary fields in Vp can be expanded
as

upq,j(r) = 4πikqAq,j

∑
n,m

(−1)mY −m
n (r̂q,j)Y

m
n (r̂)×

hn(kqrq,j)
(
an,pq,j jn(kpr) + bn,pq,j hn(kpr)

)
(2.7)

with jn and hn denoting the n-th order spherical Bessel and Hankel func-
tions, while Y m

n , Y −m
n denote the spherical harmonic functions.

To simplify the expressions of the fields involved, in a way that will
reduce the anticipated workload, we first define the following observation
functions of Vp:

J p
n,m(r) = Y m

n (r̂)jn(kpr) (2.8)
H p

n,m(r) = Y m
n (r̂)hn(kpr) (2.9)

Using the observation function of excitation layer Vq we define the following
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q-excitation vector of Vq:

jn,m,q = (−1)mikq
(
Aq,1J

q
n,−m(rq,1), . . . , Aq,nq

J q
n,−m(rq,nq

)
)

(2.10)
hn,m,q = (−1)mikq

(
Aq,1H

q
n,−m(rq,1), . . . , Aq,nq

H q
n,−m(rq,nq

)
)

(2.11)

Finally, we define the q-excitation operators which constitute our basic
tool:

Jn,m,q(xq) = jn,m,q · xq = ikqAq,j

nq∑
j=1

(−1)mY −m
n (r̂q,j)jn(kqrq,j)xq,j (2.12)

Hn,m,q(xq) = hn,m,q · xq = ikqAq,j

nq∑
j=1

(−1)mY −m
n (r̂q,j)hn(kqrq,j)xq,j

(2.13)

with xq = (xq,1, . . . , xq,nq
) ∈ Cnqand J ,H : C3 → C.

Excitation operators contain the information about the point source dis-
tribution, since each of their terms is related to a specific point source. In
particular, every term is a product of a spherical harmonic that contains
the information about the angle and azimuth of the point source, with a
spherical Bessel or Hankel function that contains the information about
the distance and the layer enclosing the point source.

The unknown scattering coefficients of the overall fields can be expressed
in a closed form with the help of the excitation operators as follows

Ap
n,m,q = Hn,m,q(a

n,p
q ) = hn,m,q · an,pq (2.14)

Bp
n,m,q = Hn,m,q(b

n,p
q ) = hn,m,q · bn,p

q (2.15)

with an,pq = (an,pq,1 , . . . , a
n,p
q,nq

) and bn,p
q = (bn,pq,1 , . . . , b

n,p
q,nq

) denoting the vec-
tors containing the scattering coefficients of individual fields. By utilizing
excitation operators we see that the q-excitation secondary field of Vp and
the overall secondary field of Vp take, respectively, the following form:

upq(r) =
∑
n,m

(
J p

n,m(r)Ap
n,m,q + H p

n,m(r)Bp
n,m,q

)
(2.16)

up(r) =
∑
n,m

(
J p

n,m(r)Ap
n,m + H p

n,m(r)Bp
n,m

)
(2.17)
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with X p
n,m =

∑Q
q=1X p

n,m,q for X ∈ {A,B}. The q-excitation primary field
of Vq takes the following form:

uprq (r) = 4π

{ ∑
n,m H q

n,m(r)Jn,m,q(uq), r > max{rq,1, . . . , rq,nq
}∑

n,m J q
n,−m(r)Hn,m,q(uq), r < min{rq,1, . . . , rq,nq

}
(2.18)

with uq denoting vector (1, 1, . . . , 1) of Rnq . In the single-layer excitation
case, i.e. Q = 1 we note that q-excitation fields coincide with the overall
fields.

2.3 Solution of the Direct Problem

To facilitate the text flow we will suppose that the outermost excitation
layer is the layer Vq, with q ≥ 0. We impose the transmission boundary
conditions on the surface V1, i.e. for r = a1 and by taking into account the
orthogonality of the spherical harmonics, we readily arrive at:[

A1
n,m

B1
n,m

]
= T1

n ·
[

0
B0
n,m

]
(2.19)

where T1
n denotes transition matrix from the exterior V0 to layer V1. In

general, with Tp
n we will denote the transition matrix from layer Vp−1 to

layer Vp. The exact form of the matrix is given in [59]. We will re-write
here for convenience with the help of functional Tp:

Tp
n = −ix2p

[
Tp (hn, jn) Tp (hn, hn)
−Tp (jn, jn) −Tp (jn, hn)

]
Functional Tp : C3 → C is defined as:

Tp (f, g) (xp, yp) = f ′(xp)g(yp)− wpf(xp)g
′(yp)

The quantities xp, yp, wp depend solely on the physical parameters of the
scatterer, i.e.

xp = kpap, yp = kp−1ap, wp =
kp−1ρp
kpρp−1

=
ϱp
ηp
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with ηp the relative refractive index of Vp and ϱp the relative mass density
index of Vp.

Keeping in mind that in every layer Vp the spherical harmonics consi-
tute a complete orthonormal system, a successive implementation of the
boundary conditions in the surfaces Sp, i.e. r = ap for p = 2, . . . , q1 leads
to the following relation:[

Aq−1
n,m

Bq−1
n,m

]
= T(0→q−1)

n ·
[

0
B0
n,m

]
, (2.20)

with T
(0→q−1)
n denoting the transition matrix from the exterior V0 to layer

Vq−1. In general, with T
(0→p)
n we will denote the transition matrix from the

exterior V0 to layer Vp, which is given by

T(0→p)
n = Tp

nT
p−1
n . . .T1

n

Implementing boundary conditions in the "outer" surface Sq of the outer-
most excitation layer Vq, in conjunction with (2.20) yields:[

Aq
n,m

Bq
n,m + Jn,m,q(uq)

]
= T(0→q)

n ·
[

0
B0
n,m

]
. (2.21)

On the other hand, transmission boundary conditions at the "inner" surface
Sq+1 of the outermost excitation layer Vq lead to:[

Aq+1
n,m

Bq+1
n,m

]
= Tq+1

n ·
[
Aq

n,m +Hn,m,q(uq)

Bq
n,m

]
(2.22)

A combination of (2.21) and (2.22) results in the following relation:[
Aq+1

n,m

Bq+1
n,m

]
= T(0→q+1)

n ·
[

0
B0
n,m

]
+Tq+1

n ·
[

Hn,m,q(uq)
−Jn,m,q(uq)

]
(2.23)

Now, let Vs be the next (closer to Vq) excitation layer. Then all layers
Vp for p = q + 1, . . . , s − 1 do not contain sources. Thus, a successive
implementation of the boundary conditions in surfaces Sq+2, . . . , Ss, yields
the following: [

As
n,m

Bs
n,m + Jn,m,s(us)

]
= T(q→s)

n ·
[
Aq+1

n,m

Bq+1
n,m

]
(2.24)



40 CHAPTER 2. THE LAYERED SPHERE EXCITED BY N POINT SOURCES

with T
(q→s)
n denoting the transition matrix from layer Vq to layer Vs.

In general, the transition matrices satisfy the following relations:

T(q→q)
n = I2 (2.25)

T(q−1→q)
n = Tq

n (2.26)

T(q→s)
n = [T(s→q)

n ]−1 (2.27)

T(q→s)
n = T(p→s)

n ·T(q→p)
n (2.28)

with I2 denoting the 2× 2 unit matrix.
To continue with the solution of the direct problem, by imposing the

boundary conditions in the "inner" surface Ss+1 of excitation layer Vs we
arrive at: [

As+1
n,m

Bs+1
n,m

]
= Ts+1

n ·
[
As

n,m +Hn,m,s(us)

Bs
n,m

]
(2.29)

If we combine (2.24),(2.29) with (2.23), we obtain:[
As+1

n,m

Bs+1
n,m

]
= T(0→s+1)

n ·
[

0
B0
n,m

]
+

T(q→s)
n ·

[
Hn,m,q(uq)
−Jn,m,q(uq)

]
+Ts+1

n ·
[

Hn,m,s(us)
−Jn,m,s(us)

]
(2.30)

Implementing the preceded procedure for all excitation layers V ex
q we ob-

tain:[
AP−1

n,m

BP−1
n,m

]
= T(0→P−1)

n ·
[

0
B0
n,m

]
+

Q∑
q=1

T(q→P−1)
n ·

[
Hn,m,q(uq)
−Jn,m,q(uq)

]
(2.31)

where q is used in reference to the V ex
q layer.

Depending on the type of the core, we can extract the unknown coeffi-
cients of the overall secondary field. For a soft, hard or resistive core, we
obtain

B0
n,m =

Q∑
q=1

(
Ψ2

n,q(kqaq+1)

Ψ2
n,0(kP−1aP )

Jn,m,q(uq)−
Ψ1

n,q(kqaq+1)

Ψ2
n,0(kP−1aP )

Hn,m,q(uq)

)
(2.32)



2.3. SOLUTION OF THE DIRECT PROBLEM 41

where Ψi
n,q(x) with i = 1, 2 denotes the i component of the q-boundary

transition vector

ΨΨΨn,q(x) =
(
T(q→P−1)

n

)T
·
[
fn(x)
gn(x)

]
(2.33)

with
(
T

(q→P−1)
n

)T
denote the transverse matrix of T(q→P−1)

n . The exact
form of fn, gn depends on the boundary conditions, e.g.

fn(x) =

{ jn(x), soft core
j
′

n(x), hard core
j
′

n(x) + iλjn(x), resistive core
(2.34)

gn(x) =

{ hn(x), soft core
h

′

n(x), hard core
h

′

n(x) + iλhn(x), resistive core
(2.35)

with λ given by (1.22). In the case of a penetrable core, the overall scat-
tering coefficients of the external field are given by

B0
n,m =

Q∑
q=1

(
T

(q→P )
22,n

T
(0→P )
22,n

Jn,m,q(uq)−
T

(q→P )
21,n

T
(0→P )
22,n

Hn,m,q(uq)

)
(2.36)

where T
(q→P )
ij,n denotes the ij element of transition matrix T

(q→P )
n . In the

cases where the exterior V0 or the core VP of the scatterer contain point
sources, formulas (2.32) and (2.36) hold as well by omitting the terms
containing Jn,m,0 and Hn,m,P , respectively.

One of the advantages of using excitation operators, is that the coef-
ficients for the individual secondary fields can be obtained directly from
(2.32), (2.36) as follows for the soft, hard and resistive core

bn,0q,j =
Ψ2

n(kqaq+1)

Ψ2
n(kP−1aP )

Jn,m,q(wq,j)−
Ψ1

n(kqaq+1)

Ψ2
n(kP−1aP )

Hn,m,q(vq,j), (2.37)

and for the penetrable core

bn,0q,j =
T

(q→P )
22,n

T
(0→P )
22,n

Jn,m,q(wq,j)−
T

(q→P )
21,n

T
(0→P )
22,n

Hn,m,q(vq,j), (2.38)
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with vectors vq,j, wq,j given by

vq,j =
eq,j

Aq,jJn,−m(rq,j)
, wq,j =

eq,j
Aq,jHn,−m(rq,j)

with eq,j for j = 1, . . . , nq, the vectors of the standard base of Rnq .
The expression for the overall far-field, g(r̂) is derived from (2.17). In

particular, in V0 the secondary fields must satisfy Sommerfeld radiation
condition. Therefore for the external individual fields it holds an,0q,j = 0
and subsequently, A0

n,m = 0. Finally, by taking into account that hn(z) ≃
(−i)nh0(z) as z → ∞ we arrive at the following expression for the overall
far-field:

g(r̂) = 4π
∑
n,m

(−1)m(−i)nY m
n (r̂)B0

n,m (2.39)

The expression for the overall scattering cross section σ is readily derived
by considering that spherical harmonics consitute a complete orthonormal
system in L2(S2):

σ =
4π

k20

∑
n,m

(2n+ 1)
(n−m)!

(n+m)!

∣∣B0
n,m

∣∣2 (2.40)

Now we will address two special cases, that require a slightly different
approach. Both of them have significant applications, as they are quite
common in many real-life occasions: The case of external excitation where
all sources lie in the exterior V0 of the scatterer and the case of core exci-
tation where all sources lie in the core VP of the scatterer. For a soft, hard
or resistive core the formula for the external excitation is:

B0
n,m = −

Ψ1
n,0(kP−1aP )

Ψ2
n,0(kP−1aP )

Hn,m,0(u0) (2.41)

while for the penetrable core, we obtain:

B0
n,m =

{
−T

(0→P )
21,n

T
(0→P )
22,n

Hn,m,0(u0), external excitation

1

T
(0→P )
22,n

Jn,m,0(uP ), core excitation
(2.42)

We note that for N = 1, equation (2.32) coincides with (11) of [67],
while for N = 1 and θj = 0, equation (2.36) reduces to (3.10) of [83].
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2.4 Parametric Analysis

In this chapter, we present a parametric analysis for the behaviour of the
ISCS and the corresponding cross section.

2.4.1 Single-Layer Excitation

The numerical results we present in this section, concern the case where a
layered spherical scatterer V is excited by a distribution of point sources
located in the sphere’s exterior (external excitation) or in a specific layer
(internal excitation). In particular, we considered the case where a 2-
layered spherical scatterer V (i.e. P = 2) of external radius a1 and core’s
radius a2, is excited by either a source distribution lying in V0 (r > a1) or
a source distribution lying in the spherical shell V1 (a2 < r < a1). The core
V2 (0 ≤ r < a2) can soft, hard or penetrable. In most cases the sources lie
on the z-axis.

In figure 2.2, we depict the variations of σT/σ versus k0a1 for a distri-
bution of N = 4 external point sources. We consider three dipole distri-
butions with the dipoles’ distances are given by: rj = (1.525 + 0.25j)a1,
rj = (2.525 + 0.25j)a1, and rj = (3.525 + 0.25j)a1, with j = 1, 2, 3, 4.
We notice that the ISCS ratios are oscillatory for higher frequencies when
the sources lie closer to the sphere’s boundary. However, the ratio re-
mains within a 5% and a 4% margin in the hard and penetrable core
case, respectively. As the sources move away from the scatterer, we notice
that the oscillatory behavior remains, but the variation margin deterio-
rates and thus, the ISCS ratios for all examined frequencies achieve the
upper bound 1 − 1

N = 0.75 of (4.45). In figure 2.3, we depict the ISCS
ratios and their physical bounds indicated by (4.45) for a distribution of
N = 4 point sources lying in the exterior V0 of the sphere, at distances
rj = (1.525 + 0.25j)a1, with j = 1, 2, 3, 4 from the sphere’s origin. At
first we notice that for both core types for k0a1 < 6 the upper bound of
(4.45) is 1 − 1/N , which in turn implies that σmin

q ≤ σ/N 2. Additionally,
for all examined frequencies, the differences between the upper bound and
the actual ISCS ratio are less than 1%. On the other hand, the differences
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Figure 2.2: ISCS ratios σT/σ versus k0a1 for a spherical scatterer with a1 = 4a2, ρ1 = 2ρ0, η1 = 1.75η0 and a
soft core (left panel) and penetrable core with ρ2 = 2.25ρ2, η2 = 2η0 (right panel). The scatterer is excited by
three sets of N = 4 external sources with distances 0.25a1 between successive sources.

between the lower and the upper bounds of (4.45) do not exceed 4% while
k0a1 ≥ 1, and thus, the upper bound constitutes a more precise estimation
for the ISCS ratio. On the other hand, in the low-frequency region we see
that the q-ISCS ratios are close to the upper bound, whereas the difference
with the lower bounds of (4.45) is substantial. This behaviour is explained
by considering the minimum and maximum individual cross sections ratios
over the q-excitation cross section. In the low-frequency region they differ
substantially, e.g. for k0a1 ≤ 1, the difference exceeds 2.5%, which leads
to a 10% difference between the corresponding physical bounds. The ISCS
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Figure 2.3: ISCS ratios σT/σ and their physical bounds versus k0a1 for the same sphere of figure 2.2
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ratios for the case of N = 4 internal sources located at the z-axis are shown
in Fig. 2.4. The sources are located rj = (0.25+0.05j)a1, with j = 1, 2, 3, 4
and we depict the variations of the ISCS ratio for the three core types. We
notice for all core types a steep descent for the ISCS ratio in contrast to
the external excitation case. Additionally, for the examined frequencies we
observe that for lower frequencies, i.e. k0a1 < 2.5 the ratio does not differ
substantially, whereas that changes for higher frequencies, where the pen-
etrable core leads to smaller ISCS ratios. In figure 2.5 we demonstrate the
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Figure 2.4: ISCS ratios σT/σ versus k0a1 for the same sphere of figure 2.2 for internal excitation by N = 4
point sources for a soft, hard or penetrable core.

accuracy of the physical bounds for the number N of dipoles that excite the
spherical scatterer with a soft or a penetrable core. The source distribution
is external, with the distance of each source from the sphere’s region given
by rj = (1.525 + 0.25j)a1, j = 1, 2, 3, 4. The similarity in the behavior of
the physical bounds for both types of core is remarkable. Specifically, for
0.2 < k0a1 < 6, the physical bounds are valid and determine accurately
the number of dipoles exciting the scatterer. A very interesting observa-
tion - which have been observed in a variety of source distributions - is
that in the higher frequencies (k0a1 > 6) it holds N = [

√
σ/σmin] + 1,

where [x] denotes the integer part of x. This is caused by the fact that
the minimum and maximum individual cross sections do not differ sub-
stantially. We would also like to note that similar patterns with respect
to the physical bounds and the estimation of the number of sources excit-
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ing the sphere, have been found to be exhibited by even sparser or denser
dipole distributions - as well as for the case where the sphere contains an
acoustically hard core. In figure 2.6, the variations of the total ISCS σT/σ
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Number of sources

Figure 2.5: Physical bounds for the number N of sources exciting a 2-layered sphere with a1 = 4a2, ρ1 = 2ρ0,
η1 = 1.75η0. The bounds for a soft core are depicted with red and the bounds for a penetrable core with blue.
For the penetrable core, it also holds ρ2 = 2.25ρ0 and η2 = 2η0. The scatterer is excited by N = 4 external
sources.

versus the relative mass density ϱ1 = ρ1/ρ0 of the first spherical shell are
depicted for two different k0a1, namely k0a1 = 0.5 and k0a1 = 2.5. The
spherical scatterer has a penetrable core and is excited by N = 4 point
sources located at r1 = (1.525 + 0.25j)a1 for j = 1, 2, 3, 4 on the z-axis
of the scatterer’s exterior. For the lower frequency, the total ISCS ratio
seems to variate slightly more than the ISCS ratio of the higher frequency.
In both cases however, the variation of the ISCS ratio as ϱ1 increases, does
not exceed 0.15% for k0a1 = 0.5 and 0.03% for k0a1 = 2.5. For both types
of core, the total ISCS does not seem to oscillate, while its behaviour for
a hard and penetrable core is quite similar. In particular, for the lower
frequency is almost identical, while on the higher frequency for ϱ1 > 5 the
ISCS ratio on the hard core case seems to deviate from the correspond-
ing ratio of the penetrable core. Similar patterns have been observed at
both lower and higher frequencies, for different source distributions. In fig-
ure 2.7, we demonstrate the behavior of the values (left panel) and ratios
(right panel) for the total ISCS, a source distribution consisting of N = 4
sources located at the first shell V1 of the sphere, with a soft core V2 of
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Figure 2.6: ISCS ratios σT/σ versus the relative mass density ϱ1 = ρ1/ρ0 of a 2-layered spherical scatterer,
with a penetrable core and a1 = 4a2, η1 = 1.75η0, η2 = 2η0 for two fixed frequencies k0a1 = 0.5 (left panel) or
k0a1 = 2.5 (right panel). The scatterer is excited by N = 4 external sources.

radius a1 = 4a2 and parameters η1 = 1.75η0, ρ1 = 2ρ0. In the right sub-
figure, we consider three different placements for the source distribution.
In the "core side" the sources are placed near the sphere’s core at distances
rj = (0.25 + 0.05j)a1 for j = 1, 2, 3, 4 from the sphere’s origin. In the
"middle side" the sources are placed at distances rj = (0.45 + 0.05j)a1
for j = 1, 2, 3, 4, while in the "boundary side" are placed at distances
rj = (0.75 + 0.05j)a1 for j = 1, 2, 3, 4. We notice, that the "bound-
ary side" placement leads to an oscillating behaviour for k0a1 > 3, while
"core" and "middle" placements lead to smoother behaviours. In all cases,
we observe a small variation in the ISCS ratios as k0a1 rises for all place-
ments, which can be attributed to the dense nature of the distribution.
Finally, in the bottom panel, we depict the variations of the ISCS values
for the same setup of the upper right panel. As we observe, the similar-
ity between the ISCS ratios is not a product of the similarity between the
corresponding ISCS values. As we notice, the "boundary side" and "mid-
dle side" placements follow a similar, oscillatory pattern for k0a1 > 2.5,
with the oscillations for the "boundary side" placement being steeper com-
pared to the "middle side" placement. On the other hand, the "core side"
placement follows a smooth, slightly ascending behaviour for all examined
frequencies but with its values significantly smaller than the rest of the ex-
amined placements. For k0a1 < 2.5 all placements ascend smoothly, with
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the "boundary side" placement having the greatest values and the "core
side" placement having the lowest values. In figure 2.8, we compare the
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Figure 2.7: ISCS values (left panel) and ratios (right panel) for a 2-layered sphere with a soft core of radius
a2 = a1/4. The sphere is excited by N = 4 sources lying in the first shell at three different placements: "core
side", "middle side" and "boundary side".

behavior of the total ISCS ratio σT/σ versus the radius k0a1 for different
core radii. The sphere in this case, has a penetrable core and is excited
by a distribution of N = 4 external sources that lie in the exterior V0 at
locations rj = (1.525+0.25j)a1 for j = 1, 2, 3, 4. The sphere’s mass densi-
ties are ρ1 = 2ρ0, ρ2 = 2.25ρ0 and the corresponding refractive indices are
η1 = 1.75η0, η2 = 2η0. For all examined frequencies, we observe that for
larger cores a2 = 0.9a1, a2 = 0.67a1 the ISCS ratio variates slightly as k0a1
ascends. For smaller cores, the ISCS ratio does not change significantly,
but oscillates in a mild way. Finally, in figure 2.9 we depict the behavior of
the total ISCS values for a spherical scatterer with a soft core for external
excitation for different point source distributions. In particular the sources
are located for N = 5 at distances rj = (0.25 + j)a1, for j = 1, . . . , 5, for
N = 10 at distances rj = (0.75 + j)a1, for j = 1, . . . , 10, for N = 20 at
distances rj = (1 + 0.25j)a1, for j = 1, . . . , 20, for N = 50 at distances
rJ = (1.15 + 0.1j)a1, for j = 1, . . . , 50. We notice that the ratios follow a
descending pattern as k0a1 grows, with the oscillations occuring for greater
frequencies. On the other hand, as the number N of sources grows - which
leads inevitably to denser source distributions - we observe that the total
ISCS ratio reaches the threshold 1− 1/N , e.g. for N = 50 the ISCS ratio
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Figure 2.8: Total ISCS ratios σT/σ versus the radius k0a1 for different core radii of a sphere with a penetrable
core, excited by N = 4 external point sources.

is greater than 97.75% in all examined frequencies.
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Figure 2.9: Total ISCS σT of a 2-layered scatterer for source distributions of varying N number of sources.

2.4.2 Mixed Excitation

Now, we consider that the scatterer V is excited by a point source distri-
bution with the some of the sources lying in the external region V0 (r > a1)
and the rest of the sources lying in the first spherical shell V1 (a2 < r < a1);
hence we have Q = 2 excitation layers.

In Fig. 2.10, we depict the variations of the total σT/σ, indirect σI/σ,
and direct σD/σ ISCS ratios (left panel) and the values of σ, σT and σI

(right panel) for a soft and a hard core. We considered a distribution
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of N = 8 sources, with n0 = 4 of them in the exterior V0 at distances
r0j = (1 + 0.25j)a1 and n1 = 4 of them in the interior V1 at distances
r1j = (0.75+ 0.05j)a1 from the sphere’s origin. For both cores we assumed
a1 = 4a2, ρ1 = 2ρ0 and η1 = 1.75η0. As we observe, for k0a1 > 1
the variations of the ISCS ratios do not seem to be affected much by the
core type, for the total ISCS. The same holds for the direct ISCS and
the indirect ISCS but for k0a1 > 3, while for k0a1 < 3 there are notable
changes between the soft and the hard core. However, the most notable fact
observed, is the negativity of the indirect ISCS for most of the examined
k0a1. This fact is - naturally - accompanied by large ratios of the direct
ISCS. Thus, by the discussion of 1.2.2, we assume that in this setup the
cumulative interaction between the sources produces energy flux that is
directed towards the sphere’s exterior while the interaction between the
fields produced in different layers - V0 and V1 in our setup - produces
energy flux directed towards the interior of the sphere. Fig. 2.11 depicts
the variations of the ISCS ratios (left panel) as well as the corresponding
ISCS values (right panel) for the case of a penetrable core. We considered
two different material settings: the "weak" material setting has parameters
η1 = 1.75η0, η2 = 2η0 and the "strong" material setting has parameters
η1 = 2.25η0, η2 = 2.75η0. As we observe for k0a1 < 1 the parameters do not
significantly affect the ISCS ratios, while for 1 < k0a1 < 4 the parameters
affect to some extent the ISCS ratios (less than 15% variation). However,
for k0a1 > 4 we observe the strong oscillatory behaviour for the stronger
material setting, while the weaker material setting offers a smoother ISCS
ratio behaviour, while the indirect ISCS takes negative values.

Fig. 2.12 shows the variations for the values of σ, σT and σI, and the
direct σD/ versus the core size a2 of a 2-layered sphere with k0a1 = 1.5
and a soft core. The core size is expressed as the portion ξ = a1/a2.
We notice that while the core occupies the larger part of the sphere, i.e.
for ξ ≤ 2, σ rises as the core shrinks, while σI descends. The values
of σT do not seem to be greatly affected. For ξ > 2 all values seem to
stabilize, and especially for ξ > 4 we practically see no change in the
values of σ, σT and σI, while for σI the values remain negative for ξ > 2
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Figure 2.10: ISCS ratios (left panel) and values (right panel) versus radius k0a1 of a 2-layered sphere V with a
soft or a hard core with ρ1 = 2ρ0, η1 = 1.75η0 excited by N = 8 sources, with n0 = 4 dipoles in V0 and n1 = 4
in V1.
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Figure 2.11: ISCS ratios versus k0a1 for a 2-layered sphere with a penetrable core for two different material
settings, excited by the same distribution of figure 2.10.

for this particular setup. We note, that at different k0a1 similar patterns
are observed for the same point source distribution. In Fig. 2.13, we depict
the physical bounds for the number Q of excitation layers indicated by
(4.50) for a point source distribution consisting of N = 8 point sources,
with n0 = 4 of them in V0 at r0j = (1 + 0.25j)a1 and n1 = 4 of them
in V1 at distances rj = (0.2 + 0.1j)a1 with η1 = 1.75η0 and ρ1 = 2ρ0
and ξ = a1/a2 = 4. We note that the sphere can have a soft or a hard
core. The considered number Q = 2 is depicted with a straight red line.
First of all we observe the remarkable similarity for both types of core, for
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Figure 2.12: Values of σ, σT and σI versus the portion ξ = a1/a2 for a 2-layered scatterer with k0a1 = 1.5 and
a soft core. The sphere is excited by N = 8 sources with n0 = 4 in V0 and n1 = 4 in the first shell V1.

k0a1 > 1. We note that the physical bounds can be used to determine
accurately Q for most all the examined frequencies. This does not hold
for k0a1 ∈ (1.4 − 1.7) for the soft core and k0a1 ∈ (1.2 − 1.6) for the
hard core; in these cases however, we note that the upper physical bound
remains very close to the number Q of excitation layers. In fact, we observe
that it holds Q = [

√
σ/σmax

ex ] + 1. In the inset figure, we demonstrate the
same physical bounds in the low-frequency region, i.e. for k0a1 ≤ 1. In the
hard core, we observe that the bounds remain valid, but for k0a1 ≤ 0.75
they cannot be safely used for the determination of Q, since the minimum
q-excitation cross section–σ1 in this case–is significantly smaller than the
overall cross section. For the soft core, the physical bounds remain valid
for k0a1 < 0.75. Finally, for both types of cores we observe a change in
the minimum and maximum q-excitation cross sections at k0a1 = 1.6 for
the soft core and at k0a1 = 1.35 for the hard core. In particular, for both
types of core, we see that σ0 < σ1 in the lower frequencies, while σ0 > σ1
in the greater frequencies. Fig. 2.14 depicts the variations of σ,σT and σI

for k0a1 = 1.5 versus the relative mass density ϱ1 = ρ1/ρ0 of layer V1,
ρ2 = 1.125ρ1 for 2-layered sphere with a penetrable core, excited by N = 8
sources with n0 = 4 and n1 = 4. The left panel depicts, the behaviour of
σ,σT and σI for three different kinds of external distribution: "Dense" with
r0j = (1.2+0.05j)a1, "medium" with r0j = (1+0.25j)a1 and "sparse" with
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Figure 2.13: Physical bounds for the number Q of excitation layers versus k0a1 of a 2-layered sphere with
a1 = 4a2, η1 = 1.75η0, ρ1 = 2ρ with a soft (blue lines) or a hard core (green lines). The scatterer is excited by
N = 8 sources, 4 of the lying in the exterior of the sphere and 4 of them first spherical shell.

r0j = (0.25+ j)a1. The sources in V1 are at distances r1j = (0.25+0.05j)a1
for all external distributions, while it holds η1 = 1.75η0, η2 = 2η0. First, we
observe the notable similarity in the behaviour of all quantities examined
with the "dense" external distribution leading to greater values, contrary
to the "sparse" external distribution. We also note that for all relative
mass densities examined, the total and indirect ISCS remain positive. In
the right panel, we depict the behaviour of σ,σT and σI for three different
internal distributions: "Dense" with r1j = (0.25 + 0.05j)a1, "medium"
with r1j = (0.175 + 0.125j)a1 and "sparse" with r0j = (0.075 + 0.225j)a1.
The sources in V0 are at distances r1j = (1.25 + 0.05j)a1 for all external
distributions. We note the significantly lesser values of σ, σTandσI for the
"sparse" distribution, compared to the ones for the "dense" distribution.
Finally, we note that for ϱ1 > 10 it holds σT > σI, which implies that σD <

0. Thus, the power flux induced by the interaction between the sources,
is directed towards the sphere’s core. Qualitatively similar results were
drawn for the soft and hard core cases as well, which leads us to estimate
that the topological density of the point sources plays an important role
in the values of the cross sections, in contrast to the density of the point
source distribution in the exterior of the sphere. Finally, we see that as
relative mass density rises, the values of ISCS and SCS follow a descending
pattern, without their corresponding ratios necessarily affected.
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Figure 2.14: Variations of σ, σT and σI versus the relative mass density index of V1, ϱ1 = ρ1/ρ0 at k0a1 = 2.5,
for a 2-layered scatterer with a penetrable core for different types of external point source distributions (left
panel) and internal point source distributions (right panel). The sphere is excited by N = 8 sources, with
n0 = 4 and n1 = 4.



Chapter 3

Inverse Problems

3.1 Low-Frequency Approximations

Now, we steer our focus in the so-called low frequency zone, which refers
to the case where the wavelength is significantly larger than the scatterer’s
size, i.e. k0a1 << 1. Results in the low-frequency region were obtained
by various authors in the past that utilized different techniques, [79] [91],
[92], [93]. We limit our investigation in the case of a 2-layered sphere, since
the presence of more than 2 layers does not offer significant qualitative
differences - only on the algebraic complexity of the analytical procedures.
This is due to the fact that the extraction of the fields’ coefficients follow
a recursive rule, see (3.11) of [83].

First we introduce the following parameters

ξ =
a1
a2
, ηp =

kp
k0
, dq,j =

rq,j
a2

, τj =
a1
rj
,

and let the power constant be of the form

Aq,j = rq,je
−ikqrq,j .

Primary spherical waves with the above constant, reduce to plane waves as
r → ∞ and transfer the same amount of energy from the source’s location
rq,j to the origin, as a plane wave propagating in the direction of −rq,j, see
[65].

By the asymptotic properties of the spherical Bessel and Hankel func-
tions for small argument, see (10.1.4)-(10.1.5) of [94] in combination with

55
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Legendre’s addition theorem, see (12.178) of [95] the following expression
for the overall far-field is derived

g(r̂) =

Q∑
q=1

nq∑
j=1

[
κµ1 + κ2µ2(θ, ϕ) + κ3µ3(θ, ϕ)

]
+O(κ4) (3.1)

with

µ1 =

Q∑
q=1

nq∑
j=1

Cq,j
1 (3.2a)

µ2(θ, ϕ) =

Q∑
q=1

nq∑
j=1

(
Cq,j

2 + Cq,j
3 τq,jP1(r̂q,j · r̂)

)
(3.2b)

µ3(θ, ϕ) =

Q∑
q=1

nq∑
j=1

(
Cq,j

4 + Cq,j
5 P1(r̂q,j · r̂)+

Cq,j
6

4
(τq,j)

2P2(r̂q,j · r̂)

)
(3.2c)

Quantities Cq,j
ν for ν = 1, . . . , 6 depend - in general - on the geometrical

and physical characteristics of the spherical scatterer as well as on the point
source’s location. For detailed expressions of these quantities, see appendix.
We stress that in the external excitation case, quantities Sq,j

ν depend solely
on the physical and geometrical characteristics of the scatterer and have
no dependence on the sources’ location.

Functions Pν(r̂q,j · r̂) are the Legendre polynomials of order 1 and 2 and
are given, respectively, by:

P1(r̂q,j · r̂) = cosθq,jcosθ + sinθq,jsinθcos(ϕq,j − ϕ) (3.3)
P2(r̂q,j · r̂) = sin2θsin2θq,jcos(ϕq,j − ϕ)+

sin2θsin2θq,jcos(2(ϕq,j − ϕ)) + (cos2θq,j −
1

3
)(3cos2θ − 1)) (3.4)

Quantity, P1(r̂q,j · r̂) is the cosinus of the angle between the position vector
of each point source [96], rq,j and the position vector of observation, r
with respect to the sphere’s centre. By utilizing the techniques of [65] we
can isolate the terms of the far-field, which combined with the properties
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of Legendre polynomials derive the far-field low-frequency approximation
coefficients:

Q∑
q=1

nq∑
j=1

Cq,j
2 =

µ2(0, ϕ) + µ2(π, ϕ)

2
= M1 (3.5a)

Q∑
q=1

nq∑
j=1

Cq,j
3 τq,jcosθq,j =

µ2(0, ϕ)− µ2(π, ϕ)

2
= M2 (3.5b)

Q∑
q=1

nq∑
j=1

Cq,j
3 τq,jsinθq,jcosϕq,j =

µ2(
π
2 , 0)− µ2(

π
2 , π)

2
= M3 (3.5c)

Q∑
q=1

nq∑
j=1

Cq,j
3 τq,jsinθq,jsinϕq,j =

µ2(
π
2 ,

π
2 )− µ2(

π
2 ,

3π
2 )

2
= M4 (3.5d)

Q∑
q=1

nq∑
j=1

Cq,j
5 cosθq,j =

µ3(0, ϕ)− µ3(π, ϕ)

2
= N1 (3.5e)

Q∑
q=1

nq∑
j=1

Cq,j
5 sinθq,jcosϕq,j =

µ3(
π
2 , 0)− µ3(

π
2 , π)

2
= N2 (3.5f)

Q∑
q=1

nq∑
j=1

Cq,j
5 sinθq,jsinϕq,j =

µ3(
π
2 ,

π
2 )− µ3(

π
2 ,

3π
2 )

2
= N3 (3.5g)

Q∑
q=1

nq∑
j=1

Cq,j
4 =

2µ3(
π
2 , 0) + 2µ3(

π
2 , π) + µ3(0, ϕ) + µ3(π, ϕ)

6
= N4 (3.5h)

Q∑
q=1

nq∑
j=1

Cq,j
6

2
(τq,j)

2(3cos2θq,j − 1) =

µ3(0, ϕ) + µ3(π, ϕ)− µ3(
π

2
, 0)− µ3(

π

2
, π) = N5 (3.5i)
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With the help of relations (3.5b)-(3.5i) we can express the overall far-field
as a sum of far-field measurements:

g(r̂) =

[
κµ1 + κ2

(
M1 +M2cosθ + sinθ(M3cosϕ−M4sinϕ)

)
+

+κ3

(
N4 +N1cosθ + sinθ(N2cosϕ−N3sinϕ)+

Q∑
q=1

nq∑
j=1

Cq,j
6

4
(τq,j)

2P2(r̂q,j · r̂)

)]
+O(κ4) (3.6)

Utilizing (2.40), the low-frequency approximation for the overall scattering
cross section takes the generic form

σ = γ1 + (k0a1)
2 (γ2,1 + γ2,2) (3.7)

The terms γ1, γ2,1, γ2,2 depend on the geometrical characteristics of the
scatterer, the physical parameters of the scatterer and on the dipole distri-
bution. By considering the far-field measurements (3.5a)-(3.5i) we arrive
at the following relations:

γ1 = 4πa21µ
2
1 (3.8)

γ2,1 = 4πa21(M2
1 − 2N4µ1) (3.9)

γ2,2 = 4πa21(M2
2 +M2

3 +M2
4) (3.10)

We point out, that for the external excitation case, by letting t0,j → 0 we
obtain the coefficients for the overall far-field in the case where our spherical
scatterer is excited by a group of N plane waves, with incident directions
−r0,j. In this a case, it holds M2 = M3 = M4 = N5 = 0. Thus, the
expressions of the overall far-field and the overall scattering cross section
will be, respectively, simplified into the following:

g(r̂) =
N∑
j=1

[
κC0,j

1 + κ2C0,j
2 + κ3

(
C0,j

4 + C0,j
5 P1(r̂0,j · r̂)

) ]
+O(κ4)

σ = 4πN 2a21(C
0,j
1 )2

[
1 + (k0a1)

2(C0,j
1 )2δ(ρ, η, ξ)

]
+O(κ4)
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with δ(ρ, η, ξ) given by

δ(ρ, η, ξ) = (ϱ1η1)
2 − ϱ1η

2
1(2ξϱ1 + ϱ1 − 1)

3ξ

3.1.1 Single-Layer Excitation

In the previous chapter, we investigated the behaviour of the total ISCS
and its ratio over the overall cross section for an arbitrary layered medium.
Now, we will exploit the low-frequency approximation to accurately portray
the behaviour of the ISCS ratio in the case of a layered, spherical scatterer.
Furthermore, we illustrate through some numerical results the strong de-
pendence of the cross sections on the scatterer’s geometrical and physical
characteristics and on the number of sources N . On the other hand, we
will demonstrate the rather insignificant part that the distribution of the
sources on the single-layer excitation plays. This fact - which is supported
by the discussion for the energy conservation of the previous chapter -
leads to the conclusion that the single-layer excitation is characterized by
a predictable ISCS ratio behaviour.

External Excitation

First we address the case where all N sources, are located in the scatterer
exterior, V0. It is worth noting, that the coefficients Cq,j

ν do not depend on
the source’s position vector - only on the characteristics of the scatterer.
Soft Core
For a soft core it holds:

Cq,j
1 = S0

1 , Cq,j
2 = ρη(S0

1)
2

Cq,j
3 = S0

2 , Cq,j
4 = (S0

1)
3β(ρ, η, ξ)

Cq,j
5 = −S0

2 , Cq,j
6 = S0

3

(3.11)

with

β(ρ, η, ξ) =
ρη2(2ξρ+ ρ− 1)

3ξ
(3.12)



60 CHAPTER 3. INVERSE PROBLEMS

The overall far-field in this case can be written as

g(r̂) = κNS0
1 + κ2

(
Nρη(S0

1)
2 + S0

2

N∑
j=1

τjP1(r̂q,j · r̂)

)
+

κ3

(
Nβ(ρ, ξ, η)(S0

1)
3 − S0

2

N∑
j=1

P1(r̂q,j · r̂)+

S0
3

N∑
j=1

τ 2j P2(r̂q,j · r̂)

)
(3.13)

with
δ(ρ, η, ξ) = (ρη)2 − β(ρ, η, ξ) (3.14)

The terms in the overall scattering cross section expression (3.7) in the soft
core case take the following form:

γ1 = 4πa21N
2(S0

1)
2 (3.15a)

γ2,1 = 4πa21N
2(S0

1)
4δ(ρ, η, ξ) (3.15b)

γ2,2 =
4πa21(S

0
2)

2

3

(
N∑
j=1

τ 2j + 2
N−1∑
j=1

N∑
ν=j+1

τjτνP1(r̂q,j · r̂q,ν)

)
(3.15c)

Taking a closer look at equations (3.15a)-(3.15c) we observe that the dis-
tribution of the point sources plays a limited part in the overall scattering
cross section and the total ISCS. This is due to the fact that the com-
ponents of the position vectors of the point sources, appear only on the
second term of order O(κ2).

In the next, we will use the hat symbol to denote quantities that refer to
the sum of the individual cross sections and the tilde symbol will be used
to denote quantities that refer to the ISCS. The sum of individual cross
sections and the total ISCS have a similar generic form as the corresponding
overall scattering cross section:

σT = γ̃1 + (k0a1)
2 (γ̃2,1 + γ̃2,2) (3.16)

σ̂ = γ̂1 + (k0a1)
2 (γ̂2,1 + γ̂2,2) (3.17)



3.1. LOW-FREQUENCY APPROXIMATIONS 61

with
γ̂1 = 4πa21N(S0

1)
2 (3.18a)

γ̃1 = 4πa21N(N − 1)(S0
1)

2 (3.18b)

γ̂2,1 = 4πa21N(S0
1)

4δ(ρ, η, ξ) (3.18c)

γ̃2,1 = 4πa21N(N − 1)(S0
1)

4δ(ρ, η, ξ) (3.18d)

γ̂2,2 =
4πa21(S

0
2)

2

3

N∑
j=1

τ 2j (3.18e)

γ̃2,2 =
8πa21(S

0
2)

2

3

N−1∑
j=1

N∑
ν=j+1

τjτνP1(r̂q,j · r̂) (3.18f)

In the following theorem, we provide a lower bound for the low-frequency
approximation of the total ISCS ratio. This lower bound is a sharper lower
bound that the one indicated by (1.87).

Theorem 3.1.1 For the low-frequency approximation of the total ISCS
ratio induced by a distribution of N external point sources, exciting a sphere
with a soft core, it holds:

N − 1

N
− VR(τττ)

3Nρ2ξ2
(k1a2)

2 ≤ σT

σ
(3.19)

where VR(τττ) denotes the variance for the location vector τττ = (τ1, τ2, . . . , τN).

Proof. By equations (3.15a)-(3.15c) and (3.18a) we readily obtain:

N − 1

N
σ − σT =

(k0a1)
2

N
(Nγ̂2,2 − γ2,2) (3.20)

Since P1(r̂q,j · r̂) = cosα with α being the angle with respect to the origin,
between the source’s position vector and the vector of observation, last
relation can be reduced to:

N − 1

N
σ − σT ≤ (k0a1)

24πa
2
1(S

0
2)

2

3

 N∑
j=1

τ 2j − 1

N

(
N∑
j=1

τj

)2
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But for the variance VR(τττ) of the location vector τττ with components the
normalized distances τj, it holds:

VR(τττ) =
1

N

 N∑
j=1

τ 2j − 1

N

(
N∑
j=1

τj

)2


Combining the last two relations we obtain:

N − 1

N
σ − σT ≤ (k0a1)

2N
4πa21(S

0
2)

2

3
VR(τττ) (3.21)

By substituting the expression of S0
2 in (3.21), we obtain:

σT ≥ N − 1

N
σ − (k0a1)

2N
4πa22η

2

3
VR(τττ)

Equations (3.21) and (3.7) lead to (3.19) after some algebraic manipulation.

□

Remark 3.1.2 For the variance it holds VR(τττ) << 1. This stems from
the fact that τj < 1. In combination with k0a2 << 1 we conclude that it
holds:

σT ≃ N − 1

N
σ (3.22)

Relation (3.22) is asymptotic but remains valid for a variety of point source
distributions. For a spherical point source distribution we have the lowest
possible variance, i.e. VR(τττ) = 0. This results in σT/σ = 1 − 1/N .
In contrast, the maximum possible variance occurs when all sources lie
in different spheres (e.g. all sources lie in a line). Since τj ∈ (0, 1) we
can view the location vector τττ as a sample from the uniform distribution
U(0, 1). Therefore, we can readily conclude that for all cases, it holds
VR(τττ) < 1/12 which is the variance of U(0, 1). Taking this fact into
account, we extract a lower bound for the low-frequency approximation
that does not depend on the sources’ distribution - only on their number
and the sphere’s parameters:

N − 1

N
− (k1a2)

2

36Nρ2
≤ σT

σ
≤ N − 1

N
(3.23)
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Figure 3.1: Comparison of cross section ratios and cross section values for the exact cross section and their
low-frequency approximations for a 2-layered scatterer with a soft core excited by 10 external sources

Figure 3.2 demonstrates the sharpness of the estimate for the ISCS ratio,
compared to the accuracy of the low-frequency approximation for the corre-
sponding cross section values. The actual ratio lies well between the ratio
of the low-frequency estimates and the lower bound indicated by (3.23)
with the maximum error to be less than 0.01%. In the inset figure, we
see the plots for the values of the ISCS and the overall scattering cross
section, compared to their estimates. We see that despite the fact that the
cross section values appear to deviate from their estimates as frequency
rises, their corresponding estimated ratios do not. Finally, we restrict the
greater part of our investigation in the case of P = 2 but as figure 3.2
indicates, the number of non-excitation layers does not affect significantly
the ISCS ratio in the soft core case.
Hard or Penetrable Core
For a hard core or a penetrable core, the overall cross section will be given
by:

σ = 4πa21

[
(k0a1)

2 (C
0
1)

2

3

(
N∑
j=1

τ 2j + 2
N−1∑
j=1

N∑
ν=j+1

τjτνP1(r̂q,j · r̂)

)]

The following theorem, gives an upper bound for the total ISCS ratio.
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Figure 3.2: Comparison of the exact cross section ratio of a layered sphere with a soft core excited by 10
external sources for different layer numbers.

Theorem 3.1.3 If k0a1 << 1 then for the total ISCS ratio of a group
of N external sources, exciting a sphere with a hard or penetrable core, it
holds

σT

σ
≤ N − 1

N

(
τττ 2

VR(τττ)
− 1

N − 1

)
, (3.24)

where τττ denotes the median of location vector τττ .

Proof. Considering that for all j, ν = 1, . . . , N it holds P1(r̂j · r̂ν) ≥ −1,
we get

σ ≥ 4πa21(k0a1)
2 (C

0
3)

2

3

( N∑
j=1

τj

)2

− 2
N−1∑
j=1

N∑
ν=j+1

τjτν

 (3.25)

Given that

VR(τττ) =
1

N 2

N−1∑
j=1

N∑
ν=j+1

(τj − τν)
2 =

1

N

N∑
j=1

τ 2j − τττ 2, (3.26)

relation (3.25) implies

σ ≥ 4πa21(k0a1)
2N 2 (C

0
3)

2

3
VR(τττ) (3.27)
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Since P1(r̂j · r̂ν) ≤ 1, the low-frequency approximation of the total ISCS,
satisfies

σT ≤ 8πa21

[
(k0a1)

2 (C
0
3)

2

3

(
N−1∑
j=1

N∑
ν=j+1

τjτν

)]
(3.28)

But, it holds

2
N−1∑
j=1

N∑
ν=j+1

τjτν =

(
N∑
j=1

τj

)2

−
N∑
j=1

τ 2j = N 2τττ 2 −
N∑
j=1

τ 2j . (3.29)

Combining equations (3.26), (3.27), and (3.29), yields (3.24).

□

Last theorem can be interpreted in the following manner: According to
the low-frequency approximation the total ISCS ratio depends only on the
distances from the sphere’s center and not on the sphere’s characteristics
and physical parameters. Therefore, different distributions expect to have
similar ISCS ratio behavior. As we saw on the soft core case, when all
sources lie on a sphere of radius R, the total ISCS ratio will be the maximum
possible: (N − 1)/N . In contrast, the minimum possible total ISCS ratio
will occur for a distribution where all sources are at different distances from
the sphere’s center.

Unlike the soft core case however, (3.24) implies that the total ISCS
ratio might deviate significantly from its upper bound (N − 1)/N . One
such example, is a dense distribution with small variance and a large har-
monic median. In the following table, we present numerical results that
demonstrate these facts.

In particular, all presented distributions have the same harmonic me-
dian τττ = 0.5 and different variances. In each distribution, we present the
exact total ISCS ratio, utilizing the exact solutions for the external exci-
tation, we developed earlier, as well as the low-frequency approximation.
Similar results to Figure 3.2 can be observed for the ISCS ratio and its
low-frequency estimates in the hard core case. The estimation sharpness
is reduced but the bound indicated by (3.24) remains very close to the ac-
tual ISCS ratio, even in the cases where the low-frequency approximation
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fails to converge to the actual cross section values. This fact demonstrates
the power of Theorems 3.1.1 and 3.1.3: the low-frequency estimation for
the ISCS ratios remains sharp, even in the cases where the corresponding
estimation for the cross section values, does not.

VR(τττ) = 0.0205 k0a1 = 0.025 k0a1 = 0.1 k0a1 = 0.25 k0a1 = 0.5
exact 0.74999 0.74997 0.74981 0.74883

low frequency 0.74999 0.74999 0.74999 0.74998
VR(τττ) = 0.0566 k0a1 = 0.025 k0a1 = 0.1 k0a1 = 0.25 k0a1 = 0.5

exact 0.74999 0.74996 0.74977 0.74866
low frequency 0.74999 0.74999 0.74995 0.74979

Table 3.1: Total ISCS ratios for a line distribution of 4 sources

VR(τττ) = 0.0397 k0a1 = 0.025 k0a1 = 0.1 k0a1 = 0.25 k0a1 = 0.5
exact 0.74999 0.74997 0.74982 0.74908

low frequency 0.74999 0.74997 0.74984 0.74951
VR(τττ) = 0.0031 k0a1 = 0.025 k0a1 = 0.1 k0a1 = 0.25 k0a1 = 0.5

exact 0.74999 0.74998 0.74988 0.74925
low frequency 0.74999 0.74998 0.74988 0.74944

Table 3.2: Total ISCS ratios for an arbitrary distribution of 4 sources

VR(τττ) = 0.0085 k0a1 = 0.025 k0a1 = 0.1 k0a1 = 0.25 k0a1 = 0.5
exact 0.89999 0.89999 0.89993 0.89955

low frequency 0.89999 0.89999 0.89995 0.89979
VR(τττ) = 0.0379 k0a1 = 0.025 k0a1 = 0.1 k0a1 = 0.25 k0a1 = 0.5

exact 0.89999 0.89999 0.89991 0.89948
low frequency 0.89999 0.89999 0.89994 0.89971

Table 3.3: Total ISCS ratios for a line distribution of 10 sources

Equivalent Source

Now, we will address the problem of finding an equivalent source. The
statement of the problem is the following: We suppose that N sources
located in the exterior V0, stimulate a layered sphere of known physical
parameters and geometrical characteristics. We seek to determine the lo-
cation and the strength of a solitary point source that will radiate the
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N = 10 sources k0a1 = 0.05 k0a1 = 0.1 k0a1 = 0.25 k0a1 = 0.5
exact 0.00006 0.00024 0.00236 0.02268

low frequency 0.00003 0.00014 0.00087 0.00349
N = 5 sources k0a1 = 0.05 k0a1 = 0.1 k0a1 = 0.25 k0a1 = 0.5

exact 0.00003 0.00012 0.00118 0.01134
low frequency 0.00002 0.00007 0.00044 0.00175

Table 3.4: Differences between overall SCS and total ISCS, |σ − σT|

same average intensity over all directions per unit area, as the existing
point source distribution.

In other words, we will determine the location

τeq =
a1
req

and strength
Aeq = |A|reqexp(−ik0req)

of a source that will lead to the same cross section as the overall cross
section of the point source distribution. By [67] the individual cross section
of the solitary source has the following form:

σeq = 4πa21|A|2
[
(S0

1)
2 + (k0a1)

2

(
(S0

1)
4δ(ρ, η, ξ) +

(S0
2)

2

3
τ 2eq

)]
(3.30)

Combining (3.30) with (3.7) and (3.15a)-(3.15c) we arrive that a source
located at

req =

 a1√
γ0
2,2

, 0, 0

 (3.31)

and of strength

Aeq = Nexp

−ik0a1√
γ0
2,2

 (3.32)

will result in the same cross section as the distribution of the N sources.
For a hard or a penetrable core, the corresponding individual cross section
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is given by:

σ = 4πa21|A|2
[
(k0a1)

2 (C
0
1)

2

3
τ 2eq

]
(3.33)

which readily results in:
|Aeq|2τ 2eq = γ0

2,2 (3.34)
Last equation, implies that the solution of the problem is not unique. One
of the choices for the source’s location and strength is the following:

req =

M
a1√
γ0
2,2

, 0, 0

 (3.35)

Aeq = Mexp

 −ik0a1

M
√
γ0
2,2

 (3.36)

where M is a positive number. The choice of M is not rigid, but it is
important to ensure that the primary field emitted by the equivalent source,
does not degenerate to a plane wave.

Remark 3.1.4 It is important to note that equivalent sources guarantee
an equity between scattering cross sections. The corresponding far-fields,
however, will not - in general - be equal.

Plane Waves

Letting τj → 0 in (3.15a)-(3.15c) leads to the conclusion that individual,
overall and ISCS depend solely on the physical and geometrical character-
istics of the spherical scatterer. In particular, it will hold

σ = 4πa21N
2(S0

1)
2 (3.37)

Therefore, in such a case, we immediately obtain:

σT =
N − 1

N
σ, σ0,j =

σ

N 2
(3.38)

Thus, inequality (1.87) degenerates into equity in the case of excitation
by a group of N plane waves. Another interesting point is that only the
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scattered fields will interact with each other; the incident fields will not - in
general - interact. For a hard or a penetrable core, the stimulation of the
sphere by a group of incident plane waves leads to an overall scattering cross
section of order O(κ4) which is much weaker than the overall scattering
cross section due to a point source distribution.

Internal Excitation

By internal excitation we refer to the case where all N sources lie within
a layer of the sphere, i.e. Q = 1, Vq ̸= V0. Following a procedure similar to
the external excitation case, after lengthy calculations we obtain for a soft
and a hard core, respectively

σT

σ
≤ 1

N

(
N − 1− VR(d)

(d − 1)2

(
1 + (k1a2)

2
))

, (3.39)

σT

σ
≤ N − 1

N

(
1− VR(d)

(k1a2)
2

3ϱ21

)
, (3.40)

where d and VR(d) the median and variance of location vector d =
(dq,1, dq,2, . . . , dq,N).

From figure 3.3, we see that the low-frequency approximation for the
ISCS ratio can be safely used regardless of the corresponding low-frequency
approximation accuracy to the exact SCS values. Importantly, the ratio
estimate is accurate even outside the low-frequency regime. Specifically,
the relative error between the exact and low-frequency ratios is smaller
than 1.5% for all k0a1 < 1.

Sources required for a given cross section value

Now we address the problem of finding the number of sources required for
a given cross section value. A more detailed statement of the problem is
the following: We seek to stimulate a 2-layered spherical scatterer with
known physical parameters and geometrical characteristics, with a source
distribution which will produce a scattered field radiating acoustic inten-
sity in the far-field zone, at a pre-determined rate per unit area of σ0. To



70 CHAPTER 3. INVERSE PROBLEMS

0 0.5 1
0.77

0.78

0.79

0.8

0.81

0.82

IS
C

S
 r

a
ti
o

s

0 0.5 1

0

10

20

Figure 3.3: Comparison of cross section ratios and cross section values for the exact cross section and their
low-frequency approximations for a 2-layered scatterer with a hard core excited by 10 external sources

simplify the procedure, we will suppose that each of the point source ra-
diates in the far-field zone acoustic intensity at a known rate of σ1. The
rate of acoustic intensity per unit area is described by the overall scatter-
ing cross section. Therefore Theorem 1.3.6 seems a suitable tool for our
investigation. Substituting σmax = σmin = σ1 into (1.87) we readily obtain:√

σ0
σ1

≤ N (3.41)

But in the low-frequency region, Theorem 3.1.1 holds. Substituting σ̂ =
Nσ1 in (3.19) we arrive at:

N ≤

√
σ0
σ1

(
1 +

VR(τττ)

3ρ2ξ2
(k1a2)2

)
(3.42)

Given the fact that the components of location vector τττ lie in the interval
(0, 1) we can conclude that unless ρ << 1/ξ it will hold

VR(τττ)

3ρ2ξ2
(k1a2)

2 ≤ 1

3

Which in return, yields that for the required number of sources, N it holds

N ∈

{[√
σ0
σ1

]
,

[√
σ0
σ1

]
+ 1

}
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with [x] denoting the integer part of x (floor function).

Remark 3.1.5 Above analysis was restricted to a 2-layered sphere to avoid
mathematically complicated expressions. The qualitative characteristics
can be expanded to more than 2 layers, as figures 3.2 and 3.3 indicate.

3.1.2 Mixed Excitation

The mixed excitation case, is the case where the interaction cross section
ratio depends heavily on the source distribution. In order to demonstrate
the diversity in the ISCS ratio behavior, we will use counter-examples.
Combining equations (3.7) and (3.16) we understand that the total ISCS
ratio σT/σ depends heavily on the value of the fraction γ̃1/γ1. Our inten-
tion is to point out the complicated nature of the ISCS ratio. To avoid
computationally complicated procedures with minimal insight, we will re-
strict our analysis to the fraction γ̃1/γ1 since it contains the qualitative
characteristics we are interested in. In the first counter-example we sup-
pose that the scatterer is excited by 2N sources. N of them are located
inside V1 and lie in a sphere of radius d ∈ (a2, a1) whereas the rest N of
them, are located at the exterior V0 and lie in a sphere of radius R > a1.
For the corresponding terms of the overall scattering cross section and the
total ISCS holds, respectively:

γ1 = 4πa21N
2d2(S0

1)
2

γ̃1 = 4Nπa21(S
0
1)

2(d2(N − 1) + 2(d− 1))

Then we obtain:
γ̃1
γ1

=
N − 1

N
+

2(d− 1)

Nd2

Let DN(d), be the difference from the upper bound 2N−1
2N of the inequality

(1.87). Then we have:

DN(d) =
2N − 1

2N
− γ̃1

γ1
=

1

2N

(
d− 2

d

)2

(3.43)

Relation (3.43) clearly implies that for a fixed d, as the number 2N of
sources increases, the total interaction cross section ratio, will tend to the
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upper bound 2N−1
2N , e.g.

lim
N→∞

DN(d) = 0

On the other hand, for a fixed number of sources 2N the interaction cross
section ratio decreases as d moves closer to its upper bound ξ (e.g. the
sources are closer to the exterior of the sphere) and increases as d moves
closer to its lower bound 1 (e.g. the sources are closer to the sphere’s core),
e.g.

lim
d→ξ

DN(d) =
1

2N

(
ξ − 2

ξ

)2

lim
d→1

DN(d) =
1

2N

Now we proceed, with a different distribution. Let layer V1 contain 2N −1
sources that lie on a sphere of radius d ∈ (a2, a1). The sphere’s exterior, V0

contains a solitary source, which is located at distance R from the sphere’s
center. Following a similar procedure as before, we get for the dominant
term of the overall scattering cross section:

γ̃1 = 4πa21(S
0
1)

2

[
d2(2N − 1)(2N − 2)− 2(2N − 1)2d+ 4N 2 − 6N + 4

]
The key point that highlights the diversity in the ISCS ratio behavior, is
not - as before - the behavior of the actual ratio. Instead, it is its sign. In
this case, the term γ̃1 of the total ISCS can be negative, which will result
in the entire total ISCS being negative. First, we find the roots of γ̃1 with
respect to d. These are given by:

d+ =
2N − 1 +

√
4N − 3

2N − 2

d− =
2N − 1−

√
4N − 3

2N − 2
Both roots, are positive for N ≥ 2. Additionally, it holds that

1 < d+ ≤ 2

0 < d− ≤ 1
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If the distance d of the point sources located in the interior of V1, lies in the
interval (1, d+), we conclude that for the leading term of the total ISCS it
holds

γ̃1 < 0

which results in
σT < 0

As we discussed in the energy conservation section of the previous chapter,
the physical interpretation for such a case, is that the interaction between
the sources will reduce the overall acoustic intensity rate and the sum of
individual cross sections in this case, will exceed the overall cross section.
However, for d > d+ by similar arguments, we conclude that σT > 0
and the interaction between the sources will amplify the overall acoustic
intensity rate.

Remark 3.1.6 Using the same techniques we can extract similar results
hold for the hard and penetrable core cases. According to the discussions of
the previous chapter about energy conservation, the mixed excitation case
is the case where negative values for the total ISCS is more likely to occur.

3.2 Inverse Problems in the Low-Frequency Regime

In this section, we state and solve a set of inverse scattering problems. De-
spite the use of different mathematical procedures, the fundamental math-
ematical tool when the low-frequency approximation is used, is the isola-
tion of each term of the overall far-field approximation which preceded in
equations (3.5a)-(3.5i). This isolation is possible because of the techniques
that isolate the terms µν(θ, ϕ), see [65]. Some inversion schemes contain
mathematical complexity, but this complexity is limited to the analytical
procedures and not in the final formulas.

First of all, we note that regardless of the rest of the knowledge we
possess about the sphere or the point source distribution, the sphere’s
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radius a1 can always be found. From (3.7) we quickly obtain:

a1 =

√
γ1

2µ1

√
π

(3.44)

So, even if we don’t already know the geometrical characteristics of the
scatterer, we can always obtain its radius by the preceded formula.

3.2.1 Convergence patterns of the low-frequency far-field approximations

Figures 3.4-3.5 depict representative convergence patterns of the low-frequency
far-field approximations to the respective exact far-fields. In each case,
the convergence patterns for three different source distributions, namely
a “spherical distribution” with sources lying on a sphere, a “line distribu-
tion” with sources lying on the z-axis and an “arbitrary distribution”, are
compared. Particularly, figure 3.4 refers to the soft and hard core cases for
external excitation, while figure 3.5 concerns the soft and hard core cases
for internal excitation. As the left panel of figure 3.4 demonstrates, in
the soft core case for external excitation, the low-frequency approximation
matches perfectly the exact far-field for most of the examined frequencies.
Even at k0a1 = 1–a frequency well out of the low-frequency range–the rela-
tive error does not exceed 15%. Similar conclusions are drawn for internal
excitation in the soft core case as well, where from the left panel of figure
3.5 we see that the relative error does not exceed 10%.

For the hard core, in external excitation the convergence pattern of the
right panel of figure 3.4 shows that as we move away from the low-frequency
range, the relative error of the approximation increases, but this is caused
in part, by the small values of the overall SCS. The situation is similar for
internal excitation, depicted in the right panel of figure 3.5; the difference
lies in that the deviations start to occur for higher frequencies than in
external excitation.

In all examined cases, the sources’ distributions do not affect either the
sharpness of the low-frequency approximation or the behavior of the far-
fields (exact and low-frequency approximations). We note that despite the
fact we used (π/2, 0) as the direction of observation, quantitatively similar
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Figure 3.4: Exact and low-frequency far-fields for a 2-layered scatterer with a soft and a hard core, excited
by 10 external sources with different distributions. The “arbitrary” distribution is that of figure 3.3, the “line”
distribution that of figure 3.2, while the sources of the “spherical” distribution are at distances r0,j = 2.275a1

for j = 1, . . . , 10 with spherical angles θ0,j = (j− 1)π/10, ϕ0,j = (j− 1)π/5. The scatterer’s characteristics are
as in figure 3.3.

results were obtained for any other direction of observation.

3.2.2 Identification of the Number N of Sources

The first inverse problem we state and solve is a problem which may act as a
pre-requisite for more complicated inverse schemes: We seek to identify the
number of sources that excite a spherical scatterer. We suppose that the
geometrical and physical characteristics of the sphere are known, whereas
the only information we have about the point source distribution is that
all source lie in the sphere’s exterior, V0. In the soft core case, the number
N of sources exciting the scatterer can be swiftly obtained by (3.2a):

N =
µ1

S0
1

(3.45)

For the hard core and the penetrable core cases, we replace coefficients S0
ν

with their corresponding H0
ν or P 0

ν , which leads us to obtain:

N =
N4

C0
1

(3.46)

with C0
1 = H0

1 or C0
1 = P 0

1 for a hard core and a penetrable core, respec-
tively.
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Figure 3.5: Exact and low-frequency far-fields for a 2-layered sphere with a soft and a hard core excited by 6
internal sources for different source distributions. The “arbitrary” distribution is that of figure 3.4, the sources
on the “line” distribution lie on the z-axis at distances r1,j = [0.35 + 0.1(j − 1)]a1 for j = 1, . . . , 6, while the
sources of the “spherical” distribution are at distances r1,j = 0.6a1 for j = 1, . . . , 10 with spherical angles
θ1,j = ϕ1,j = (j − 1)π/6. The scatterer’s characteristics are as in figure 3.4.

3.2.3 Locating sources

In this part, we provide analytical algorithmic procedures that locate the
position vectors of the sources exciting a 2-layered sphere. At first, we
suppose that N = 2 sources excite our scatterer.

External Excitation

We assume that the sphere’s physical and geometrical characteristics are
known. The goal is to analytically identify the locations r1, r2 of two the
sources exciting the scatterer. Utilizing techniques of [65] we isolate the
following terms of the far field:

τ1cosθ1 + τ2cosθ2 = X1 (3.47)
cosθ1 + cosθ2 = X2 (3.48)

τ1sinθ1cosϕ1 + τ2sinθ2cosϕ2 = Y1 (3.49)
sinθ1cosϕ1 + sinθ2cosϕ2 = Y2 (3.50)

τ1sinθ1sinϕ1 + τ2sinθ2sinϕ2 = Y3 (3.51)
sinθ1sinϕ1 + sinθ2sinϕ2 = Y4 (3.52)
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with

X1 =
µ2(0, ϕ)− 2ρη(S0

1)
2

S0
2

, X2 = −N1

S0
2

Y1 =
µ2(π/2, 0)− 2ρη(S0

1)
2

S0
2

, Y2 =
M3

S0
2

Y3 =
µ2(π/2, π/2)− 2ρη(S0

1)
2

S0
2

, Y4 =
M4

S0
2

The cosine of the angle α between the position vectors of the two sources
is given by:

cosα = cosθ1cosθ2 + sinθ1sinθ2cos(ϕ1 − ϕ2) (3.53)

Manipulating equations (3.47)-(3.52) and taking into account (3.53) we
obtain:

X2
2 + Y 2

2 + Y 2
4 = 2(1 + cosα) (3.54)

X2
1 + Y 2

1 + Y 2
3 = γ0

2,2 (3.55)
X1X2 + Y1Y2 + Y3Y4 = (τ1 + τ2)(1 + cosα) (3.56)

Equation (3.54) implies that cosα can be easily obtained from far-field
measurements. If location vectors are not be co-linear it will hold that
X2

2 + Y 2
2 + Y 2

4 ̸= 0, 4. In this case, by (3.54) and (3.56) we get:

τ1 + τ2 = 2
X1X2 + Y1Y2 + Y3Y4

X2
2 + Y 2

2 + Y 2
4

= 2K1

By means of (3.53), equation (3.15c) yields:

τ1τ2 =
4K1

2 − L

2(1− cosα)
= K2 (3.57)

with

L =
3γ0

2,2

4π(a1S0
2)

2

Combining equations (3.56) and (3.57), we conclude that the normalized
distances τ1, τ2 are solutions of the quadratic equation

τ 2 − 2K1τ +K2 = 0 (3.58)
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Therefore τ1, τ2 are given by

τ1,2 = K1 ±
√

K1
2 −K2 (3.59)

Obviously, τ1 = τ2 = K1 if and only if K2 = 2K1
2. To identify the respec-

tive angles, we separate the rest of the procedure, in two cases:

Case I-a: τ1 ̸= τ2
At first we suppose that τ1 ̸= τ2. Equations (3.47)-(3.52) yield:

cosθ1 =
X1 − τ2X2

τ1 − τ2
, (3.60)

cosθ2 = −X1 − τ1X2

τ1 − τ2
(3.61)

sinθ1cosϕ1 =
Y1 − τ2Y2

τ1 − τ2
, (3.62)

sinθ2cosϕ2 = −Y1 − τ1Y2

τ1 − τ2
(3.63)

sinθ1sinϕ1 =
Y3 − τ2Y4

τ1 − τ2
, (3.64)

sinθ2sinϕ2 = −Y3 − τ1Y4

τ1 − τ2
(3.65)

Since cosθ is decreasing in [0, π] by (3.60)-(3.61) we obtain θ1, θ2. Angles
ϕ1, ϕ2 are obtained by (3.62),(3.64) and (3.63),(3.65), respectively.

Case I-b: τ1 = τ2 = τ0
We isolate the term µ3(0, ϕ), and we obtain:

τ 20 (3cos
2θ1 + 3cos2θ2 − 2) = X3 (3.66)

with quantity X3 given by:

X3 =
6µ3(0, ϕ) + 2S0

2X2 − 2(S0
1)

2β(ρ, η, ξ)

S0
3

Utilizing the identity a2 + b2 = (a + b)2 − 2ab for a = cosθ1, b = cosθ2 in
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equation (3.66) leads to:

cosθ1cosθ2 =
X2

2

2
− X3

6τ 20
+

1

3
= K3

Therefore, the unknown cosines cosθ1, cosθ2 are the solutions of the quadratic
equation:

C2 −X2C +K3 = 0 (3.67)
On the other hand, it holds:

sin2θ1 + sin2θ2 + 2sinθ1sinθ2cos(ϕ1 − ϕ2) = Y 2
2 + Y 2

4 (3.68a)

sin2θ1cos(2ϕ1) + sin2θ2cos(2ϕ2)+

2sinθ1sinθ2cos(ϕ1 + ϕ2) = Y 2
2 − Y 2

4 (3.68b)

sin2θ1cos(2ϕ1) + sin2θ2cos(2ϕ2)+

2

3
− cos2θ1 − cos2θ2 = K4 (3.68c)

with
K4 =

µ3(π/2, 0)− S0
2Y2 −N(S0

1)
3β(ρ, η, ξ)

τ 20
When it holds sinθ1sinθ2 ̸= 0, e.g. there is no source in the z-axis, we
obtain the following system:

cos(ϕ1 − ϕ2) = K5 (3.69a)
cos(ϕ1 + ϕ2) = K6 (3.69b)

where

K5 =
Y 2
2 + Y 2

4 − sin2θ1 − sin2θ2
2sinθ1sinθ2

K6 =
Y 2
2 − Y 2

4 −K2

2sinθ1sinθ2
The solutions of the system are as follows:

ϕ1 = 2π − arcccos(K5) + arcccos(K6)

2
(3.70a)

ϕ2 =
arcccos(K5)− arcccos(K6)

2
(3.70b)
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or

ϕ1 =
arcccos(K5) + arcccos(K6)

2
(3.71a)

ϕ2 = 2π − arcccos(K5)− arcccos(K6)

2
(3.71b)

The choice for the right pair of solutions is made with the help of equations
(3.50) and (3.52).

Now, let’s suppose that there is a point source lying on the z-axis. With-
out loss of generality we make the assumption sinθ1 = 0. Since cosα ̸= ±1,
then the other point source will not lie in the z-axis. Combining equations
(3.50),(3.52) we swiftly recover the angle ϕ2.

Case II-a: Location vectors have the same direction. We note that
in this case we cannot have τ1 = τ2 - since our sources cannot coincide.
Furthermore, in this case it will hold cosα = 1 which results in θ1 =
θ2 = θ0, ϕ1 = ϕ2 = ϕ0. Angles θ0, ϕ0 are readily recovered by relations
(3.48),(3.50) and (3.52). Under the conditions for this case, equation (3.57)
is reduced to:

τ1 + τ2 =
√
L (3.72)

On the other hand, a measuring of the term µ3(0, ϕ) yields:

(3cos2θ0 − 1)(τ 21 + τ 22 ) = X3

Last relation, for cos2θ0 ̸= 1/3, can be written as

τ1τ2 =
X3

2(3cos2θ0 − 1)
− L

2
= K7

which enables us to conclude that the locations τ1, τ2 are the solutions of
the quadratic equation

τ 2 − τ
√
L + K7 = 0 (3.73)

For the case where cos2θ0 = 1/3, we will measure the term µ3(θ, ϕ). Doing
so, we get:

τ1τ2 =
L−X4

2
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where

X4 =

 6
µ3(π/2,0)−(S0

1)
3β(ρ,η,ξ)+

√
2
3S

0
2cosϕ0

S0
3cos2ϕ0

, if cos2ϕ0 ̸= 0

4µ3(π/4,0)−(S0
1)

3β(ρ,η,ξ)+
√
2S0

2(cosθ0+sinθ0cosϕ0)
S0
3sin2θ0cosϕ0

, if cos2ϕ0 = 0

The desired locations τ1, τ2 will be the solutions of the quadratic equation:

τ 2 −
√
Lτ +

L−X4

2
= 0 (3.74)

Case II-b: Location vectors are in opposite directions
In this case the cosine of the angle between location vectors takes its lowest
value, i.e. cosα = −1. Then, it follows that θ2 = π − θ1, ϕ2 = π + ϕ1 and
cosθ1 = −cosθ2, sinθ1 = sinθ2 and cosϕ1 = −cosϕ2, sinϕ1 = −sinϕ2.

This case, has significant differences from the previously discussed proce-
dures. This is due to the fact that in this case, it holds X2 = Y2 = Y4 = 0.
To facilitate our procedures, we will divide this case in two occasions: First,
we address the occasion where τ1 ̸= τ2; this is valid, however, if and only if
X2

1 +Y 2
1 +Y 2

3 ̸= 0. The second separate occasion is the one where it holds
τ1 = τ2 = τ0 which will be valid if and only if X1 = Y1 = Y3 = 0. For the
first occasion, equation (3.57) takes the form:

τ1 − τ2 =
√
L

In conjunction with equations (3.49) and (3.51) last relation derives:

sinθj =

√
Y 2
1 + Y 2

3

L

for j = 1, 2. The angles ϕ1, ϕ2 are readily obtained by (3.49) and (3.51).
On the other hand, the angles θ1, θ2 are obtained by means of (3.47). Fi-
nally, locations τ1, τ2 can be recovered by either (3.73) or (3.74). It is worth
noting the if Y1 = Y3 = 0, then it will hold θ1 = 0, θ2 = π and both our
point sources, will be lying on the z-axis.

Case II-c: Sources locations are symmetric with respect to the scat-
terer’s centre.
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Before we proceed, we point out that this case can be easily identified. This
happens because in this case it will hold X1 = Y1 = Y3 = 0 and subse-
quently γ0

2,2 = 0. This can be interpreted by the fact that the total ISCS in
this case, will depend only on the physical and geometrical characteristics
of the scatterer. Furthermore, this can be easily generalized to the case
where N > 2. As it is evident, in this case, equations (3.47)-(3.52) cannot
be used to extract θ1,2, ϕ1,2. Thus, we need a different set of measurements
to proceed. The following quantities will prove useful:

Z1 =
µ3(π/2, π/4)− µ3(π/2, 3π/4)

S0
3

Z2 =
µ3(π/2, π/4) + µ3(π/2, 3π/4)− 2µ3(π/2, 0)

S0
3

Using the measurements mentioned above we arrive at:

τ 20 cos
2θj −

τ 20
3

= X3 (3.75a)

τ 20 sin
2θjsin2ϕj = Z1 (3.75b)

τ 20 sin
2θjcos2ϕj = Z2 (3.75c)

A combination of (3.75a)-(3.75c) yields the following:

τ0 =

√
3

2

(
X3 +

√
Z2
1 + Z2

2

)
(3.76)

Then, equation (3.75a) can be used to extract θ1, θ2. We point out that
formula (3.76) holds even when X3 = 0. Finally, the angles ϕ1, ϕ2 can be
readily recovered by relations (3.75b) and (3.75c).

Internal and Mixed Excitation

When all sources lie in the interior of the scatterer, the distances d1, d2 of
the point sources from the sphere’s center, can always be obtained without
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knowing the angle between location vectors. For convenience, we denote:

I1 =
µ1

S0
1

+ 1 (3.77)

I2 =
ξM2

ηS0
1

(3.78)

Measuring the far-field term µ2(θ, ϕ) for an arbitrary pair (θ, ϕ) yields:

d1 + d2 = I1 (3.79)

Taking into account that for internal excitation it holds τj = ξ/dj and
combining (3.79) with (3.78) we arrive at:

d21 − I1d1 + B1 = 0 (3.80)

where

B1 =
I2 + I21 − S0

1(ρ(I1 + 2ξ)− I1)

2
(3.81)

Evidently, d1, d2 are the solutions of the equation (3.80). The identification
of the angles θ1, θ2, ϕ1, ϕ2 is accomplished with the same procedures as in
the external excitation case.

For the mixed excitation has again locations τ1, τ2 can also be obtained
without any knowledge about the angle between location vectors. Further-
more, in this case our sources lie in different excitation layers and thus, we
cannot have τ1 = τ2. The location τ1 = ξ/d1 of the internal source, can
be readily obtained by measuring the term µ1(θ, ϕ) for any pair of angles
(θ, ϕ). In particular, it holds:

d1 =
µ1

S0
1

(3.82)

The other location is obtained through (3.56).

Remark. The procedures for a hard core and a penetrable are very
similar; the only difference is that C0,j

1 = C0,j
2 = 0 for external excitation.
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Locating three sources

Now, we address the case where the spherical scatterer is excited by three
sources. We suppose that they all lie on the same line, at unknown locations
rj = (rj, θj, ϕj) and let r̂0 = (1, θ0, ϕ0) be a vector with the same direction
as the line. We assume, finally, that the spherical scatterer has a hard core.
From the initial measurements, we obtain:

3∑
j=1

dj = −ξρµ1 = u1, (3.83)

3∑
j=1

d2j =
M1ρξ

2

η
(3.84)

3∑
j=1

d3j = ξ(ρ− 1)µ1 +
3ρξ3

η2
N4 − 3 (3.85)

But for any given n it holds:(
n∑

j=1

dj

)2

=
n∑

j=1

d2j + 2
n−1∑
j=1

n∑
ν=j+1

djdν

Setting in the last identity n = 3, by means of (3.83),(3.84) we arrive at:
2∑

j=1

3∑
ν=j+1

djdν =
ξ2ρ2µ2

1

2
− M1ρξ

2

2η
= u2 (3.86)

On the other hand, for any given n it holds:(
n∑

j=1

dj

)3

=
n∑

j=1

d3j + 3
n−1∑
j=1

n∑
ν=j+1

d2jdν + 3
n−2∑
j=1

n−1∑
ν=j+1

n∑
k=ν+1

djdνdk (3.87)

For n = 3 last relation combined with (3.83)-(3.86), yields:
3∏

j=1

dj =
ξ(ρ− 1)µ1

3
+

ρξ3

η2
N4 − 1− ξρµ1

(
M1ρξ

2

6η
+

ξ2ρ2µ2
1

6

)
= u3
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Then, the locations dj are the roots of the cubic equation

d3 + u1d
2 + u2d+ u3 = 0 (3.88)

which has 3 real roots, since its discriminant is positive. Utilizing the
trigonometric solution of the cubic equation for three real roots, we get the
locations of the three sources:

dj = 2

√
p

3
cos

[
1

3
arccos

(
3q

2p

√
3

p

)
+

2jπ

3

]
(3.89)

where

p =
3u2 − u21

3

q =
2u31 − 9u1u2 + 27u3

27
=

p

3
+ u3 −

(u1
3

)3
It is worth noting that the procedure and its final outcome is valid, even if

our sources do not lie in a line. Therefore, the distances of the point sources
from the scatterer are always retrievable. Another conclusion easily drawn
is that in case where all sources lie in the z-axis, we can always locate them.
This case is easily identified, since it will hold N2 = N3 = M3 = M4 = 0.

Now, we suppose that our sources don’t lie on the z-axis. Then it holds:

3∑
j=1

C1,j
3 cosθj = −N1

η
(3.90a)

3∑
j=1

τjC
1,j
3 cosθj = M2 (3.90b)

3∑
j=1

τ 2jC
1,j
6 cos2θj = L1 (3.90c)

3∑
j=1

C1,j
3 sinθjcosϕj = −N2

η
(3.90d)
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3∑
j=1

τjC
1,j
3 sinθjcosϕj = M3 (3.90e)

3∑
j=1

τ 2jC
1,j
6 sin2θjcos

2ϕj = L2 (3.90f)

3∑
j=1

C1,j
3 sinθjsinϕj = −N3

η
(3.90g)

3∑
j=1

τjC
1,j
3 sinθjsinϕj = M4 (3.90h)

3∑
j=1

τ 2jC
1,j
6 sin2θjcosϕjsinϕj = L3 (3.90i)

where

L1 =
3∑

j=1

C1,j
6

τ 2j
3

+N5

L2 = 2

(
µ3(0, 0)−N1 −N4 −

2

3
N5 +

1

4

3∑
j=1

τ 2jC
1,j
6 sin2θj

)

L3 = 4

(
µ3(0,

π

4
)−N1 −N4 −

2

3
N5

)
The equations above constitute a set of 3 systems. In particular, equations
(3.90a)-(3.90c) constitute a non-linear system for cosθj, equations (3.90d)-
(3.90f) constitute a non-linear system for sinθjcosϕj and finally, equations
(3.90g)-(3.90i) constitute a non-linear system for sinθjsinϕj.

In the case where all sources lie in a line, equations (3.90b), (3.90e)
and (3.90h) suffice to obtain (θ0, ϕ0). Something similar applies in the case
where all sources lie on a plane described by two unit vectors r̂1 = (1, θ1, ϕ1)
and r̂2 = (1, θ2, ϕ2). Azimuths θ1, θ2 can be obtained through (3.90a)-
(3.90b) and angles ϕ1, ϕ2 can be obtained through equations (3.90d)-(3.90e)
and (3.90g)-(3.90i).
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Finally, we note that in the case where the three sources do not lie on
a line or a plane, the above system might not be analytically solvable. In
the case, it is solvable - which can be easily checked by the determinants of
both systems - the solution can be obtained as follows: Equations (3.90a)-
(3.90b) lead to the following:

cosθ2 = A2 +B2cosθ1, cosθ3 = A3 +B3cosθ1 (3.91)

where

A2 =
ηM2 +N1τ3

ηC1,2
3 (τ2 − τ3)

, B2 = −C1,1
3 (τ1 − τ3)

C1,2
3 (τ2 − τ3)

A3 = − ηM2 +N1τ2

ηC1,3
3 (τ2 − τ3)

, B3 =
C1,1

3 (τ1 − τ2)

C1,3
3 (τ2 − τ3)

Substituting in (3.90c) recovers the desired azimuths.
The system for the cosϕj is solved like the corresponding system for

the cosθj. Then, we substitute and we obtain a linear system for the
sinϕj. Combining the solutions, we obtain ϕj. We note, however that the
above systems are not solvable if any pair of their equations are linearly
dependent, i.e. if any of the systems’ discriminant is 0. This is due to the
fact that the low-frequency approximations are constituted by 10 linearly
independent factors. These 10 factors are utilized to obtain the above
systems. Therefore, if a need for an "extra" linearly independent equation
occurs, it cannot be satisfied.

3.2.4 Identification of the Core and the Excitation Type

Discrimination of the core, with unknown source distribution

Now we address a combined problem. We know that there is a 2-layered
scatterer with known physical parameters and geometrical characteristics
except the mass density and the wavenumber of its core. Also, we know
that N = 2 sources excite the scatterer. However, we do not know their
location or the scatterer’s core type. Our objective, is to develop a set of
conditions that will allow us to determine the core and the excitation type.
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We note that from the previous section, if we identify the core type and
the excitation type, then we can proceed with identifying their locations.

The key for the discrimination are the following quantities:

D1 = µ1 − 2S0
1 (3.92)

D2 = M1 − 2ρηµ2
1 (3.93)

D3 = M1 − ρηµ2
1 (3.94)

D4 = N4 + ρηµ2
1 (3.95)

D5 = M1 +
µ1η

S0
1ξ

(
µ1 − (ρ− 1)(S0

1)
2
)

(3.96)

First, we prove that external excitation holds if and only if D1 = D2 = 0.
Let’s suppose that D1 = 0 and that there are two internal sources at
distances d1, d2 from the sphere’s origin. Then, measuring of the far-field
term µ2(θ, ϕ) leads to:

d1 + d2 = 4 (3.97)

On the other hand, for D2 holds:

D2 =
η

ξ
S0
1(−d21 − d22) + 4

η

ξ
(S0

1)
2(ρ− 1)− 4ρη(S0

1)
2

Utilizing (3.97), last equation yields:

D2 =
2η

ξ
S0
1(d1d2 − 6) (3.98)

Suppose that D2 = 0. Then it holds d1d2 = 6 and the distances d1, d2 from
the sphere’s center will be solutions to the quadratic equation d2−4d+6 =
0. This equation however, has complex solutions, which cannot happen.
Thus, if we have internal excitation, then D2 ̸= 0. Following the same
procedure for the mixed excitation case we obtain that d1 = 2, while for
D2 we get:

D2 = −2S0
1

η

ξ
> 0 (3.99)

From the last relation we conclude that D2 > 0 on the mixed excitation
case. Therefore, external excitation and a soft core can be identified by the
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condition D1 = D2 = 0. In contrast, external excitation combined with a
hard core is a case identified by the order of the terms in the far-field.

On the other hand, we can verify that D5 = 0 in the mixed excitation
case, whereas D5 < 0 in the internal excitation case. Specifically, in the
internal excitation case, we get:

D5 =
2η

ξ
S0
1(d1d2 + 2) < 0 (3.100)

In the hard core case, is readily verified that D3 = 0 for mixed excitation
and D3 < 0 for internal excitation. We note that the case where D3 =
D5 = 0 cannot occur, since in such a case, it must hold that:

µ1 = S0
1

Obviously, this can’t hold for external excitation. For mixed excitation we
readily observe that this leads to d = 1, which also, cannot occur. The
procedures related to the penetrable core cases resemble the hard core case
procedures. Now, we summarize our results in the form of an identification
procedure.
Step 1 If the far-field is of order O(κ2), we have external excitation and a
hard or a penetrable core. If Cq,j

4 = 0 we have a penetrable core, otherwise
we have a hard core.
Step 2 If D1 = D2 = 0 we have external excitation and a soft core.
Step 3 If D3 = 0 we have mixed excitation and a hard core.
Step 5 If D3 < 0 we have internal excitation and a hard core.
Step 4 If D4 = 0 we have mixed excitation and a penetrable core.
step 6 If D4 < 0 we have internal excitation and a penetrable core.
Step 7 If D5 = 0 we have mixed excitation and a soft core.
Step 8 If D5 < 0 we have internal excitation and a soft core.

Remark. In the case of a penetrable core, we can determine the relative
mass density of the core, by utilizing the procedures of 3.2.3.
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Discrimination of the core, with unknown physical parameters

Now, we proceed with another combination problem. In this case, we have
full knowledge of the point source distribution that stimulate the sphere but
the geometrical and physical characteristics of the scatterer are unknown.
The goal is to retrieve the physical and geometrical characteristics of the
sphere.

First, we recover the sphere’s radius a1 from equation (3.44). If the
source are placed in the sphere’s exterior (external excitation), we readily
determine the type of the core: If the far-field is of order O(κ) we have soft
core; if the far-field is of order O(κ2) we have a hard core.
Soft Core
If the sphere has a soft core, we swiftly arrive at:

ρ =
N + µ1(θ, ϕ)

µ1(1− ξ)
, (3.101)

η =
(1− ξ)N 2M1

µ1(N + µ1(θ, ϕ))
(3.102)

β(ρ, η, ξ) =
N 3N4

µ3
1

(3.103)

Utilizing function’s β(ρ, η, ξ) form and taking into consideration equations
(3.101)-(3.103), the last relation takes the form:

ξ =
M2

1µ
2
1

3N4µ1 +M2
1(µ

2
1 − 3)

(3.104)

The relative mass density index and the refractive index can be obtained
through (3.101)-(3.103). The parameters ρ1, k1 of layer V1 can be obtained,
since the parameters k0, ρ0 of the exterior V0 are known, whereas equation
(3.104) delivers the core’s radius a2.
The internal and mixed excitation cases can be dealt with the same tech-
niques.
Hard Core
For the internal excitation case, a combination of relations (3.2a), (3.5a)
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and (3.5h) leads to:

ρ = −
∑N

j=1 dj

ξµ1
, (3.105)

η = ξ
M1

∑N
j=1 dj

µ1

∑N
j=1 d

2
j

(3.106)

ξ = − 1

µ1

(
2

N∑
j=1

d3j +
N∑N
j=1 d

2
j

)
−

N4∑N
j=1 djM2

1

(3.107)

For the external and the mixed excitation cases a similar procedure is
required.

3.2.5 Location of a source and determination of the sphere’s physical pa-
rameters

The final problem is another combination problem. This time, the sphere’s
geometrical parameters a1, a2, ξ and the core’s type are known. Its physical
parameters η, ρ are unknown. We have knowledge that the sphere is excited
by two sources: one is located at a known location r1 = (r, θ1, ϕ1) and other
is located at an unknown location r2 = (r2, θ2, ϕ2) inside the sphere. Our
objective, is to recover the sphere’s physical parameters ρ, η and the type
of the sphere’s core. Measurement of µ1(θ, ϕ) in the hard core case, yields

d2
ρ

= −ξµ1, (3.108)

ρη =
M1

µ2
1

(3.109)

The coefficient N4 takes the form:

N4 = − (ρη)2

3(ξρ)3

(
2d32 − d2 + 1 +

d2
ρ

)
(3.110)
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Combining equations (3.108), (3.109) and (3.110) yields:(
ρ−1
)3

(1− ξµ1) +
(
ρ−1
)2

ξµ1 = ξ3µ3
1

(
2 +

3µ1N4

M2
1

)
We denote u = ξµ1, w = 2+3µ1N4/M2 and last equation takes the form:(

ρ−1
)3

(1− u) +
(
ρ−1
)2

u− u3w = 0 (3.111)

Equation (3.111) is a cubic equation with respect to ρ−1. If we utilize the
formula for the non-reduced form of the cubic equation, we get for the
equation’s discriminant ∆3:

∆3 = u6w2

(
4

w
− 27(1− u)2

)
In the following, we prove that ∆3 < 0. We observe, that the sign of ∆3

depends on the sign of the term fw(u) =
(
4
w − 27(1− u)2

)
. This quantity

constitutes a quadratic polynomial with respect to u. From its definition,
see appendix, it holds that µ1 < 0, and in return, u < 0. On the other
hand, the roots u1, u2 of f(u) are given by:

u1,2 = 1± 2√
27w

Since d2, ξ, ρ, η are positive, we conclude that N4 is negative which results
in w > 0.

On the other hand, u1 is obviously positive, whereas for u2 we have:

u2 =
27w − 4√

27w(
√
27w + 2)

=
50M2

1 + 3µ1N4

M2
1

√
27w(

√
27w + 2)

> 0

We note that fw(u) will be negative if and only if u /∈ (u2, u1). Since it
holds u2, u1 > 0 we conclude that fw(u) < 0 and therefore ∆3 < 0.

Therefore, equation (3.111) has a negative discriminant and thus, it has
only one real solution. This solution is the desired parameter ρ−1. Utilizing
the hyperbolic solutions of the cubic equations for the case of one real
solution and after lengthy calculations, we arrive at:

ρ =
2ξµ1

3ξµ1 − 3

(
cosh

[
1

3
arccosh

(
2− 27(1− ξµ1)

2(2M2
1 + 3µ1N4)

2ξµ1M2
1

)])−1
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Equations (3.108), (3.109) and (3.110) are used to recover η, d2. Angles
θ2, ϕ2 can be determined through the procedures of 3.2.3.
For a soft or a penetrable core, the procedure is similar; only difference is
the exact form of M1,N4.
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Electromagnetic Waves
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Chapter 4

Energy Transfer Process

4.1 Mathematical Formulation

The layered scatterer V is identified as a bounded and open subset of R3

with C2 boundary S1. The interior of V is divided by P − 1 C2 surfaces
Sp (p = 2, . . . , P ) into P nested, annuli-like layers Vp (p = 1, . . . , P ), see
Fig. 4.1. Each surface Sp encloses the surface Sp+1, for p = 1, . . . , P−1 with
dist(Sp, Sp+1)>0, and is oriented by the outward normal unit vector n̂. The
scatterer’s layers Vp, for p = 1, . . . , P − 1, are lossless, homogeneous and
isotropic and are characterized by wavenumbers kp, magnetic permeabilities
µp, and dielectric permittivities ϵp. The scatterer’s core VP can be a perfect
electric conductor (PEC), perfect magnetic conductor (PMC) or isotropic
dielectric with wavenumber kP , permeability µP , and permittivity ϵP . The
exterior V0 of V has wavenumber k0, permeability µ0, and permittivity ϵ0.
A distribution of N magnetic dipoles - which can be internal or external
- excite the scatterer V . Each dipole is located at ri and possesses dipole
moment p̂i, with i = 1, . . . , N . These dipoles, are distributed in arbitrary
fashion, inside Q of the scatterer’s layers, which will be called excitation
layers and when necessary, will be denoted by V ex

q , with q = 1, . . . , Q and
Q ≤ P + 1. In the case where the exterior V0 of the scatterer contains
dipoles, then V ex

1 coincides with V0. If no dipoles are contained in V0, then
V ex
1 is the outermost layer containing dipoles. Excitation layer V ex

q contains
nq dipoles each one of strength Aq,j, position vector rq,j, and dipole moment
p̂q,j, for j = 1, . . . , nq, while it holds that n1 + n2 + · · · + nQ = N . Each

95
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Figure 4.1: The considered layered scatterer V excited by multiple external and internal magnetic dipoles

magnetic dipole radiates primary electric and magnetic fields, respectively,
given by [97]

Epr
q,j(r) = Aq,j∇×

(
exp(ikq|r− rq,j|)

|r− rq,j|
p̂q,j

)
, (4.1)

Hpr
q,j(r) =

1

iωµq
∇× Epr

q,j(r) (4.2)

for r ̸= rq,j with j = 1, . . . , nq and q = 1, . . . , Q. From this point on, we
will focus on the definitions of the participating electric fields, since the
corresponding magnetic fields can be obtained by means of the Maxwell-
Faraday equation, as in (4.2).

If Vp is a non-excitation layer, the secondary electric field generated
in Vp by a dipole at rq,j coincides with the total field in Vp and will be



4.1. MATHEMATICAL FORMULATION 97

denoted by Ep
q,j. The total electric field induced in an excitation layer Vq

due to a single dipole at rq,j ∈ V ex
q , according to Sommerfeld’s method [81]

(referred also as scattering superposition method in [98]), has the following
decomposition

Eq
q,j(r) = Epr

q,j(r) + Esec
q,j(r), r ∈ V ex

q \ {rq,j}. (4.3)

The fields due to a single dipole, will be called individual fields, while the
total q-excitation field Ep

q of Vp is the superposition of the total individual
fields in Vp due to all dipoles in V ex

q , i.e.

Ep
q(r) =

nq∑
j=1

Ep
q,j(r). (4.4)

In an excitation layer Vq, the primary q-excitation field Epr
q and the sec-

ondary q-excitation field Esec
q are defined as the superpositions of the cor-

responding individual fields due to all dipoles in V ex
q , i.e.

Eℓ
q(r) =

nq∑
j=1

Eℓ
q,j(r), (4.5)

where ℓ ∈ {pr, sec}. Thus, the total q-excitation field of Vq will be given
by

Eq
q(r) = Epr

q (r) + Esec
q (r), r ∈ V ex

q \ {rq,1, . . . , rq,nq
}. (4.6)

In the same spirit, the overall field Ep of Vp is defined as the superposition
of all individual fields of Vp, i.e.

Ep(r) =

Q∑
q=1

nq∑
j=1

Ep
q,j(r) =

Q∑
q=1

Ep
q(r). (4.7)

If Vq is an excitation layer, then the overall secondary field of Vq is the
superposition of all individual secondary fields of Vq, whereas the overall
field of Vq is defined as

Eq(r) = Epr
q (r) + Esec

q (r) +
∑
s̸=q

Eq
s(r). (4.8)
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Individual, q-excitation, and overall fields satisfy the vector Helmholtz
equations; e.g. for the total field of Vp, it holds

∇2Ep(r) + k2pE
p(r) = 0, (4.9)

in Vp, if Vp is a non-excitation layer, and in V ex
q \ {rq,1, . . . , rq,nq

} if Vp

coincides with an excitation layer V ex
q . On the boundaries of each layer Vp

(p = 1, . . . , P − 1), the (total) individual, q-excitation and overall fields
satisfy the transmission conditions

n̂× Ep−1(r) = n̂× Ep(r), (4.10)
n̂×Hp−1(r) = n̂×Hp(r), (4.11)

We note that for a magneto-dielectric core VP , conditions (4.10) and (4.11)
hold for p = P , as well, while for a PEC or a PMC core, the following
conditions hold on its boundary SP [79]

n̂× EP−1(r) = 0, (4.12)
n̂×HP−1(r) = 0. (4.13)

The total individual fields in V0 satisfy the Silver-Müller radiation condition
[79]

lim
r→∞

(
Z0r×H0

q,j(r) + rE0
q,j(r)

)
= 0, (4.14)

uniformly over all directions r̂ = r/r, with Z0 =
√
µ0/ϵ0 being the

impedance of the exterior, V0. Subsequently, q-excitation and overall elec-
tromagnetic fields satisfy condition (4.14) as well. Being solutions of the
vector Helmholtz equation, the individual electric fields in V0 have the fol-
lowing asymptotic expression, [80]

E0
q,j(r) = gq,j(r̂)h0(k0r) +O(r−2), r = |r| → ∞, (4.15)

where h0 is the spherical Hankel function of the first kind of order 0. Func-
tion gq,j(r̂) constitutes the individual far-field in the direction of observa-
tion r̂ due to the dipole at rq,j ∈ V ex

q . The superposition of the individual
far-fields due to all dipoles within V ex

q will be called q-excitation far-field
and is denoted by gq(r̂), while the superposition of the individual far-fields
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due to all and due to all N dipoles will be called overall far-field and is
denoted by g(r̂). Both fields are respectively defined as follows:

gq(r̂) =

nq∑
j=1

gq,j(r̂), (4.16)

g(r̂) =

Q∑
q=1

gq(r̂). (4.17)

In the same spirit, the individual cross section σq,j, q-excitation cross sec-
tion σq, and overall cross section σ are the scattering cross sections due
to a dipole at rq,j ∈ V ex

q , all dipoles in V ex
q , and all N dipoles, and are,

respectively, given by

σq,j =
1

k20

∫
S2

|gq,j(r̂)|2ds(r̂), (4.18)

σq =
1

k20

∫
S2

|gq(r̂)|2ds(r̂), (4.19)

σ =
1

k20

∫
S2

|g(r̂)|2ds(r̂), (4.20)

where S2 is the unit sphere of R3.

Remark 4.1.1 The definitions and results for excitation by N electric
dipoles can be obtained from the respective ones presented here for the case
of N magnetic dipoles by using the well-known interchanges between the
fields and material parameters (see, e.g., [98], [99]).

As we discussed in the acoustic waves, the sum of the individual scattering
cross sections due to the excitation by all dipoles and the overall scattering
cross section are (in general) different. This was thoroughly discussed in
[63], whereas in [100] conditions providing that the sum of the individual-
particle cross sections is equal to the overall scattering cross section were
proven for plane electromagnetic waves impinging on a fixed tenuous group
of particles. Therefore, the ISCS for electromagnetic waves and there prop-
erties where defined and analyzed in [63] and are in complete accordance
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with the ISCS for acoustic waves. For convenience we will re-state them
here; for further analysis we refer to section 1 of part II.

Definition 4.1.2 The q-ISCS, σ̃q, is the difference between the q-excitation
cross section σq and the sum of the individual cross sections due to all
dipoles in V ex

q

σ̃q = σq −
nq∑
j=1

σq,j. (4.21)

The indirect ISCS, σI, is the difference between the overall cross section σ
and the sum of the q-excitation cross sections

σI = σ −
Q∑
q=1

σq. (4.22)

The total ISCS, σT, is the difference between the overall cross section σ

and the sum of the individual cross sections due to all N dipoles

σT = σ −
Q∑
q=1

nq∑
j=1

σq,j. (4.23)

By taking into account (4.18)-(4.20), we also derive the following expres-
sions of the above-defined ISCS

σ̃q =
2

k20
Re

[
nq−1∑
j=1

nq∑
ν=j+1

∫
S2

gq,j(r̂) · gq,ν(r̂)ds(r̂)

]
, (4.24)

σI =
2

k20
Re

[
Q−1∑
q=1

Q∑
s=q+1

∫
S2

gq(r̂) · gs(r̂)ds(r̂)

]
, (4.25)

σT =
2

k20
Re

[
N−1∑
ν=1

N∑
j=ν+1

∫
S2

gν(r̂) · gj(r̂)ds(r̂)

]
, (4.26)

where gν(r̂) is the individual far field due to a dipole at rν. By means of
(4.21)-(4.23), we derive the following theorem, which concerns a decom-
position of the total ISCS into the direct (sum of the q-interaction cross
sections) and indirect ISCS.
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Theorem 4.1.3 Interaction cross sections σT, σI, and σ̃q are related as
follows

σT = σD + σI, (4.27)

where

σD =

Q∑
q=1

σ̃q (4.28)

is the direct interaction cross section.

4.2 Scattering Relations and Physical Bounds

4.2.1 Scattering Relations

In the following, we state and prove scattering relations that relate the
individual, the q-excitation fields with their corresponding far-fields and
their respective individual and total cross sections. Relations that connect
the participating fields with the energy functionals enable a better under-
standing of the physics involved, in various scattering configurations [101]
as well as in open-waveguide scattering [102]. The first relation is a reci-
procity theorem, that relates the total magnetic fields stemming from two
different excitation layers: excitation layer Vq and excitation layer Vs.

Theorem 4.2.1 The s-excitation field of Vq and the q-excitation field of
Vs are related by

nq∑
j=1

Aq,jH
q
s(rq,j) · p̂q,j =

ns∑
ν=1

As,νH
s
q(rs,ν) · p̂s,ν. (4.29)

Proof. Adapting Theorem 3.1 of [58] to the present formulation, and by
means of Maxwell’s equations, we conclude that for any pair of dipoles it
holds

Aq,jH
q
s,ν(rq,j) · p̂q,j = As,νH

s
q,j(rs,ν) · p̂s,ν. (4.30)
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Relation (4.30) is valid for all locations rs,ν. Fixing rq,j and summing for
ν = 1, . . . , ns, we get

Aq,jH
q
s(rq,j) · p̂q,j =

ns∑
ν=1

As,νH
s
q,j(rs,ν) · p̂s,ν,

which, summing for all j = 1 . . . , nq, yields
nq∑
j=1

Aq,jH
q
s(rq,j) · p̂q,j =

nq∑
j=1

ns∑
ν=1

As,νH
s
q,j(rs,ν) · p̂s,ν. (4.31)

Changing the summation order in (4.31) and taking into account (4.4), we
arrive at (4.29).

□

Remark 4.2.2 For Q = 2 and n1 = n2 = 1 (i.e. N = 2 dipoles located
in two different excitation layers), Theorem 4.2.1 reduces to Theorem 3.1
of [58]. For Q = 1 with V ex

1 ≡ V0 and N = 2, Theorem 4.2.1 recovers
Theorem 10 of [56].

Next, we define the individual primary cross section σpr
q,j, the q-primary

cross section σpr
q and the primary interaction cross section, σ̃pr

q . The first
two quantify the average power flux per unit area over all directions that
would be radiated if Vq was the scatterer’s exterior, while σ̃pr

q,j,ν quantifies
the energy flux average rate per surface unit area, that is attributed to the
interaction between fields generated by the dipoles at rq,j and rq,ν. They
are defined as follows:

σpr
q,j =

1

k2q

∫
S2

|gpr
q,j(r̂)|

2ds(r̂) = 4π|Aq,j|2, (4.32)

σpr
q =

1

k2q

∫
S2

|gpr
q (r̂)|2ds(r̂), (4.33)

σ̃pr
q =

2

k2q

nq−1∑
j=1

nq∑
ν=j+1

Re

(∫
S2

gpr
q,j(r̂) · g

pr
q,ν(r̂)ds(r̂)

)
, (4.34)
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where gpr
q,j is the primary far-field pattern (for a dipole at rq,j) defined by

Epr
q,j(r) = gpr

q,j(r̂)h0(kqr) +O(r−2), r → ∞. (4.35)

For the primary field, given by (4.2), the primary far-field pattern is given
by

gpr
q,j(r̂) = ikqAq,jexp (−ikqrq,j · r̂) (r̂× pq,j). (4.36)

We stress the fact that unless there exist dipoles in the exterior V0, the
primary cross sections are not part of the overall scattering cross section. In
the following, we state and prove optical theorems for the overall scattering
cross section and the direct and indirect ISCS.

Theorem 4.2.3 The overall scattering cross section σ due to the excita-
tion of the layered scatterer V by N dipoles is given by

σ = 4πZ0Re

(
Q∑
q=1

nq∑
j=1

Aq,jH
sec
q (rq,j) · p̂q,j

)
+

Z0

Zq

Q∑
q=1

σpr
q . (4.37)

The direct ISCS σD and indirect ISCS σI are expressed, respectively, by

σD = 4πZ0Re

(
Q∑
q=1

nq∑
j=1

Aq,jH̃
sec
q,j(rq,j) · p̂q,j

)
+

Z0

Zq

Q∑
q=1

σ̃pr
q (4.38)

and

σI = 4πZ0Re

(
Q∑
q=1

nq∑
j=1

Aq,jH̃
sec
q (rq,j) · p̂q,j

)
, (4.39)

where H̃sec
q,j denotes the sum of all individual secondary fields of excitation

layer Vq except the field induced by the dipole at rq,j, and H̃sec
q denotes the

sum of all q-excitation secondary fields radiating in excitation layer Vq,
except the fields induced by the dipoles of Vq.

Proof. Utilizing the present formulation in conjunction with Maxwell’s
equations, the Theorem 4.1 of [58], states that for any two dipoles rq,j and
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rs,ν lying in excitation layers Vq, Vs respectively, it holds

k20Z0

(
Aq,jH

q
s,ν(rq,j) · p̂q,j + As,νHs

q,j(rs,ν) · p̂s,ν

)
=

1

2π

∫
S2

gq,j(r̂) · gs,ν(r̂)ds(r̂). (4.40)

Summing for all dipoles inside excitation layer Vs, and then with for all
dipoles in excitation layer Vq, by means of (4.4), we find that the magnetic
fields in any two excitation layers Vq and Vs are connected as follows:

k20Z0

(
nq∑
j=1

Aq,jH
q
s(rq,j) · p̂q,j +

ns∑
ν=1

As,νHs
q(rs,ν) · p̂s,ν

)
=

1

2π

∫
S2

gq(r̂) · gs(r̂)ds(r̂). (4.41)

On the other hand, by Theorem 4.3 of [58], we find that for every two
individual secondary fields of Vq, due to dipoles at rq,j and rq,ν, holds

k20Z0

(
Aq,jH

sec
q,ν(rq,j) · p̂q,j + Aq,νHsec

q,j(rq,ν) · p̂q,ν

)
+

k0µ0

2πkqµq

∫
S2

gpr
q,j(r̂) · g

pr
q,ν(r̂)ds(r̂) =

1

2π

∫
S2

gq,j(r̂) · gq,ν(r̂)ds(r̂). (4.42)

Using the definition (4.19) of σq, and summing (4.42) for all ν, j = 1, . . . , nq,
we obtain

σq = 4πZ0Re

(
nq∑
j=1

Aq,jH
sec
q (rq,j) · p̂q,j

)
+

Z0

Zq
σpr
q . (4.43)

Relation (4.37) is derived by summing (4.41) for both indices q, s and
applying (4.43) for Vq ≡ Vs and taking into account definition (4.20) of
σ. Then, adapting Theorem 5 of [58] to the present formulation, we obtain

σq,j = 4πZ0Re
(
Aq,jH

sec
q,j(rq,j) · p̂q,j

)
+

Z0

Zq
σpr
q,j. (4.44)
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Equation (4.38) is derived by (4.43) and (4.44) after considering the def-
initions (4.21) and (4.28). Besides, (4.39) is obtained by summing (4.43)
for all excitation layers, and using (4.37) and the definition (4.22).

□

Remark 4.2.4 The corresponding formula for σT can be obtained by (4.27),
(4.38), and (4.39).

Remark 4.2.5 We note that for N = 2 theorem 4.2.3 recovers the well-
known General Scattering Theorem discussed by various authors, [56],
[58], [79].

For plane-wave light scattering by a small number N of particles, the ad-
ditivity of the scattering cross sections was investigated in [100] under the
condition of sufficiently large distance between each particle. Non-additive
properties of the cross sections in conjunction with validity conditions of
the Discrete Dipole Approximation (DDA) were studied in [44].

4.2.2 Physical Bounds on Interaction Scattering Cross Sections

In this section, we establish physical bounds for the ratios of ISCS over the
corresponding scattering cross sections, which are important in determin-
ing the additivity of the cross sections. Then, we investigate the behaviors
of these ratios, especially, for large numbers N of exciting dipoles. Since
the proving procedures are identical with the corresponding ones for acous-
tic waves, we will present the statement of these relations without proof.
We notice that in theorem 4.2.3, the primary cross sections appear in the
overall cross section’s expression, despite the fact that the dipoles are not
necessarily located at the scatterer’s exterior. In the next, we provide an
explanation for this puzzling, yet expected, appearance.

Theorem 4.2.6 The q-ISCS, the indirect ISCS and the total ISCS, σT,
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satisfy, respectively

1− nq

σmax
q

σq
≤ σ̃

σq
≤ min

{
1− nq

σmin
q

σq
, 1− 1

nq

}
, (4.45)

1−Q
σmax
ex

σ
≤ σI

σ
≤ min

{
1−Q

σmin
ex

σ
, 1− 1

Q

}
, (4.46)

1−N
σmax

σ
≤ σT

σ
≤ min

{
1−N

σmin

σ
, 1− 1

N

}
, (4.47)

where σmin
q and σmax

q denote the minimum and maximum individual cross
sections in Vq, σmin

ex and σmax
ex denote the minimum and maximum q-excitation

cross sections and finally, σmin and σmax denote the minimum and maxi-
mum individual cross sections of all dipoles. For

n2
qσ

min ≤ σq, Q2σmin
ex ≤ σ, N 2σmin ≤ σ, (4.48)

the minima involved in (4.45)-(4.47) are 1− 1
nq

, 1− 1
Q and 1− 1

N , respec-
tively.

Corollary 4.2.7 Conditions (4.48) hold respectively, if and only if√
σq
σmax
q

≤ nq ≤
√

σq
σmin
q

(4.49)√
σ

σmax
ex

≤ Q ≤
√

σ

σmin
ex

(4.50)√
σ

σmax
≤ N ≤

√
σ

σmin
(4.51)

4.2.3 Large-N Behavior of Scattering Cross-Sections Ratios

The large-N behavior of the cross section ratios follows the same pattern
with the corresponding behavior in acoustic waves. Thus, we provide the
statement of our findings without further proofs or comments.

Corollary 4.2.8 If σT
N > 0, for N ≥ N0, with N0 a certain number of

dipoles, then
Rmin

N → 0, for N → ∞. (4.52)
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If σT
N < 0 for a fixed number N of dipoles, then

Rmax
N >

1

N
. (4.53)

If Rmin
N > 1

N for a fixed number N of dipoles, then

σT
N < 0. (4.54)

If 1−RT
N(δ) = δ, for a fixed δ > 0 and a number N(δ) of dipoles, then

N(δ) >
1

δ
. (4.55)

□

Theorem 4.2.9 If there is a number N0 of dipoles such that Rmax
N in-

creases for all N ≥ N0, and σT
N > 0 for all N ≥ N0, then

Rmax
N → aRmax

N0
, for N → ∞, (4.56)

where a ∈ [1, N2
0 ], and Rmax

N0
is the maximum cross section ratio for N0

dipoles.

Corollary 4.2.10 Condition 1 If for the maximum individual cross sec-
tion ratio there exists an N0, such that

Rmax
N <

1

N
(4.57)

for all N with N ≥ N0, then

RT
N → 1, as N → ∞. (4.58)

Condition 2 The following assertions are equivalent

RT
N → 1, for N → ∞ (4.59)

Rj
N → 0, for N → ∞, with j = 1, . . . , N. (4.60)

□
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4.3 Energy Conservation

4.3.1 Conservation of Energy for a Layered Medium

when an excitation layer contains more than two dipoles in its interior,
various interactions and energy exchanges take place simultaneously. For
plane-wave scattering of light by a particle, M.I. Mishchenko introduced
in [46] the concept of a power flux induced by the interaction between an
incident field and the corresponding scattered field that “operate” in the
same volume.

The complex Poynting vector S for the electromagnetic field radiating in
a volume V is defined as S = E×H. Its real part accounts for the power
flux induced in volume V due to excitation by the current distribution in V
and its imaginary part accounts for the reactive power or alternating flow,
induced in volume V [50]. Two other fundamental quantities in the energy
transfer process, are the electric and magnetic energy densities denoted
respectively, by WE(r) = ϵ

2 |E(r)|
2 and WM(r) = µ

2 |H(r)|2 with ϵ, µ the
physical parameters of volume V . The choice of the complex Poynting
vector instead of its (more custom for time-harmonic fields) real part was
made in order to obtain a global view of the various energy exchanges that
take place. In the following, Lagrangian density refers to the difference
between the magnetic and electric densities

L(r) =
µ

2
|H(r)|2 − ϵ

2
|E(r)|2 . (4.61)

In general, the Lagrangian density is related with conservation laws that
describe physical phenomena through the famous Noether’s theorem; for
mechanical waves (such as acoustic waves) it refers to the difference be-
tween the kinetic and potential energies. For electromagnetic waves, how-
ever, it coincides with the difference between the electric and magnetic
energies [48], [50]. The law of energy conservation in an isotropic space V
for time-harmonic fields states that the real part of the Poynting vector is
irrotational, i.e. Re(∇ · S) = 0 in V and is readily extracted after some
minor manipulation of the corresponding Maxwell’s equations for time-
harmonic fields. Under the assumption that V is smooth, an integration
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over ∂V of the real part of the power flux, leads to the following physical
interpretation: No active power flux is elicited through the boundary of V .
By adopting the complex form of the Poynting vector, we can deduce an-
other straight-forward consequence of the Maxwell equations, which would
remain hidden, otherwise: The relation between reactive power and the
Lagrangian density of V , which takes the form

Im(∇ · S) = 2ωL

In the next, we present and prove a theorem that relates the q-excitation
scattering cross section with its corresponding Lagrangian density and the
power flux through an excitation layer’s surface. This relation constitutes
the energy conservation law for the scattering problem we consider, when
all dipoles lie in a single excitation layer Vq.

Theorem 4.3.1 The q-excitation scattering cross section σq, the Lagrangian
densities Lp

q of a distribution of magnetic dipoles within a single-excitation
layer Vq and the power flux Sq

q of Vq due to all dipoles in Vq are connected
as follows:

σq = 2iωZ0

q−1∑
p=0

∫
Vp

Lp
q(r)dv(r) + Z0

∫
Sq

n̂ · Sq
q(r)ds(r). (4.62)

Proof. By Ω we denote the domain of R3 that is bounded by the scatterer’s
external surface S1 and a sphere SR of radius R; see Fig. 4.2. Applying the
divergence theorem in Ω for the power flux S0

q of V0 induced by the dipoles
of excitation layer Vq, yields∫

SR

r̂ · S0
q(r)ds(r)−

∫
S1

n̂ · S0
q(r)ds(r) =∫

Ω

(
(∇× E0

q(r)) ·H0
q(r)− (∇×H0

q(r)) · E0
q(r)

)
dv(r), (4.63)

Taking into account Faraday’s and Ampère’s laws we arrive at∫
SR

r̂ · S0
q(r)ds(r) =

∫
S1

n̂ · S0
q(r)ds(r) + 2iω

∫
Ω

L0
q(r)dv(r), (4.64)
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Figure 4.2: A layered scatterer V containing a single excitation layer Vq and surrounded by a sphere of radius
R.

with L0
q denoting the Lagrangian density in V0 due to the dipoles of Vq.

Letting r → ∞, and using the Silver-Müller radiation condition (4.14), we
get

r̂ · S0
q(r) =

1

Z0k20r
2
|gq(r̂)|2 +O(r−3), (4.65)

from which, (4.64), for R → ∞, gives

lim
R→∞

(
1

Z0k20

∫
SR

|gq(r̂)|2

R2
ds(r)

)
=∫

S1

n̂ · S0
q(r)ds(r) + 2iω

∫
V0

L0
q(r)dv(r). (4.66)

But it holds

lim
R→∞

(∫
SR

|gq(r̂)|2

R2
ds(r)

)
=

∫
S2

|gq(r̂)|2ds(r̂) (4.67)

Considering the definition (4.19) and the fact that for R → ∞ the domain
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Ω coincides with V0, we derive the following

σq
Z0

=

∫
S1

n̂ · S0
q(r)ds(r) + 2iω

∫
V0

L0
q(r)dv(r). (4.68)

Applying the divergence theorem in layers Vp, for p = 1, . . . , q − 1, we
obtain∫

Sp

n̂ · Sp
q(r)ds(r) =

∫
Sp+1

n̂ · Sp
q(r)ds(r) + 2iω

∫
Vp

Lp
q(r)dv(r). (4.69)

Imposing transmission boundary conditions on surfce Sp+1, we get

n̂ · Sp
q(r) = Hp

q(r) · (n̂× Ep
q(r)) = Hp+1

q (r) · (n̂× Ep+1
q (r)) = n̂ · Sp+1

q (r).
(4.70)

Now, successive applications of the divergence theorem, for p = 1, . . . , q−1,
in conjunction with (4.69) and (4.70) lead to∫

S1

n̂ · S0
q(r)ds(r) = 2iω

q−1∑
p=1

∫
Vp

Lp
q(r)dv(r) +

∫
Sq

n̂ · Sq
q(r)ds(r). (4.71)

Relation (4.62) is obtained by combining (4.68) and (4.71).

□

Taking the real part of (4.62) yields the following

Corollary 4.3.2 The individual scattering cross section and the average
power flux per unit area out of the excitation layer Vq, are connected as
follows:

σq = Z0Re

(∫
Sq

n̂ · Sq
q(r)ds(r)

)
. (4.72)

Relation (4.72), is similar to the optical theorem. A way of interpreting it
from a physical standpoint is that the active power flux rate that radiates
in the far-field (which is quantified by the q-excitation cross section) is
proportional to the average power flux through an excitation layer’s surface
(which is quantified by the integral of the Poynting vector).

Taking the imaginary part of (4.62) we obtain the following:



112 CHAPTER 4. ENERGY TRANSFER PROCESS

Corollary 4.3.3 The reactive power directed into the excitation layer Vq

is related with stored energy in all layers of the scatterer prior to Vq by the
relation:

2ω

q−1∑
p=0

Lp
q(r)dv(r) = −Im

(∫
Sq

n̂ · Sq
q(r)ds(r)

)
. (4.73)

Relation (4.73) on the other hand, reveals that the presence of the reactive
power in Vq is manifested by the difference between the magnetic energy
and electric energy in the scatterer’s layers that contain the excitation
layer. We note that the minus sign in the integral of the right-hand side in
(4.73) is an indication of the direction of the reactive power. In particular,
it shows that the reactive power is directed "inwards", i.e. towards the
interior of the excitation layer Vq.

Remark 4.3.4 For nq = 1, we obtain the corresponding results for the
individual quantities.

Now, we steer our focus towards the contribution of the secondary fields
in the energy transfer process. For single-layer excitation, by successively
implementing the divergence theorem for p = q+1, q+2, . . . , P we obtain∫

Sq+1

n̂ · Sq
q(r)ds(r) = 2iω

P∑
p=q+1

∫
Vp

Lp
q(r)dv(r), (4.74)

We readily observe that the right-hand side of (4.74) is an imaginary quan-
tity. Thus, we deduce that in the layers layers enclosed by Vq, no active
power flux is induced. Furthermore, the reactive power is proportional to
the cumulative Lagrangian density in the enclosed by Vq. Relation (4.74)
on the other hand, combined with (4.73) implies that the (secondary) fields
in the non-excitation layers seem to produce no power flux, while their con-
tribution to the energy transfer process seems to be limited. In particular,
they constitute the pool of reactive power.

On the other hand, the divergence theorem under this concept, describes
the process of “transforming” the reactive power into energy stored in the
scatterer’s layers; this sort of “transformation” indicates a similarity with
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an absorption mechanism. However, the scatterer types we consider are
lossless and therefore there is no power flux absorbed by the scatterer.
This seemingly ambiguous behavior, stems from the presence of more than
one dipoles in the excitation layer and the inevitable interaction between
spherical waves “operating” in the same volume.

In order to delve deeper into the understanding of these interactions, we
will press on with (4.62). In particular, we make use of the power fluxes
introduced in [46] and we will expand them to better fit the problem of
excitation by N dipoles. The ISCS which where the focus of the previous
section are a significant part of this expansion. In [46], the individual power
flux of a dipole radiating in a volume V was decomposed in three parts, as
follows:

S = Spr + Sext + Ssec, (4.75)

Vectors Spr and Ssec constitute the power fluxes induced by the primary and
the secondary field, respectively. The third term in (4.75), Sext, denotes
the power flux induced by the interaction between the primary and its own
secondary field. Specifically, Sext is given by

Sext = Epr ×H
sec

+ Esec ×H
pr
. (4.76)

In the following, we address the complicated interaction mechanism that
takes place, when more than one dipoles are contained in an excitation
layer Vq. Each of the primary fields of Vq interacts with its own secondary
field, as well as with all the secondary fields induced by the rest of the
primary fields of Vq. Even more, this occurs for all primary fields and all
secondary fields.

To group these interactions and their corresponding power fluxes - which
we will call interaction power fluxes (IPF) - we distinguish these interac-
tions in the following manner: Vector quantities Spr

q and Ssec
q will constitute

the primary power flux and the secondary power flux, respectively. These
are the power fluxes induced by the interactions between all primary fields
and all secondary fields of Vq, respectively. On the other hand, vector
quantity Sext

q will denote the power flux induced by the interaction be-
tween primary and secondary fields of Vq.
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The definitions of [46], can be extended to describe in general the power
fluxes induced by interaction between two electromagnetic fields. In par-
ticular, if (E1,H1) and (E2,H2) are two electromagnetic fields that radiate
in the same volume, the power flux induced by their interaction is defined
as

S̃ = E1 ×H2 + E2 ×H1. (4.77)
The following theorem describes in detail the energy process inside an ex-
citation layer.
Theorem 4.3.5 The power flux induced through the surface Sq is con-
nected with the interaction power fluxes of Vq as follows:∫

Sq

n̂ · Sq
q(r)ds(r) = 2iω

P∑
p=q

∫
Vp

Lp
q(r)dv(r)+∫

∂Vq

n̂ ·
(
Spr
q (r) + Sext

q (r)
)
ds(r). (4.78)

Proof. Applying the divergence theorem in Vq for the q-excitation sec-
ondary power flux, yields∫

Sq

n̂ · Ssec
q (r)ds(r) = 2iω

∫
Vq

Lsec
q (r)dv(r)+∫

Sq+1

n̂ · Ssec
q (r)ds(r), (4.79)

with Lsec
q being the Lagrangian density of the secondary fields in Vq. Im-

posing the boundary conditions on Sq+1 for Eq
q,H

q
q, leads to∫

Sq+1

n̂ · Ssec
q (r)ds(r) =

−
∫
Sq+1

n̂ ·
(
Epr

q (r)×H
q+1
q (r)

)
ds(r)−∫

Sq+1

n̂ ·
(
Eq+1

q (r)×H
pr
q (r)

)
ds(r)+∫

Sq+1

n̂ · Sq+1
q (r)ds(r) +

∫
Sq+1

n̂ · Spr
q (r)ds(r). (4.80)
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We impose again the boundary conditions on Sq+1 for the fields Eq+1
q ,H

q+1
q

and by means of (4.80), we obtain∫
Sq+1

n̂ · Ssec
q (r)ds(r) =

∫
Sq+1

n̂ · Sq+1
q (r)ds(r)

−
∫
Sq+1

n̂ · Spr
q (r)ds(r)−

∫
Sq+1

n̂ · Sext
q (r)ds(r). (4.81)

A combination of (4.81), (4.74), (4.75) and (4.79), derives (4.78).

□

Equation (4.78) combined with (4.62) yields an alternative form of The-
orem 4.3.1

σq = 2iωZ0

P∑
p=0

∫
Vp

Lp
q(r)dv(r)+

Z0

∫
∂Vq

n̂ ·
(
Spr
q (r) + Sext

q (r)
)
ds(r), (4.82)

This form, implies that the induced power flux is a result of interactions
related with the primary fields of an excitation layer. This fact can be
traced back to Theorem 4.3.5: Taking the real parts of (4.78) we get a
similar result for the active power flux directed out of excitation layer Vq.

Even more, equation (4.82) implies that the interaction between sec-
ondary fields is strictly related with the reactive power. Reactive power
itself, seems to operate as a "flux-carrier", that “transfers” the induced en-
ergy flow from the excitation layer, through the scatterer’s layers, to the
far-field zone. The quantity Spr

q + Sext
q will be called qprimary interaction

power flux (q-primary IPF).
Finally, we note that the overall difference between the magnetic and

electric energy that are stored in the scatterer’s layers, is induced by both
the secondary IPF in all layers and the q-primary IPF in excitation layer
Vq.



116 CHAPTER 4. ENERGY TRANSFER PROCESS

4.3.2 Cross Sections and the Optical Theorem

In this section, we revisit the optical theorem taking into account the pre-
vious analysis. In particular, we investigate the connection between the
ISCS and the interactions between the corresponding fields in the excita-
tion layer and we highlight the connection between the various IPF with
the optical theorem.

The first, we provide calculation formulas for both components of the
q-primary IPF in the form of a theorem.

Theorem 4.3.6 The power fluxes Spr
q and Sext

q satisfy the relations

ZqRe

(∫
∂Vq

n̂ · Spr
q (r)ds(r)

)
= σpr

q (4.83)

Re

(∫
∂Vq

n̂ · Sext
q (r)ds(r)

)
=

4π

nq∑
j=1

Re
(
Aq,jH

sec
q (rq,j) · p̂q,j

)
. (4.84)

Proof. Taking the real parts of (4.82), we obtain

σq = Z0Re

(∫
∂Vq

n̂ ·
(
Spr
q (r) + Sext

q (r)
)
ds(r)

)
, (4.85)

Equation (4.85) combined with (4.43), takes the form

4π

nq∑
j=1

Re
(
Aq,jH

sec
q (rq,j) · p̂q,j

)
+

σpr
q

Zq
=

Re

(∫
∂Vq

n̂ ·
(
Spr
q (r) + Sext

q (r)
)
ds(r)

)
. (4.86)

Applying Green’s second theorem for Epr
q,j,E

sec
q,ν in the domain Ωq = Vq \Sϵ,

with Sϵ denoting a "small" sphere of radius ϵ enclosing the point source
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rq,j, we arrive at∫
∂Vq

n̂ ·
(
E

pr
q,j(r)×Hsec

q,ν(r) + Esec
q,ν(r)×H

pr
q,j(r)

)
ds(r) =∫

Sϵ

n̂ ·
(
E

pr
q,j(r)×Hsec

q,ν(r) + Esec
q,ν(r)×H

pr
q,j(r)

)
ds(r). (4.87)

Implementing the mean value theorem in the last two relations for the
integrals over the surface Sϵ and by letting ϵ → 0, we obtain∫

∂Vq

n̂ ·
(
E

pr
q,j(r)×Hsec

q,ν(r) + Esec
q,ν(r)×H

pr
q,j(r)

)
ds(r) =

4πAq,jH
sec
q,ν(rq,j) · p̂q,j,

Repetition of the preceded process for the fields Epr
q,j,E

sec
q,ν combined with

the definition of Sext
q,j , yields

Re

(∫
∂Vq

n̂ · Sext
q,j (r)ds(r)

)
=

4πRe
(
Aq,jH

sec
q,ν(rq,j) · p̂q,j

)
. (4.88)

Summing the latter for all j = 1, . . . , nq yields (4.84). Equation (4.83) is
derived by combining (4.84) with (4.86).

□

It is worth noting that the individual fields interact with each other, addi-
tionally to the above-discussed IPF. Therefore, another way of discriminat-
ing the power fluxes is to categorize them according to whether they stem
from interactions between the same fields or from interactions between dif-
ferent fields. We define the qindividual power flux and the qinteraction
power flux, respectively, as follows:

Ŝq(r) =

nq∑
j=1

(
Eq

q,j(r)×H
q
q,j(r)

)
(4.89)

S̃q(r) =

nq−1∑
j=1

nq∑
ν=j+1

(
Eq

q,j(r)×H
q
q,ν(r)

)
, (4.90)
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A straight-forward implementation of the definitions for all the IPF yields
the relation connecting them:

Spr
q + Sext

q + Ssec
q = Ŝq + S̃q (4.91)

Taking under consideration definition (4.24) and combined it with equa-
tion (4.82), we derive the following relation that links the q-ISCS with its
corresponding power flux

σ̃q = 2iωZ0

P∑
p=0

∫
Vp

L̃p
q(r)dv(r)+

Z0

∫
∂Vq

n̂ · S̃q(r)ds(r), (4.92)

with L̃p
q denoting the part of the Lagrangian density that is induced by the

interaction between different individual fields radiating in Vp; note that in
the above equation, L̃q

q refers to L̃sec
q .

Remark 4.3.7 For a PEC or a PMC core, relations (4.82) and (4.92) are
valid, as well by considering that LP

q = 0. On the other hand, relations
(4.82) and (4.92) hold even if the dipole distribution contains dipoles in
scatterer’s exterior, V0.

Now we would like to discuss more about the physical interpretation of
(4.92). We focus our attention to the fact that the q-ISCS can be negative.
If the q-ISCS is negative, by means of (4.92), we extract the conclusion
that in such a case the active power flux will be directed inwards. Thus
in this case, the power flux induced by the interaction between individual
fields follows a path “returning to the source”, i.e. to the excitation layer.
This results in a reduction of the pace of the overall energy flow towards the
scatterer’s exterior. Subsequently, this will lead to a proportional reduction
in the active power flux rate which is manifested by the negative sign of
the q-ISCS [63], [103]. Finally, we stress that the power fluxes of (4.92) do
not include individual power fluxes; only those induced by the interactions
between individual fields are included.
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Until now, the various energy exchanges and the energy transfer process
in the case of a single excitation layer, e.g. all dipoles lie in one of the scat-
terer’s layers (without excluding the scatterer’s exterior) were investigated.
The general case, however, is the case where the dipoles lie in more than
one layers. When that occurs, interactions between participating fields
result in different types of power fluxes are encountered.

Specifically, in each excitation layer Vq, the q-primary field Spr
q has the

exact same meaning with the case of Q = 1 excitation layer: it is the
power flux induced in Vq by all the dipoles of Vq. Nevertheless, Spr

q is
only a part of the overall power flux Sov

q induced in Vq. This happens
because the overall power flux in layer Vq, will contain the IPFs induced by
the interaction between the q-primary field and the secondary q-excitation
field, which is quantified by Sext

q . Additionally, there is the IPF induced by
the interactions between the q-primary field and the (secondary) fields that
stem from the rest of the excitation layers and they radiate in the interior
of Vq. The latter IPF in particular, is quantified by the second term in the
expression

Sov
q (r) = Sext

q (r)+∑
s̸=q

(
Epr

q (r)×H
q
s(r) + Eq

s(r)×H
pr
q (r)

)
. (4.93)

Remark 4.3.8 We note that in the single-layer excitation case, it holds
Sov
q = Sext

q .

Now, we will present the form of the energy conservation law in the - more
general - case of mixed excitation. The following theorem is proved by a
procedure similar to the one of Theorem 4.3.1.

Theorem 4.3.9 The overall scattering cross section, the overall Lagrangian
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density and the q-excitation fluxes are connected as follows:

σ = 2iωZ0

P∑
p=0

∫
Vp

Lp(r)dv(r)+

Z0

Q∑
q=1

∫
∂V ex

q

n̂ ·
(
Spr
q (r) + Sov

q (r)
)
ds(r). (4.94)

When Vp coincides with an excitation layer V ex
q , then Lp refers to Lsec

p . If
we take into account definition (4.26), we obtain

σT = 2iωZ0

P∑
p=0

∫
Vp

LT
p (r)dv(r)+

Z0

Q∑
q=1

∫
∂V ex

q

n̂ · S̃T
q (r)ds(r), (4.95)

where LT
p and S̃T

q denote the parts of the Lagrangian density and the power
flux, respectively, induced by the interactions between fields generated by
different dipoles. On the other hand, definition (4.25) implies

σI = 2iωZ0

P∑
p=0

∫
Vp

LI
p(r)dv(r) + Z0

Q∑
q=1

∫
∂V ex

q

n̂ · S̃I
q(r)ds(r), (4.96)

where LI
p and S̃I

q denote the parts of the Lagrangian density and the power
flux, respectively, induced by the interactions between fields generated in
different layers. If we look closely at relation (4.96), we will observe that
the IPF attributed to the primary fields is absent. This is not unexpected
- quite the contrary, given the fact that the indirect ISCS quantifies the
interaction between fields excited in different layers.

Remark 4.3.10 We to note that the case of N > 2 dipoles is not a mere
generalization of the case of N = 2. When the scatterer is excited by
N = 2 dipoles, these dipoles will lie either in the same layer or in a
different one. Therefore, only one type of IPF–and subsequently ISCS–
can occur. However, when the scatterer is excited by N > 2 dipoles, there
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is a chance to have both types of IPF (direct and indirect). When that
occurs, the behavior of the overall scattering cross section [103] might be
significantly affected. Furthermore, in the case where N = 2, the partial
fields coincide with the individual fields and the only IPF present is the one
quantifying the power flux induced by the interaction between the N = 2
dipoles. Evidently, for a multitude of N > 2 dipoles, this can never occur.



Chapter 5

The Layered Sphere Excited by N
Dipoles

5.1 Geometry Setting

We consider a spherical scatterer of radius a1, divided into P nested, con-
centric spherical shells Vp (p = 1, . . . , P ), by P − 1 spherical surfaces Sp,
each characterized by radius ap with (p = 2, . . . , P ), see figure 5.1. Each
layer Vp, geometrically defined by ap+1 ≤ r ≤ ap, is characterized by real
wavenumbers kp, electric permitivities ϵp and magnetic permeabilities µp

with p = 1, . . . , P − 1. The exterior V0 of the scatterer is characterized
by wavenumber k0, electric permitivity ϵ0 and magnetic permeability µ0.
Of all P layers, Q of them with Q ≤ P + 1, contain nq magnetic dipoles
distributed in their interior, in arbitrary fashion. Each dipole contained
in an excitation layer Vq, has a location vector rq,j with respect to the
sphere’s center, and possesses dipole moment p̂q,j for j = 1, . . . , nq and
q = 1, . . . , Q. These dipoles generate spherical waves, with the corre-
sponding individual primary fields given by

Epr
q,j(r) = iωµqG̃(r, rq,j) · pq,j. (5.1)

with G̃(r, rq,j) denoting the dyadic Green’s function. Vector pq,j denotes
the polarized strength of the dipole, which is given by

pq,j = Aq,jp̂q,j (5.2)

with Aq,j being the dipole’s strength constant.

122



5.1. GEOMETRY SETTING 123

Figure 5.1: Layered spherical medium excited by N arbitrarily located point sources

On each of the spherical surfaces, Sp, the overall fields satisfy for p =
1, . . . , P − 1 the dielectric boundary conditions

r̂× Ep−1(r) = r̂× Ep(r), r = ap (5.3)
r̂×Hp−1(r) = r̂×Hp(r), r = ap. (5.4)

The medium’s core VP can be a PEC, a PMC or lossless dielectric. For a
PEC core or a PMC core, the respective boundary conditions will read

r̂× EP−1(r) = 0, r = aP (5.5)
r̂×HP−1(r) = 0, r = aP , (5.6)

while for a dielectric core, conditions (5.3)-(5.4) are valid for VP as well.



124 CHAPTER 5. THE LAYERED SPHERE EXCITED BY N DIPOLES

5.2 Excitation Operators and Fields’ Expansions

We chose a spherical coordinate system (r, θ, ϕ) so that the sphere’s center
O coincides with the system’s origin. Then, each dipole is identified by
its location vector rq,j = (rq,j, θq,j, ϕq,j) with aq+1 < rq,j < aq, for j =
1, . . . , nq. Utilizing the spherical vector wave functions (SVWF) to expand
the primary electric fields, we arrive at [69]

Epr
q,j(r) =

ikq
4π

∑
n,m,s

cnm×
(
M3

snm(r, kq)M
1
snm(rq,j, kq) +N3

snm(r, kq)N
1
snm(rq,j, kq)

)
· pq,j, r > rq,j(

M1
snm(r, kq)M

3
snm(rq,j, kq) +N1

snm(r, kq)N
3
snm(rq,j, kq)

)
· pq,j, r < rq,j

(5.7)

with
∑

n,m,s denoting the triple sum with respect to n,m, s, i.e.

∑
n,m,s

anms =
∞∑
n=1

n∑
m=0

o∑
s=e

anms

We note that the subscript s ∈ {e, o} refers to whether the involved SVWF
are even or odd, see (B.19)-(B.23) of [98]; The coefficient cnm is given by

cnm =
2n+ 1

n(n+ 1)

(n−m)!

(n+m)!
ϵm

with ϵm denoting the Neumann factor

ϵm =

{
1, m = 0

2, m > 0
(5.8)
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The individual secondary fields in Vp are expanded as

Ep
q,j(r) =

ikq
4π

∑
n,m,s

cnm×[
M1

snm(r, kq)
(
aq,jn,pM

1
snm(rq,j, kq) + bq,jn,pM

3
snm(rq,j, kq)

)
+N1

snm(r, kq)
(
cq,jn,pN

1
snm(rq,j, kq) + dq,jn,pN

3
snm(rq,j, kq)

)
+M3

snm(r, kq)
(
ãq,jn,pM

1
snm(rq,j, kq) + b̃q,jn,pM

3
snm(rq,j, kq)

)
+N3

snm(r, kq)
(
c̃q,jn,pN

1
snm(rq,j, kq) + d̃q,jn,pN

3
snm(rq,j, kq)

)]
· pq,j (5.9)

where Xℓ
snm with X ∈ {M,N}, s ∈ {e, o}, ℓ ∈ {1, 3} denote the spherical

vector wave functions (SVWF).
Now, we define the following q-excitation operators

M1
snm(xq) =

ikq
4π

cnm

nq∑
j=1

xq,jM
1
snm(rq,j, kq) · pq,j (5.10)

M3
snm(xq) =

ikq
4π

cnm

nq∑
j=1

xq,jM
3
snm(rq,j, kq) · pq,j, (5.11)

N 1
snm(xq) =

ikq
4π

cnm

nq∑
j=1

xq,jN
1
snm(rq,j, kq) · pq,j (5.12)

N 3
snm(xq) =

ikq
4π

cnm

nq∑
j=1

xq,jN
3
snm(rq,j, kq) · pq,j, (5.13)

where xq = (x1q, . . . , x
nq
q ) arbitrary vectors of Rnq . By denoting

Ap
s,n,m,q = M1

snm(a
p
n,q), Ãp

s,n,m,q = M1
snm(ã

p
n,q)

Bp
s,n,m,q = M3

snm(b
p
n,q), B̃p

s,n,m,q = M3
snm(b̃

p
n,q)

Cp
s,n,m,q = N 1

snm(c
p
n,q), C̃p

s,n,m,q = N 1
snm(c̃

p
n,q)

Dp
s,n,m,q = N 3

snm(d
p
n,q), D̃p

s,n,m,q = M3
snm(d̃

p
n,q)
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where xp
n,q = (xp1,n,q, . . . , x

p
N,n,q) with x ∈ {a, b, c, d} are the vectors with

components the unknown coefficients of the individual secondary fields.
Taking under consideration the expansions (5.7), (5.9), and utilize the def-
initions of overall primary and secondary fields, we obtain the following
expansions for the q-excitation primary fields

Epr
q (r) =

∑
n,m,s

{
M3

snm(r, kq)M1
snm(uq) +N3

snm(r, kq)N 1
snm(uq), r > rq,j

M1
snm(r, kq)M3

snm(uq) +N1
snm(r, kq)N 3

snm(uq), r < rq,j,

where uq denotes the nq-dimensional vector (1, 1, . . . , 1). In a similar man-
ner, the expansion of the overall secondary field of Vp is derived as follows

Ep(r) =∑
n,m,s

[
M1

snm(r, kq)
(
Ap

s,n,m + Bp
s,n,m

)
+N1

snm(r, kq)
(
Cp
s,n,m +Dp

s,n,m

)
+M3

snm(r, kq)
(
Ãp

s,n,m + B̃p
s,n,m

)
+N3

snm(r, kq)
(
C̃p
s,n,m + D̃p

s,n,m

)]
(5.14)

where xps,n,m =
∑Q

q=1 x
p
s,n,m,q, the under-determination coefficients of the

overall field of Vp with x ∈ {A,B, C,D, Ã, B̃, C̃, D̃}.

5.3 Solution of the Direct Problem

Considering the orthogonality properties of the SVWF and imposing bound-
ary conditions, on the boundaries of layers Vp for p = 1, . . . , P − 1, we
obtain [

Ap
s,n,m Bp

s,n,m

Ãp
s,n,m B̃p

s,n,m

]
= T(0→p)

n ·
[

0 0

Ã0
s,n,m B̃0

s,n,m

]
(5.15)[

Cp
s,n,m Dp

s,n,m

C̃p
s,n,m D̃p

s,n,m

]
= S(0→p)

n ·
[

0 0

C̃0
s,n,m D̃0

s,n,m

]
(5.16)
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where Tp
n,S

p
n are the transition matrices from layer Vp−1 to layer Vp (see

[83]), which can be written in the form

Tp
n = −ix2p

[
Up (hn, jn) Up (hn, hn)
−Up (jn, jn) −Up (jn, hn)

]
Sp
n = −ix2p

[
Vp (hn, jn) Vp (hn, hn)
−Vp (jn, jn) −Vp (jn, hn)

]
with functionals Up,Vp given by

Up(f, g)(xp, yp) = f̃(xp)g(yp)−
√
µpϵp−1

√
µp1ϵp

f(xp)g̃(yp)

Vp(f, g)(xp, yp) =

√
µpϵp−1

√
µp1ϵp

f̃(xp)g(yp)− f(xp)g̃(yp)

and T
(0→p)
n ,S

(0→p)
n are the transition matrices from the exterior V0 to layer

Vp given by A
(0→p)
n = Ap

nA
p−1
n . . .A1

n for A ∈ {T,S}. Let Vq for q ∈
{1, . . . , P} be the first layer (closer to the exterior V0) that contains point
sources. Then it holds:[

Aq
s,n,m Bq

s,n,m

Ãq
s,n,m +M1

snm(uq) B̃q
s,n,m

]
= T(0→q)

n ·
[

0 0

Ã0
s,n,m B̃0

s,n,m

]
(5.17)[

Cq
s,n,m Dq

s,n,m

C̃q
s,n,m +N 1

snm(uq) D̃q
s,n,m

]
= S(0→q)

n ·
[

0 0

C̃0
s,n,m D̃0

s,n,m

]
(5.18)

Boundary conditions at layer Vq+1 yield:[
Aq+1

s,n,m Bq+1
s,n,m

Ãq+1
s,n,m B̃q+1

s,n,m

]
= Tq+1

n ·
[
Aq

s,n,m Bq
s,n,m +M3

snm(uq)

Ãq
s,n,m B̃q

s,n,m

]
(5.19)[

Cq+1
s,n,m Dq+1

s,n,m

C̃q+1
s,n,m D̃q+1

s,n,m

]
= Sq+1

n ·
[
Cq
s,n,m Dq

s,n,m +N 3
snm(uq)

C̃q
s,n,m D̃q

s,n,m

]
(5.20)

Combining (5.17) with (5.19) and (5.18) with (5.20) we obtain:[
Aq+1

s,n,m Bq+1
s,n,m

Ãq+1
s,n,m B̃q+1

s,n,m

]
=T(0→q+1)

n ·
[

0 0

Ã0
s,n,m B̃0

s,n,m

]
+

Tq+1
n ·

[
0 M3

snm(1q)
−M1

snm(uq) 0

]
(5.21)
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Cq+1
s,n,m Dq+1

s,n,m

C̃q+1
s,n,m D̃q+1

s,n,m

]
=S(0→q+1)

n ·
[

0 0

C̃0
s,n,m D̃0

s,n,m

]
+

Sq+1
n ·

[
0 N 3

snm(uq)
−N 1

snm(uq) 0

]
(5.22)

Let Vν be the next (closer to Vq) layer that contains sources. Then it will
hold:[

Aν
s,n,m Bν

s,n,m

Ãν
s,n,m +M1

snm(uν) Ãν
s,n,m

]
= T(q→ν)

n ·
[
Aq+1

s,n,m Bq+1
s,n,m

Ãq+1
s,n,m B̃q+1

s,n,m

]
(5.23)[

Cν
s,n,m Dν

s,n,m

C̃ν
s,n,m +N 1

snm(uν) D̃ν
s,n,m

]
= S(q→ν)

n ·
[
Cq+1
s,n,m Dq+1

s,n,m

C̃q+1
s,n,m D̃q+1

s,n,m

]
. (5.24)

[
Aν+1

s,n,m Bν+1
s,n,m

Ãν+1
s,n,m B̃ν+1

s,n,m

]
= Tν+1

n ·
[
Aν

s,n,m Bν
s,n,m +M3

snm(uν)

Ãν
s,n,m B̃ν

s,n,m

]
(5.25)[

Cν+1
s,n,m Dν+1

s,n,m

C̃ν+1
s,n,m D̃ν+1

s,n,m

]
= Sν+1

n ·
[
Cν
s,n,m Dν

s,n,m +N 3
snm(uν)

C̃ν
s,n,m D̃ν

s,n,m

]
. (5.26)

Combining above relations, we arrive at:[
Aν+1

s,n,m Bν+1
s,n,m

Ãν+1
s,n,m B̃ν+1

s,n,m

]
=T(0→ν+1)

n ·
[

0 0

Ã0
s,n,m B̃0

s,n,m

]
+

T(q→ν)
n ·

[
0 M3

snm(uq)
−M1

snm(uq) 0

]
+

Tν+1
n ·

[
0 M3

snm(uν)
−M1

snm(uν) 0

]
(5.27)[

Cν+1
s,n,m Dν+1

s,n,m

C̃ν+1
s,n,m D̃ν+1

s,n,m

]
=S(0→ν+1)

n ·
[

0 0

C̃0
s,n,m D̃0

s,n,m

]
+

S(q→ν)
n ·

[
0 N 3

snm(uq)
−N 1

snm(uq) 0

]
+

Sν+1
n ·

[
0 N 3

snm(uν)
−N 1

snm(uν) 0

]
(5.28)
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From successive implementation of the boundary conditions, we conclude
that it will finally hold:[

AP−1
s,n,m BP−1

s,n,m

ÃP−1
s,n,m B̃P−1

s,n,m

]
=T(0→P−1)

n ·
[

0 0

Ã0
s,n,m B̃0

s,n,m

]
+

Q∑
q=1

T(q→P−1)
n ·

[
0 M3

snm(uq)
−M1

snm(uq) 0

]
(5.29)[

CP−1
s,n,m DP−1

s,n,m

C̃P−1
s,n,m D̃P−1

s,n,m

]
=S(0→P−1)

n ·
[

0 0

C̃0
s,n,m D̃0

s,n,m

]
+

Q∑
q=1

S(q→P−1)
n ·

[
0 N 3

snm(uq)
−N 1

snm(uq) 0

]
(5.30)

where q is used in reference to excitation layer Vq. For a PEC core we
obtain:

Ã0
s,n,m =

Q∑
q=1

Ψ2
n,q(kqaq+1)

Ψ2
n,P−1(kP−1aP )

M1
snm(uq) (5.31)

B̃0
s,n,m = −

Q∑
q=1

Ψ1
n,q(kqaq+1)

Ψ2
n,P−1(kP−1aP )

M3
snm(uq) (5.32)

C̃0
s,n,m =

Q∑
q=1

Ω2
n,q(kqaq+1)

Ω2
n,P−1(kP−1aP )

N 1
snm(uq) (5.33)

D̃0
s,n,m = −

Q∑
q=1

Ω1
n,q(kqaq+1)

Ω2
n,P−1(kP−1aP )

N 3
snm(uq) (5.34)

where Ψ1
n,p,Ψ

2
n,p and Ω1

n,p,Ω
2
n,p the components of the boundary transition

vectors Ψn,p(x),Ωn,p(x) which are defined as follows:

Ψn,p(x) = (T(p→P−1)
n )T ·

[
jn(x)
hn(x)

]
(5.35)

Ωn,p(x) = (S(p→P−1)
n )T ·

[
ĵn(x)

ĥn(x)

]
(5.36)
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For a PMC core, corresponding results are:

Ã0
s,n,m =

Q∑
q=1

Φ2
n,q(kqaq+1)

Φ2
n,P−1(kP−1aP )

M1
snm(uq) (5.37)

B̃0
s,n,m = −

Q∑
q=1

Φ1
n,q(kqaq+1)

Φ2
n,P−1(kP−1aP )

M3
snm(uq) (5.38)

C̃0
s,n,m =

Q∑
q=1

X2
n,q(kqaq+1)

X2
n,P−1(kP−1aP )

N 1
snm(uq) (5.39)

D̃0
s,n,m = −

Q∑
q=1

X1
n,q(kqaq+1)

X2
n,P−1(kP−1aP )

N 3
snm(uq) (5.40)

where Φ1
n,p,Φ

2
n,p and X1

n,p, X
2
n,p the components of the boundary transition

vectors Φn,p(x),Xn,p(x) which are defined as follows:

Φn,p(x) = (T(p→P−1)
n )T ·

[
j
′

n(x)

h
′

n(x)

]
(5.41)

Xn,p(x) = (S(p→P−1)
n )T ·

[
ĵ
′

n(x)

ĥ
′

n(x)

]
(5.42)

where ĵn(x), ĥn(x) denote the Riccatti-Bessel functions. Finally, for a di-
electric core we obtain:

Ã0
s,n,m =

Q∑
q=1

T
(q→P )
n,22

T
(0→P )
n,22

M1
snm(uq) (5.43)

B̃0
s,n,m = −

Q∑
q=1

T
(q→P )
n,21

T
(0→P )
n,22

M3
snm(uq) (5.44)

C̃0
s,n,m =

Q∑
q=1

S
(q→P )
n,22

S
(0→P )
n,22

N 1
snm(uq) (5.45)

D̃0
s,n,m = −

Q∑
q=1

S
(q→P )
n,21

S
(0→P )
n,22

N 3
snm(uq) (5.46)
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where A
(q→u)
n,ij denotes the ij− component of matrix A

(q→u)
n . Now, we

present the formulas for two cases, of special importance,as they are of-
ten encountered in real-world applications. First, the external excitation
(all dipoles lie in the exterior V0) and core excitation (all dipoles lie in the
sphere’s core). For the external excitation it holds

Ã0
s,n,m = 0, B̃0

s,n,m = −
Ψ1

n,P−1(kP−1aP )

Ψ2
n,P−1(kP−1aP )

M3
snm(u0) (5.47)

C̃0
s,n,m = 0, D̃0

s,n,m = −
Ω1

n,P−1(kP−1aP )

Ω2
n,P−1(kP−1aP )

N 3
snm(u0) (5.48)

for a PEC core and

Ã0
s,n,m = 0, B̃0

s,n,m = −
Φ1

n,P−1(kP−1aP )

Φ2
n,P−1(kP−1aP )

M3
snm(u0) (5.49)

C̃0
s,n,m = 0, D̃0

s,n,m = −
X1

n,P−1(kP−1aP )

X2
n,P−1(kP−1aP )

N 3
snm(u0) (5.50)

for a PMC core and

Ã0
s,n,m = 0, B̃0

s,n,m = −
T

(0→P )
n,21

T
(0→P )
n,22

M3
snm(u0) (5.51)

C̃0
s,n,m = 0, D̃0

s,n,m = −
S
(0→P )
n,21

S
(0→P )
n,22

N 3
snm(u0) (5.52)

for a dielectric core. For the core excitation case, we get:

Ã0
s,n,m =

T P
n,22

T
(0→P )
n,22

M1
snm(uP ), B̃0

s,n,m = 0 (5.53)

C̃0
s,n,m =

SP
n,22

S
(0→P )
n,22

N 1
snm(uP ), D̃0

s,n,m = 0 (5.54)

Now, we describe a generic procedure to obtain without additional calcula-
tions the coefficients of an individual field. By the expansion of the dyadic
Green’s function, we observe that each scattering coefficient is associated
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with a dyad XY induced by two SVWF used in scattering phenomena.
Let’s suppose we want to extract aq,jn,0 which is the coefficient associated
with the dyad M1

snm(r, kq,j)M
1
snm(rq,j, kq,j) for a sphere with a PEC core.

All we have to do is to substitute the vector uq in formula (5.31) with the
vector eq,j which is the vector of the standard base of Rnq with 1 in the jth
position. For a dielectric core, coefficients are the same for every dipole and
thus, do need separate extraction. Taking into account the definition of the
SVWF, (equations (B.19-B.23) of [98] and utilizing asymptotic relations of
the spherical Bessel and Hankel functions for r → ∞, see [94] we obtain
for the q-excitation far-fields and the overall far-field:

gq(r̂) =
ωµ0

4π

∑
n,m,s

√
n(n+ 1)(−i)n−1×[

Csnm(θ, ϕ)
(
Ã0

s,n,m,q + B̃0
s,n,m,q

)
+ iBsnm(θ, ϕ)

(
C̃0
s,n,m,q + D̃0

s,n,m,q

)]
(5.55)

g(r̂) =
ωµ0

4π

∑
n,m,s

√
n(n+ 1)(−i)n−1×[

Csnm(θ, ϕ)
(
Ã0

s,n,m + B̃0
s,n,m

)
+ iBsnm(θ, ϕ)

(
C̃0
s,n,m + D̃0

s,n,m

)]
(5.56)

The corresponding q-excitation cross section and overall cross section will
be given by:

σq =
2π

k20

∑
s,n,m

(2n+ 1)

[ ∣∣∣Ã0
s,n,m,q + B̃0

s,n,m,q

∣∣∣2 + ∣∣∣C̃0
s,n,m,q + D̃0

s,n,m,q

∣∣∣2 ]
(5.57)

σ =
2π

k20

∑
s,n,m

(2n+ 1)

[ ∣∣∣Ã0
s,n,m + B̃0

s,n,m

∣∣∣2 + ∣∣∣C̃0
s,n,m + D̃0

s,n,m

∣∣∣2 ]
(5.58)
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5.4 Parametric Analysis

In this chapter, we present a parametric analysis for the behaviour of the
ISCS and the corresponding cross section.

5.4.1 Single-Layer Excitation

The numerical results we present in this section, concern the case where
a layered spherical scatterer V is excited by a dipole distribution located
in the sphere’s exterior (external excitation) or in a specific layer (internal
excitation). In particular, we considered the case where a 2-layered spher-
ical scatterer V (i.e. P = 2) of external radius a1 and core’s radius a2,
is excited by either a dipole distribution lying in V0 (r > a1) or a dipole
distribution lying in the spherical shell V1 (a2 < r < a1). The core V2

(0 ≤ r < a2) can PEC or dielectric. In most cases the dipoles lie on the
z-axis; that choice was made since the angle and azimuthial angle do not
affet significantly the behaviour of the ISCS ratios, see figures [xxx].

In figure 5.2, the variations of σT/σ versus the electric radius k0a1 for
a distribution of N = 4 external dipoles are depicted for different dipole
distributions. In particular, we observe the ISCS behaviour of a dipole
distribution that is "moving" far away from the scatterer. Specifically, we
considered three dipole distributions with the dipoles’ distances are given
by: rj = (1.3 + 0.2j)a1, rj = (2.3 + 0.2j)a1, and rj = (3.3 + 0.2j)a1,
with j = 0, 1, 2, 3. We notice that the ISCS ratios are oscillatory for higher
frequencies when the dipoles lie close to the sphere. However, the ratio
remains within a 4% and a 5% margin in the PEC and dielectric core case,
respectively. As the dipole distribution moves away from the scatterer,
we observe that the oscillatory behavior remains, but the variation margin
deteriorates to the extend we can safely assume that the ISCS ratios for
all examined frequencies achieve the upper bound 1− 1

N = 0.75 of (4.45).
Similar conclusions are drawn from figure 5.3 where the dipole dis-

tributions are sparse compared to those of figure 5.2. Specifically, the
distance between successive dipoles is half the sphere’s radius, namely
rj = (1.3 + 0.5j)a1, rj = (2.3 + 0.5j)a1, and rj = (3.3 + 0.5j)a1 with
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j = 0, 1, 2, 3. A difference worth noting is the following: When the dipoles
lie in close proximity to the sphere’s boundary, the ISCS variations grow
larger, with the corresponding margin being 17% for the PEC and 20% for
the dielectric core.

0 2 4 6 8 10
0.71

0.72

0.73

0.74

0.75

PEC core

0 2 4 6 8 10
0.7

0.71

0.72

0.73

0.74

0.75

dielectric core

Figure 5.2: ISCS ratios σT/σ versus k0a1 for a spherical scatterer with a1 = 2a2, ϵr1 = 2, µr1 = 1.5 and a PEC
core (left panel) and dielectric core with ϵr2 = 3, µr2 = 2.5 (right panel). The scatterer is excited by three sets
of N = 4 external sources with distance 0.2a1 between successive sources.
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Figure 5.3: As in Fig. 5.2, but for distance 0.5a1 between successive sources.

In figure 5.4, we depict the ISCS ratios and their physical bounds indi-
cated by (4.45) for a dipole distribution consisting of N = 4 dipoles lying
in the exterior V0 of the sphere, at distances rj = (1.25 + 0.25j)a1, with
j = 0, 1, 2, 3 from the sphere’s origin. The inset figures depict the same
quantities, in the low frequency region, i.e. k0a1 ≤ 1. A first observation is
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that for both cores, at lower frequencies - namely, k0a1 < 3.1 for the PEC
and k0a1 < 2.1 for the dielectric core - the upper bound of (4.45) is 1−1/N ,
which in turn implies that σmin

q ≤ σ/N 2. Additionally for all examined fre-
quencies and for both core types, the differences between the upper bound
and the actual ISCS ratio are less than 1%. On the other hand, the differ-
ences between the lower and the upper bounds of (4.45) are less than 4%
for k0a1 ≥ 1, and thus, the upper bound provides a more precise estimation
for the actual ISCS ratio. On the other hand, in the low-frequency region
we see that the q-ISCS ratios are close to the upper bound, whereas the dif-
ference with the lower bounds of (4.45) is substantial. This behaviour can
be fully explained if we take a closer look at the minimum and maximum
individual cross sections ratios over the q-excitation cross section. In the
low-frequency region they differ significantly, e.g. for k0a1 ≤ 0.5, the differ-
ence exceeds 5%, which yields a 20% difference between the corresponding
physical bounds, at the very least.
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Figure 5.4: ISCS ratios σT/σ and their physical bounds versus k0a1 of a 2-layered sphere with a1 = 2a2,
ϵr1 = 2, µr1 = 1.5 and a PEC core (left panel) or a dielectric core (right panel) with ϵr2 = 3 and µr2 = 2.5.
The scatterer is excited by N = 4 external dipoles.

The ISCS ratios and associated physical bounds from (4.45) are shown
in Fig. 5.5 for the case of N = 4 internal dipoles located at rj = (0.65 +
0.05j)a1, with j = 0, 1, 2, 3. A steeper descent of the q-excitation ISCS
ratio is now observed compared to the external excitation case of Fig. 5.4.
For lower frequencies (k0a1 < 3.5 for the PEC and k0a1 < 2.5 for the
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dielectric core), the upper bound of (4.45) is 1 − 1/N . The differences
between the lower and the upper bounds of (4.45) are larger compared to
the corresponding differences for external excitation; in some cases they
now reach 15%. In the low-frequency region (i.e. k0a1 ≤ 1), the ISCS
ratio almost coincides to its upper bound. Another difference between the
behavior of the ISCS ratios for external and internal excitation is that in
external excitation, for the frequencies where σmin ≥ σ/N 2, all quantities
show a uniform behavior, while in internal excitation, the ISCS ratios seem
to act as a “mirror” between the lower and upper bounds.
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Figure 5.5: As in Fig. 5.4, but for excitation due to N = 4 internal dipoles.

In figure 5.6 we demonstrate the accuracy of the physical bounds for the
number N of dipoles that excite the spherical scatterer. In this case, the
dipole distribution is external, with the dipoles’ distance from the sphere’s
region given by r1 = 2.5a1, r2 = 2.8a1, r3 = 3.1a1, r4 = 3.5a1. An imme-
diate observation is the identical behavior of the physical bounds for both
types of core. Specifically, for 0.2 < k0a1 < 1.5 (dielectric core) and for
0.1 < k0a1 < 2.5 (PEC core), the physical bounds are valid and determine
accurately the number of dipoles exciting the scatterer. For k0a1 < 0.2,
(dielectric core) and for k0a1 < 0.1, (PEC core) despite the fact that the
physical bounds remain valid, they cannot be used to accurately deter-
mine the number of dipoles, as the margin of estimation (between 3 and
6) is large. This fact stems from the difference between the minimum and



5.4. PARAMETRIC ANALYSIS 137

maximum individual cross sections in the low-frequency region. A very
interesting observation - which have been observed in a variety of dipole
distributions - is that in the higher frequencies (k0a1 > 1.5 for the dielec-
tric core and k0a1 > 2.5 for the PEC core) it holds N = [

√
σ/σmin] + 1,

where [x] denotes the integer part of x. This is caused by the fact that the
minimum and maximum individual cross sections do not differ substan-
tially. We would also like to note that similar patterns with respect to the
physical bounds and the estimation of the number of dipoles exciting the
sphere, have been found to be exhibited by even sparser or denser dipole
distributions.
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Figure 5.6: Physical bounds for the number N of dipoles exciting a 2-layered sphere with a1 = 2a2, ϵr1 = 2,
µr1 = 1.5. The bounds for a PEC core are depicted with red and the bounds for a dielectric core with blue.
For the dielectric core, its parameters are ϵr2 = 3 and µr2 = 2.5. The scatterer is excited by N = 4 dipoles, all
of them lying in the exterior of the sphere.

In figure 5.7, the variations of the total ISCS σT/σ versus the relative
permittivity ϵr1 of the first spherical shell are depicted. The spherical scat-
terer has a PEC core or a dielectric core and it is excited by a dipole distri-
bution consisting of N = 4 dipoles located at r1 = 1.3a1, r2 = 1.8a1, r3 =
2.3a1, r4 = 2.8a1 on the z-axis of the scatterer’s exterior. For the higher
frequency, the total ISCS seems to variate slightly with ϵr1. In particular,
less than 2% for the PEC core and less than 3% for the dielectric core. For
both types of core, the total ISCS seems to oscillate decreasingly as ϵr1 in-
creases. On the other hand, for the lower frequency, we observe that as ϵr1
increases, the total ISCS increases as well until it stabilizes for ϵr1 = 2 for



138 CHAPTER 5. THE LAYERED SPHERE EXCITED BY N DIPOLES

the PEC and ϵr1 = 3 for the dielectric core. The margin in the total ISCS
ratio are less than 2% and 8% for the PEC and dielectric core, respectively.
Similar patterns have been observed at both lower and higher frequencies,
for different dipole distributions.
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Figure 5.7: ISCS ratios σT/σ versus the relative permittivity ϵr1 of a 2-layered spherical scatterer with a1 = 2a2,
µr1 = 1.5 and k0a1 = 2 (left panel) or k0a1 = 0.5 (right panel) with ϵr1 = 1.5ϵ2 and µr2 = 2.5. The scatterer
is excited by N = 4 external dipoles.

In figure 5.8, we demonstrate the behavior of the ratios of the total ISCS,
for a dipole distribution consisting of N = 4 dipoles located at the first
shell V1 of the sphere, with a PEC core V2 of radius a2 = a1/5. We depicted
three dipole distributions. In particular, the “core side” distribution refers
to the case where the dipoles lie located closer to the core V2, “middle side”
distribution refers to the case where the dipoles lie close to the middle of V1,
and the “boundary side” distribution refers to the case where the dipoles
lie close to the sphere’s external boundary. Furthermore, the left panel,
depicts a denser distribution where the distance between successive dipoles
is 0.05a1; the right panel depicts a sparser distribution where the corre-
sponding distance is 0.1a1. At first, we observe that for k0a1 ≤ 5 the ISCS
ratios are smooth and descending for all distributions - regardless of their
context. Furthermore, for k0a1 ≥ 5, we notice that oscillations appear for
the distributions closer to the boundary, but not for the distribution lying
closer to the core. For the sparser distribution, we observe that for higher
frequencies rapid oscillations occur for the distribution closer to the scat-
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terer’s boundary. Specifically, for k0a1 ≥ 7, we note that the ISCS ratios
obtain negative values, which implies the reduction of the energy flux rate.
In contrast, for the denser distribution, we observe a much smoother and
less oscillatory behavior for all examined distributions. Another interesting
point, is that the ranges of the ISCS ratios are smaller for the dense distri-
butions (less than 35%) and larger for the sparser distributions (more than
120%) as far as the excitation frequency is concerned. We note that even
sparser dipole distributions, lead to an even less-predictable ISCS ratios
behavior; this indicates that the a sparse internal dipole distribution the
excitation frequency affects greatly the ISCS behavior.
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Figure 5.8: ISCS ratios σT/σ for N = 4 dipoles lying in the first shell of a 2-layered sphere with µr1 =
1.5, ϵr1 = 2 and PEC core of radius a2 = a1/5. Left panel: denser dipole distribution with rj+1

1 − rj1 = 0.05a1

(j = 1, 2, 3) and r11 = 0.25a1 (core), r11 = 0.55a1 (middle), r11 = 0.8a1 (boundary side). Right panel: sparser
dipole distribution with rj+1

1 −rj1 = 0.1a1 (j = 1, 2, 3) and r11 = 0.25a1 (core), r11 = 0.45a1 (middle), r11 = 0.65a1

(boundary side).

Figure 5.9 depicts the behavior of the actual values of the ISCS for
the same distributions of figure 5.8. An interesting observation can made
right away: The values follow a different pattern than their correspond-
ing ratios. In fact, denser distributions lead to greater range in the ISCS
values in regard to excitation frequeny k0a1, in complete contrast with the
small ranges in their corresponding ratios (as we have seen above). Then
again, for distributions closer the sphere’s core, the ISCS values decrease
and approach zero at higher frequencies. Sparser distributions exhibit sig-
nificantly smaller ISCS values - even negative values at higher frequencies.
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Besides, when the distributions lie close to the sphere’s core, we notice that
the differences in the ISCS values between denser and sparser distributions,
demonstrate a similar behavior.
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Figure 5.9: Total ISCS σT values for the same setup of Fig. 5.8

In figure 5.10, we compare the behavior of the overall cross section σ and
total ISCS ratio σT/σ versus the radius k0a1. The sphere in this case, has a
dielectric core of different radii a2 and it is excited by a dipole distribution
consisting of N = 4 internal dipoles in shell V1. For all the examined core’s
radii, we notice that the values of σ remain fairly unchanged and oscillate
rapidly after k0a1 > 1.2. On the other hand, the total ISCS ratios descent
smoothly for k0a1 < 5 but oscillate rapidly for k0a1 > 5. Furthermore their
behavior does not seem to be significantly affected by changes in the core’s
radii.

Finally, in figure 5.11 we depict the behavior of the overall cross section
σ and the total ISCS values at a fixed frequency k0a1 = 1 for a spherical
scatterer with a PEC core. The focus of the comparison is that we observe
the changes in the values of the cross sections variations as one, two, or
three dipoles move away from their initial locations. The distance R express
the ratio over the sphere’s radius a1. In particular, the initial positions are
rj = (1.3 + 0.2j) with j = 0, 1, 2, 3, while the moving dipoles’ locations
are given by rj(R) = rjR with j = 1, 2, 3. A similarity can be observed in
these figures. We observe that both σ and σT follow a similar pattern. They
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Figure 5.10: Overall cross section σ (left panel) and total ISCS ratios σT/σ (right panel) versus the radius k0a1

for ϵr1 = 2, ϵr2 = 3, µr1 = 1.5, µr2 = 2.5, and N = 4 internal sources at r11 = 0.6a1, r
2
1 = 0.7a1, r

3
1 = 0.8a1, r

4
1 =

0.9a1. Different radii of the dielectric core are considered.

decrease as more dipoles move away from their initial locations, which leads
to a sparser dipole distribution. This implies that the total ISCS ratio will
not be significantly affected. Furthermore, the ranges of σ and σT increase
as number of moving dipoles grows. We note that the above conclusions
have been found to be qualitatively similar for the dielectric core case; the
only notable difference is that the range of σ and σT is much smaller in the
dielectric core case.
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Figure 5.11: Overall cross section σ (left panel) and total ISCS σT (right panel) of a 2-layered scatterer with
k0a1 = 1, ϵr1 = 2, µr1 = 1.5 and a PEC core, excited by N = 4 sources at r10 = 1.3a1, r
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0 = 1.5a1, r
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0 =

1.7a1, r
4
0 = 1.9a1, as a number of dipoles (one, two and three) move away from the original position by a

distance R.
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Figure 5.12: Overall cross section σ, 0- and 1-excitation cross sections (top panel) and ISCS ratios (bottom
panel) versus radius k0a1 of a 2-layered sphere V with ϵr1 = 2, µr1 = 1.25 and a PEC core excited by N = 4
dipoles; n1 = 2 dipoles lie in the exterior of V at r10 = 1.3a1, r20 = 1.8a1, and n2 = 2 in the first shell of V at
r11 = 0.7a1, r

1
2 = 0.9a1.

5.4.2 Mixed Excitation

Now, we consider that the scatterer V is excited by two dipoles in the
external region V0 (r > a1) and two dipoles in the first spherical shell V1

(a2 < r < a1); hence we have Q = 2 excitation layers.
In Fig. 5.12, we depict the overall cross section σ and the sum of 0-

excitation σ0 and 1-excitation σ1 cross sections as well as the total σT/σ,
indirect σI/σ, and direct σD/σ ISCS ratios. We observe that σ gradually
converges to the sum σ0 + σ1, and that σ0 + σ1 > σ for k0a1 > 8. This
is explained from the behavior of the ISCS ratios, where, for k0a1 > 8,
we see that σI/σ < 0, which in turn means that σI < 0. In particular, it
holds σ = σ0 + σ1 + σI; see (4.22). Hence, larger ratios σI/σ give larger
differences between the sum of q-excitation and the overall cross sections.

Fig. 5.13 shows the variations of the total σT/σ, the indirect σI/σ, and
the direct σD/σ ISCS ratios versus the relative electric permittivity ϵr1 of a
2-layered sphere with k0a1 = 2 and a PEC core. The ratio σI/σ, and hence
the indirect ISCS σI, becomes negative for ϵr1 > 3.1. For ϵr1 = 4, ratios
σT/σ and σI/σ are minimized, while the direct σD/σ ISCS ratio (the sum of
the 0- and 1-ISCS) is maximized. Corresponding results for the variations
of the ISCS with respect to the magnetic permeability µr1 have been also
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Figure 5.13: Total σT/σ, indirect σI/σ and direct σD/σ ISCS ratios versus the relative permittivity ϵr1 of a
2-layered scatterer with k0a1 = 2, µr1 = 1.5, and a PEC core, excited by N = 4 dipoles; two lie in the exterior
of the sphere at r10 = 1.3a1, r20 = 1.8a1 and two in the first shell at r11 = 0.7a1, r

2
1 = 0.9a1.

derived and the conclusions are the same with the ones drawn above with
the only difference being that the range of ISCS variations is now smaller.

In Fig. 5.14, we depict the physical bounds for the number Q of excita-
tion layers indicated by (4.50). The considered number Q = 2 is depicted
with a straight red line. For k0a1 > 1, the physical bounds can be used
to determine Q for a wide range of the examined frequencies. The upper
physical bound for k0a1 > 1 remains very close to the number Q of ex-
citation layers even when the upper bound is not valid. In fact, we see
that Q = [

√
σ/σmax

ex ] + 1. The insets demonstrate the variations in the
low-frequency region. For the PEC core, the bounds remain valid, but for
k0a1 ≤ 0.5 cannot be safely used for the determination of Q, since the
minimum q-excitation cross section–σ1 in this case–is significantly smaller
than the overall cross section. For the dielectric core, the physical bounds
remain valid for k0a1 < 0.7. Besides, for both types of cores a change in
the minimum and maximum q-excitation cross sections occurs at k0a1 = 1.
Precisely, for k0a1 < 1 it holds σ0 < σ1, while for k0a1 > 1 it holds σ0 > σ1.

Fig. 5.15 depicts the variations of σT/σ and σI/σ for k0a1 = 1 and
k0a1 = 2.5 versus the distance k0R between the internal group of n1 = 2
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Figure 5.14: Physical bounds for the number Q of excitation layers versus k0a1 of a 2-layered sphere with
a1 = 2a2, ϵr1 = 2, µr1 = 1.5 and a PEC core (top panel) or a dielectric core (bottom panel) with ϵr2 = 3 and
µr2 = 2.5. The scatterer is excited by N = 4 dipoles, two lying in the exterior of the sphere and two in the
first spherical shell.

dipoles, initially located at r11 = 0.8a1, r
2
1 = 0.9a1, and the external group

of n0 = 2 dipoles, initially located at r10 = 1.2a1, r
2
0 = 1.3a1. In the

top panel, the internal group moves towards the sphere’s core and the
external group moves away from the scatterer’s boundary with increasing
R. Precisely, the moving dipoles’ locations are given by rj0(R) = rj0R for
the external group and rj1(R) = rj1/R for the internal group. The initial
setup (before moving the dipoles) corresponds to a negative σI/σ. We
observe that for both frequencies the ISCS ratios σT/σ and σI/σ follow a
similar pattern: they first increase until a certain value of k0R and then
decrease. For the lower frequency, the variations of the ISCS ratios are
smaller. In the bottom panel, the meaning of R is slightly different: the
initial locations are r11 = 0.21a1, r

2
1 = 0.2475a1 for the internal group and

r10 = 1.2a1, r
2
0 = 1.3a1 for the external group. The dipoles located at

r11 = 0.21a1, r
1
0 = 1.2a1 remain fixed, while the one at r21 = 0.2475a1

moves towards the scatterer’s boundary, and the one at r20 = 1.3a1 moves
away from it. The moving dipoles’ locations are given by r2q(R) = r2qR for
q = 0, 1. The behavior of the ISCS is different now: for the lower frequency,
we see a steeper decrease in σT/σ and a sharper increase in σI/σ. Thus, the
direct ISCS will decrease more rapidly than the total ISCS. Furthermore,
a crossover is observed at k0R = 1.6 between σT/σ and σI/σ for the two
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Figure 5.15: Total σT/σ and indirect σI/σ ISCS ratios versus the dipoles distance k0R for k0a1 = 1 and
k0a1=2.5 for a 2-layered scatterer with a dielectric core and parameters µr1 = 1.5, µr2 = 2.5, ϵr1 = 2, ϵr2 = 3,
a2 = a1/10. The sphere is excited by N = 4 dipoles; two external and two in the first shell, at varying positions.

examined frequencies. This is due to that the decrease in σT/σ is steeper
for the higher than the lower frequency. However, for the higher frequency,
σI/σ maximizes at k0R = 2.2 and follows a descending behavior after that
point. This comes in stark contrast with the ascending behavior of σI/σ
for the lower frequency.

In Fig. 5.16, we depict σT/σ and σI/σ versus k0a1 for different radii a2
of the PEC core. A remarkable similarity is observed in the ISCS curves
for all examined radii a2. For k0a1 < 2, larger radii a2 yield larger ISCS
ratios, while, on the contrary, for k0a1 > 4, larger a2 yield smaller ISCS
ratios. Larger cores have larger ISCS ranges, e.g. for a2 = a1/5 we have
σT/σ ∈ (0.35, 0.61), σI/σ ∈ (0.1, 0.26) whereas for a2 = a1/2 we have that
σT/σ ∈ (0.25, 0.7), σI/σ ∈ (−0.15, 0.41). For 2 < k0a1 < 4, a more steady
behavior is observed. The ISCS are not significantly affected by the changes
in the core’s radius, except for the larger core a2 = a1/2, which yields
larger variations. Both σT/σ and σI/σ exhibit more oscillatory behaviors
for larger cores.

The variations of the ISCS ratios and values as well as the overall cross
section and the sum of individual cross sections (denoted by σ̂) for different
distributions of N = 4 dipoles in the high-frequency zone are depicted in
Fig. 5.17. The dipoles’ distributions are those of the top panel of Fig. 5.15.
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Figure 5.16: ISCS σT/σ and σI/σ versus the radius k0a1 of a 2-layered sphere with ϵr1 = 2, µr1 = 1.5 and a
PEC core of varying radius a2, excited by N = 4 dipoles; two external ones at r10 = 1.3a1, r20 = 1.8a1 and two
internal ones at r11 = 0.7a1, r

2
1 = 0.9a1.

A notable similarity is observed between the ISCS ratios and the values of
all involved cross sections. For k0R > 2 (i.e. when the distance between
the external and the internal dipole groups is larger than the sphere’s di-
ameter), the values and ratios begin to stabilize, which implies that the
overall cross section σ develops a more stable behavior. Besides, all σT/σ

ratios remain positive, except for k0R ∈ (1.25, 1.35) for k0a1 = 10. This
fact is readily explained by the bottom panel, where we see that for these
frequencies, the sum of individual cross sections is greater than the overall
cross section.

In Fig. 5.18, we depict the same quantities as in Fig. 5.17, but in the low-
frequency regime. The dipoles’ distributions are those of the top panel of
Fig. 5.15. The ISCS ratios and values remain very close for each of the two
examined frequencies. The indirect ISCS remain negative for all k0R; this
fact implies that the interaction between the 0-excitation and 1-excitation
fields, reduces the rate of the energy flux. Since the total ISCS remains pos-
itive, it is concluded that the sum of the 0- and 1-excitation cross sections
is greater than the overall cross section but the sum of individual cross
sections remains smaller than the overall cross section, as demonstrated
by the bottom panel. Another interesting observation is the ascending be-
havior of the ISCS ratios as the distance k0R between the dipoles groups
increases. Indirect ISCS values exhibit an ascending behavior as well–only
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Figure 5.17: ISCS ratios and values versus k0R for k0a1 = 10 and k0a1 = 20 (high-frequency zone) for a
2-layered scatterer with a dielectric core of a2 = a1/10 and parameters ϵr1 = 2, ϵr2 = 3, µr1 = 1.5, µr2 = 2.5.
Excitation is due to N = 4 dipoles; two external ones and two in the first shell, all at varying distances R.

steeper than their corresponding ratios. This is readily explained by the
descending behavior of the total ISCS values with increasing k0R. The
contradiction between the ascending behavior of the indirect ISCS and the
descending behavior of the total ISCS is explained from the bottom panel,
where we see that the overall scattering cross section approaches zero for
large distances R. Additionally, we see that the sum of the individual
cross sections is very close to the overall cross section with both quantities
following a similar descent pattern.
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Figure 5.18: ISCS ratios and values versus k0R for k0a1 = 0.1 and k0a1 = 0.05 (low-frequency zone), for a
2-layered scatterer with a dielectric core of a2 = a1/10 and parameters ϵr1 = 2, ϵr1 = 3, µr1 = 1.5, µr2 = 2.5.
As in Fig. 5.17, the sphere is excited by N = 4 dipoles at varying distances R.



Chapter 6

Inverse Problems

6.1 Low Frequency Approximations

Now, we will further investigate the T-Matrix implementation on the so-
called low frequency zone. In other words, we assume that k0a1 << 1 which
is the case where the wavelength is significantly larger than the scatterer.
The low-frequency zone is suitable for analytical solutions of both far-field
and near-field inverse problems [57], [104]. We will limit our investigation
in the case where a homogeneous, dielectric sphere of radius a1 is excited by
2 dipoles. We note, that the presence of more than 2 layers does not offer
significant differences on the algorithmic procedures, since the extraction
of the fields’ coefficients follow a recursive rule, see [70]. We will use the
following notation:

m = µ1/µ0, ϵ = ϵ1/ϵ0, dj = rj1/a1, τj = a1/r
j
0 (6.1)

Additionally, we assume that the power constant for the electric dipoles is
of the form

Aq,j =
rq,j
ikq

exp(−ikqrq,j) (6.2)

thus the polarized strength will be given by the vector:

pq,j =
rq,j
ikq

exp(−ikqrq,j)(p̂
j
(x,q), p̂

j
(y,q), p̂

j
(z,q)) = (pj(x,q), p

j
(y,q), p

j
(z,q)) (6.3)

In the single-layer excitation case we will use the simpler notations (p̂jx, p̂jy, p̂jz),
(pjx, p

j
y, p

j
z) for the polarized strength vectors. We additionally utilize the

149
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following parameters to express the individual and overall far-field patterns:

αj = djcosθj, βj = djsinθjsinϕj, γj = djsinθjcosϕj (6.4)

We divide our results into the different excitation types: external or in-
ternal excitation and mixed excitation. From the results of the previous
section, it is evident that the far-field is expressed as the superposition of
the individual far-fields. The overall far-field for a group of dipoles located
at the sphere’s interior V1 is given by:

g1(θ, ϕ) = (g0θ(θ, ϕ) + g1θ(θ, ϕ)κ+ g2θ(θ, ϕ)κ
2)θ̂θθ+

(g0ϕ(θ, ϕ) + g1ϕ(θ, ϕ)κ+ g2ϕ(θ, ϕ)κ
2)ϕ̂ϕϕ+O(κ3) (6.5)

where

g0θ(θ, ϕ) = ρ0 [cosθ (cosϕPx + sinϕPy)− sinθPz] (6.6)
g0ϕ(θ, ϕ) = ρ0 (−sinϕPx + cosϕPy) (6.7)

g1θ(θ, ϕ) = (ρ1 + ρ2cos2θ)
(
G1
1cosϕ+ G2

1sinϕ
)
+

ρ2
sin2θ

2

[
G5
1 + G6

1 − cos2ϕG3
1 + sin2ϕG4

1

]
(6.8)

g1ϕ(θ, ϕ) = cosθ
[
(ρ2 − ρ1)cosϕG2

1 + (ρ1+ρ2)sinϕG1
1

]
+

ρ2sinθ
[
G7
1 − cos2ϕG4

1 + sin2ϕG3
1

]
(6.9)

g2θ(θ, ϕ) =

ρ3
[
cosθ(G1

2cosϕ+ G2
2sinϕ) + sinθ(G4

2sin2ϕ− G3
2cos2ϕ)

]
(6.10)

g2ϕ(θ, ϕ) = ρ3[cos2θ(G2
2cosϕ− G1

2sinϕ)+

sin2θ

2
(G4

2cos2ϕ+ G3
2sin2ϕ+ 3G5

2)] (6.11)
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with the coefficients Gj
1,Gℓ

2 for j = 1, ..., 7, ℓ = 1, ..., 5. On the other hand,
the overall far-field for a group of dipoles located at the sphere’s exterior
V0 is given by:

g0(θ, ϕ) = (g̃0θ(θ, ϕ) + g̃1θ(θ, ϕ)κ)θ̂θθ + (g̃0ϕ(θ, ϕ) + g̃1ϕ(θ, ϕ)κ)ϕ̂ϕϕ+O(κ2)

(6.12)

with

g̃0θ(θ, ϕ) = 2χ0

[
cosθ

(
F1

1 sinϕ+ F2
1 cosϕ+ F3

1

)
−F4

1 sinθ
]

(6.13)
g̃1θ = −χ1

[
G1
1cosϕ+ G2

1sinϕ
]

(6.14)
g̃0ϕ = 2χ0

[
F6

1 cosϕ−F2
1 sinϕ

]
(6.15)

g̃1ϕ = χ1

[
cosθ

(
Axsinϕ+ F5

1 cosϕ
)
+ sinθ

(
G7
1 − sinϕCz

)]
(6.16)

where the coefficients F j
1 for j = 1, ..., 6 are given in the appendix.

6.2 Inverse Problems in the Low-Frequency Regime

6.2.1 Convergence patterns of the low-frequency far-field approximations

In Fig. 6.1 we depict the variations of the exact far-field patterns for
the case of a homogeneous sphere excited by N = 5 dipoles located at
the sphere’s exterior V0. The sphere is dielectric, with parameters k1 =
1.5k0, ϵ1 = 2.25ϵ0, µ1 = 1.75µ0. The "line" distribution refers to the case
where all dipoles lie in the same line at the direction of (1/2, 1/2,

√
2/2),

at distances r0j = (1 + 0.25j)a1 for j = 1, ..., 5. The "spherical" dis-
tribution refers to the case where all dipoles lie at a constant distance
r01 = ... = r05 = 1.75a1 from the sphere’s origin, at varying spherical angles
θj = π/4+jπ/8, ϕj = π/4+jπ/6 for j = 1, ..., 5. Finally, in the "arbitrary"
distribution the dipole’s location don’t follow a specific topological pattern;
we chose r01 = 1.15a1, r

0
2 = 1.5a1, r

0
3 = 1.6a1, r

0
4 = 2.05a1, r

0
5 = 2.35a1,

with the same spherical angles as in the spherical distribution. The three
distributions we chose, have one thing in common, however: the average
distance from the sphere’s origin is in all distributions the same, i.e. 1.75a1.
As we observe, in the lower frequencies, i.e. k0a1 < 0.2 the line and arbi-
trary distributions follow a similar quantitative behaviour, in contrast with
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the spherical distribution which achieves lower values. As the frequency
rises however, the arbitrary distribution moves closer to the spherical dis-
tribution.
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Figure 6.1: Behaviour of the overall far-field, for different dipole distributions. The dielectric sphere is excited
by N = 5 dipoles, lying in the sphere’s exterior at varying distributions.

In Fig. 6.2, we depict the convergence pattern for the spherical distri-
bution for two different placements of the distribution. In the first place-
ment, all the dipoles are located at distances 1.75a1 from the sphere’s
origin, while in the second placement they are located at distances 2.75a1
from the sphere’s origin. We observe that for both placements, the low-
frequency approximation fits well the exact far-field pattern, even at fre-
quencies well beyond the assumption k0a1 << 1. In particular, the low-
frequency approximaton diverges significantly - in both absolute values and
error percentage - for k0a1 > 0.85 for the placement near the sphere and
for k0a1 > 0.7 for the placement far from the sphere. However, the con-
vergence is better for the placement far from the sphere compared to the
placement near the sphere.

In Fig. 6.3 we demonstrate the convergence pattern for the spherical dis-
tribution of fig. 6.2 with the placement near the sphere, versus the relative
electric permittivity ϵr = ϵ1/ϵ0 for k0a1 = 0.1. The most notable obser-
vation is that both the exact far-field and its low-frequency approximation
seem to increase as the relative permittivity rises, while for most of the
examined values the error percentage is below 20% with the difference in
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Figure 6.2: Convergence pattern for the overall far-field and its low-frequency approximation, for two different
placements of a spherical distribution of dipoles.

absolute numbers not exceeding 10−1. Finally, we observe that for greater
permittivities, i.e. for ϵ1 > 5ϵ0 the low-frequency approximation underesti-
mates the exact far-field, while it overestimates it, for lower permittivities.
This pattern appears to be typical for varying placements and different dis-
tribution setups. We note that qualitatively similar convergence patterns,
were observed for different placements of a spherical distribution and for
varying k0a1 of the low-frequency regime.
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Figure 6.3: Convergence pattern for the overall far-field and its low-frequency approximation for k0a1 = 0.1
versus the relative electric permitivitty of the sphere.
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6.2.2 A mixed inverse problem

We use the term mixed inverse problem to refer to an inverse scattering
problem, where the location of at least one dipole and some physical param-
eters and/or geometrical characteristics of the scatterer are unknown. Here
we address two problems of this type. In the first problem we address, the
geometrical characteristics of the scatterer are known. An internal dipole
inside the sphere emanates a spherical wave, but we don’t know the ex-
act dipole’s location or the physical parameters ϵ1, µ1 of the sphere. To
identify the source location and the physical parameters of the scatterer
we place an electric dipole at the sphere’s exterior in such a way that its
polarized strength is vertical with the dipole’s position vector. Then, we
choose the coordinate system, so that our placed dipole lies on the z-axis
and its polarized strength lies on the x-axis. In other words, our placed
dipole has the position vector r1 = (0, 0, r1) and its polarized strength will
be of the form p1 = (p1, 0, 0). The unknown dipole will be located at
r2 = (r2, θ2, ϕ2) with unknown polarized strength p2 = (px, py, pz).

Utilizing the techniques of [65] we isolate the term of order κ of the
overall far-field, at the following observation coordinates:

g0θ(0, 0) = ρ0px −
2

3
τ1χ0 (6.17)

g0ϕ(0, 0) = ρ0py (6.18)

g0θ(
π

2
,
π

2
) = −ρ0pz (6.19)

g1θ(0, 0) = (ρ1 + ρ2)pxα2 − (ρ1 − ρ2)pzγ2 − χ1 (6.20)

g1θ(
π

2
, 0) = (ρ1 − ρ2)pxα2 − (ρ1 + ρ2)pzγ2 − χ1 (6.21)

g1ϕ(0,
π

2
) = (ρ1 + ρ2)pxα2 − (ρ1 − ρ2)pzγ2 + χ1 (6.22)

with

χ0 =
3

2

ϵ− 1

ϵ+ 2
, χ1 =

3

2

µ− 1

µ+ 2
(6.23)
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Equations (6.20), (6.22) imply

χ1 =
g1ϕ(0,

π
2 )− g1θ(0, 0)

2
(6.24)

Last relation, combined with (6.23) leads to:

µ =
1 + 2χ1

1− χ1
=

2(1 + g1ϕ(0,
π
2 )− g1θ(0, 0))

2− g1ϕ(0,
π
2 ) + g1θ(0, 0)

(6.25)

Since µ is known, it swiftly follows that ρ1, ρ3 are also known. But then
again, we obtain:

pxα2 − pzγ2 =
χ1

ρ1
+

g1θ(
π
2 , 0) + g1θ(0, 0)

2ρ1
= G1 (6.26)

pxα2 + pzγ2 = −χ1

ρ2
+

g1ϕ(0,
π
2 )− g1θ(

π
2 , 0)

2ρ2
=

G2

ρ2
(6.27)

pxβ2 − pyγ2 =
g1ϕ(

π
2 ,

π
2 ) + g1ϕ(

π
2 , 0)

2ρ1
= G3 (6.28)

pxβ2 + pyγ2 =
g1ϕ(

π
2 ,

π
2 ) + g1ϕ(

π
2 , 0)

2ρ2
=

G4

ρ2
(6.29)

Then, we swiftly get:

pzγ2 = G1 +
G2

ρ2
(6.30)

pyγ2 = G3 +
G4

ρ2
(6.31)

But, from the measurements of the terms of order 1, last relations take the
form:

γ2 = − ρ0
g0θ(

π
2 ,

π
2 )

(
G1 +

G2

ρ2

)
(6.32)

γ2 =
ρ0

g0ϕ(0, 0)

(
G3 +

G4

ρ2

)
(6.33)

which in turn yields:

ρ2 = −
g0ϕ(0, 0)G2 + g0θ(

π
2 ,

π
2 )G4

g0ϕ(0, 0)G1 + g0θ(
π
2 ,

π
2 )G3

(6.34)
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The special cases where g0ϕ(0, 0) = 0 or g0θ(
π
2 ,

π
2 ) = 0 are addressed as

follows:

ρ2 =
G4

G3
, for g0ϕ(0, 0) = 0 (6.35)

ρ2 =
G2

G1
, for g0θ(

π

2
,
π

2
) = 0 (6.36)

ρ2 =
G2

G1
=

G4

G3
, for g0ϕ(0, 0) = g0θ(

π

2
,
π

2
) = 0 (6.37)

In all cases, since ρ2 becomes known, then ρ0, χ0 are also known, which
results in px, py, pz to be known from the measurements of order O(1)
and thus, α2, β2, γ2 become known. We note that for r2 it holds d2 =√

α2
2 + β2

2 + γ2
2 . In the case were the radius R of the sphere is unknown,

we obtain:
r2 = k1

√
|px|2 + |py|2 + |pz|2 (6.38)

Which finally yields:

R = k1

√
|px|2 + |py|2 + |pz|2

α2
2 + β2

2 + γ2
2

(6.39)

6.2.3 Source Localization Problem

Due to the complexity of the analytical procedure, we will first describe
the basic steps of the algorithm.

1. We measure certain terms of the overall far-field for different angles of
observation.

2. We manipulate the taken measurements and evaluate a set of quantities
which will be necessary for the implementation of the procedure.

3. We perform a series of procedure tests.

(a) If all procedure tests are "negative" the basic procedure can be
safely implemented.

(b) Depending on which test is "positive", then we divert to its corre-
sponding secondary procedure and continue from there.
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4. We use the formulas for extracting the dipoles’ location and polarized
strengths; the formulas depend on the chosen procedure.

To simplify the procedure, we enlist all the measurements and the quanti-
ties involved in the appendix. Under our formulation, the position vectors
of the dipoles’ locations, will be given by:

rj = R
√

(αj)2 + (βj)2 + (γj)2 (6.40)

cosθj =
αj√

(αj)2 + (βj)2 + (γj)2
, (6.41)

sinθj =

√
(βj)2 + (γj)2√

(αj)2 + (βj)2 + (γj)2
(6.42)

cosϕj =
γj√

(βj)2 + (γj)2
(6.43)

sinϕj =
(βj)

2√
(βj)2 + (γj)2

(6.44)

As it is evident, the procedure will be centered around the calculation of
the parameters αj, βj, γj. Completion of steps 1 and 2, yields the following
equations: 

p1x + p2x = Mx,

p1y + p2y = My,

p1z + p2z = Mz

(6.45)


α1p

1
x + α2p

2
x = Ax,

α1p
1
y + α2p

2
y = Ay,

α1p
1
z + α2p

2
z = Az

(6.46)


β1p

1
x + β2p

2
x = Bx,

β1p
1
y + β2p

2
y = By,

β1p
1
z + β2p

2
z = Bz

(6.47)
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γ1p

1
x + γ2p

2
x = Cx,

γ1p
1
y + γ2p

2
y = Cy,

γ1p
1
z + γ2p

2
z = Cz

(6.48)

The above quantities Mj, Aj, Bj, Cj for j = x, y, z depend on the measure-
ments of the far-field for the terms of order O(1),O(κ) as follows:

Mx =
g0θ(0, 0)

ρ0
(6.49)

My = −g0θ(0, π/2)

ρ0
(6.50)

Mz =
g0θ(π/2, 0)

ρ0
(6.51)

Ax =
(ρ1 − ρ2)g

1
θ(0, 0)− (ρ1 + ρ2)g

1
θ(π/2, 0)

4ρ1ρ2
(6.52)

Ay =
(ρ1 − ρ2)g

1
θ(0, π/2)− (ρ1 + ρ2)g

1
θ(π/2, π/2)

4ρ1ρ2
(6.53)

Az =
g1θ(3π/4, π/2)− g1θ(π/4, π/2)

2ρ2
− ρ1

ρ2
Bz (6.54)

Bx =
(ρ1 − ρ2)g

1
ϕ(π/2, 0)− (ρ1 + ρ2)g

1
ϕ(π/2, π/2)

4ρ1ρ2
(6.55)

By =
g1θ(3π/4, π/2) + g1θ(π/4, π/2)

2ρ2
− ρ1

ρ2
Ay (6.56)

Bz =
(ρ1 + ρ2)g

1
θ(0, π/2)− (ρ1 − ρ2)g

1
θ(π/2, π/2)

4ρ1ρ2
(6.57)

Cx =
g1ϕ(π/4, π/2)

ρ2
− ρ1

ρ2
(Bx − Cy) +By (6.58)

Cy =
(ρ1 + ρ2)g

1
ϕ(π/2, 0)− (ρ1 − ρ2)g

1
ϕ(π/2, π/2)

4ρ1ρ2
(6.59)

Cz =
(ρ1 + ρ2)g

1
θ(0, 0)− (ρ1 − ρ2)g

1
θ(π/2, 0)

4ρ1ρ2
(6.60)

In the following steps we will ellaborate the analytical procedure, under
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which formulas (6.40)-(6.44) are extracted.

Primary Procedure

At first we present the primary procedure, which is valid if and only if,
all procedure tests turn out negative. Combining all equations of (6.45)
with their corresponding equation of (6.46), we can derive the components
of the polarized strength as expressions of the unknown parameters. In
particular it holds:

p1x =
Mxα2 − Ax

α2 − α1
, p1y =

Myα2 − Ay

α2 − α1
, p1z =

Mzα2 − Az

α2 − α1
(6.61)

p2x =
Ax −Mxα1

α2 − α1
, p2y =

Ay −Myα1

α2 − α1
, p2x =

Az −Mzα1

α2 − α1
(6.62)

Next, from the system of any pair from the equations of (6.47) and (6.48)
we obtain the parameters βj, γj as linear expressions of αj. In particular
it holds:

βj = N1 + αjN2, γj = N3 + αjN4 (6.63)

with N1, N2, N3, N4 being quantities that depend only on the known physi-
cal parameters of the scatterer and the measurements of the far-field. Their
exact expressions are given in the appendix. Now, we use the measurements
of the far-field for the terms of order O(κ2). We obtain:

p1x(α
2
1 − β2

1) + p2x(α
2
2 − β2

2) + p1yβ1γ1+ (6.64)

p2yβ2γ2 − (p1zα1γ1 + p2zα2γ2) =
gθ,2(0, 0)

ρ3
p1xβ1γ1 + p2xβ2γ2 + p1y(α

2
1 − γ2

1)+ (6.65)

p2y(α
2
2 − γ2

2)− (p1zα1β1 + p2zα2β2) =
gϕ,2(0, 0)

ρ3
(6.66)

After some minor manipulation, equations (6.46) yield:

p1xα
2
1 + p2xα

2
2 = (α1 + α2)Ax − α1α2Mx (6.67)

p1yα
2
1 + p2yα

2
2 = (α1 + α2)Ay − α1α2My (6.68)

p1zα
2
1 + p2zα

2
2 = (α1 + α2)Az − α1α2Mz (6.69)
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Combining equations (6.67)-(6.69) with (6.64),(6.66) and utilizing (6.63)
we get the following system:

K1(α1 + α2)−K2α1α2 = K3, (6.70)
K4(α1 + α2)−K5α1α2 = K6 (6.71)

The former system, reveals quantities α1 + α2, α1α2. Utilizing Vietta’s
formulas we conclude that α1, α2 are the solutions of the following quadratic
equation:

α2 − L1α + L2 = 0 (6.72)
with

L1 =
K2K6 −K3K5

K2K4 −K1K5
, L2 =

K1K6 −K3K4

K2K4 −K1K5
(6.73)

The exact expressions of Km for m = 1, . . . , 6 are given in the appendix.
Before we continue with the presentation of the procedure tests and the

secondary procedures, we proceed with a more careful examination of the
determinant of the latter system, e.g. with the quantity K2K4 − K1K5.
Utilizing the expressions of all involved quantities and the measurements
of the far-field, after some lengthy calculations we arrive at the following
formula for the expression of this determinant. The importance of this
formula is that, in this form the physical interpretation of this determinant
is revealed as well as its importance for the algebraic procedure:

K2K4 −K1K5 =
1

2
DαDp (6.74)

with

Dα =

∣∣∣∣∣∣
1

α1−α2
0 1

α1−α2

γ1 − γ2 β1 − β2 0
0 γ1 − γ2 β1 − β2

∣∣∣∣∣∣ (6.75)

Dp =

∣∣∣∣∣∣
1 1 1
p1x p1y p1z
p2x p2y p2z

∣∣∣∣∣∣ (6.76)

The above quantities, include all the procedure tests that are required be-
fore we implement any algebraic procedure. Additionally they showcase the
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importance of the polarized strength vectors. Another interesting observa-
tion, is that the left determinant might have a different form, depending
on the choices we made at the beginning of the procedure. Here, we chose
to express all quantities as functions of α1, α2. If we chose, p.e. to express
all quantities as functions of β1, β2 or γ1, γ2 the left determinant will take,
respectively, the form:∣∣∣∣∣∣

1
β1−β2

0 1
β1−β2

α1 − α2 γ1 − γ2 0
0 α1 − α2 γ1 − γ2

∣∣∣∣∣∣ = Dβ,

∣∣∣∣∣∣
1

γ1−γ2
0 1

γ1−γ2

β1 − β2 α1 − α2 0
0 β1 − β2 α1 − α2

∣∣∣∣∣∣ = Dγ

(6.77)
In other words, depending on the choice between aj, bj, cj the left determi-
nant follows the changes of the transposition (aj bj cj). On the other
hand, the right determinant will not change, regardless of the choice be-
tween the parameters aj, bj, cj.

Secondary Procedures for the Determinant Dα

Secondary Procedure 1:
The first problem we have to address, is when we have α1 = α2. This case
can be verified through the following test:

Ax

Mx
=

Ay

My
=

Az

Mz
, |Mx|2 + |My|2 + |Mz|2 ̸= 0 (6.78)

In such a case, we only have to express all quantities as functions of β1, β2.
The rest of the procedure is the same, with only difference the use of Dβ.
This happens because instead of the measurement of the term gϕ,2(0, 0)
we must use the measurement gθ,2(0, π) We also note that Ax, Ay can be
swiftly obtained, since it will hold Ax = Ay = Ax/Mx.
Secondary Procedure 2:
Let’s now suppose that it holds α1 = α2 and β1 = β2. This case can be
verified through the following test:

Ax

Mx
=

Ay

My
=

Az

Mz
,

Bx

Mx
=

By

My
=

Bz

Mz
, |Mx|2 + |My|2 + |Mz|2 ̸= 0

(6.79)



162 CHAPTER 6. INVERSE PROBLEMS

Then we use the primary procedure, with the following differences: Terms
αj, βj can be calculated directly since it will hold α1 = α2 = Ax/Mx, β1 =
β2 = Bx/Mx. Instead of the measurements gϕ,2(0, 0) or gθ,2(0, π) we will
use the measurement gθ,2(π/2, 0) which results in the use of the Dγ deter-
minant. We note, that the case where α1 = α2, β1 = β2, γ1 = γ2 cannot
occur, since we have two distinct dipoles.

Remark 6.2.1 It is possible to have p.e. α1 = α2, γ1 = γ2. It is obvious
that secondary procedure 2, can be implemented only for βj.

Secondary Procedure 3:
Now let’s suppose that the previous tests are negative, one of the lower
2 × 2 blocks of the Dp determinant is zero. This doesn’t turn our master
determinant zero, but we must make a different choice of systems. In
particular, quantities N1, N2, N3, N4 cannot be extracted through the same
combination of equations. In particular it holds:∣∣∣∣p1w p1v

p2w p2v

∣∣∣∣ = 0 (6.80)

if and only if it holds
AwMv = AvMw (6.81)

with w, v ∈ x, y, z and w ̸= v. The only thing we need change in the
primary procedure, is the choice of systems that leads to the Nm quantities
for m = 1, 2, 3, 4.

Secondary Procedures for the Determinant Dp

The polarization determinant can be zero in three cases: If the polarized
strength vectors are parallel, if the polarized strength vectors are antiparal-
lel and finally if at least for one of the polarized vectors holds pjx = pjy = pjz.
We deal with the latter case, first.
Secondary Procedure 4:
One of the polarized vectors will be of the form pj = (pj, pj, pj) if and only
if it holds:

Ax − Ay

Mx −My
=

Ay − Az

My −Mz
=

Ax − Az

Mx −Mz
(6.82)
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and at the same time the test 1 is negative. Without loss of generality, we
suppose that p1 = (p1, p1, p1). Then we swiftly obtain, α2, β2, γ2 since it
will hold:

α2 =
Ax − Ay

Mx −My
(6.83)

β2 =
Bx −By

Mx −My
(6.84)

γ2 =
Cx − Cy

Mx −My
(6.85)

Then, we can readily extract p2x, p2y, p2z since it will hold:

p2x =
(Mx −My)(Ax −Bx)

Ax − Ay −Bx +By
, (6.86)

p2y =
(Mx −My)(Ay −By)

Ax − Ay −Bx +By
, (6.87)

p2y =
(Mx −My)(Az −Bz)

Ax − Ay −Bx +By
(6.88)

Then p1 is readily extracted from the measurement of the far-field of order
O(1) and subsequently, from the measurements of the far-field of order
O(κ).
So far, the secondary procedures required minor changes to the primary
procedure (procedures 1-2-3) or in the case of the procedure 4, they were
far easier. The final two secondary procedures, require major changes in
the primary procedure.
Secondary Procedure 5:
Here we suppose that p1 = λp2 for λ ̸= −1. From eqs. (6.45) we obtain:

p2x =
Mx

λ+ 1
, p2y =

My

λ+ 1
, p2z =

Mz

λ+ 1
(6.89)
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Combining the last equations with equations (6.46)-(6.48) we get:

Mx

λ+ 1
(λα1 + α2) = Ax,

Mx

λ+ 1
(λβ1 + β2) = Bx,

Mx

λ+ 1
(λγ1 + γ2) = Cx (6.90)

We introduce the new parameters uj, vj, wj as follows:

uj = αj
Mx

Ax
, vj = βj

Mx

Bx
, wj = γj

Mx

Cx
(6.91)

Then, eqs. (6.90), will respectively take the form:

λu1 + u2 = λ+ 1, λv1 + v2 = λ+ 1, λw1 + w2 = λ+ 1 (6.92)

Addtionally, we obtain:

Mx

λ+ 1
(λα1β1 + α2β2) =

AxBx

Mx(λ+ 1)
(λ(u1 − 1)(v1 − 1) + 1) (6.93)

Mx

λ+ 1
(λα1γ1 + α2γ2) =

AxCx

Mx(λ+ 1)
(λ(u1 − 1)(w1 − 1) + 1) (6.94)

Mx

λ+ 1
(λγ1β1 + γ2β2) =

BxCx

Mx(λ+ 1)
(λ(v1 − 1)(w1 − 1) + 1) (6.95)

Utilizing the measurements of the far-field for the terms of order O(κ2) we
arrive at the following system: −Mx 2My −Mz

−2Mx My −Mz

−My Mx +My −Mx

 ·

λα1β1 + α2β2
λα1γ1 + α2γ2
λβ1γ1 + β2γ2

 = (λ+ 1)

G1

G2

G3

 (6.96)

The solution, yields:

λα1β1 + α2β2 = (λ+ 1)X1 (6.97)
λα1γ1 + α2γ2 = (λ+ 1)X2 (6.98)
λβ1γ1 + β2γ2 = (λ+ 1)X3 (6.99)
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Combining the solution of the previous system with eqs. (6.93)-(6.95) we
obtain:

X1M
2
x = AxBx (λ(u1 − 1)(v1 − 1) + 1) (6.100)

X2M
2
x = AxCx (λ(u1 − 1)(w1 − 1) + 1) (6.101)

X3M
2
x = BxCx (λ(v1 − 1)(w1 − 1) + 1) (6.102)

Then, we readily arrive at:

u1 − 1 = N1(w1 − 1) (6.103)
v1 − 1 = N2(w1 − 1) (6.104)

with
N1 =

X1M
2
x − AxBx

X3M 2
x −BxCx

, N2 =
X1M

2
x − AxBx

X2M 2
x − AxCx

(6.105)

This relations also, imply:

λ(w1 − 1)2 =
X1M

2
x − AxBx

N1N2AxBx
= F0 (6.106)

Then by a far-field measurement we obtain:
gθ,2(0, 0)

ρ3
=

Mx

λ+ 1
(λα2

1 + α2
2 − λβ2

1 − β2
2) +MyX3 −MzX2 (6.107)

Inserting parameters uj, vj into the last equation and expressing in terms
of u1 − 1, we arrive at:

gθ,2(0, 0)

ρ3
−MyX3 +MzX2 =

1

Mx

(
A2

x((λ
2 + λ)(u1 − 1)2 + 1)−B2

x((λ
2 + λ)(v1 − 1)2 + 1)

)
(6.108)

Combining the last relation with (6.103),(6.104) we get:

λ(λ+ 1)(w1 − 1)2 =
MxG4 − A2

x +B2
x

N 2
1A

2
x −N 2

2B
2
x

= G0 (6.109)

with

G4 =
gθ,2(0, 0)

ρ3
−MyX3 +MzX2 (6.110)
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Utilizing (6.106) last relation yields:

λ =
G0 − F0

F0
(6.111)

Since λ we identify the distances r1, r2 of the dipoles from the sphere’s
center:

r1 =
(G0 − F0)k1M0

G0a1
(6.112)

r2 =
k1M0F0

G0a1
(6.113)

and the polarized stength vectors from eqs. (6.89).
Then, the next step is to extract the value of w1 − 1. If we try to use
(6.109) we see that our relations, cannot guarantee the choice of the sign.
To bypass that problem, we will use the fact that α2

1 + β2
1 + γ2

1 = τ 21 . In
particular, if we use the previous "trick" of writing this equation in terms
of w1 − 1 we will arrive at:

1

M 2
x

(
(w1 − 1)2I1 + 2(w1 − 1)I2 + I3

)
= τ 21 (6.114)

where

I1 = N 2
1A

2
x +N 2

2B
2
x + C2

x, (6.115)
I2 = N1A

2
x +N2B

2
x + C2

x, (6.116)
I3 = A2

x +B2
x + C2

x (6.117)

Combining with equation (6.109) we finally arrive at:

w1 − 1 =
1

2I2(G0 − F0)

(
(G0 − F0)(M

2
xτ

2
1 − I3)− F 2

0 I1
)
= F1 (6.118)
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Thus we finally obtain:

α1 = (N1F1 + 1)
Ax

Mx
, (6.119)

β1 = (N2F1 + 1)
Bx

Mx
, (6.120)

γ1 = (F1 + 1)
Cx

Mx
(6.121)

α2 = (λN1F1 + 1)
Ax

Mx
, (6.122)

β2 = (λN2F1 + 1)
Bx

Mx
, (6.123)

γ2 = (λF1 + 1)
Cx

Mx
(6.124)

Utilizing equations (6.41) - (6.44) we determine the exact locations of the
dipoles.
Secondary Procedure 6:
The Secondary Procedure 5, cannot be implemented if λ = −1. A different
and rather easier procedure is required, in this case. Let p1 = −p2. Then
we swiftly obtain that r1 = r2 which yields τ1 = τ2. We note, that in such
a case, we will have that Mx = My = Mz = 0. Then, the we have:

p1x(α1 − α2) = Ax, p1x(β1 − β2) = Bx, p1x(γ1 − γ2) = Cx (6.125)

Similar equations hold, respectively, for p1y, p1z. These equations, yield:

p1x =
Ax

α1 − α2
, p1y =

Ay

α1 − α2
, p1z =

Az

α1 − α2
(6.126)

Utilizing the rest of the equations for the other parameters we obtain

β1 − β2 =
Bx

Ax
(α1 − α2), γ1 − γ2 =

Cx

Ax
(α1 − α2) (6.127)

Manipulation of the measurements, yields the following system:[
p1x − p1y p1x − p1y

p1x p1y

]
·
[
α1β1 − α2β2
α1γ1 − α2γ2

]
=

[
g1
g2

]
(6.128)
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Solution of the system yields:

α1β1 − α2β2 = X1(a1 − a2), α1γ1 − α2γ2 = X2(a1 − a2) (6.129)

Additionally, it holds:

β1γ1 − β2γ2 = X3 (6.130)

where

g1 =
g2θ(π/2, 0)− g2θ(π/2, π/4)

ρ3
(6.131)

g2 =
g2ϕ(π/4, 0)− g2ϕ(π/4, π/2)

ρ3
(6.132)

X1 =
Ay(g1 + g2)− Axg2

(Ax − Ay)2
(6.133)

X2 =
Ax(g2 − g1)− Ayg2

(Ax − Ay)2
(6.134)

X3 = 2AyX2 − AxX1 −
g2ϕ(π/4, 0)

ρ3
(6.135)

After a lengthy manipulation of the measurements for the terms of order
O(κ2) and a series of calculations we arrive at:

α1 − α2 = I1α, β1 − β2 = I1β, γ1 − γ2 = I1γ (6.136)

where

I1β =
Bx

Ax
I1α (6.137)

I1γ =
Cx

Ax
I1α (6.138)

with quantity I1α given by

I1α =
X3(A

2
y − A2

x)

Ay

(
AzX2 +

g2θ(0,0)
ρ3

−X4

)
− Ax

(
g2ϕ(0,0)

ρ3
+ AzX1

) (6.139)

This yields the polarized strengths’ components which are given by

p1u =
Au

I1α
(6.140)
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for u ∈ {x, y, z}. Utilizing the manipulation of the measurements for the
terms of order O(κ2) we also get the following system:Ax −Bx 0

Ay 0 −AyCx

0 −Bx Cx

 ·

α1 + α2

β1 + β2
γ1 + γ2

 =

V1

V2

V3

 (6.141)

where

V1 =
g2θ(0, 0)

ρ3
− Bx

I1α
X3 + AzX2 (6.142)

V2 =
g2ϕ(0, 0)

ρ3
− Ax

I1α
X3 + AzX1 (6.143)

V3 =
Ax

Az

(
g2θ(π/2, 0)

ρ3
− AxX2 + AyX1

)
(6.144)

The last system yields the solutions:

α1 + α2 = I2α, β1 + β2 = I2β, γ1 + γ2 = I2γ (6.145)

Then we readily obtain the desired unknown parameters

α1,2 =
I1α ± I2α

2
, β1,2 =

I1β ± I2β
2

, γ1,2 =
I1γ ± I2γ

2
(6.146)

where

I2α =
1

1− Ax

(
V2

Ax
+

Cx

Bx
(V3 − V1)

)
(6.147)

I2β =
1

Bx(1− Ax)

(
V2

Ax
+ V3 −

V1

Ax

)
(6.148)

I2γ =
1

Cx(1− Ax)

(
V2

Ax
+

V3 − V1

Ax

)
(6.149)

6.2.4 Symmetrically Placed Dipoles

Two symmetrically placed dipoles at r, r′ belong on the same sphere of
radius r0 and their angles and azimuths are related by θ′ = π−θ, ϕ′ = ϕ+π.
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For the even and odd spherical harmonics the following relations hold:

Yσmn(θ, ϕ
′) = (−1)mYσmn(θ, ϕ) (6.150)

Yσmn(θ
′, ϕ′) = (−1)nYσmn(θ, ϕ) (6.151)

Thus, the vector spherical harmonics and the SVWF, satisfy respectively:

Ysnm(r, kq) = (−1)nYsnm(r
′, kq) (6.152)

Xℓ
snm(r, kq) = (−1)nXℓ

snm(r
′, kq) (6.153)

for Y ∈ {B,C,P} denoting the vector spherical harmonics and Xℓ
snm

denoting the SVWF for ℓ = {1, 3} and X ∈ {M,N}. In particular, for
p = ±p′, the excitation operator X ℓ

snm that corresponds to the SVWF
Xℓ

snm will be of the form:

X ℓ
snm(u2) =

ikq
4π

cnmX
ℓ
snm · p (1± (−1)n) (6.154)

with u2 = (1, 1). In particular, the coefficients of the overall far-field for
two symmetrically placed dipoles with parallel moments, satisfy:

g1θ(θ, ϕ) = g1ϕ(θ, ϕ) = 0

g2nθ (θ, ϕ) = 2g2nθ,ind(θ, ϕ)

g2nϕ (θ, ϕ) = 2g2nϕ,ind(θ, ϕ)

(6.155)

for n = 0, 1 and gkθ,ind, g
k
ϕ,ind denoting the coefficients of the individual far-

field due to the dipole at r. In contrast, the coefficients of the overall far-
field for two symmetrically placed dipoles with opposite moments, satisfy:

g1θ(θ, ϕ) = 2g1θ,ind(θ, ϕ)

g1ϕ(θ, ϕ) = 2g1ϕ,ind(θ, ϕ)

g2nθ (θ, ϕ) = g2nϕ (θ, ϕ) = 0

(6.156)

The latter case presents a difficulty in inverse schemes, since neither of the
secondary procedures is valid. Equations (6.46)-(6.48) take the following
form: 

α1p
1
x =

Ax

2 ,

α1p
1
y =

Ay

2 ,

α1p
1
z =

Az

2

(6.157)
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β1p

1
x =

Bx

2 ,

β1p
1
y =

By

2 ,

β1p
1
z =

Bz

2

(6.158)


γ1p

1
x =

Cx

2 ,

γ1p
1
y =

Cy

2 ,

γ1p
1
z =

Cz

2

(6.159)

A straight-forward manipulation yields:

(p1x)
2d21 =

A2
x +B2

x + C2
x

4
(6.160)

d21a
2
1

k21
=

A2
x + A2

y + A2
z

A2
x

(p1x)
2 (6.161)

The last two relations, imply

d1 =

(
k21
a21

(A2
x +B2

x + C2
x)(A

2
x + A2

y + A2
z)

4A2
x

)1/4

(6.162)

which in return yields (p1x)2. Then again, we obtain:

(p1x)
2sin2θ1 =

B2
x + C2

x

4
(6.163)

Given the fact that θ1 ∈ [0, π], last relation yields sinθ1:

sinθ1 = d1

(
B2

x + C2
x

A2
x +B2

x + C2
x

)1/2

(6.164)

Another manipulation yields

sin(2ϕ1) =
1

d21

2BxCx

B2
x + C2

x

(6.165)

cos(2ϕ1) =
1

d21

C2
x −B2

x

B2
x + C2

x

(6.166)

ϕ1 =
Bx

Cx
(6.167)
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Last equations reveal 2ϕ1 and in return ϕ1. With ϕ1 known, we readily
recover p1x, i.e.

p1x =
Bx

2d1sin(ϕ1)sin(θ1)
=

Cx

2d1cos(ϕ1)sin(θ1)
(6.168)

The remaining quantities are easily obtained by the relations:

p1y =
Ay

Ax
p1x (6.169)

p1z =
Az

Ax
p1x (6.170)

cosθ1 =
Ax

2p1x
(6.171)

Next, in the case where the two symmetrically placed dipoles possess the
same polarized strengths, i.e. p = p′ then, the polarized strength compo-
nents can be easily extracted, from (6.45):

p1x =
Mx

2
,

p1y =
My

2
,

p1z =
Mz

2

which in return, yields:

d1 =
k1
2a1

√
M 2

x +M 2
y +M 2

z

Manipulation of the measurements of order O(κ2) leads to the following
system:  px 2py −pz

−2px py −pz
0 p1 p2

 ·

α1β1
α1γ1
β1γ1

 =

 g2ϕ(π/4, 0)

g2ϕ(π/4, π/2)

V4

 (6.172)
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with

p1 = pxp
2
z − pyp

2
z − pxp

2
y

p2 = pzp
2
y + pyp

2
x − pzp

2
x

V4 = pypzg
2
θ(0, 0)− pxpyg

2
θ(π/2, π/2)− pxpzg

2
ϕ(0, 0)

The solution of this system yields α1β1 = m1, α1γ1 = m2, β1γ1 = m3. But
it holds:

α2
1 =

m1m2

m3
(6.173)

β2
1 =

m1m3

m2
(6.174)

γ2
1 =

m2m3

m1
(6.175)

which in return, yields:

cos2θ1 =
m1m2

d21m3
(6.176)

sin2θ1 =
m3(m

2
1 +m2

2)

m1m2
(6.177)

With cos2θ1, sin
2θ1 known, we readily obtain:

sin(2ϕ1) =
2m2m

2
3

m1(m2
2 +m2

3)
(6.178)

cos(2ϕ1) =
d21m

2
3(m

2
2 −m2

1)

m2
1(m

2
2 +m2

3)
(6.179)

tanϕ1 =
m1

m2
(6.180)

Last three relations, yield ϕ1. With cosϕ1, sinϕ1 known, we easily extract
cosθ1 from (6.176) which, in turn, yields θ1.



Conclusions and Prospect

The subject of this dissertation is the excitation of a layered medium by an
arbitrary distribution of point sources (for acoustic waves) or dipoles (for
electromagnetic waves). For both types of waves, we devised a mathemat-
ical formulation that is based on the locations of the point sources/dipoles
in the exterior or the interior of the scatterer (q-partial fields, q-excitation
fields), as well as on their multitude (individual fields, partial fields, overall
fields).

For the study of the energy transfer process, we adopted the complex
form of the energy functionals (acoustic intensity vector - Poynting vector)
and by utilizing Green’s identities and complex integration techniques we
derived acoustic and electromagnetic Energy Conservation Laws. These
laws relate the active power (real part of flux vectors) with the correspond-
ing scattering cross sections and the reactive power (imaginary part of flux
vectors) with the Lagrangian density in the propagating medium.

We introduced the Interaction Scattering Cross Sections (ISCS) and In-
teraction Power Fluxes (IPF) that proved to be important in analyzing the
energy transfer process in the far-field region and the way the co-existence
between point sources/dipoles affects the overall energy flux. In particu-
lar, we derived optical theorems and came to the understanding that the
general scattering theorem is in fact the simplest version of an interaction
theorem, i.e., an optical theorem that relates the ISCS with the correspond-
ing partial fields. On the other hand, we established physical bounds for
the ISCS ratios, i.e., the ratios of the total ISCS over the overall scat-
tering cross section, as well as for the determination of the number N of
sources/dipoles and the number Q of excitation layers.

174
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For the exact solution of the direct problem in spherical geometry, we
devised an overall superposition method that combines elements from the
T-Matrix approach, Sommerfeld’s scattering superposition method and
Green’s Function methods. In particular, we formulated the superposition
of the individual fields that coincides with the overall field, into a single
field that is expanded as a series of spherical harmonics (in acoustic waves)
or Spherical Vector Wave Functions (in electromagnetic waves). Taking
into account the boundary conditions in each of the spherical scatterer’s
layers, we extracted analytical expressions for

• the coefficients of the overall field in the scatterer’s exterior

• the relation between the coefficients of the overall fields in each layer
and the coefficients of the overall field in the scatterer’s exterior

• the overall far-field pattern, the overall scattering cross section and the
total ISCS

• the coefficients for the corresponding individual fields and individual
scattering cross sections

Implementing these expressions into a computer code, we were able to
investigate numerically our findings and provide an extensive parametric
analysis for the behaviour of the energy functionals, the ISCS ratios and
the participating fields.

Finally, by employing techniques of asymptotic analysis, we were able to
study closer the so-called low frequency zone for both types of waves. In
particular, we formulated and solved analytically several inverse problems
for the spherical geometry that concern the number of sources/dipoles, the
physical parameters of the scatterer and/or its geometrical characteristics.
We did so, by utilizing techniques that are based on far-field measurements
and their analytical manipulation into non-linear systems which were solved
analytically.

The current dissertation is part of an ongoing investigation that spans
over diverse fields of scattering theory. In particular, future work directions
include
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• the expansion of the methods proposed here in ellipsoidal geometry,
considering and exploiting also the results of previous works on this
topic [105], [106]

• the investigation of the energy transfer process and the solution of the
direct scattering problem in multiple scattering when the source of
incidence is a spherical wave [107]

• the development of inverse numerical schemes, similar to the Dis-
crete Dipole Approximation (DDA), [108], Method of Auxiliary Sources
(MAS) [109] or Method of Moments (MoM) [110] for the identification
of the sources of excitation.



Appendix

In the appendix we present the exact form of the various quantities (low-
frequency coefficients, far-field measurements, etc) we used in the algorith-
mic procedures of the inverse problems for both acoustic and electromag-
netic waves.

Low-frequency coefficients - Acoustics

The exact expressions of the individual coefficients Cq,j
ℓ , for ℓ = 1, . . . , 6,

used in Chapter 2.
External Excitation

Soft Core Hard Core
S0
1 = − 1

ϱ1(ξ−1)+1 H0
1 = 0

S0
2 = ϱ1η1(S

0
1)

2 H0
2 = 0

S0
3 = ξ3(1−ϱ1)+2+ϱ1

ξ3(1+2ϱ1)+2−2ϱ1
H0

3 = − 2ξ3(ϱ1−1)+2+ϱ1
2ξ3(1+2ϱ1)+2ϱ1−2

S0
4 = (2ξϱ1 + ϱ1 − 1)ϱ1η

2
1(S

0
1)

3

3ξ H0
4 = η21

3ξ3ϱ1

S0
5 = −S0

3 H0
5 = −H0

3

S0
6 = −2ξ5(1−ϱ1)+3ϱ1+2

ξ5(2+3ϱ1)+3−3ϱ1
H0

6 = 2
3
3ξ5(ϱ1−1)+2ϱ1+3
ξ5(2+3ϱ1)+2ϱ1−2
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Internal Excitation

Soft Core Hard Core

S1,j
1 = (d1,j − 1)S0

1 H1,j
1 = −d1,j

ϱ1ξ

S1,j
2 = η1

ξ S
0
1 [−d21,j + d1,jS

0
1(ϱ1 − 1)]− S0

2 H1,j
2 =

d21,jη1
ϱ1ξ2

S1,j
3 =

3(d31,j−1)

ξ3(1+2ϱ1)+2−2ϱ1
H1,j

3 = 3
2

2d31,j+1

−ξ3(1+2ϱ1)+1−ϱ1

S1,j
4 = η21

3ξ2S
0
1

[
d2j(2dj − 3(ϱ1 − 1)S0

1)+ H1,j
4 = η21

2ϱ1d
3
1,j−d1,j(ϱ1−1)+ϱ1

3ξ3ϱ21

(dj(ϱ1 − 1)− ϱ1ξ)(S
0
1 + 3ϱ1ξ)

]
S1,j
5 = −η1S

1,j
3 H1,j

5 = −η1H
1,j
3

S1,j
6 = −(5d5j − 1)[ξ5(2 + 3ϱ1) + 3− 3ϱ1]

−1 H1,j
6 = −5

3

3d51,j+2

ξ5(2+3ϱ1)+2ϱ1−2

Penetrable Core

External Excitation Internal Excitation

P 0
1 = 0 P 1,j

1 =
d1,j
ϱ1ξ

P 0
2 = 0 P 1,j

2 = −d21,jη1
ϱ1ξ2

P 0
3 = ξ3(1−ϱ1)(ϱ1+2ϱ2)+(2+ϱ1)(ϱ1−ϱ2)

ξ3(1+2ϱ1)(ϱ1+2ϱ2)+2(ϱ1−ϱ2)(1−ϱ1−ϱ2)
P 1,j
3 =

3[d31,j(ϱ1+2ϱ2)+(ϱ1−ϱ2)]

[ξ3(1+2ϱ1)(ϱ1+2ϱ2)−2(ϱ1−1)(ϱ1−ϱ2)]

P 0
4 = 0 P 1,j

4 = 2
3

d31,jη
2
1

ϱ1ξ3

P 0
5 = −P 0

3 P 1,j
5 = −η1P

1,j
3

P 0
6 = ξ3(1−ϱ1)(2ϱ1+3ϱ2)+(3+2ϱ1)(ϱ1−ϱ2)

ξ3(2+3ϱ1)(2ϱ1+3ϱ2)+6(ϱ1−ϱ2)(1−ϱ1−ϱ2)
P 1,j
6 = 5

3

d31,j(2ϱ1+3ϱ2)+2(ϱ1−ϱ2)

ξ5(2+3ϱ1)(2ϱ1+3ϱ2)−6(ϱ1−1)(ϱ1−ϱ2)

Low-frequency coefficients - Electromagnetics

The exact expressions for the coefficients Gj
i with i = 1, 2, j ∈ {1, ..., 7}

used in Chapter 5.
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G1
1 = A1

x − C1
z , G2

1 = A1
y − B1

z , G3
1 = B1

y − C1
x, G4

1 = B1
x + C1

y

G5
1 = C1

x −A1
z, G6

1 = B1
y −A1

z, G7
1 = B1

x − C1
y

G1
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x − B2
x + (BC)y − (AC)z, G2

2 = A2
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G3
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z + (AC)x − (AB)y, G4

2 = (AC)y + (AB)x − 2(BC)z,
G5
2 = (AC)y − (AB)x

with Aℓ
u and Pu for u ∈ {x, y, z} and ℓ ∈ {1, 2} given by

Px =
N∑
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pjx, Py =
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j=1

pjy, Pz =
N∑
j=1

pjz

A1
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N∑
j=1

pjuγj

A2
u =
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2
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2
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2
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pjuβjγj

while coefficients F j
1 for j = 1, . . . , 6 have the expressions

F1
1 = (BC)x +

2

3
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1

3
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1

3
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Far-field measurements used in subsection 6.2.3

Quantities Nj for j = 1, . . . , 4 are given by

N1 =
ByAz −BzAy

MyAz −MzAy
, N2 =

MyBz −MzBy

MyAz −MzAy

N3 =
CyAz − CzAy

MyAz −MzAy
, N4 =

MyCz −MzCy

MyAz −MzAy

Quantites Kj for j = 1, . . . , 6 are given by

K1 =
gθ,2(0, 0)

ρ3
− (N3N2 +N1N4)Ay +

N3Az

2
+

+N1(N1Mx + 2N2Ax −N3My)

K2 = (1−N 2
2 )Ax +N2N4Ay −

N4Az

2

K3 = (1−N 2
2 )Mx +N2N4My −

N4Mz

2

K4 =
gϕ,2(0, 0)

ρ3
− (N3N2 +N1N4)Ax +

N1Az

2
+

+N3(N3My + 2N4Ay −N3Mx)

K5 = (1−N 2
4 )Ax +N2N4Ax −

N2Az

2

K6 = (1−N 2
4 )Mx +N2N4Mx −

N2Mz

2
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