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1 Introduction

Over the past few decades, neutrino physics has entered the precision era and is steadily

approaching a full description of the three neutrino oscillation picture [1]. Although the

next generation of long-baseline experiments such as DUNE and Hyper-Kamiokande will

play a key role in settling the open issues, some degeneracies are likely to remain. Moreover,

beyond the challenges associated to the three-neutrino parameters, such as the atmospheric

octant, the presence of leptonic CP violation, the neutrino mass ordering, and the absolute

scale of the neutrino mass, there are a number of less standard, but important, neutrino

properties to pin down.

The discovery of coherent elastic scattering of neutrinos off nuclei at the Spallation

Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) using a CsI detector [2]

has opened new ways to study key weak interaction parameters, such as the electroweak

mixing angle [3, 4] and the nuclear form factors [5–7], as well as to probe novel neutrino

properties beyond the Standard Model (SM) [8]. Among the most interesting possibili-

ties, are those addressing non-standard interactions (NSI) [9–19], electromagnetic neutrino

properties [20–24], sterile neutrinos [25–28], new light mediators [29–35] and dark mat-

ter [36, 37]. The study of these scenarios would provide important hints for physics beyond

the current three-massive-neutrino paradigm of elementary particles. In fact, many of them

may be regarded as implications of the very existence of neutrino masses themselves. More-

over, coherent elastic neutrino-nucleus scattering (CEvNS) experiments provide new ways

to understand neutrino cross sections, crucial for establishing the robustness of oscillation

experiments and their interpretation.

Here we show how the recent confirmation of the CEvNS process by the COHERENT

collaboration using a 24 kg liquid Argon (LAr) detector at the SNS [38], after collecting

– 1 –



J
H
E
P
0
5
(
2
0
2
0
)
1
3
0

6.12 GWh data substantially improves the sensitivity of a number of key weak interaction

measurements. The reported results have shown a greater than 3σ preference in favor of

CEvNS.

This paper is organized as follows. In section 2 we set up the notation and summarize

briefly the CEvNS formalism. Then, in section 3 we present the sensitivities on various

parameters of the electroweak interaction in the SM and beyond, obtained using the recent

CENNS-10 results. Finally, our main conclusions are summarized in section 4.

2 Basics

Proposed more than forty years ago by Freedman [39], this neutral current process is

characterized by a cross section that increases as N2, where N being the number of neutrons

in the nucleus: (
dσ

dTA

)
SM

=
G2
FmA

2π
(QVW )2

[
2− 2TA

Eν
− mATA

E2
ν

]
, (2.1)

where GF denotes the Fermi constant, TA is the nucleus kinetic energy, Eν the neutrino

energy and QVW the vector weak charge written in the form

QVW =
[
gpV ZFp(Q

2) + gnVNFn(Q2)
]
. (2.2)

Here, Z and N are the number of protons and neutrons in the nucleus while the neutral

current vector couplings, gp,nV , are given by

gpV =
1

2
− 2 sin2 θW ,

gnV = −1

2
, (2.3)

with the weak mixing angle taken in the MS scheme, i.e. sin2 θW ≡ ŝ2
Z = 0.2312. Finally,

Fp,n(Q)2 stands for the nuclear form factors for protons and neutrons respectively, for

which we employ the well-known Helm parametrization

Fp,n(Q2) = 3
j1(QR0)

QR0
exp(−Q2s2/2), (2.4)

where the magnitude of the three-momentum transfer is Q =
√

2mATA, j1 denotes the

spherical Bessel function of order one and R2
0 = 5

3(R2
p,n − 3s2) with Rn = 3.36 fm (Rp =

3.14 fm) denoting the neutron (proton) rms radius and s = 0.9 fm.

To analyze the recent results of the liquid Argon detector reported by the COHERENT

collaboration, we will consider in this work a neutrino flux arriving to the detector from

the SNS at ORNL, given by three different components from the π+ decay at rest. These

are a “prompt” monoenergetic muon neutrino signal given by

dNνµ

dEν
= ηδ

(
Eν −

m2
π −m2

µ

2mπ

)
, (2.5)
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Figure 1. Simulated number of events at the CENNS-10 LAr detector as a function of the electron

recoil energy Ter.

and the “delayed” neutrino flux composed of muon antineutrinos

dNνµ

dEν
= η

64E2
ν

m3
µ

(
3

4
− Eν
mµ

)
, (2.6)

and electron neutrinos
dNνe

dEν
= η

192E2
ν

m3
µ

(
1

2
− Eν
mµ

)
, (2.7)

with the normalization factor η given by η = rNPOT/4πL
2. The number of protons on

target (POT) corresponding to the 6.12 GWh exposure is NPOT = 1.37 × 1023, r = 0.08

denotes the produced neutrinos per POT and L = 27.5 m is the CENNS-10 baseline.

In the present work, prompted by the importance of the liquid Argon detector of the

COHERENT collaboration, we study relevant implications of the measurement for different

standard and new physics scenarios.

3 The analysis

As a first step, we simulate the CEvNS signal at the LAr detector using the efficiency

function1 A(TA), corresponding to the “Analysis A” of ref. [38]. We then convert the

nuclear recoil spectrum into electron recoil space through the reported quenching factor

QF(TA). Following ref. [38], we evaluate the number of events in the region of interest, i.e.

for recoil energies below 120 keVnr ≈ 30 keVee. Our simulated energy spectrum is shown

in figure 1 as a function of the electron recoil energy, Ter.

Given the reliability of our simulated CENNS-10 signal, we perform a statistical anal-

ysis of the recent liquid Argon CEvNS measurement with the ultimate goal of probing

important observables such as the neutron mean radius, the electroweak mixing angle

sin2 θW , as well as to constrain new physics parameters. Before displaying our results in

1Taken from figure 3 of ref. [38].
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the next sections, here we discuss the general procedure we followed to investigate the

different scenarios.

To test the sensitivity of the experiment to observables under study, we have performed

a χ2 analysis, minimizing the function:

χ2(X) = min
α

[
(Nmeas −Ntheor(X)[1 + α])2

σ2
stat

+

(
α

σα

)2
]
, (3.1)

with Nmeas = 159 denoting the number of the measured events from the fit of “Analysis A”

in ref. [38] and Ntheor(X) being the theoretical prediction. Here, the argument X represents

the set of parameters to be tested, such as the weak mixing angle, the neutron rms radius

or NSI parameters. Here we note that we have successfuly calibrated our procedure with

the one discussed in the recent CENNS-10 result. In eq. (3.1), the statistical uncertainty is

given by σstat =
√
Nmeas +NBRN, where NBRN = 563 represents the number of background

events due to beam related neutrons (BRN). The parameter α quantifies the normalization,

that has a systematic error σα = 8.5% (for details, see ref. [38]).

3.1 Standard electroweak and nuclear physics

One of the most important parameters of the SM is the weak mixing angle, that is measured

with great accuracy at the Z peak. At low energies, however, the existing measurements

are less precise but still very relevant given the prediction of an increase of about 3% in

its value due to radiative corrections. Moreover, any deviation from the SM prediction

for this value would be a signature of new physics. With this motivation in mind, we

have performed a χ2 analysis for this SM parameter using the liquid Argon data. Our

corresponding results are shown in the left panel of figure 2, where one can see a notable

improvement with respect to the previous determination of sin2 θW from the COHERENT-

CsI data (see ref. [21]). The new measurement of the weak mixing angle, derived from the

CENNS-10 data at 90% C.L. reads

sin2 θW = 0.258+0.048
−0.050 (3.2)

Another very useful standard information that can be obtained from the CEvNS inter-

action is the neutron mean radius Rn for the Argon isotope. Although there are theoretical

predictions for this value, its direct determination can facilitate a better understanding of

the CEvNS background at dark matter oriented experiments [40]. We have performed the

corresponding analysis for this observable and the obtained result is illustrated in the right

panel of figure 2. Although not directly comparable, the average neutron rms radius of CsI

is also shown for the reader’s convenience. On the other hand, it is worthwhile to notice

that Rn is more severely constrained for the case of Argon. The obtained 90% C.L. limit

for the neutron rms radius for Argon reads

Rn < 4.33 fm . (3.3)

We should note that this provides the first experimental determination of the neutron

radius in Argon. In addition, comparing with the previous result on CsI [5] (see also

refs. [6, 41]), one sees that the level of precision seems somewhat improved.
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Figure 2. Sensitivity on the weak mixing angle (left) and on the neutron rms radius (right). A

comparison between the results obtained with LAr and CsI detectors is also shown.
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Figure 3. Sensitivity of the new CENNS-10 LAr results (solid lines) and the first COHERENT-CsI

measurements (dashed lines) to the flavor changing (left) and non-universal (right) NSI couplings.

3.2 Non-standard interactions

Most models that try to explain the neutrino mass pattern predict a modification of the

V − A couplings predicted by the SM. In many cases, the corrections are expected to be

negligible, like in the most simple type I seesaw model while, in other cases, there could

be a relatively larger signal, as for the linear and inverse seesaw cases. A large family of

new physics models can be phenomenologically described using the formalism of NSI, that

modify the neutral current SM Lagrangian through the contribution [42–44]

LNSINC = −2
√

2GF
∑

f,P,α,β

εfPαβ (ν̄αγ
µPLνβ)(f̄γµPXf) , (3.4)

where f corresponds to an elementary fermion that, in the case of CEvNS, reduces to the

quarks of the first family, f = {u, d}. α and β denote the neutrino flavors {e, µ, τ}, PX the
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Figure 4. 90% C.L. allowed regions from the analysis allowing two NSI parameters at a time.

The left panel considers the simultaneous presence of non-universal and flavor-changing NSI with

d quark, while the right panel corresponds to the case of simultaneous non-universal NSI couplings

with u and d quarks. For comparison, we show the results from the analysis of CsI and LAr data.

left and right chirality projectors PL,R, and εfPαβ are the couplings that quantify the relative

strength of the NSI. Due to the presence of these new interactions, the weak charge of the

CEvNS reaction is modified according to the substitution QVW → QVNSI in eq. (2.1), with

the NSI charge given by

QVNSI =
[(
gpV + 2εuVαα + εdVαα

)
ZFp(Q

2) +
(
gnV + εuVαα + 2εdVαα

)
NFn(Q2)

]
+
∑
α

[(
2εuVαβ + εdVαβ

)
ZFp(Q

2) +
(
εuVαβ + 2εdVαβ

)
NFn(Q2)

]
. (3.5)

As it has already been noticed [45], CEvNS reaction is sensitive to the NSI parameters

and, therefore, it can provide important information to probe the so-called LMA-Dark

solution [46]. The results of our χ2 analysis, for one NSI parameter at a time, are shown in

figure 3, both for the flavor changing (left panel) and the non-universal case (right panel).

We can see from this figure that the sensitivities on the flavor changing NSI parameters

are only marginally improved with respect to the previous CsI case. This is due to the

detection of a larger number of events with respect to the SM prediction. Although the

excess is below one standard deviation, still the preferred value for the flavor changing

parameters are non-zero, as can be seen in figure 3. In the case of non-universal NSI, one

can see the improvement in their restriction in comparison with the first CEvNS detection.

We can go one step further in the analysis and study more general restrictions on

NSI parameters [45, 47]. For example, the new CENNS-10 measurement can be used to

constrain pairs of NSI parameters, allowing us to seek for possible correlations between

them, as shown in figure 4, where the constraints on the two-dimensional parameter space

of non-universal and flavor-changing NSI couplings with d quark (εdVee , εdVτe ) are given (left

panel), as well as those for the case of the non-universal NSI couplings with d and u quarks

(εdVee , εuVee ). In both cases one can appreciate the improvement in the determination of the
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parameters. The good consistency of our analysis with the available results of ref. [38] is

evident from the right panel of this figure.

3.3 Electromagnetic properties

The discovery of neutrino oscillations with solar, atmospheric, reactor and accelerator neu-

trinos [1] has set a new milestone in particle physics pointing to the existence of massive

neutrinos, hence constituting the clearest signature of new physics beyond the SM. The

non-vanishing neutrino mass stands out as the best motivation for non-trivial electromag-

netic (EM) neutrino properties. Indeed, the expansion of the EM neutrino vertex (for

details see ref. [48]) yields two main phenomenological parameters, namely the neutrino

magnetic moment and the neutrino charge radius [49].

The neutrino magnetic moment µνα with α = e, µ, τ is a flavor-dependent quantity

which, for the case of scattering experiments, is usually expressed in the mass basis [50, 51].

Due to the helicity-violating nature of the EM cross section, there is no interference with

the SM one given in eq. (2.1) and yields an additive contribution of the form(
dσ

dTA

)
EM

=
πa2

EMµ
2
ν Z

2

m2
e

(
1− TA/Eν

TA

)
F 2
p (Q2) , (3.6)

where the flavor index has been dropped. For sufficient low detection threshold, the latter

cross section leads to an enhancement of the recoil spectrum, i.e. a feature that is not

expected for the other types of new physics considered in this work. Note that, for the

case of Majorana neutrinos, only transition magnetic moments are expected, and the corre-

sponding sensitivities from the analysis of neutrino-electron scattering [52] and CEvNS [23]

experiments have already been given in the literature. Here, for simplicity, we only consider

flavor-dependent effective neutrino magnetic moments. The resulted sensitivity profiles rel-

evant to µνe , µνµ and µν̄µ from the analysis of the recent CENNS-10 data are shown in the

– 7 –
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Figure 6. Upper panel: 90% C.L. allowed region in the parameter space of the neutrino magnetic

moments (µνα , µνβ ). Lower panel: 90% C.L. allowed region in the parameter space of neutrino

charge radii (〈r2
να〉, 〈r2

νβ
〉). The results are shown for different choices of neutrino flavours, with the

undisplayed parameters in each case assumed to be vanishing. For comparison, we show the results

from the analysis of CsI and LAr data.

left panel of figure 5. The obtained constraints at 90% C.L. read(
µνe , µνµ , µν̄µ

)
< (94, 53, 78) 10−10µB . (3.7)

We notice that the LAr sensitivity on the effective neutrino magnetic moment is not drasti-

cally improved in comparison to the one reached with the first COHERENT-CsI data [21].

This is due to the fact that the CENNS-10 result of Nmeas = 159 events is by about 30

events larger than the 130 events expected in the Standard Model. Therefore, even though

the systematic uncertainties of CENNS-10 experiment are better compared to the first CsI

measurement, these extra 30 events in the χ2 translate into a finite neutrino magnetic

moment contribution, thus weakening the limits.

We now turn our attention to the neutrino charge radius 〈r2
να〉 with α = e, µ, τ being

the flavor index. Likewise the neutrino magnetic moment, 〈r2
να〉 is also required to be

expressed in the mass basis through a rotation with the lepton mixing matrix [22]. Being

a helicity-preserving quantity, its impact to the SM cross section is simply taken as a shift

on the weak mixing angle according to

sin2 θW → ŝ2
Z +

√
2παEM

3GF
〈r2
να〉 . (3.8)

Note that only the proton coupling gpV , proportional to the number of protons, interacts

with the charge radius.2 On the other hand, when antineutrinos are involved, both the gpV
2We neglect the contribution of the term proportional to Z2 corresponding to transition charge radii [22].
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LAr data. In both cases, a comparison is given with the CsI data.

and 〈r2
να〉 change sign and, therefore, eq. (3.8) holds for both neutrinos and antineutrinos, a

result that is consistent with ref. [21]. From our analysis of the recent CENNS-10 data, we

obtain the sensitivity to the neutrino charge radii corresponding to 〈r2
νe〉, 〈r2

νµ〉 and 〈r2
ν̄µ〉,

as shown in the right panel of figure 5. The extracted constraints at 90% C.L. read

〈r2
νe〉 = (−64,−41) and (−7, 16) ,

〈r2
νµ〉 = (−69,−37) and (−10, 21) ,

〈r2
ν̄µ〉 = (−60,−43) and (−5, 12) ,

(3.9)

in units of 10−32cm2. Note that, comparing with the corresponding results extracted

from the CsI case, the precision of the new determinations derived from the new LAr

measurement are significantly improved since now the allowed regions are narrower, and

appear as two separate intervals.

At this point, and as we did for the NSI case, we have performed a combined analysis

allowing for several parameters being non-zero at a time. In particular, we have chosen to

probe the parameter space of neutrino magnetic moments (µνα , µνβ ) and neutrino charge

radii (〈r2
να〉, 〈r2

νβ
〉), by considering the simultaneous presence of two of them, i.e. α 6= β.

The corresponding results are presented in figure 6, where we also compare with those de-

rived from the 2017 data release of the COHERENT-CsI measurement. The improvement

obtained with the most recent data is more than evident.

3.4 Light mediators

It has been recently shown [53] that low energy scattering experiments are favorable facil-

ities for probing the existence of light mediators, of both vector [54] and scalar [29] type.

Indeed, by focusing on the Z ′ predicted within the context of string-inspired E6 and Left-

Right symmetries, the authors of ref. [35] explored the potential of low-energy measure-

ments at CEvNS experiments, concluding that complimentary information to high-energy

collider searches can be achieved.
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Here, we focus on simplified U(1)′ scenarios with an additional vector Z ′ or a scalar φ

boson that arise from the generic Lagrangians [55]

Lvector =Z ′µ

(
gqVZ′ q̄γ

µq + gνVZ′ ν̄Lγ
µνL

)
,

Lscalar =φ
(
gqSφ q̄q + gνSφ ν̄RνL + H.c.

)
,

(3.10)

with MZ′ and Mφ being the mass of the vector and scalar mediators, whereas gfVZ′ and gfSφ
are the respective vector and scalar couplings to the fermion f = u, d, ν. For the case of a

Z ′ mediator, there is an interference with the SM vector couplings, and the corrections to

the SM cross section are incorporated through the substitution QVW → QZ
′

V , i.e. replacing

the SM weak charge with the Z ′ one in eq. (2.1), as [41]

QZ′
V = QVW +

gνVZ′√
2GF

(
2guVZ′ + gdVZ′

)
ZFp(Q

2) +
(
guVZ′ + 2gdVZ′

)
NFn(Q2)

2mATA +M2
Z′

. (3.11)

Turning to the case of a scalar boson mediating the CEvNS process, there is no in-

terference and, then, the total cross section is given by (dσ/dTA)tot = (dσ/dTA)SM +

(dσ/dTA)scalar, where the scalar contribution to the cross section is expressed as(
dσ

dTA

)
scalar

=
G2
Fm

2
A

4π

gνSφ Q2
φ TA

E2
ν

(
2mATA +M2

φ

)2 , (3.12)

and the scalar charge is defined as [34]

Qφ = ZFp(Q
2)
∑
q=u,d

gqSφ
mp

mq
fpTq +NFn(Q2)

∑
q=u,d

gqSφ
mn

mq
fnTq . (3.13)

In the latter expression, the scalar charge is expressed in terms of the hadronic form

factors f qTq , obtained from chiral perturbation theory (see ref. [56]), although here we use

the updated values from [57]

fpTu = (20.8± 1.5)× 10−3 , fpTd = (41.1± 2.8)× 10−3 ,

fnTu = (18.9± 1.4)× 10−3 , fnTd = (45.1± 2.7)× 10−3 .

At this point, we should note that, for simplicity, we consider universal quark couplings

for both vector and scalar cases, i.e. guVZ′ = gdVZ′ and guSφ = gdSφ . Therefore, our sensitivity

analysis will refer to the corresponding squared couplings entering in eqs. (3.11) and (3.12)

from the product of neutrino and quark couplings, i.e. g2
Z′ = gqVZ′ gνVZ′ and g2

φ = gqSφ gνSφ .

Here, we find it interesting to focus on the U(1)B−L extension of the Standard Model where

gqVZ′ = −gνVZ′ /3 [32]. Using the latest data from the CENNS-10 measurement, we performed

a combined analysis by varying simultaneously the vector (scalar) coupling and the corre-

sponding vector (scalar) mediator mass. The corresponding excluded regions are illustrated

in figure 7 and compared with the COHERENT-CsI case. For the vector mediator sce-

nario, our results are also compared with existing limits placed by dielectron resonances

at ATLAS [58], constraints from electron beam-dump fixed target experiments [59, 60] as

– 10 –



J
H
E
P
0
5
(
2
0
2
0
)
1
3
0

well as with constraints from Dark Photon searches at BaBar [61, 62] and LHCb [63]. One

sees that CEvNS searches are clearly complementary to the latter ones, excluding a large

part of the available parameter space. Notice the slight improvement found with respect

to the first COHERENT-CsI measurement.

3.5 Robustness of the constraints

Nuclear physics uncertainties place important limitations on the attainable sensitivities

to physics observables extracted from coherent neutrino elastic scattering experiments.

Indeed, as emphasized in refs. [6, 7, 16], these may lead to a miss-interpretation of the

relevant constraints derived from CEvNS measurements.

Therefore, before closing our present analysis, we find it useful to devote a separate

paragraph in order to discuss the robustness of the constraints we have obtained with

regards to the nuclear form factor. To this purpose, we performed a combined analysis of

the weak mixing angle and the neutron rms radius simultaneously; we also performed a

similar analysis for the case of a NSI parameter characterizing new physics. While many

such combinations are possible, as a concrete example in figure 8 we show the allowed

regions in the (sin2 θW , Rn) and (εdVee , Rn) planes at 90% C.L. As expected, in the left panel,

one sees how the 90% C.L. determination of the weak mixing angle has a larger relative error

for free Rn, in comparison to that of eq. (3.2) obtained with the fixed value Rn = 3.36 fm.

We find δs2
W (free Rn) = 0.128 vs. δs2

W (fixed Rn) = 0.097, where δs2
W corresponds to the

width of the 90% C.L. band. On the other hand, concerning new physics, we show in

the right panel the allowed region on the NSI parameter εdVee for different values of the

neutron rms radius Rn. One sees that, by using a free rms neutron radius Rn, the 90%

C.L. leads to two disjoint ranges (for Rn > 2.7 fm) and a reduced sensitivity compared

to the results obtained from the analysis with a fixed rms radius shown in figure 3. In

both cases, it becomes evident that the limitations imposed due to the nuclear physics

uncertainties must be treated with special care. In fact, this may require realistic nuclear

structure calculations [6, 64].

4 Conclusions

We have analyzed the recent results of the CENNS-10 detector subsystem of the COHER-

ENT collaboration that led to the first detection of CEvNS on LAr. Through a dedicated

statistical analysis, taking into account the available information from ref. [38], we have

shown that this new measurement typically leads to improved sensitivities with respect to

the first COHERENT-CsI measurement in 2017. Specifically, we have presented an im-

proved determination of the weak mixing angle, as well as the first ever determination of

the 40Ar neutron rms radius. Turning to new physics, we have derived the constraints on

non-universal as well as flavor-changing NSI imposed by this new data release. Moreover,

concerning neutrino electromagnetic properties, we have found only minor improvement of

the sensitivity to neutrino magnetic moments. In contrast, we have found a positive indica-

tion for finite neutrino-charge radii. We have shown that the new CENNS-10 data provides

somewhat better sensitivities on simplified scenarios involving new light mediators when
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Figure 8. Allowed region in the parameter space of (sin2 θW , Rn) (left) and (εdVee , Rn) (right) planes

at 90% C.L. For comparison, the neutron rms radii Rn = 3.36 fm (fixed value) and Rn = 4.33 fm

[upper limit in eq. (3.3)] are indicated with horizontal dashed lines.

compared to COHERENT-CsI data, discussing also the complementarity to high energy

experiments. Finally, we have explored the impact of nuclear physics uncertainties and

discussed the robustness of our results.
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