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Abstract. A new measurement of coherent elastic neutrino-nucleus scattering (CEvNS) on
liquid argon (LAr) has been recently reported by the COHERENT experiment. Relying on the
new data, we update the status of CEvNS-induced constraints by considering various physics
applications, within and beyond the Standard Model. In particular, we explore the implications
of the COHERENT-LAr data for electroweak and nuclear physics as well as for interesting
scenarios beyond the SM such as NSIs and electromagnetic neutrino properties. We show that
compared to the existing constraints derived from the first CEvNS measurement on CsI, the
new LAr-dataset yields improved constraints in all cases.

1. Introduction
The COHERENT experiment at the Spallation Neutron Source, after the first observation of
coherent elastic neutrino-nucleus scattering (CEvNS) on CsI in 2017 [1], has recently reported a
new CEvNS measurement on liquid argon (LAr) [2]. This groundbreaking discovery has opened
a new window for exploring various low-energy physics opportunities within and beyond the
Standard Model (SM). The most interesting examples in the SM are the determination of the
weak mixing angle (sin2 θW ) and the possibility to explore the nuclear rms radius Rn. From
the exhaustive list of beyond the SM applications (for a review see Ref. [3]), here we focus
on i) nonstandard interactions (NSIs) in the presence of light or heavy new mediators, and ii)
electromagnetic neutrino properties such as the effective neutrino magnetic moment and the
neutrino charge radius. For the aforementioned cases, in the light of the new LAr data, here we
update the existing constraints derived from previous analyses based on CsI data [4, 5].

2. CEvNS within the SM and beyond
The differential CEvNS cross section with respect to the nuclear recoil energy TA is written as(

dσ

dTA

)
SM

=
G2
FmA

2π
(QVW )2

[
2− 2TA

Eν
− mATA

E2
ν

]
, (1)

with Eν being the incident neutrino energy and QVW denoting the vector weak charge written in
the form

QVW =
(
1/2− 2 sin2 θW

)
ZFp(Q

2)− 1/2NFn(Q2) . (2)
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Here, the weak mixing angle is taken in the MS scheme, i.e. sin2 θW ≡ ŝ2
Z = 0.2312, while

Fp,n(Q)2 denotes the nuclear form factors for protons and neutrons, expressed as

Fp,n(Q2) = 3
j1(QR0)

QR0
exp(−Q2s2/2) . (3)

In the latter expression, the magnitude of the three-momentum transfer is Q =
√

2mATA and
j1(x) is the first-order spherical Bessel function, while R2

0 = 5
3(R2

p,n − 3s2) with Rn = 3.36 fm
(Rp = 3.14 fm) denoting the neutron (proton) rms radius and s = 0.9 fm.

Turning our attention to physics beyond the SM, the NSI formalism provides a useful
phenomenological description for a large family of new physics models. In this work, we
restrict our attention to those leading to modifications of the neutral current SM Lagrangian,
parametrized as [6]

LNSINC = −2
√

2GF
∑

f,P,α,β

εfPαβ (ν̄αγ
µPLνβ)(f̄γµPXf) , (4)

where PX are the left and right chirality projectors and εfPαβ denote the couplings that quantify

the relative strength of the NSI. Specifically, CEvNS is sensitive to NSIs, with f = {u, d}
being a first-family quark and α, β the neutrino flavors {e, µ, τ}. In the presence of NSIs, the
corresponding CEvNS cross section is given from Eq.(1) by substituting the SM weak charge
according to QVW → QVNSI [7]

QVNSI =
[(
gpV + 2εuVαα + εdVαα

)
ZFp(Q

2) +
(
gnV + εuVαα + 2εdVαα

)
NFn(Q2)

]
+

∑
α

[(
2εuVαβ + εdVαβ

)
ZFp(Q

2) +
(
εuVαβ + 2εdVαβ

)
NFn(Q2)

]
. (5)

Aa a concrete example, the presence of a sufficiently light vector-mediator (often called the Z ′)
yields NSI-like corrections of the SM cross section through the substitution QVW → QZ

′
V , as [8]

QZ′
V = QVW +

gνVZ′√
2GF

(
2guVZ′ + gdVZ′

)
ZFp(Q

2) +
(
guVZ′ + 2gdVZ′

)
NFn(Q2)

2mATA +M2
Z′

. (6)

At this point, it is worth noting that the latter expression for the case of a heavy mediator
reduces to the usual NSI weak charge given Eq.(5)

On the other hand, assuming a scalar boson mediating the CEvNS process, due to the absence
of interference with the SM, the total cross section is given by (dσ/dTA)tot = (dσ/dTA)SM +
(dσ/dTA)scalar. The purely scalar contribution in this case, is given by [8](

dσ

dTA

)
scalar

=
G2
Fm

2
A

4π

gνSφ Q2
φ TA

E2
ν

(
2mATA +M2

φ

)2 , (7)

where the corresponding scalar charge takes the form [9]

Qφ = ZFp(Q
2)
∑
q=u,d

gqSφ
mp

mq
fpTq +NFn(Q2)

∑
q=u,d

gqSφ
mn

mq
fnTq , (8)

while the hadronic form factors f qTq , are taken from Ref. [10].

Finally, non-trivial electromagnetic (EM) neutrino interactions are also plausible in view
of the massive neutrinos implied by the discovery of neutrino oscillations. The two main
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Figure 1. Sensitivity on the weak mixing angle (left) and on the neutron rms radius (right).
Figure taken from Ref. [12].

phenomenological EM neutrino parameters that CEvNS is sensitive to, are the effective neutrino
magnetic moment µνα and the neutrino charge radius 〈r2

να〉. The former, flips the helicity and
therefore leads to a new EM-induced contribution that adds incoherently to the CEvNS cross
section and is given by [11](

dσ

dTA

)
EM

=
πa2

EMµ
2
ν Z

2

m2
e

(
1− TA/Eν

TA

)
F 2
p (Q2) . (9)

On the other hand, the neutrino charge radius is a helicity-preserving quantity that is taken into
account through a redefinition of the weak mixing angle as:

sin2 θW → ŝ2
Z +

√
2παEM

3GF
〈r2
να〉 (10)

with αEM being the fine structure constant.

3. Results and discussion
In this section we summarize the main results obtained Ref. [12] in the light of the new
COHERENT-LAr data. In all cases (see below), the new LAr-driven analysis indicates improved
constraints compared to those extracted from the respective CsI-driven analysis.

Focusing first on the SM interactions only, in Fig. 1 we present the χ2 sensitivity profiles of
the weak mixing angle (left) and the nuclear neutron rms radius (right). For the weak mixing
angle our fit indicates the following limits at 90% C.L.

sin2 θW = 0.258+0.048
−0.050 (LAr) and sin2 θW = 0.197+0.124

−0.080 (CsI) . (11)

Similarly, for the case of the nuclear neutron rms radius we find at 90% C.L.

Rn < 4.33 fm (LAr) and Rn = 5.6+1.5
−2.1 fm (CsI) . (12)

We need to stress, however, that in the latter case the two results are not comparable since they
refer to different nuclear isotopes. In addition, it is interesting to notice that the LAr data imply
only an upper bound while the CsI data lead to a constrained region.

Turning to NSIs and by assuming one non-vanishing coupling at a time, in Fig. 2 we illustrate
the obtained sensitivity on the flavor-changing εdVαβ parameters (left panel) and nonuniversal
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Figure 2. Sensitivity on the flavor changing (left) and non-universal (right) NSI couplings.
Figure taken from Ref. [12].
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Figure 3. Excluded region at 90% C.L in the parameter space (MZ′ , g2
B−L) for the vector

mediator scenario (left) and (MΦ, g
2
Φ) for the scalar mediator scenario (right). Figure taken

from Ref. [12].

εdVαα parameters (right panel). Evidently, in all cases the LAr data (solid lines) lead to more
stringent constraints compared to those obtained from the CsI data (dashed lines). We now
consider potential contributions to CEvNS by the vector-mediator associated to the U(1)B−L
extension of the SM, i.e. by imposing gqVZ′ = −gνVZ′ /3. The left panel of Fig. 3 shows the allowed
regions in the (MZ′ , g2

B−L) parameter space. As can be seen from the plot, CEvNS data offer
complementary constraints to those extracted from fixed target experiments in the low-energy
regime (1 ≤ MZ′ ≤ 100 MeV) as well as to the corresponding ones from the analysis of Babar,
LHCb and ATLAS data for the case of heavy mediators e.g. for MZ′ > 1 GeV. Moreover, the
right panel of Fig. 3 shows the corresponding allowed regions in the (Mφ, g

2
φ) plane for the case

of a scalar mediator.
Finally, in Fig. 4 we present the extracted constraints on the effective neutrino magnetic

moment (left panel) and charge radius (right panel). For the neutrino magnetic moment, the
obtained constraints from the analysis of the COHERENT-LAr data at 90% C.L. read [12](

µνe , µνµ , µν̄µ
)
< (94, 53, 78) 10−10µB , (13)

and imply only a slight improvement with respect to the CsI data. For case of the neutrino
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Figure 4. Sensitivity to the neutrino magnetic moment (left) and charge radius (right). Figure
taken from Ref. [12].

charge radius the constraints at 90% C.L. read [12]

〈r2
νe〉 =(−64,−41) and (−7, 16) ,

〈r2
νµ〉 =(−69,−37) and (−10, 21) ,

〈r2
ν̄µ〉 =(−60,−43) and (−5, 12) ,

(14)

in units of 10−32 cm2. For the latter case, unlike the neutrino magnetic moment, a significant
improvement compared to the first CsI-analysis is found.
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