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Abstract: The occurrence of melanoma is a composite 

process that implicates the interaction of phenotypic, 

environmental, and genetic risk factors. We constructed genetic 

risk models, with the aim to assess their predictive performance 

on melanoma risk.  

Summary level data from the largest meta-analysis of 

genome-wide association studies for melanoma, up to date, were 

used for the construction of weighted genetic risk scores. We 

used six different p-value thresholds for genetic variants 

inclusion. We evaluated our genetic risk scores in 2,862 events 

of incident melanoma and 321,789 cancer-free controls from the 

UK Biobank, a prospective cohort study of 500,000 participants. 

Using AUCs, we compared the predictive ability of the different 

genetic risk scores. 

Genetic risk scores were strongly associated melanoma risk. 

Odds Ratios ranged from 1.478 to 1.528. The predictive ability 

of the genetic risk scores ranged from 0.6234 to 0.6328 showing 

a moderate performance.   

Our study suggests that when the p-value threshold for 

genetic variants inclusion become more tolerant, the prediction 

performance of the model improved. Validation of the results in 

larger populations, as well as Southern European populations is 

needed. 
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I. INTRODUCTION  

Melanoma, the most malignant type of skin malignancy, is 
one of the most common neoplasms with an increasing 
worldwide incidence of 300,000 cases each year [1]. 
Melanoma arises due to malignant transformation of 
melanocytes. When detected in its earliest stages, is highly 
curable and has a five-year rate of survival at about 98% [2], 
thus early intervention can reduce mortality, morbidity and 
health care cost. The aetiology of melanoma is complex and 
additional research is needed to discover the role of modifiable 
risk factors on melanomagenesis to reinforce primary 
prevention strategies. 

 Environmental exposures (e.g. UV exposure) [3], 
phenotypic attributes, family history [4] and genetic factors 
[5] are involved in the development of melanoma.  

 Genome-wide association studies (GWAS) and candidate 
gene studies [6] supported the role of genetics in the risk of 
melanoma. Recently, a large GWAS accumulating 36, 760 
cases and 375,188 melanoma-free controls from the UK, 
USA, Australia, Northern and Western Europe, and the 
Mediterranean, identified 54 genetic loci associated with  the 
risk of melanoma at the level of genome-wide significance [7]. 

Currently, the most empirical way to provide an estimate 
of the genetic predisposition to a disease at the individual 
level, is using genetic risk scores (GRSs) [8]. GRSs are using 
the findings from GWASs and combine the effects of 
numerous single nucleotide polymorphisms (SNPs) into a 
single score. The GRS, for each individual, is a sum of the 
effects of the alleles of risk corresponding to a disease, with 
each one of these alleles weighted by its effect size, as it is 
estimated from an independent GWAS on the disease. The 
primary aim of the GRS is to predict the chance of an 
individual to be affected by a disease and the secondary aim, 
to aware individuals at high risk, adhering to certain 
treatments or specific behavioral and lifestyle modifications 

The purpose of this study was to construct several GRS 
models and assess their predictive performance on risk of 
melanoma. The effect estimates of each genetic variant on 
melanoma were derived from the largest GWAS meta-
analysis of melanoma [7] and we validate the prediction 
ability of GRSs in UK Biobank, a population-based cohort 
with participants of European descent [9]. 

II. METHODS 

A. Study population 

For the development of the GRSs we used summary level 
data from the largest GWAS meta-analysis of melanoma up to 
date consisted of 36,760 cases of melanoma and 375,188 
melanoma-free controls from UK, USA, Australia, Northern 
and Western Europe and Mediterranean [7]. We evaluated our 
GRSs using data at individual level from the UK Biobank. UK 
Biobank is a long-term prospective study having recruited 
~500,000 people in UK, aged 40–69 years when they joined 
the study [9]. Participants attended assessment centers at 
which baseline data were collected on their medical history, 
lifestyle, body composition and environment. DNA for 
genotyping was collected as well. For the present study we 
used a subset of unrelated European-ancestry individuals. In 
more detail, from the initial set of participants, we excluded 
individuals without available genetic data and individuals of 
non-European ancestry. Also, we removed one of each pair of 
1st and 2nd degree relatives by using the centrally provided 
kinship data from UK Biobank [10]. 
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B. Melanoma incidence in UK Biobank 

Data on cancer incidence in UK Biobank were available 
for each participant through linkage to the Central Registers 
of the UK National Health Service (NHS). We identified 
2,862 unrelated Europeans with full genetic data available,  
whose primary cancer diagnosis was melanoma according to 
ICD-9 (172) and ICD-10 (C43) codes. From the database we 
selected 321,568 controls of European descent that had never 

had a diagnosis of cancer, either self‐reported and were not 
registered in the national cancer registry. We therefore 
included 324,651 participants in our analysis. 

 

C. Genotyping and imputation in UK Biobank 

 We used quality controlled genotypes from 488,377 
UK Biobank participants. DNA samples of 438,427 
participants were genotyped at 825,427 variants using a 
custom Affymetrix UK Biobank Axiom Array chip and DNA 
samples of the other 49,950 participants were genotyped at 
807,411 variants using a custom Affymetrix UK BiLEVE 
Axiom Array chip from the UK BiLEVE study [11]. A 
merged reference panel from the 1000 Genomes Phase 3 panel 
and the UK10K and, in addition, the Haplotype Reference 
Consortium (HRC) panel were used for the central imputation 
of the variants [10]. UK Biobank centrally computed genetic 
principal components in order to account for population 
stratification 

 

D. Genetic Risk Score 

GRS constitutes a sum across SNPs of the number of the 
alleles of risk at that SNPs, weighted by their effect estimates 
(beta coefficients). The betas were obtained from meta-
analyses of the GWAS described above [11]. For each 
individual i in the UK Biobank the GRS was calculated as:  
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where bj is the beta coefficient for the SNP j, gij is the value 
of the genotype for SNP j for individual i (0/1/2, depending 
on the number of the risk alleles for the certain SNP).  

We developed six GRS models, where SNP inclusion was 
based on different p-value thresholds. The p-value thresholds 
were chosen as 5x10-7, 1x10-7, 5x10-8, 1x10-8, 5x10-9 and 1x10-

9. Values >5x10-8 are generally considered genome-wide 
significant in the field of genetic epidemiology even though 
more stringent thresholds have been proposed [12]. Clumping 
was performed for each one of the GRS models, with the aim 
to keep a subset of SNPs per genetic region that are nearly 
uncorrelated with each other [13]. More specifically, 
clumping was performed by selecting the most significant 
SNP and removing from examination all SNPs in LD with this 
index SNP (r2<0.25) and withdrawing correlated SNPs up to 
250 kilobase pairs from the index SNP. All the GRSs were 
standardized per unit increase in the cancer-free population. 
The construction of the GRSs was performed using PLINK 
2.0 [14]. 

 

E. Statistical Analysis 

GRSs were analyzed with respect to melanoma events 
using logistic regression models and we calculated odds ratios 
(OR) and 95% confidence intervals (CIs). Logistic regression 
is a classification algorithm, that is used to forecast a 
dichotomous outcome based upon a set of non-dependent 
variables. The logistic regression equation for our dataset is 
calculated as: 
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where Yi is the predicted probability of an individual i to be a 
melanoma case, b0 is the intercept term of the regression and 
b1 is the regression coefficient for the single input value (x). 
The equation above can be transformed to  
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The term on the parenthesis is called the odds and is a ratio of 
the probability of the event divided by the probability of not 
the event. Logistic regression analyses were adjusted for the 
first ten genetic principal components in order to correct for 
possible population stratification. The predictive ability of the 
GRSs were assessed in the UK Biobank participants by 
calculating the Area Under the Curve (AUC) with bootstrap 
CIs These bootstrap CIs were calculated after creating 1000 
resamples from our population and computing AUC for each 
one of these samples.Statistical analyses were performed 
using the statistical package Stata 14.0 software. 

 

III. RESULTS 

A. Population Characteristics of validation dataset 

Our validation sample of 324,651 individuals consisted of 
169,868 women (52.32%) and 154,783 men (47.68%), with a 
mean age at recruitment of 56.09 years. The 2,862 melanoma 
incident events had a mean age of 58.57 years and 1,674 

(58.49%) were women (Table I). 

TABLE I. Demographic characteristics of our sample 

 All participants 

(N= 324,651) 

Melanoma 

cases (N= 

2,862) 

Cancer-free 

individuals (N= 

321,789) 

 

Females, N 

(%) 

 
169,868 (52.32) 

 
1,674 (50.49) 

 
168,194 (52.27) 

 

Age, mean 

(SD) years 

 
56.08 (8.01) 

 
58.57 (7.49) 

 
56.06 (8.01) 



B. Associations between GRSs and the risk of melanoma 

As expected, all GRS were strongly associated with 
melanoma risk in the testing dataset of UK Biobank. When 
setting the p-value threshold at 5x10-7, a total of 377 SNPs 
were included in the model. The OR was 1.528 (95% CI 
1.478-1.580) per standard deviation increase. For a p-value 
threshold for inclusion at 1x10-7, a total of 318 SNPs were 
included in the GRS model. The OR was 1.514 (95% CI 
1.464-1.566) per standard deviation increase. While setting 
the p-value threshold at 5x10-8, 300 SNPs were used for the 
GRS construction and the OR was 1.509 (95% CI 1.460-
1.561). Assuming a p-value threshold at 1x10-8, a total of 259 
SNPs were included in the GRS, and the OR was 1.494 (95% 
1.445-1.545) per standard deviation increase. Finally, when 
making the p-value threshold even stricter, that is 5x10-9 and 
1x10-9, 243 and 216 SNPs were used for the GRSs 
construction, respectively, and the ORs were 1.490 (95% 
1.441-1.540) and 1.478 (95% CI 1.430-1.528) respectively 

(Table II).  

 
TABLE II. Association between GRSs and risk of melanoma 

Threshold for 

SNPs inclusion 

# SNPs 

included 
OR* (95% CI) p-value 

p-value< 5x10-7 377 1.528 (1.478, 1.580) 9.55x10-137 

p-value< 1x10-7 318 1.515 (1.464, 1.566) 5.80x10-131 

p-value< 5x10-8 300 1.509 (1.460, 1.561) 5.86x10-129 

p-value< 1x10-8 259 1.494 (1.445, 1.545) 2.40x10-123 

p-value< 5x10-9 243 1.490 (1.441, 1.540) 1.32x10-121 

p-value< 1x10-9 216 1.478 (1.430, 1.528) 4.66x10-117  

*ORs were adjusted for ten the first ten genetic principal components 

 

C. Assessing the predictive performance of the GRSs 

We evaluated the predictive performance of the 6 GRSs in 
the testing dataset of UK Biobank. When setting the p-value 
threshold at 5x10-7, the model’s AUC was 0.6328 (95% CI 
0.6225-0.6430) (Fig. 1a).  
 
 
 

 
Figure 1. AUCs for the different p-value thresholds 
 

For a p-value threshold at 1x10-7, the AUC was 0.6302 (95% 
CI 0.6202-0.6402) (Fig. 1b). While setting the p-value 
threshold at 5x10-8, the AUC was 0.6293 (95% CI 0.6198-
0.6387) (Fig. 1c). For the p-value threshold at 1x10-8 the AUC 
was 0.6267 (95% CI 0.6168-0.6365) (Fig. 1d). For the p-
value threshold at 5x10-9 the AUC was 0.6258 (95% CI 
0.6138-0.6344) (Fig. 1e). Finally, for the p-value threshold at 
1x10-8 the AUC was 0.6234 (95% CI 0.6133-0.6334) (Fig. 
1f) (Table III).  
 

TABLE III. Predictive ability of GRSs 

p-value threshold AUC 95% Bootstrap CI  

p-value< 5x10-7 0.6328 0.6225, 0.6430 

p-value< 1x10-7 0.6302 0.6202, 0.6402 

p-value< 5x10-8 0.6293 0.6198, 0.6387 

p-value< 1x10-8 0.6267 0.6168, 0.6365 

p-value<5x10-9 0.6258 0.6138, 0.6344 

p-value< 1x10-9 0.6234 0.6133, 0.6334 

 
 

IV. CONCLUSION 

In this study we thoroughly evaluated the predictive ability 
of six melanoma GRSs in a testing dataset of 2,862 melanoma 
cases and 321,789 controls. We compared six GRSs models 
using various p-value thresholds for variants inclusion. The 
number and the effect size of the SNPs, as well as, the sample 
size of the training dataset are factors, on which the ideal p-
value threshold for SNPs inclusion for a disease risk, depends 
[15]. We observed that all GRSs were strong predictors of 
melanoma incidence, with ORs ranged from 1.478 to 1.528, 
showing the strong association of the genetic predisposition 
with the risk of melanoma. The strongest association was 
observed when the p-value threshold was more tolerant, that 
is 5x10-7, including 377 SNPs. Moreover, the predictive 
ability of those GRSs ranged from 0.6234 to 0.6328, showing 
a moderate discrimination power. The best predictive 
performance was observed when the p-value threshold was set 
to 5x10-7, showing that, when more SNPs were included in the 
model, the predictive ability on melanoma incidence was 
improved even though these SNPs are not necessarily 
considered genome-wide significant. It has been proved that 
although the effects of single SNPs on several occasions do 
not reach the genome-wide significant thresholds, due to 
various reasons, such as lack of power, the combined effect of 
those SNPs into a score, could enhance the prediction of the 
disease risk [16]. This suggests the polygenic aetiology that 
implicit the risk melanoma.  

Our study has several strengths. For GRSs construction, 
we used as training set, the largest melanoma GWAS data to 
date, a crucial factor of the accuracy of GRS prediction [14]. 
We intensively examined different selection criteria for 
variants inclusion and compared their predictive performance 
on melanoma incidence. A limitation in our study, was the 
lack of more summary data, which did not allow us to examine 
more models with less strict p-value threshold for inclusion.  

In conclusion, our study suggests that when examining the 
predictive ability of prognostic models, that contain several 
SNPs, on melanoma incidence, it appears that when the p-
value threshold for SNPs inclusion become more tolerant, the 
prediction performance of the model is improved. Further 



research needs to be accomplished in datasets with more 
melanoma cases and even more lenient p-value thresholds. 
Nonetheless, most of the developed GRSs include only 
genome-wide significant SNPs, as they largely increase the 
chance of integrating true positive signals, several studies 
have shown that GRSs including millions of SNPs far 
outperform GRSs build on the most strongly association SNPs 
showing substantially greater predictive power [17]. 
Validation of the results in larger populations, as well as 
Southern European populations is needed. 
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