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TOPOLOGICAL RADICALS OF SEMICROSSED PRODUCTS

G. ANDREOLAS, M. ANOUSSIS, AND C. MAGIATIS

Abstract. We characterize the hypocompact radical of a semicrossed product
in terms of properties of the dynamical system. We show that an element A of
a semicrossed product is in the hypocompact radical if and only if the Fourier
coefficients of A vanish on the closure of the recurrent points and the 0-Fourier
coefficient vanishes also on the largest perfect subset of X.

1. Introduction and Preliminaries

Let B be a Banach algebra. An element a of B is said to be compact if the map
Ma,a : B → B, x 7→ axa is compact. Following Shulman and Turovskii [17, 3.2] we
will call a Banach algebra B hypocompact if any nonzero quotient B/J by a closed
ideal J contains a nonzero compact element. We will say that an ideal J of a
Banach algebra B is hypocompact if it is hypocompact as an algebra. Shulman and
Turovskii have proved that any Banach algebra B has a largest hypocompact ideal
[17, Corollary 3.10]. This ideal is closed and is called the hypocompact radical of
B. We will denote it by Bhc.

The hypocompact radical of Banach algebras was studied within the frame-
work of the theory of topological radicals [17, 18]. This theory originated with
Dixon [6] and was further developed by Shulman and Turovskii in a series of pa-
pers [13, 14, 15, 17, 18] and by Kissin, Shulman and Turovskii [16]. The theory of
topological radicals has applications to various problems of Operator Theory and
Banach algebras.

It follows from [4, Lemma 8.2], that the hypocompact radical contains the ideal
generated by the compact elements. If X is a Banach space, we shall denote by
B(X ) the Banach algebra of all bounded linear operators on X and by K(X ) the
Banach subalgebra of all compact operators on X . Vala has shown in [19] that an
element a ∈ B(X ) is a compact element if and only if a ∈ K(X ). It follows that if H
is a separable Hilbert space, the hypocompact radical of B(H) is K(H). Indeed, the
ideal K(H) is the only proper ideal of B(H) while the Calkin algebra B(H)/K(H)
does not have any non-zero compact element [8, section 5].

Shulman and Turovskii observe in [17, p. 298] that there exist Banach spaces X ,
such that the hypocompact radical B(X )hc of B(X ) contains all the weakly compact
operators and contains strictly the ideal of compact operators K(X ).

Argyros and Haydon constructed in [3] a Banach space X such that every oper-
ator in B(X ) is a scalar multiple of the identity plus a compact operator. It follows
that B(X )/K(X ) is finite-dimensional and hence the hypocompact radical of B(X )
coincides with B(X ).
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A nest N on a Hilbert space H is a totally ordered family of closed subspaces of
H containing {0} and H, which is closed under intersection and closed span. If N is
a nest on a Hilbert spaceH, the nest algebra associated to N is the (non selfadjoint)
algebra of all operators T ∈ B(H) which leave each member of N invariant. The
hypocompact radical of a nest algebra was characterized in [1].

We recall the construction of the semicrossed product we will consider in this
work. Let X be a locally compact metrizable space and φ : X → X a home-
omorphism. The pair (X,φ) is called a dynamical system. An action of Z+

on C0(X) by isometric ∗-automorphisms αn, n ∈ Z+ is obtained by defining
αn(f) = f ◦ φn. We write the elements of the Banach space ℓ1(Z+, C0(X)) as
formal series A =

∑

n∈Z+
Unfn with the norm given by ‖A‖1 =

∑

n∈Z+
‖fn‖C0(X).

The multiplication on ℓ1(Z+, C0(X)) is defined by setting

UnfUmg = Un+m(αm(f)g)

and extending by linearity and continuity. With this multiplication, ℓ1(Z+, C0(X))
is a Banach algebra.

The Banach algebra ℓ1(Z+, C0(X)) can be faithfully represented as a (concrete)
operator algebra on a Hilbert space. This is achieved by assuming a faithful action
of C0(X) on a Hilbert space H0. Then, we can define a faithful contractive repre-
sentation π of ℓ1(Z+, C0(X)) on the Hilbert space H = H0 ⊗ ℓ2(Z+) by defining
π(Unf) as

π(Unf)(ξ ⊗ ek) = αk(f)ξ ⊗ ek+n.

The semicrossed product C0(X)×φZ+ is the closure of the image of ℓ1(Z+, C0(X))
in B(H) in the representation just defined, where B(H) is the algebra of bounded
linear operators on H. Note that the semicrossed product is in fact independent
of the faithful action of C0(X) on H0 (up to isometric isomorphism) [7]. We will
denote the semicrossed product C0(X) ×φ Z+ by A and an element π(Unf) of A
by Unf to simplify the notation. We refer to [12, 7, 5], for more information about
the semicrossed product.

For A =
∑

n∈Z+
Unfn ∈ ℓ1(Z+, C0(X)), we call fn ≡ En(A) the nth Fourier

coefficient of A. The maps En : ℓ1(Z+, C0(X)) → C0(X) are contractive in the
(operator) norm of A, and therefore they extend to contractions En : A → C0(X).
An element A of the semicrossed product A is 0 if and only if En(A) = 0 for
all n ∈ Z+ and thus A is completely determined by its Fourier coefficients. We
will denote A by the formal series A =

∑

n∈Z+
Unfn, where fn = En(A). Note

however that the series
∑

n∈Z+
Unfn does not in general converge to A [12, II.9,

IV.2 Remark].
In this paper we characterize the hypocompact radical of a semicrossed product

in terms of properties of the dynamical system. We show that an element A of
a semicrossed product is in the hypocompact radical if and only if the Fourier
coefficients of A vanish on the closure of the recurrent points and the 0-Fourier
coefficient vanishes also on the largest perfect subset of X .

2. The hypocompact radical

To obtain the characterization of the hypocompact radical of a semicrossed prod-
uct we recall the following properties of the hypocompact radical of a Banach al-
gebra proved by Shulman and Turovskii in [17].
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Theorem 2.1. Let B be a Banach algebra and I a closed ideal of B.

(1) If B is hypocompact, then I and B/I are hypocompact [17, Corollary 3.9].
(2) If I and B/I are hypocompact, then B is hypocompact [17, Corollary 3.9].
(3) Let p : B → B/I be the quotient map. Then p(Bhc) ⊆ (B/I)hc[17, Corollary

3.13].

Let X be a locally compact metrizable space. We shall use the characterization
of the hypocompact radical of C0(X) which may be obtained using [18, Corollary
8.19 & Theorem 8.22]. We provide a proof for completeness.

A point x ∈ X is called accumulation point of X , if x ∈ X \ {x}. The set of the
accumulation points of X is denoted Xa. If x ∈ X \Xa, then the point x is called
an isolated point. A subset Y of a topological space is said to be dense in itself, if
it contains no isolated points. If Y is closed and dense in itself, it is said to be a
perfect set. The set Y is said to be a scattered set, if it does not contain dense in
themselves subsets.

It is well known that every space is the disjoint union of a perfect and a scattered
one, and this decomposition is unique [9, Theorem 3, p 79]. IfX is a locally compact
metrizable space, we write X = Xp ∪Xs where Xp is the perfect set and Xs is the
scattered set.

Theorem 2.2. If X is a locally compact metrizable space, then

C0(X)hc = {f ∈ C0(X) : f(Xp) = {0}} .

Proof. Let I be the ideal {f ∈ C0(X) : f(Xp) = {0}} of C0(X). The ideal I is
isomorphic to C0(Xs). We show that every non-zero quotient of I by a closed ideal
has a non-zero compact element. Let J be a closed ideal of I and S a closed subset
of Xs such that J = {f ∈ C0(Xs) : f(S) = {0}}. The quotient algebra I/J
is isomorphic to C0(S). Hence it suffices to prove that the algebra C0(S) has a
non-zero compact element. Since the set S is contained in Xs it is scattered, and it
contains an isolated point y. Let χ{y} be the characteristic function of {y}. Then,
the operator Mχ{y},χ{y}

: C0(S) → C0(S) is a rank-one operator and hence, χ{y} is

a compact element of the algebra C0(S). It follows that I ⊆ C0(X)hc.
We show now that I = C0(X)hc. Assuming that I 6= C0(X)hc we will prove

that the quotient algebra C0(X)hc/I contains no non-zero compact elements. This
implies that I = C0(X)hc by Theorem 2.1. Let f ∈ C0(X)hc \ I. There exists
xp ∈ Xp, such that f(xp) 6= 0 and an open neighborhood Up of xp, such that

|f(x)| >
|f(xp)|

2
, ∀x ∈ Up.

Consider a sequence of points {xi}i∈N ⊆ Up∩Xp and a sequence of open subsets
{Vi}i∈N of X , such that xi ∈ Vi ⊆ Up and Vi ∩ Vj = ∅ for i 6= j.

By Urysohn’s lemma there exists a sequence of functions {hi}i∈N such that
hi(xi) = 1 and hi(X \ Vi) = {0}. Let q : C0(X)hc → C0(X)hc/I be the quo-
tient map. We estimate for i 6= j:

‖Mq(f),q(f)(q(hi))−Mq(f),q(f)(q(hj))‖ = inf
g∈I

‖f2hi − f2hj + g‖

≥ inf
g∈I

|(f2hi − f2hj + g)(xi)|

= |f2(xi)| >
|f(xp)|2

4
.
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Hence, the sequence {Mq(f),q(f)(q(hi))}i∈N has no convergent subsequence, which
implies that the element q(f) is non compact. �

Recall that a set Y ⊆ X is called wandering if the sets φ−1(Y ), φ−2(Y ), ... are
pairwise disjoint. Since φ is a homeomorphism, this condition is equivalent to the
condition that φm(Y ) ∩ φn(Y ) = ∅, for all m,n ∈ Z+,m 6= n. A point x ∈ X is
called wandering if it possesses an open wandering neighborhood. Otherwise it is
called non wandering. We will denote by Xw the set of wandering points of X . It
is clear that Xw is the the union of all open wandering subsets of X .

Let X1 be the set of non wandering points of X and set φ1 = φ|X1
the restriction

of φ to X1. We thus obtain a dynamical system (X1, φ1). Define by transfinite
recursion a family (Xγ , φγ) of dynamical systems. If (Xγ , φγ) is defined, then
set Xγ+1 the set of non wandering points of the dynamical system (Xγ , φγ) and
φγ+1 = φ|Xγ+1. If γ is a limit ordinal and the systems (Xβ, φβ) have been defined
for all β < γ, set Xγ = ∩β<γXβ and φγ = φ|Xγ

the restriction of φ to Xγ . This
process must stop at some ordinal γ0, since the cardinality of the family cannot
exceed the cardinality of the power set of X . The following is [7, Lemma 13].

Proposition 2.3. The set Xγ0
is the closure of the set of recurrent points Xr of

the system (X,φ).

If γ is an ordinal γ ≤ γ0, we will denote by Iγ the ideal

{A ∈ A : E0(A) = 0, En(A)(Xγ) = {0}, ∀n ∈ Z+, n ≥ 1} .

The proof of the following lemma is straightforward, and is omitted.

Lemma 2.4. If γ is a limit ordinal, then Iγ = ∪β<γIβ.

It is known that the ideal generated by the compact elements of A is contained
in the hypocompact radical [4]. We will need the following characterization of this
ideal which is proved in [2].

Theorem 2.5. The ideal generated by the compact elements of A is the set

{A ∈ A | En(A)(X \Xw) = {0}, ∀n ∈ Z+ and E0(A)(Xa) = {0}}.

The following is the main result of the paper.

Theorem 2.6. The hypocompact radical Ahc of A is equal to

I = {A ∈ A : E0(A)(Xp) = 0, En(A)(Xγ0
) = {0}, ∀n ∈ Z+} .

Proof. 1st step

We shall prove that I is contained in Ahc. We first prove that Iγ0
is contained

in Ahc. Assume the contrary.
It follows from Theorem 2.5 that I1 is contained in the ideal generated by the

compact elements. The hypocompact radical contains the ideal generated by the
compact elements [4], and hence I1 is contained in Ahc.

Let β be the least ordinal β ≤ γ0 such that Iβ is not contained in Ahc. We show
that β is a successor. If not, since Iγ ⊆ Ahc for all γ < β, we obtain from Lemma

2.4 that Iβ = ∪γ<βIγ ⊆ Ahc, which is absurde. Hence, β is a successor.
We are going to prove that Iβ is a hypocompact algebra. Consider the alge-

bra Iβ/Iβ−1. It suffices to show that Iβ/Iβ−1 is hypocompact, since the class of
hypocompact algebras is closed under extensions and the ideal Iβ−1 is hypocompact
(Theorem 2.1).
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We show that the algebra Iβ/Iβ−1 is generated by the compact elements it
contains and hence is a hypocompact algebra by [4].

Let A ∈ Iβ . It follows from the condition defining Iβ , that UnEn(A) ∈ Iβ , for
all n ∈ Z+, n ≥ 1. Hence, it suffices to show that the image of UnEn(A) under the
natural map π : Iβ → Iβ/Iβ−1 is contained in the ideal generated by the compact
elements of Iβ/Iβ−1. It suffices to see this for an element of Iβ of the form Unf
with f compactly supported. It follows from [7, Lemma 14], that f can be written
as a finite sum f =

∑

fi where each fi has compact support contained in an open
set Vi such that Vi∩Xβ−1 is wandering for the system (Xβ−1, φβ−1) and Unfi ∈ Iβ ,
for all i.

Hence, it suffices to prove that π(Unf) is a compact element, where f has com-
pact support contained in an open set V , such that V ∩Xβ−1 is wandering for the
system (Xβ−1, φβ−1).

We calculate:

Unf(
∑

Umgm)Unf =
∑

U2n+mf ◦ φm+ngm ◦ φnf,

for
∑

Umgm ∈ Iβ .
Since n ≥ 1, we have n+m ≥ 1, for all m ∈ Z+, and consequently f ◦φm+nf = 0

on Xβ−1, for all m ∈ Z+ since V ∩Xβ−1 is wandering. Hence, Unf(Umgm)Unf =
U2n+mf ◦ φm+ngm ◦ φnf ∈ Iβ−1.

Thus, π(Unf) is a compact element of Iβ/Iβ−1, and Iβ is a hypocompact ideal
which is a contradiction. We conclude that Iγ0

is contained in Ahc. Now, I/Iγ0
is

isomorphic to {f ∈ C0(X) : f(Xp ∪ Xγ0
) = {0}} which is a hypocompact algebra

by Theorem 2.2. It follows from Theorem 2.1 that I is a hypocompact ideal, and
hence it is contained in Ahc.

2nd step

We show now that Ahc = I. We will suppose that I ( Ahc and we will prove
that the quotient algebra Ahc/I, contains no non-zero compact elements. This
implies that Ahc = I by Theorem 2.1.

Let A ∈ Ahc \ I and set Em(A) = fm, for all m ∈ Z+. Since the map E0 is a
continuous homomorphism from A onto C0(X), it follows from Theorem 2.1 that
E0(Ahc) ⊆ C0(X)hc and hence by Theorem 2.2 we have E0(A)(Xp) = {0}.

Since A /∈ I, it follows from Proposition 2.3 that there exists m ∈ Z+ such that
fm(Xr) 6= {0}. We set

m0 = min{m ∈ Z+ : fm(Xr) 6= {0}},

and we consider x0 ∈ Xr such that fm0
(x0) 6= 0. There exists an open neighborhood

U0 of x0 such that

|fm0
(x)| >

|fm0
(x0)|

2
, ∀x ∈ U0.(1)

Since x0 is a recurrent point, there exist an open neighborhood V0 of x0 such
that V0 ⊆ U0 and a strictly increasing sequence {ni}∞i=1 ⊆ N such that

φni(x0) ∈ V0 , ∀i ∈ N.(2)

Choosing, if necessary, a subsequence, we may assume that n1 > m0 and ni+1 >
3ni. By Urysohn’s lemma there is u0 ∈ C0(X) such that u0(x) = 1, for all x ∈ V0

and u0(X \ U0) = {0}. We thus have

u0(x0) = u0 ◦ φ
ni(x0) = 1 , ∀i ∈ N.(3)
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By [10, Proposition 2.1], we have that Um0fm0
∈ Ahc, (see also [7, p. 133]).

Hence, if we consider the sequence {Bi}∞i=1, where

Bi = (Uni+1−ni−m0u0 ◦ φ
−m0)(Um0fm0

)(Uni−m0u0 ◦ φ
−m0)

= Uni+1−m0u0 ◦ φ
ni−m0fm0

◦ φni−m0u0 ◦ φ
−m0 ,

it follows that {Bi}∞i=1 ⊆ Ahc.
Let π : Ahc → Ahc/I be the quotient map. To prove that the element π(A) is not

a compact element ofAhc/I, we will prove that the sequence {Mπ(A),π(A)(π(Bi))}i∈N

has no Cauchy subsequence.
Let k, l ∈ N with k > l. If r < (nk+1 −m0), the rth Fourier coefficient of Bk is

0, and this also holds for MA,A(Bk). It follows that

Enl+1+m0
(MA,A(Bk)) = 0,

since nl+1 +m0 < 3nl+1 −m0 < nk+1 −m0.
Therefore, it follows that

‖Mπ(A),π(A)(π(Bk −Bl))‖ = inf
N∈I

‖MA,A(Bk −Bl) +N‖

≥ inf
N∈I

‖Enl+1+m0
(MA,A(Bk −Bl) +N) ‖

≥ inf
N∈I

|Enl+1+m0
(MA,A(Bl) +N) (x0)|

= |Enl+1+m0
(MA,A(Bl))(x0)|

since x0 ∈ Xr and thus, for all N ∈ I, we have Enl+1+m0
(N)(x0) = 0.

We calculate |Enl+1+m0
(MA,A(Bl))(x0)|.

We have

|Enl+1+m0
(MA,A(Bl))(x0)| =

∣

∣

∣

∣

∣

2m0
∑

n=0

(f2m0−n ◦ φnl+1+n−m0u0 ◦ φ
nl+n−m0fm0

◦ φnl+n−m0u0 ◦ φ
n−m0fn)(x0)

∣

∣

∣

∣

∣

.

For n < m0 we have fn(x0) = 0. Also, for n > m0 and n ≤ 2m0 we have
f2m0−n ◦ φnl+1+n−m0(x0) = 0, since 2m0 − n < m0 and φnl+1+n−m0(x0) ∈ Xr.

Finally,

|Enl+1+m0
(MA,A(Bl))(x0)| =

|(fm0
◦ φnl+1u0 ◦ φ

nlfm0
◦ φnlu0fm0

)(x0)| ≥
|f3

m0
(x0)|

8
.

It follows that the sequence {Mπ(A),π(A)(π(Bi))}i∈N contains no Cauchy subse-
quence, and hence π(A) is not a compact element of Ahc/I.

�

3. the scattered radical

The following are taken from [18, 8.2]. A Banach algebra is called scattered if
the spectrum of every element a ∈ A is finite or countable. A Banach algebra A
has a largest scattered ideal denoted by Rs(A). This ideal is closed and is called
the scattered radical of A [18, Theorem 8.10].

Since all C∗-algebras are semisimple and their quotients are again C∗-algebras,
it follows from [18, Theorem 8.22] that C0(X)hc = C0(X)s.



TOPOLOGICAL RADICALS OF SEMICROSSED PRODUCTS 7

Donsig, Katavolos and Manousos proved in [7] a characterization of the Jacobson
radical for more general semicrossed products. The next theorem follows from their
result [7, Theorem 18].

Theorem 3.1. The Jacobson radical of A coincides with the set of operators

{A ∈ A | En(A)(Xr) = {0}, ∀n ∈ Z+ and E0(A) = 0}.

It follows from Theorem 2.6 and the above characterization, that the Jacobson
radical of A is contained in Ahc. Hence, from [18, Theorem 8.15] we obtain the
following.

Theorem 3.2.

Ahc = As.
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