Electrical properties of Mn-Ni-Zn spinel oxides alloys

<u>D. Katerinopoulou</u>, C. Papakonstantinopoulos, E. C. P. Smits, P. Zalar, G. H. Gelinck, G. Kiriakidis and E. Iliopoulos

Outline

Type/Characteristics	Active material	T range (°C)	Sensitivity	Accuracy
Thermocouples	Dissimilar metals	-270 to +2300	~1-80 µV/°C	0.5 - 5
RTDs	Platinum	-200 to +650	~ 0.4%/°C	0.001 - 1
ICs	Si/Ge	-55 to +150	7.3%/°C (Si)	1
Thermistors	Ceramic	-50 to +1000	-2%/°C to -6%/°C	0.001 - 1

Source: J. Am. Ceram. Soc., 92 [5] 967–983 (2009)

Thermistor : Thermal + Resistor

(Mn1.71Ni0.45Co0.15Cu0.45Zn0.24O4)

Understand the transport mechanism of a quaternary system:

Mn – Zn – Ni - O

What is Spinel oxide?

General formula: AB2O4

- A²⁺ = divalent cation
- B³⁺ = trivalent cation

Types:

a) Normal spinels

(A²⁺)[B³⁺]2O4

- b) Inverse spinels
 - (B³⁺)[A²⁺B³⁺]O₄

What is Spinel oxide?

General formula: AB2O4

- A²⁺ = divalent cation
- B³⁺ = trivalent cation

- Types:
- a) Normal spinels

(A²⁺)[B³⁺]2O4

b) Inverse spinels

(B³⁺)[A²⁺B³⁺]O₄

What is Spinel oxide?

General formula: AB2O4

- A²⁺ = divalent cation
- B³⁺ = trivalent cation

Conduction is attributed to the mixed valence states of different cations \rightarrow electrical properties are affected by cation distribution in tetrahedral & octahedral sites

a) Normal spinels (A²⁺)[B³⁺]₂O₄

b) Inverse spinels
(B³⁺)[A²⁺B³⁺]O₄

Types:

FORTH

Crystal structure of Spinel

• Crystal structure: **Cubic** / Tetragonal (Jahn-Teller distortion)

Cubic Tetragonal b b С С а а a = b ≠ c a = b = c

• Mn-based spinel oxides with different compositions.

Mn2.5-xZn0.5NixO4						
X	0	0.25	0.5	0.75	1.0	1.25

• Classical solid state reaction method, as followed:

	Air cooled
Powder mixing Calcination Pellets Sintering	
	Quenched

Diameters: 5 x 1 mm Contacts: Au (both sides)

Structural characterization

Ni=1.25 Ni=1.0 Ni=0.75 Ni=0.5 Ni=0.25 Ni=0 20 30 10 40 50 60 70 2Theta (°)

Mn2.5-xZn0.5NixO4

x	Lattice parameters	Space group	
1.25	a = b = c = 8.34Å	Fd-3m	
1.0	a = b = c = 8.34Å	Fd-3m	
0.75	a = b = c = 8.35Å	Fd-3m	
0.5	Mixed phase	-	
0.25	Mixed phase	-	
0	a = b = 5.72Å c = 9.26Å	I41/amd	

Ref. code: 00-036-0083 (cubic) Ref. code: 00-024-1133 (tetragonal)

Measurements settings: Set up: oil bath (home made) V range: ± 1.2V T range: RT up to 240°C

- No hysteresis back and front at applied voltages.
- Scale with the T.
- No deviations upon heating and cooling.
- As the T \uparrow the R $\downarrow \rightarrow$ **NTC** behavior.

Temperature dependence of resistance:

$$\mathbf{R} = R_0 e^{\left(\frac{E_a}{k_B T}\right)}$$

 $\frac{E_a}{k_B} = B \rightarrow \text{material constant}$ For bulk NTCs ceramics: 2000 K

0.0033

0.0030

450

500

Small polaron hopping

$$\rho(\mathbf{T}) = \mathbf{C}T^a exp\left(-\frac{T_0}{T}\right)^{\rho}$$

- VRH \rightarrow 0.25 < ρ < 0.5
- NNH $\rightarrow \rho = \alpha = 1$

Small polaron hopping

$$\rho(\mathbf{T}) = \mathbf{C}T^a exp\left(-\frac{T_0}{T}\right)^{\rho}$$

- VRH \rightarrow 0.25 < ρ < 0.5
- NNH $\rightarrow \rho = \alpha = 1$

Shklovskii - Efros

$$W = \frac{1}{T} \frac{d(\ln \rho)}{d(T^{-1})} \approx -\rho \left(\frac{T_0}{T}\right)^{\rho}$$

Conclusions

- ✓ Ni = 0 tetragonal, Ni ≥ 1.0 cubic, 0 < Ni < 1.0 mixed phase
- ✓ NTC behavior
- ✓ No hysteresis
- ✓ High B Coefficient → high sensitivity
- $\checkmark\,$ Air cooled and quenched same trend

Future plans

- Separation bulk & grain boundaries contribution to the conduction
- Theoretical study (electrons configuration etc.)
- Optical properties (Raman spectroscopy)
- Print on flexible substrates

Acknowledgments

Thank you for your attention

European Union European Social Fund **Operational Programme Human Resources Development, Education and Lifelong Learning**

