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Abstract

The aim of this thesis is to develop novel approaches for inferring relations and hidden
similarities among the actors of complex systems that consist of various types of devices
and users, as well as approaches for assigning content to them. In order to accomplish this,
the developed methods take into account the interdependency and the various relationships
of the multiple types of actors found in these systems. These approaches rely on tools and
techniques from the fields of complex networks and social network analysis. Such systems
are commonly observed in current interconnected environments, such as Smart Cities, and
are expected to become even more prevalent in the future. These systems combine the
operation of large infrastructure with the actions and requirements of people that have
access to it. For the unobstructed operation of such topologies, network operators need to
be able to monitor the generated data, detect possible redundancies, discover similar regions.
Moreover, people using such environments need to have fast access to data and learn about
relevant applications that keep their perceived quality of experience high. These entities
(people, devices, data measurements) being the actors of such complex systems, are related
in multiple ways, forming multi-layer complex networks, and highlighting the need to employ
proper tools for their analysis.

Aiming to provide a framework for achieving the aforementioned goals, this thesis fo-
cuses on the problems of community detection and resource allocation in interconnected and
interdependent environments. The identification of important problems observed in these
areas and the development of suitable solutions can aid in identifying groups of similar
devices operating within the interconnected environment, groups of similar users, and also
distinguish the most influential ones in terms of information diffusion.

In particular, in order to deal with the problems of detecting clusters of generated data
from the infrastructure and also communities of people in Online Social Networks (OSNs)
existing in interdependent and complex systems, a novel community detection algorithm is
developed. A new framework is presented for mapping the problem of data clustering to a
community detection one. The proposed algorithm manages to discover meaningful clusters

of data, outperforming some traditional data clustering approaches in terms of accuracy



and also detect communities in OSNs resulting in high modularity scores. Inspired by
the well-known Girvan-Newman (GN) algorithm, it manages to perform many operations
faster, leveraging on network embedding in hyperbolic space and by introducing a new
approximative network metric for estimating the edge betweenness centrality. Combined
with the removal of more edges per iteration instead of a single one as in the case of GN
and coupled with a graph database, it marks a more scalable approach than GN for large
networks that are oftentimes observed in realistic complex systems. The evaluation process

on both synthetic and real data, showcases the benefits of adopting the proposed approach.

The people that use the facilities of such interdependent systems, interact with each
other by using OSNs. Focusing on these social relations and studying their interactions can
reveal the manners in which information flows throughout the network. The monitoring of
the information diffusion across the network arises as one of the most crucial aspects for
estimating the possible outcome of seeding sets of users with units of information (recom-
mendations). Considering that each user displays a relevance score towards each available
item for recommendation, the problem of assigning recommendations to users is formed as
a relevance maximization one. Contrary to other works, in this approach, the tolerance of
a user to different levels of recommendations is considered as a major factor for the devel-
opment of the recommender system for the first time. Complex constraints on the amount
of duplicate and distinct recommendations are imposed per user. The maximization prob-
lem is proven to be computationally difficult, as it consists of an NP-hard problem with
added constraints. In order to overcome this computational obstacle, the problem is divided
into two sub-problems treated with greedy algorithms, and their combination produces high

relevance scores, while respecting all the imposed constraints.

Aspiring to provide users with fast access to data that increases the users’ quality of
experience, various schemes for caching at the network edge by utilizing limited memory
space in the User Equipment (UE), are examined . Knowledge obtained from recommender
systems about each user’s preferences can be applied in order to predict future requests. In
order to decide the optimal content to cache in each UE, the problem of content placement
is formulated as a cache hit maximization one. Algorithms that employ either the full set
or only a portion of the set of users as caches, while caching contents either proactively

or reactively, are examined and compared in terms of the overall cache hit ratio obtained.



The increased obtained cache-hit ratio proves the benefits of utilizing caching at the UEs
instead of just caching at special devices. Also, from these comparisons, the need to take
into consideration the probabilities of request for more than one’s self in order to design
more accurate caching schemes is highlighted. Finally, leveraging users’ mobility and by
taking into account the impact that recommendations have on users’ requests and the ability
of dedicated devices and selected users’ UEs to cache and offload content, a caching and
recommendation scheme is developed. Modeling the perceived user’s Quality of Experience
(QoE) as a function of the delay experienced by the user for retrieving a requested item
and the relevance of the recommended items to her preferences, the problem is formulated
as QoE maximization one. Knowing that this problem is NP-hard, a heuristic method is
developed and compared to an approximative algorithm showcasing its benefits in terms of
balancing the achieved QoE score for each user and the execution time needed, marking it
as a computationally feasible approach able to yield results of high QoE.

In the following, the proposed methods are presented, alongside with a discussion on the
main contributions of this thesis. Then, each Chapter focuses on one of the aforementioned
problems, presenting related work on the field and introducing the developed solutions to-

gether with some indicative evaluation that justifies the benefits of their adoption.

Keywords: Community detection, Resource assignment, Complex networks, Information

diffusion, Edge caching, Online social networks, Recommender systems



Abstract in Greek
Mepidnyn Zra Erinvika

H mapovoa duotpifn otidlel oty ovaTTuEN KOLVOTOUMY TEYVIKMV UE OKOTO TV OVOK(-
AP TOV OXECEWV KAL TOV KPUPDV GUOYETIOEMV UETAED TOV OVIOTHTWV oUVOETWV oLUOTNUA-
V. Ta GLOTNUOTO AUTA ATOTELOVVTOL 0TTO SLAPOPOVG THITOVG CUOKEVMV GAAGL KO 0VOPMITOVG,
Axopo m StatpiPn 0TLALEL KoL 0TV avaOEon TOPMVY OTIG OVIOTNTEG EVOG GUVOETOV GUOTNUOTOG,
T va emtevyBolv autol oL 6ToyoL, oL TPOTELVOUEVES LEBOSOL AauBdvov vrtdyLy Tnv aAIAeEGpP-
TNON KAl TLG TOLKIAEG OYE0ELG UETOED TWV TOAMV SLUPOPETLKMV OVTOTNTWYV. AUTEG oL uébodot
BaolZovtal og TEXVIKEG Kal EPYAAELO OITO TOUG TOUELG TNG DEWPLOG YPAPNUATMVY KaL THG Va-
AUONG KOLV@VIK®OV SIKTOWV. SUOTNUOTO OOV GUTE TTOU UEAETOVTAL O GUTHV T SLotpLpn, Tapa-
TNPOVVIOL 6& OVYYPOVE SLAoUVSESEUEVO TTEPLBAMAOVTO OTTWG OVTO TTOV artoTehovv oL 'EEumveg
TIOMELG KO OVAIEVETOL VOL YIVOUV 0KOUG, TTEPLOCOTEPQL OTO UEAAOV. AVTA TO, GUOTNUGTC CUVOVE-
Touv T AelToupyio ueydhwy vIrodoudy Ue TIG EVEPYELEG KAl TIG OTTCULTNOELS TWV avOpOImV Tou
ATOKTOUV TTPOOPaon o8 auTteS. [LoL TV OVEUTOSLOTI AELTOVPYLC TETOLWYV TOTOAOYLAOV, OL SLOL(EL-
PLOTEG TOU SIKTVOU TTPETEL VO, glval 08 BE0 Vo, emOmPolv Ta, deSOUEVOL TTOV TOPUYOVTAL, VO,
evTomiLovy mOAVMG TEPLTTO VMKO KaL VO GVOKAADTTOUY TOPOUOLEG TEPLOYES. AKOUa, oL G-
OpWITOL TOV YPNCLUOTTOLOVY TETOLO. TEPLRGANOVTO, XPELALETOL VO EXOUV YPYOPY] TPOCRAON O
dedouéva alld Kat vo €xovv T SuvaTOTNTO Vo LaOAVOUY OYETIKA LE EQUPUOYEG TTOV Do Kpa-
TINOOLVY TNV TOLOTITA TNG EUTTELPLAG TTOV ATTOAAUBAVOUY 08 VYNAQ eTTLITES . AUTEG OL OVTOTNTEG
(AvOPWITOL, CUOKEVEG, UETPTOELG) ELVAL TO. OTOLYELOL TTOV AITOTEAOVV Ta 0VVOETA GUOTHUATA KOL
0yYeTLLOVTaL HETAED TOVG UE TOAAOUG TPOTOVG, SNULOVPYMVTOG TTOAV-ENLTEd 0L 0VVOETO SLKTUA TO.

0TTOLaL YPELATOVTOL TA KATAMNAA EPYARELD VL0 TV OVAAVOT) TOUC.

Me oKxomd ™ dnuovpyla evog Thaoiov uebddwv ou Oo LKAVOTTOLEL TOVG TUPOTAV® OTO-
YOUG, auth 1 StatpLfn £0TLALEL 0T TPOPANUATO TNG AVIYVEVONG KOLVOTHTMV KOL TNG avabeong
TOpwv 0g aAlnhocEaptdueva Kor Staouvdedepivo mepipdirovra. H avakdivyn onuavikov
TPOPANUATOV OTIG TEPLOYEG OUTEG KOL 1] AVAITTUEN KATGAAMA®Y AMOoEwV wtopet va. fon0noet
OTNV AVOKGAYT OUASMY OITO TOPOITANOLEG CUOKEVEG OL OTTOLEG AELTOUPYOUV OF QUTA. TA. TTEPL-
BdihovTa, ouddwv artd TapdUoLoug XpNoTeg Kabhg Kol va Egxwploel TOUG Lo EMSPUOTLKOVG
a6 QUTOVG OTTO TH OKOTILA TG SLAYVONG TANPOPOPLAG.

T tov okomo g eE0peong GLOTAdWV ATTO SESOUEVH TPOEPYOUEVOL OTTO TV VITOSOUT TOV

TEPPBAMOVTOG GALG KOL THG VOKAAYNG KOLVOTHTWV aTOimv o8 Aladiktuakd Kowvmvikd Ai-



ktva (AKA, Online Social Networks) ta omola. amotehohv HEPOG TETOLWV GUOTNUATOYV, TOPOV-
OLaZETOL OAYOPLBIOG AV VEVONG KOLVOTITWV TTOVU £XeL OUVOEDEL He KOUTAUAANAY BAON-YPAQO YLa.
™ AerTovpyla Tov. AKOUX, TOPOVOLATETOL £VOL VEO TAOLOLO UE OKOTO T UETOTPOTTY] €VOG TPO-
BApatog eEelipeong ovoTadmY og TPOPANUC AV VEVONG KOWVOTHTWV. O TPOTELVOUEVOSG OAYO-
PLOIOG KATAPEPVEL VOL EVTOTILLEL OVOTASEG ATTO SESOUEVA TTOU £X0VV VO, VTEPKEPALOVTAG OF
aKpifela Topadootakeg HeBOSOUG YL TH CUOTOSOTONOY), KABMDG Kol VO aviyveDeEL KovOTNTeg
oe AKA 7ov 081yolv og vmiég Tiaég apBpwtdtnTag. O aAyoplOuog avTdg elval EUTVEVOUEVOG
amd TV Yvwotod alyoplBuo aviyvevong kowottmv twv Girvan-Newman (GN) kot KOTOQEPVEL
VoL OMOKANPMOVEL YPIYOPOTEPX UPKETEG AeLTOVPYiEG PAOLLOUEVOG GTNV EVOOUATMON TOU SIKTUOU
OTOV VIEPPOILKO YEWUETPLKO YDPO KOL YPNOLUOTOLDVTOG U TTPOOEYYLOTUKY UETPLKT] YLOL TNV
EKTIUNON TNG KEVIPLKOTNTOG EVOLOUESLKOTITAG OKUNG. Z€ OUVOVOOUO UE TNV OPOLPEDT) OKUMDV
Katd d¢oueg, avti yio povadikig omwg otov GN KoL KEvovTag xpnon wog paong dedouévaov-
ypago (graph database), aoTeAel oL O PLOCLUY TPOOEYYLOT VL0 Heyaha SikTvo, artd 6Tt 0 GN.
Méom g aELoAdYNoNG TOV alyopLOIOY 08 TPAYUATIKG KoL GUVOETIKG SES0UEVH YIVOVTOL 0POTa

TOL TAEOVEKTNUATA TG TTPOTELVOUEVTG UeBOSOL.

Meketdvtag Tig GAAMAETIOPAOELG HETAED TwV YPNOTMOV TWV SLaouvdedeuevmv meptPailo-
VIWV TTOV TPCYUGTOTOLOUVTOL (e T SLapecorafnon tov Kowwvikdv AlKTiwy, To THtmuo g
neELETNG TG SLAd0ON G TG TANPOPOPLAG EVTOG TOV KOLVmVIKOD StkTiov Eeywpllel wg Eva amod Ta.
TAEOV ONUAVTIKG VL0 TNV EKTLUNOT TNG SLOS00NG CUOTACEMY UE GPETNPLO OPLOUEVOVG KOTOA-
ANAo. eTAEYUEVOUG Y PNOTES. OLwPDVTOG OTL KAOE XPNOTNG TOPOVOLALEL £VOL TTOOO CUVAPELOG UE
KG.O0e TOUVO AVTIKELUEVO VL0, GVOTAON, TO TTPOPANUC. TNG 0VAOEONG CUOTAOEWY LOVTELOTTOLELTOL
WG £V, TPOPANUA UEYLOTOTOLNONG TNG OUVAPELAG AUTHG. Ze 0vTLBEDT [LE TTPONYOUUEVES SOUAELES,
YL TTPMT POPA, 0 OERACIOG TNG AVOYTIG TOV YPNOTY 08 GUOTACELG 0TOTELEL KOUPLKO omueto. Emi-
BdAhovToL 0UVOETOL TEPLOPLOUOL OVEL XPTOTH], TOOO WG TTPOG TO TANBOG TOV EXAVOLAUBOVOUEVOV
OUOTACEMV OV OVTLKELIEVO OO0 KOl G TTPOG TO TANO0G TWV SLAPOPETIKMV AVTLKELUEVMV TTOU
uopov va. Tpotafovv. To TpdfANUe cuTd AmodelkviETOL OTL ELVOL VTTOAOYLOTLKG SVOKOO, KO-
g amoteleltan Ao £va TPOBANUA TTOV avIKEL 0TIV KhAoT tpofAnudtmv NP-hard pe emumhéov
TEPLOPLOUOVE. TLaL VO AVTLUETMITLOTEL ALUTH 1) VITOMOYLOTLKT] SUGKOMLAL, TO TPOBANUA X WPLLETOL 08
800 VITO-TPOPANUATE TA OTTOLO, ETAVOVTOL PE AITANOTOVG OAYOPLOIOVG e TOV oUVEVAOUO TOVG

VO, ETLTUYYAVEL VYNAO OKOP CUVAPELAG, EVE TTOPAAANAL OEBETOL TOVG TEPLOPLOUOVG.

Me 0Komtd TV £yKoupt) APt SeS0UEVMV aTtd TOUG X PNOTES, TTOV 0N YEL 0TV AOENO TNG TTOLO-



mrag e eunelpiag (ITTE, Quality of Experience), avasttiyOnkov Siipopo. oxMUeTa YLoL TV TP0-
omPLV 0TodNKevon Se8oUEVMY 0TO. GKPA TOU SLKTVOV, TO. OTTOLC. YPTOLUOTIOLOVY TTEPLOPLOUEVO
YDOPO UVNUNG OF OVOKEVEG YPNOTMV. H yvdomn mov amrokopifeton oo T AELToupyio GUOTHUAT®mV
OVOTACEMV VIO, TIG TTPOTLUNOELG KAOE X pNoTn elva xpnoun yio Ty pofreyn g Tntnong kabe
avTIKeELEVOV. I'loL Vo amoqaoLoTeL 1) BEATLOTI KOTOVOUT] TTEPLEYOUEVOU 08 KAOE OLOKELT YPNOTH
emAVETOL £VOL TPOBANUO LEYLOTOTTOINONG TG EVOTOXLOG TOU O.TTOONKEVUEVOL TEPLEXOUEVOL. ZTO
TAaioo TG StatpiPhg eEeTaleTal SLaopeTikd TANO0G CUOKEVMV Ue SUVATOTITO. ATTOONKEVONG
ARG KO SLOPOPETLKEG TTOMTIKEG WG TTPOG TOV X POVO amtodnkevong. EEeTdlovrol T000 TpaKTikeg
npokataBorkng amodnkevong (proactive caching) 600 kow duvayukng (reactive caching). To, av-
ENUEVO TOCOOTA KATASELKVIOUV TO, TAEOVEKTNUATA THG XPTONG XDPOU UVNUNG OITO TLG OUOKEVEG
TV YPNOTOV KAODE KL TNV AvOyK) WLo CUOKEUT VO AQUBAVEL LT OPLv T TTLOavE GLThoTo Tmv
YELTOVIK®OV TG XpNoTv. Emtimhéov, eEeTUoTNKE 0 GUVOVAOUOG TV GUOTACEMY TTOV TOPEYOVTOL
amd £va 6VOTNUE. CUOTACEWV UE TO TNTNUE THG TTPOCWPLVIG OITOONKEVONG O OPLOUEVOUG YP1)-
OTEG, AQUPBAVOVTOG VTTOYPLY TNV KLVIITIKOTITA, TWV XPNOTAOV VTG Tov Litd eE¢Taon ympov. H ITtE
OewpelTan CVVAPTNON TOU YPOVOU GVALOVIG TOU YPTOTY KOL TG CUVAPELNG TWV OVOTACEWYV JTOU
Tov yivovrar. To pdPinua ueyrotomoinong g ITE povrehomoreitan wg éva tpdfAnua te KAG-
ong molvmhokdtntag NP-hard Kou mpotelveTal £vag AmAnoTtog alyopLdrog yio. TV emiluot] tov,
0 OTTOLOG GUYKPLVETOL 1€ TTPOOEYYLOTIKO ahyopLOpo. Kotd ) ovykpLon tmv uedddmv avaiivovto
TOL TTAEOVEKTIULOITO, TOV TTPOTELVOUEVOL GAYOPLOROL MG TTPOG TOV XPOVO EKTEAEONG GANG KOL TV
TOLOTNTOL TNG EVPLOKOUEVNG AMDONG MG TTPOG T GUVOALKY TTopoyouevn ITTE.

TN GUVEYELQ,, TAPOVOLALOVTOL CUVOTTTUKO, OL LEOOSONOYLES, VITOYPAUILEOVTOG T CUVELGQPOPAL
toug ot datpLpi). ‘Emerta, kd0e Kepdharo g Siatpipg 0Tldlel o€ £va omd T TpoavopepOE-
VIO TTPOPANUOTA, CVAPEPOVTOL CUVOPELG EPYAOLEG OTOVUG BVTLOTOL{OUG TOUELG KAL TAPOVOLALO-
VTOL AETTTOUEPMG OL TTPOTELVOUEVEG MDOELG UALLL UE EVOELKTIKG GTTOTEAEGILOTA, TTOV OTTOSELKVIOUY

TOL TAEOVEKTNUOTOL TTOU TTPOKVITTOUV 0ITd TNV VI0OETNOM TOVG.

AéEeig Kietdud: Aviyvevon xowvotitov, Katavoun topmv, Tuvheta diktua, Audyvor thnpogo-

plag, [poowpivi arobnkevon oto Gxpa dtktiov, Kovovikd diktua, Zuotnuote GUoTaoemy
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Chapter 1

Introduction

1.1 Motivation and Contributions

Nowadays, a rapid expansion in the number of smart connected devices is observed that is
expected to reach even new heights with the adoption of 5G communications worldwide.
This next generation in telecommunications technology will make the implementation of the
envisioned vast interconnected environments a reality. Moreover, Online Social Networks
(OSNs), have established themselves as platforms that mediate the online communications
of people, with the more popular ones retaining hundreds of millions of accounts. Their role
reaches far beyond the simple message exchanging among friends, to being platforms where
retailers advertise products, applications collaborate in order to provide their users with
more personalized experiences, and in some cases, the OSNs even act as media companies
via the publication of stories from their users. Examining these systems namely OSNs and
smart device networks, as complex interdependent systems rather than separately, yields
many benefits. This interdependency is evident, since, on the one hand, users of an OSN
gain access, via the use of applications, to data generated by smart devices. The devices
are also connected and form various kinds of relationships either explicitly (e.g., devices
that exchange data) or implicitly (e.g., hidden similarities and correlations among device
measurements). On the other hand, the OSNs can provide, through the gathering of data
(e.g., location of users) or the opinions of their users, useful insights to the operators of the

infrastructure. For example, the number of sensors needed in an area can be estimated by
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the number of people frequenting it. Moreover, these environments generate large scales
of data, oftentimes characterized by the term Big Data, with predictions revealing further
increase in the upcoming years. This vast amount of data poses challenges in its analysis,
highlighting the need for developing novel, as well as enhancing traditional approaches in
data handling. A common example of these environments is the Smart Cities concept.
Smart Cities already exist and are expected to grow as indicated by investment forecasting
on Smart City projects worldwide [2]. An overview of the envisioned environment for this

thesis and of the employed techniques used for its analysis can be seen in Figure EI

In this thesis, the focus lies on four areas, which are important in the operation of such
large interconnected environments, namely, data clustering, community detection, recom-
mendations and data caching at the network edge. In all of the above, crucial problems are
identified and solved by developing tools and methods inspired by works in the field of social
network analysis and network science. The aim is to develop approaches that can monitor
networks of devices (e.g., sensor networks, smart device networks, etc.) and OSNs, infer

hidden, underlying, similarities among entities of the system and leverage on them in order
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to discover relations that can be of use in prediction and fault tolerance scenarios. Also,
by monitoring the information diffusion process in an OSN, influential actors are detected
that contribute significantly in the information diffusion in the network in an efficient and
unobtrusive manner. Moreover, by utilizing knowledge provided by system entities, such as
recommender systems, multiple approaches are designed for suitable Device-to-Device (D2D)
caching schemes. These schemes ensure increased cache hit ratios and increased quality of
experience for the users by generating recommendation lists that nudge them to request
the already cached content. In order to develop such approaches, a well-known divisive
algorithm for community detection is modified incorporating aspects of hyperbolic network
analysis. In addition, extra constraints that resemble real life situations are incorporated in
problems of information diffusion. Because many of the problems addressed in this thesis are
proven to be NP-hard, suitable heuristic algorithms that respect each problems’ constraints
and produce solutions of high quality are developed in order to acquire acceptable solutions
in a timely manner for large datasets.

The main contributions of this thesis can be summarized as follows:

o At first, focusing on the infrastructure of an interconnected environment, namely the
sensors that measure multiple kinds of data (e.g., weather related, energy consumption,
etc.), the work presented in the thesis, aims at detecting groups of sensors that yield
similar measurements over time. In order to infer these hidden similarities, the data
clustering problem is mapped to a community detection one and solved by incorporat-
ing aspects of hyperbolic geometry. Each sensor is considered to measure a multitude
of data. Each measurement is considered as a coordinate in a multi-dimensional cus-
tom space. In this way, every sensor is treated as a point of this space. Then, the full
weighted graph is formed and a proximity graph is constructed by joining a suitable
number of minimum spanning trees. This graph is then embedded in the hyperbolic
space. Inspired by the well-known Girvan-Newman (GN) divisive community detection
algorithm, edges are removed in batches until the network is split into communities
that correspond to data clusters. The incorporation of the hyperbolic space speeds
up calculations and makes possible the introduction of a novel approximative measure
for the edge betweeenness centrality metric. The algorithm is tested on both artificial

and real networks and it is proven to be faster than the traditional GN method, able
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to detect accurately clusters in datasets with known ground truth solutions, while also
produce similar and in some cases better partitions in terms of the modularity metric
compared to the original approach. Aiming to detect groups of similar people that
have access to the sensor measurements via applications and are also part of an OSN,
the algorithm is also tested on social networks. From the results, it is proven that it is
able to detect groups of people (i.e., communities) that yield high modularity scores
while resulting in partitions that are, in many cases, close to the ground truth, if such

information is available.

Moreover, the ability of the developed community detection algorithm to detect clus-
ters in various types of datasets is highlighted via developing a community visualization
application for RDF compliant datasets. Marking a step further from operating on
spatial data, to the field of semantics, every semantic triplet is considered as a point
in a custom space. Suitable distance metrics for every part of the triplet are em-
ployed and their weighted average is used for the formation of the proximity graphs.
The developed application provides an elegant way for the graph visualization and
functionalities allowing to zoom in to communities, or specific nodes. In the evalu-
ation scenarios, the proposed algorithm is able to detect 100% correctly the triplets

corresponding in each predicate of the examined dataset.

In the envisioned interconnected environment, applications that combine information
both from the infrastructure as well as the OSNs that the users participate in, need to
be properly advertised. The identification of influential users in a network is crucial
for any network operator as it provides answers, among other things, to the questions
of what action (e.g., item, application, video file, etc.) to recommend to which user
of the network. In order to combine the operation of a recommender system that
inserts new information in the network through recommendations and the diffusion
of this information among the users, Information Diffusion Aware Recommender Sys-
tems (IDARS) are studied. Within the IDARS framework, the problem of maximizing
the total relevance of the suggestions to the users is examined alongside complex
constraints regarding the number of different recommendations and the number of

duplicate recommendations a user can receive without ruining her decision-making
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process by exposing her to too much information. This work is among the first where
the aspect of respecting various users’ information capacity thresholds is taken into
account. The introduction of these constraints adds extra difficulty in the problem.
In order to solve it, it is divided into two sub-problems that need to be solved in se-
quence, each one concerning the satisfaction of one constraint. The designed solutions,
produce acceptable results that are able to achieve a high total relevance score, while

guaranteeing that there are no violations of any kind.

Aiming at increasing the users’ quality of experience (QoE) as a function of the time
needed for fetching their requested contents, knowledge about recommender systems
and caching at the network edge are combined. Exploiting the interdependency among
network equipment, smart devices and the social aspects of their users, information
from recommender systems that operate in an OSN; is incorporated when designing
content allocation schemes in order to infer users’ reactions and behavior. Caching at
the network edge ensures fast delivery of content to the users by eliminating the need
to fetch multiple times the same content from the core network. Inspired by works
on caching at the network edge [B, 4, B, several D2D caching schemes are proposed,
aiming to maximize the achieved cache hit ratio. In greater detail, assuming that the
content and network operators consist of one entity (or that they closely collaborate),
the preferences of users to applications is considered known. User Equipment (UE,
i.e., smart devices) is scattered across a cell where a Base Station (BS) is responsible
for their communication with the backhaul and the core network. Both the BS and
the UEs have limited cache memory space that they can utilize to store information.
The problem of allocating contents in cache memories is modeled, depending on the
approach, as an appropriate version of the Knapsack Problem. Both proactive and
reactive caching policies are developed and compared. Moreover, aiming to combine
caching with the process of recommending items to users, the user’s QoE is defined
as a function of her relevance to the recommendations and the expected delay for
fetching the requested content. The problem is formed as QoE maximization one,
known to be NP-hard. In order to solve it, a heuristic method is developed which
solves the content allocation and assigning of recommendations problems sequentially.

The users’ mobility patters are taken into consideration and the algorithm is compared
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to an approximative one, obtaining acceptable QoE scores in a more timely manner.

1.2 Outline

This thesis is organized as follows.

e Chapter 2 provides concise descriptions of fundamental concepts and metrics from
the field of complex network analysis that are essential for understanding the topics

presented in this work.

e Chapter 3 discusses the fields of community detection and data clustering and the
importance of these in the analysis of large interconnected environments. In this
chapter, a divisive community detection algorithm coupled with a graph database, is
introduced that can be also applied for data clustering by a suitable mapping of data
points to proximity graphs. Moreover, the incorporation of the developed community

detection algorithm in an RDF data visualization application is highlighted.

e Chapter 4 deals with the issue of information diffusion and information overloading
in an OSN. More specifically, a socially-aware recommender system is developed that
takes into consideration the users’ preferences to the various items provided by a
platform. In addition, by inferring the flow of information throughout the network,
manages to avoid redundant recommendations that may negatively impact the users’

experience.

e Chapter 5 focuses on the concept of increasing the users’ QoE via caching and recom-
mendations at the network edge in order to assist in decongesting the infrastructure’s
links and spread faster the required information to the users. In greater detail, meth-
ods of caching data in the users’ devices are discussed and evaluated. Also, a heuristic
algorithm that besides selecting the appropriate UEs for caching, also generates rec-
ommendation lists is presented. The goal of the algorithm is to nudge the users in
requesting some of the already appropriate cached content that will be relevant to

their tastes and also reduce the delay needed for obtaining it.
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e Chapter 6 summarizes, in a concise manner, the problems addressed in this thesis,
giving the reader a comprehensive overview of the most important conclusions drawn
from this study. Then, it proceeds to suggest recommendations for future work that

can be carried out as an extension of the work presented in the thesis.
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Chapter 2

Network Theory Fundamentals

Nowadays, large interconnected environments such as those observed in Smart Cities, consist
of a multitude of actors that communicate, exchange messages and generally form various
kinds of relationships. For example, in online social networks (OSNs), common actor types
are the people forming profiles in the platforms and the most common relationships are
those formed among them, like friendships (e.g., Facebook) or follows (e.g., Twitter). Other
common networks observed today, are sensor network topologies. In those, the sensors are
the actors and the interactions among them indicate capabilities and relationships such as
which sensors can exchange messages, measurements, act as gateways and so on. These
kind of networks are called complex networks. The term “complex” is used to clarify that
these networks evolve over time and can consist of different actor types that are related by
a multitude of relationship types []. Graph theory is one of the most important fields of
mathematics employed in the analysis of this kind of networks. Studying these networks
using suitable metrics from graph theory, and more specifically, social network analysis,
is crucial for discovering patterns, inferring the information flow among the actors of the
system, predicting the network’s evolution over time, discovering proving the manner in
which it was formed, etc.

In order to deal with the key problems presented in this thesis, namely, those of clustering,
community detection, recommendations and caching, complex networks are considered, in
all cases, as the ideal form of representation of the relationships among actors. This decision

is based on the fact that graphs are among the optimal tools in order to model the complex
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relationships formed in the large interconnected environments that this thesis focuses on.
Even in the case of data clustering, the suggested approach is to map the data points to
a complex network by considering the points as nodes of a graph and joining them with
edges. Concepts and tools from the field of Social Network Analysis allow the study of the
structural properties of the graph. Suitable metrics are employed in order to detect the
underlying community structure in a graph as well as identifying the most important nodes
and inferring the diffusion of information among the nodes of the network.

In this Chapter, some basic aspects of graph theory that are essential for understanding
the discussed concepts, as well as for the development of the algorithms presented later in
this work are presented and discussed. More in depth analysis of these topics and relative

SNA metrics can be found in [f].

2.1 Elementary Aspects of Graph Theory

The most common notation of a graph is a triplet of the form G(V,E), where G is the
symbol of the graph, V is a non-empty set of elements that are named nodes and E is a set
of tuples of elements in V. The set E contains the edges of the graph and an element in
E is of the form (u,v) with u,v € V. When an edge exists among two nodes, then, these
nodes are called neighbors. When a graph is undirected, the order of the elements of an edge
does not matter, i.e., (u,v) is the same edge as (v,u), whereas in a directed graph (u,v) and
(v,u) denote two distinct edges. In the latter case, the nodes of an edge (u,v) are called
starting point and endpoint respectively. A graph can be weighted if there is a countable
quantity assigned to each edge. Although there exist weighted graphs in which the weights
are assigned to nodes, the focus in this proposal is on the case where the edges are weighted
when discussing weighted graphs, unless otherwise stated.

In a graph G(V,E), every node u € V has a neighborhood N(u). The neighborhood
consists of all the nodes in V that are neighbors of u. In the case of directed graphs the
neighborhood is divided in the in-neighborhood of a node u € V, Ni,(u) = {v; (v,u) € E} and
the out-neighborhood of u, Ny, (u) = {v; (u,v) € E}. The degree of a node u in the undirected
case, is the number of its neighbors, |N(u)|. In directed graphs, there is the in-degree of u,

which is the number of nodes in the in-neighborhood of u, |N;,(u)|, and the out-degree of u,

26



which is respectively, |Noy:(u)|. In a weighted graph, the degree of a node is equal to the
sum of the weights of the incident edges.
The simplest way in which a graph can be represented is the adjacency matriz. This

matrix can be denoted as A = [a;;]nxn. A is a square matrix of size N X N, where N = |V|.

The elements of A, a;;, are equal to

1, if (i,j) € E,
aij = (2.1)

0, otherwise.

There are more ways that a graph can be represented such as by an edge list, a dictionary,
or a graph database. Similarly, in the case of a weighted graph, it can be represented by a
matrix W = [w;;]nxn, where the elements of W are equal to the weights of the corresponding
edge, or zero in the elements that do not correspond to edges in E.

A path in G is a sequence of nodes p = ujus...u,, where for any two consecutive nodes
u;,u; there exists an edge (i, j) € E. The length of path p is considered to be the number of
edges lying inside it, or, otherwise stated, the number of hops. A path of minimum length
between two nodes is called the shortest path. A path is called simple if no node appears
more than once in the path. A path in which nodes can appear more than one time contains
cycles. A cycle is a path in which the starting and ending node are the same. A graph that
contains no cycles is called a tree. An undirected graph in which there exists a path joining
every pair of nodes is called connected. In the case of directed graphs, if every pair of nodes
is connected by a path, the graph is called strongly connected. An edge whose removal leads
the graph from being connected to become disconnected is called a bridge. In a disconnected
graph the maximal groups of nodes for which paths exist among them are called connected
components.

A subgraph of G(V,E) is a graph G'(V’,E’) with V' C V and E’ C E. In every graph
G there exist subgraphs of the form T(V, E’) that contain all the nodes of G and are trees.
This graph is called a spanning tree. In a weighted graph with weights on the edges, the

spanning tree T(V, E’) for which it holds

Diwe< D we,  VI'(V,E"), (2.2)



is called the minimum spanning tree (MST) of G. The most popular algorithms for discov-
ering the minimum spanning trees are those of Prim [[] and Kruskal [§]. In the following
sections some basic metrics of social network analysis are introduced, as well as some basic

complex network models.

2.2 Basic SNA metrics

2.2.1 Degree Distribution

As mentioned earlier, each node has a degree, which, in the case of undirected and un-
weighted graphs, is equal to the number of its neighbors. The degree of each node depends
on the manner the graph was formed. For example, there are networks where all nodes have
the same degree, while on other cases the neighbors of a node can be dependent on a multi-
tude of criteria like the distance among nodes, node popularity, etc. The nodes in a graph
can also be joined either in a deterministic or probabilistic way. In all cases, examining
the degree distribution of a network provides useful information about its structure and can
aid in revealing the manner in which it was formed. Visualizing the degree distribution of
graphs, either as a histogram or cumulatively, is one of the most common ways to identify
network types and assists in their analysis. For example, one can easily identify a scale-free
network by observing the power-law degree distribution of its nodes, while it is also trivial

to identify a regular graph from its Dirac like histogram.

2.2.2 Average Path Length

The average path length is a network-wide metric and it is the average of the length of all
the shortest paths that join all the pairs of nodes in the graph. It is a metric that reveals
the expected distance between any pair of nodes inside such a graph and an indication of
how fast information can flow inside the network. A large value indicates a network in which
information can reach quickly the majority of nodes, while a large average path length is
characteristic of networks in which the messages travel at a slower pace in the network. In

this thesis, the path length is denoted as the number of hops between nodes.
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2.2.3 Centrality measures

Among the many metrics that have been defined in order to measure the “importance”
of nodes inside the network, the centralities are one of the most widely used. There have
been many centrality measures proposed in the bibliography like betweenness centrality [9],
closeness centrality [9], eigenvector centrality [9], Katz centrality [[L0], PageRank centrality
[L1], etc. In this work though, the degree centrality and the edge betweenness centrality
will be more thoroughly explained since they are those that are employed in the following

chapters.

The degree centrality is the simplest centrality measure and is equal to the node’s degree.
The higher the degree, the more central the node is considered. Although usually it is a
good indicator of the node’s importance, it can be misleading in some cases. For example,
consider the following network of Figure @ Node 4, despite having the minimum degree
centrality in the graph, equal to 2, is a very important node in terms of information diffusion
since a fault in its operation would result in the graph becoming disconnected. Evaluating
the degree centrality allows for the successful selection of nodes that are directly connected
with many others. Oftentimes, a relatively small subset of such nodes is able to cover the
whole network (i.e., the nodes of this set and the union of their neighbors equals to the
whole network). The detection of sets of nodes with such properties is a vital step in the
community detection and also the content caching algorithms described in the following

Chapters.

Figure 2.1: Example graph displaying the importance of considering various centrality met-
rics.

The edge betweenness centrality (EBC) of an edge of the graph is a metric that denotes

the percentage of shortest paths among all pairs of nodes that pass through the edge. It
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is the equivalent of the betweenness centrality of a node. An edge that displays high edge
betweenness centrality displays bridge-like properties and its removal is expected to increase
the average path length or even deem the network disconnected. Because the computation
of every shortest path in the graph is a time consuming procedure, an algorithm has been
proposed by Brandes [[12] that calculates the EBC of the edges without having to explicitly
calculate the paths among all pairs of nodes.

Identifying the most central edges in a graph allows for the detection of groups of nodes
that tend to interact more among them than with the rest of the nodes with whom are joined
with a few edges that due to their bridge-like status display high EBC scores. The calculation
of the edge betweenness centrality is a core component of the Girvan-Newman algorithm
[13] as well as the proposed algorithm for community detection that will be presented in

Chapter E

2.3 Common Types of Complex Network Topologies

In order to classify complex networks as well as to study the evolution of systems over time,
many artificial network generation models have been defined. The most common of which
are the Regular graph in which all the nodes of the graph have the same degree, the Gilbert
random graph [14], G(n, p), having n nodes and where each possible edge exists (or not) in
the graph with probability p, the Erdos-Renyi random graph [15], G(n, M), where a graph
out of all the possible graphs containing n nodes and M edges is chosen at random. In this
section, the graph models that have been employed in the analysis of the proposed framework
are described in more detail. Such networks are employed throughout this proposal in order

to evaluate the proposed algorithms and study their behavior in different types of networks.

2.3.1 Random Geometric Graphs

A Random Geometric Graph (RGG), G(n,r), is a spatial graph model, meaning that the
edges of the graph are dependent on the positions of the nodes in a metric space. An RGG

graph is defined by the number of nodes n, and a radius r, and it is structured as follows:

« Select uniformly at random from the unitary space Q € R? the positions of the n nodes.
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« Join all pairs of nodes u, v whose distance is dist(u,v) <r.

In sensor networks and telecommunications it is common to simulate positions of sensors
or mobile devices with RGGs in the 2-dimensional Euclidean space and the distance between
nodes is commonly the Euclidean distance on R?. However, it is possible to use other metrics,

such as the Manhattan distance, which is oftentimes used to model mobility networks [16].

r?
2

The expected number of neighbors for each node of an RGG graph is equal to %2

- n.
Moreover, it is proven that the average clustering coefficient of RGGs, for large values of
n, is ccper = 0.59 [IL7]. This fact indicates relatively strong triadic closure for this kind of
graphs.

In this thesis, RGGs are employed as sensor networks for the evaluation of the community

detection algorithm described in Chapter E as well as graphs representing the locations of

users in a telecommunications cell for the purposes of content caching, discussed in Chapter

i

2.3.2 Small-World Graphs

A small-world network refers to a growing graph whose average path length increases pro-
portionally to the logarithm of the number of network nodes. Its properties lie between
those of a regular graph and those of a random graph. This fact results in exhibiting the
favorable characteristics of high clustering coefficient and short average path length.

Watts and Strogatz proposed a model in order to build small world graphs in [1§]. In
this model, initially a regular graph is formed. Then, with a user-defined probability p,
an edge is “rewired”, meaning that it changes its original endpoint. These edges now form
shortcuts that join previously distant nodes, thus decreasing the average path length of the
graph, while the original regular graph structure (as long as it is retained in some extent) is
responsible for the high clustering coefficient observed in small-world graphs. Of course, as
it can be seen in Figure @, as the probability p of rewiring edges increases the graph tends
to transform into a completely random graph.

Small-world graphs are employed as models that are able to simulate social relationships
in OSNs and are used for the evaluation of the community detection algorithm, while directed

small-world networks are used for recommendations allocation in Chapter H
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Figure 2.2: Evolution of a graph from regular to random following the Watts-Strogatz model.
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2.3.3 Scale-free Graphs

The concept of “scale-free” in this kind of graphs implies the lack of scaling in the degree
distribution. The degree distribution of these graphs follows a power-law distribution. Many
existing networks can be classified as scale-free, such as biological (e.g., gene interaction
networks) and technological networks (i.e, circuit networks, water transportation networks,
ete) [19].

The scale-free property displayed by this kind of networks is due to two mechanisms
that contribute to the formation of the power-law degree distribution. The first one is the
sequential arrival of nodes over each time step. Initially, the graph contains only a small
clique of nodes and eventually it reaches the total number of nodes, n. The other is the
preferential attachment rule, according to which, a newly added node will prefer to connect
to nodes that display high popularity (i.e., have a large degree). This leads to older nodes
having largest probabilities to have many neighbors. In this way, just a few nodes display a
large degree, while others have relatively low degrees and this explains the power-law degree
distribution. These high degree nodes act as hubs and are responsible for the low average
path length observed in these networks.

There exist various ways in which preferential attachment can be applied [20]. In this
thesis the Barabasi-Albert model (BA) [2(] is employed every time Scale-free graphs need

to be generated. In greater detail, the BA model operates as follows:

o For every node currently in the graph at time step ¢, every node u has a degree k, () and
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a probability to be selected as a neighbor of a new node given by P(k,(t)) = #(kt)m

e At time step £+ 1 a new node enters the graph and it is joined with m nodes chosen

according to the probabilities of the previous step.

A very interesting aspect of scale-free networks is that they display a finite negative
curvature [21] revealing their association with the hyperbolic metric space. In [22], the
authors propose a model of generating random graphs in the two dimensional hyperbolic
plane H? of radius R. In this model, nodes are assigned an angular coordinate at random
in [0, 27] and a radial coordinate r, following the density p(r) = e"~R. It is proven that by
joining the nodes that are at a hyperbolic distance less than R, the resulting network is scale-
free since its nodes follow a power-law degree distribution. The concept of the underlying

hyperbolic geometry of scale-free networks will be further discussed in Chapter E
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Chapter 3

Efficient Detection of

Communities in Large Networks

Large interconnected environments consist of a multitude of components like smart devices
(e.g., sensors) and also people as part of OSNs. Such environments exhibit several challenges
in their analysis. It is expected, and shown in the following, that in a smart connected
environment, there exist similar sensors that yield similar measurements over time. For
example, office areas throughout the same city are expected to have similar measurements
of temperature. The problem of data clustering of sensor network measurements can be

tackled by mapping it into a community detection one.

Community detection is one of the most fundamental problems in complex networks
analysis [23]. It is used in order to extract useful information about their structure and
the relationships between nodes. As complex networks, either social networks or spatial
networks, evolve through time, communities of nodes are formed [24]. A community is a
group of nodes that share among them more similar attributes than with nodes belonging

in different communities.

Community detection, or network clustering, refers to the algorithmic process of finding
groups of nodes that satisfy certain properties. Although the field of studying complex
networks is already some decades old, there is no consensus as to what exactly is a community

and many researchers define it differently [25]. As a result there exist many methods for
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community detection. For example, some aim to maximize the internal density of modules
[26, 27], while others detect communities based on flows [28]. Moreover, nodes may be part
of more than one communities (overlapping communities) [29] or belong to exactly one. It
is a fact that there does not exist a single best community detection algorithm and that
there will never exist a single general purpose algorithm for all networks and all data types
[B0]. A consequence of the above, is the existence of multiple different evaluation techniques

regarding the evaluation of a network partitioning in communities [31]].

In this work, the notion employed for the communities is that, inside a network, nodes
are more likely to connect with other nodes belonging in the same community than with
nodes belonging in different ones. This approach is similar to what is referred in [25] as

maximization of density.

The networks obtained via the mapping process of a data clustering problem to a commu-
nity detection one are likely to display discernible communities. In particular, it is expected
that there exist strongly connected groups of nodes (i.e., corresponding to clusters of data)
that are joined together with a few edges displaying bridge-like properties and high Edge Be-
tweenness Centrality (EBC) scores. It is considered that a community detection algorithm
that operates by removing such edges, is able to detect communities, and thus, clusters, that
are meaningful. The original Girvan-Newman algorithm acts as the inspiration and starting
point for developing a novel community detection algorithm that incorporates key ideas of
the original approach. However, by using aspects of hyperbolic geometry and also the re-
moval of edges in batches in order to speed up calculations, it consists of a more scalable
approach. Aiming to facilitate the operation of the algorithm for large datasets a graph

database is also incorporated.

In this Chapter, different techniques for community detection will be discussed. Then,
the developed community detection algorithm, HGN, will be presented alongside a detailed
evaluation on both synthetic and real data that are obtained through experiments conducted
in a real smart city in Spain, Smart Santander. Finally, the ability of the HGN algorithm
to detect semantic communities in RDF datasets is highlighted through the demonstration

of a graph visualization application.
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3.1 Related Works on Community Detection

In the literature there exist multiple techniques in order to partition the network into com-
munities. Although each algorithm addresses uniquely the problem of community detection,
the algorithms can be classified in certain broader categories according to the manner in
which they partition the graph. In the following, some of the major categories of community

detection techniques, alongside with notable works, are presented and discussed.

3.1.1 Hierarchical and Divisive Clustering

In the hierarchical network clustering, the discovery of communities forms a partition where
larger clusters, examined in greater detail, reveal smaller clusters of nodes, belonging to lower
levels of the hierarchy. The algorithms that are included in this category are very useful in
order to discover communities in networks that naturally display a hierarchy among their
nodes (e.g., social networks, computer networks, etc). The construction of the community
hierarchy is done either bottom-up (agglomerative) or top-down (divisive).

In the agglomerative community detection techniques, initially all nodes are considered
as single-node communities. Proper similarity metrics, either on vertex or community level,
are defined and communities are joined iteratively as long as their similarity exceeds a certain
threshold.

On the other hand, in the divisive node clustering techniques, initially, the whole network
is considered as a single community. Then, it is partitioned in smaller communities. This is
usually accomplished by removing edges displaying low similarity scores.

For both of the above approaches, the function that calculates the similarity defines the
obtained partition. One of the most well-known hierarchical clustering algorithms that uses
a structural metric in order to split the network into communities is the Girvan-Newman
algorithm [13]. Girvan-Newman (GN) is a divisive community detection algorithm. The
main idea of this algorithm is that most of the network edges join nodes that belong in the
same community and only a small percentage of them connects nodes that belong in different
communities and act as “bridges”. To find such central edges, the notion of a network
metric called Edge Betweenness Centrality (EBC) is employed. This metric evaluates the

percentage of the shortest paths that cross the edge. A high EBC score implies a central
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edge whose removal may lead to the graph becoming disconnected (i.e., a community is
detected). Girvan-Newman removes each time the edge ranking highest in the EBC metric
until either the whole network is split into single-node communities or until a pre-specified
number of communities has been detected. Because the computation of the EBC metric is
rather costly some variations of the traditional GN algorithm have been developed in order
for the approach to scale for larger graph sizes. In [32] two variants of the GN algorithm
are presented. The first one utilizes the Map-Reduce algorithm on the well-known Hadoop
platoform, while the second one uses GraphChi [33] in a vertex-centric approach. Even
though the proposed parallel algorithms manage to reduce the execution time compared to
the original algorithm, average sized datasets still require significant amount of time, in the
order of minutes, to complete their execution. Another divisive approach, similar to GN, is
the one presented in [34], where, instead of removing the edge of highest EBC value as in
the case of Girvan-Newman, the edge of the highest information centrality is removed. This
algorithm is able to find meaningful communities, but suffers from a high time complexity
of O(|E|?|V]). This high complexity marks it as an unsuitable algorithm for modern-day
large scale networks but proves the relevance of the influence metric on the formation of
communities. Moreover, in [35] the authors propose another variation on the GN algorithm
by removing multiple edges at a time based on the line graph of the original network. In
greater detail, it removes edges that have the highest betweenness centrality as nodes of
the line graph. This algorithm terminates faster than GN and at some cases produces
greater modularity scores, although on rather small networks. Capitalizing on the metric
of clustering coefficient for every node of the graph, the authors in [36] propose a divisive
community algorithm (not hierarchical though), that removes an edge according to a rule
based on the clustering coefficient between its endpoints. If the removal of the edge leads to
an increase in the clustering coefficient of both nodes, then the edge is an inter-community
edge that should be removed. The algorithm keeps removing edges, until no edges can be
deleted based on the described criterion. This algorithm produces good modularity scores
but as the authors mention it fails to detect meaningful structure in star-graph topologies
and its execution is unstable and dependent on the order of the edges’ examination. Another
divisive algorithm is presented in [37)], here the concept of “weak links” is introduced based

on the topological attributes of the nodes. In each iteration of the algorithm, the weak links
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are calculated and removed until no more such links can be detected. The authors claim a

better accuracy-efficiency compared to other divisive methods.

3.1.2 Spectral Clustering

Spectral Clustering in networks is performed by using a matrix representation of the graph.
This matrix can be weighted and can either be the adjacency matrix of the graph or the
Laplacian graph, although there is not a single definition of this matrix [3g]. In these tech-
niques the number of clusters (k) is considered known either beforehand or it is estimated
via various techniques. The first k eigenvectors with the smallest eigenvalues are obtained
and their values are employed as coordinates in a k-dimensional metric space. The eigenval-
ues of the Laplacian matrix provide information about the connected components and the
density of the network. Then, clustering algorithms, like k-means [39], are employed on the
points and the obtained clusters correspond to the detected communities.

The simplest method of such a clustering approach is the non-normalized spectral clus-
tering in which the Laplacian is defined as L = D — W. D is a diagonal matrix containing
the degree of each node and W is the weighted adjacency matrix. Then, the eigenvalues
and the eigenvectors of this matrix are calculated. In the normalized version proposed in
[40] the Laplacian is again considered to be equal to L = D — W, but the eigenvectors and
eigenvalues are obtained from the solution of the generalized problem Lu = ADu, where u
are the eigenvectors and A the corresponding eigenvalues.

Based on the aforementioned notions, there exist more recent approaches in Spectral
Clustering like the one presented in [41]. The authors propose the use of the Bethe-Hessian
matrix instead of the Laplacian and claim that the eigenvectors corresponding to negative
eigenvalues indicate the number of underlying communities in the graph. In that way, the
need for prior knowledge of the number of communities is eliminated.

Spectral clustering methods are typically fast and achieve dimensionality reduction when
the nodes of the graph contain multiple attributes. Also, these algorithms can achieve better
results on spatial datasets than many traditional clustering algorithms, such as k-means,
because they are able to detect clusters of non spherical shape. Despite these facts, Spectral
Clustering tends to split networks into communities that vary greatly in terms of their

size. Moreover, the optimal selection of the proper similarity matrix, or the Laplacian, is
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oftentimes cumbersome or beyond the users’ knowledge [42].

3.1.3 Modularity Based Methods

Modularity is a metric that evaluates a network partition based on the amount of edges that
join nodes belonging in the same community compared to a random distribution of edges
among these nodes. The modularity metric that is obtained from a partition of the graph

in k communities can be calculated as follows:

k . .
Q=LZ Z (Aij_%), (3.1)

2m I=1 i,jeC;

where m is the total number of edges of the graph, A is the adjacency matrix, d;,d; are
the degrees of nodes i and j respectively and C; is the set of nodes belonging in the /-th
community. Modularity values range from -1 to 1 and the variation from 0 indicates the
difference with a completely random partition.

The target in modularity based methods is the maximization of this metric. The dis-
covery of the optimal partition that results in the maximum modularity is a known NP
complete problem [43]. This means that it cannot be solved in a reasonable amount of time,
especially for large graphs with many nodes and edges. This fact has led to the development
of numerous techniques in order to produce a sub-optimal solution, close to the optimal
one. Most modularity based methods are, in fact, hierarchical clustering approaches but
they are wider known as modularity mazximization techniques, and thus, they are presented
separately.

The first approach in this direction is the algorithm proposed in the paper of Newman
[44], and essentially, is an agglomerative method. Each node is initially considered as a single
community and then, the edges are inserted in a way that leads to the greatest increase in
the modularity in each step. Then, pairs of communities with existing edges among them
are examined as to whether merging them would result in an increase in modularity. If
the modularity is increased, then, the communities are merged. The required computations
of this algorithm mark it as rather slow approach for this type of community detection
algorithms. Its time complexity is O(|V|?), with |V| being the number of nodes. In [27],

the authors discover redundant calculations in the method of Newman and thus reduce the
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complexity of the algorithm. Another approach widely used is the algorithm of Blondel
[26], also known as the Louvain algorithm. According to the algorithm, each node starts
as a single-node community. Then, iteratively pairs of communities are examined and if
their merging leads to greater modularity scores, the communities are merged and replaced
by “supernodes”. Eventually, the modularity will not be able to increase anymore and the
algorithm terminates. This algorithm is very efficient as it has a time complexity of just

O(m), with m being the number of edges in the graph.

Aiming to develop a modularity optimization method that can be executed in dynamic
graphs, in [45], the authors propose the execution of the Louvain method for the whole
graph only for the first snapshot of the network. For the rest of the snapshots it performs a
local modularity optimization process only for those communities where changes occur (i.e.,
nodes/edges are deleted or added) between successive snapshots. This algorithm, named
Dynamic Louvain was able to obtain communities resulting in similar modularity scores
with Louvain but a lot faster, proving that reusing community structure from previous
snapshots is a viable solution. In addition to the former method, the authors of [46] also
propose a variation on Louvain that can be employed for dynamic networks. In this method,
called C-Blondel, the community detection method for a snapshot ¢ is done by executing
the Louvain algorithm on a compressed graph. The construction of this graph is based on
the previous snapshot r — 1 and the possible differences between ¢ and ¢ — 1 in terms of the

removal or addition of nodes and edges.

Although modularity is one of the most widely accepted metrics regarding the evaluation
of community detection algorithms, it is noted in the literature [47, 48] that many of the
modularity maximization algorithms tend to favor larger sizes of communities. In order to
address this problem, in [49], the authors propose the employment of a weighted scheme
on the edges. The incorporation of this weight is done in order to avoid the development
of rather large communities that lead to imbalanced partitions having few very large com-
munities and many small ones. Moreover, another drawback of these methods is that by
trying to optimize the modularity metric they cannot always detect the ground truth parti-
tion, if it is available. Also, there exist partitions of completely random graphs that display
high modularity scores despite the fact that in reality no meaningful groups are formed, as

highlighted in [(].
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3.1.4 Information Flow based Community Detection

Another approach to detecting communities in graphs is by taking into account the informa-
tion diffusion inside the network. The study of the information flow can reveal the system’s
behavior. It is thus expected, that groups of nodes between which information flows quickly

can be considered as a community.

A well-known algorithm based on the concept of random walks is the Markov Cluster
algorithm (MCL) [28]. The MCL algorithm computes the probabilities of random walks
inside the graph by employing two operators iteratively, namely inflation and expansion.
Because of the underlying cluster structure, even when the exact communities are not known
on beforehand, these operators allow for the detection of meaningful communities. Nodes
that belong inside each community have large probabilities of reaching one another with
random walks of certain length. The algorithm terminates when there are no significant
changes in these probabilities for a pre-specified number of consecutive iterations. The
MCL algorithm is fast and does not require prior knowledge on the number of communities.
Variations of the original algorithm have been widely used to cluster protein networks into
families [51, 52]. The authors in [53] propose a parallel implementation of MCL that scales
well for networks consisting of million of nodes and billions of edges. The original algorithm

cannot succeed in finding communities in reasonable time for such large graphs.

One of the most popular algorithms of this category is Infomap, presented in [b4]. It is
proven that minimizing the description length (e.g., Huffman coding) of a random walker is
equivalent to finding community structure in networks. Infomap monitors random walkers
in the graph, based on the notion that a random walker is more likely to remain in the
same community than changing communities by crossing inter-community edges. Infomap
optimizes the map equation [b5] aiming to detect communities in the network. During the
execution of Infomap, initially each node is considered as a module. Then, each node, in
a random order, is assigned to the module that results in the largest decrease in the map
equation. The modules discovered in a previous step of the algorithm act as nodes in the
next one. The process is repeated until there does not exist a move that leads to a further
decrease in the map equation. Infomap is both swift and able to find meaningful communities

in very large networks.
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Other recent random walk-based community detection methods include GEMSEC' pre-
sented in [56]. In this article, the authors propose an algorithm that embeds the network
into the Euclidean space and at the same time performs clustering of the nodes while em-
ploying first and second order random walks for node sampling. GEMSEC manages to
accomplish greater modularity scores than other similar algorithms on common baseline
graphs. In FluidC [57], standing for “fluid communities”, the number of communities (flu-
ids) is pre-specified by the user. Each fluid begins at a vertex chosen at random. At each
step (named superstep) all nodes are examined and assigned to the community that results
in the greater increase in density. When for two consecutive iterations the nodes do not
change their assigned communities, the algorithm completes its execution. FluidC manages
to mitigate the problem that many community detection algorithms face, namely the often-
times imbalanced sizes of communities, meaning having a giant community surrounded by
numerous small ones. However, it fails at achieving optimal solutions when there are few

inter community edges.

3.1.5 Label Propagation Methods

The main idea behind Label Propagation algorithms is that nodes are assigned labels, ex-
change that information with their neighbors and possibly alter their own label according to
each algorithm’s criteria. One of the first such algorithms is LPA [68]. In LPA, each node is
initially assigned a unique label. At each step of the algorithm, each node chooses whether
to modify its label according to the dominant label in its neighborhood, with ties broken
randomly. For better results, an asynchronous scheme is preferred where nodes change (or
not) their label according to the labels assigned in the previous step. After a number of
steps the algorithm converges and nodes stop changing labels. The algorithm has a com-
petent execution time, with O(|V|+ |E|) complexity, but it does not guarantee convergence
to the same solution for the same input graph. To alleviate this issue, the authors suggest
aggregation of the different solutions to produce the final community structure. In order
to improve the execution time and quality of the produced graph partition, in [p9] an en-
hanced algorithm, called SLPA, is introduced. In this algorithm, nodes are divided in two
possible states, namely, active (i.e., likely to change label in the next iteration) and passive.

This algorithm needs fewer iterations than the original LPA and produces, in many cases,
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communities that result in higher modularity scores. The authors in [60] propose a varia-
tion of a label propagation technique called ISLPA that is able to be executed in networks
that display incremental changes over time. Their evaluation proved ISLPA to be about
two times faster than SLPA while producing similar modularity scores. The authors in [61]
also propose a modification of the traditional LPA algorithm in which each node’s influence
(reflecting its structural position inside the network) defines the degree that its label will be
adopted by its neighbors. Another label propagation method for community detection is the
one presented in [62]. There, the authors propose the identification of two types of nodes in
the network. The first one is the core node. Around these nodes communities are formed. A
core node should have multiple neighbors that are also connected among them. The second
type of node is the boundary node that is a node that is connected with nodes belonging
to more than one communities. An iterative process is followed until all core and boundary
nodes have been identified. Then, the boundary nodes are assigned to a community and the
algorithm terminates. While subtly slower than LPA, this algorithm produces more stable
communities for multiple executions on the same input. Moreover, in [63], the authors pro-
pose a method inspired by the LPA algorithm. Their method, named FILPA, capitalizes
on first finding a set of influential nodes, and then by performing an extension phase is
similar to LPA, discover communities. The difference with the traditional LPA method is
that the most influential nodes determine greatly the choice of labels for the other nodes.
This method outperforms LPA in terms of the achieved NMI scores with the ground truth
on real and synthetic datasets. The authors in [64] propose another variation on LPA called
LPA-S, which is a parallelized version of LPA in which nodes update synchronously their
labels. LPA-S displays similar results with LPA. Moving towards the clustering of nodes in
attributed networks, in [65], the NMLPA algorithm is proposed. This is an algorithm for
overlapping community detection (i.e, a node may belong to more than one communities).
In its process it transforms the attributes into weights of edges in a weighted graph. The
weights reflect the similarities between the nodes. Then, it proceeds to perform multi-label
propagation. This algorithm outperforms other relevant approaches in networks with known

ground truth.

The authors in [66] propose LabelRank, an algorithm inspired by the MCL approach.

Instead of each node having just one label, as was the case in the previous algorithms,
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LabelRank maintains an entire distribution of labels that define the probability of the node
to be assigned each one of them. Across consecutive iterations, nodes exchange information
about their distributions and update their own accordingly if there are significant differences
with that of their neighbors’. When just a few changes in label distributions across all nodes
occur, LabelRank terminates. LabelRank solves the issue of multiple possible partitions for

the same graph while being faster than LPA with just O(|E|) complexity.

3.1.6 Leader-based methods

In these methods, leader nodes that are able to influence others in the network are detected.
In many of these algorithms, the structural position of a node in the network (e.g., its degree
centrality) plays a crucial role in its definition as a leader node. In [67] the authors propose
a solution to the community detection problem where each node selects (prefers) another
node and they are put together in the same community. Multiple preference metrics have
been evaluated as to their resulting accuracy to the ground truth solutions with the Jaccard
similarity and number of common neighbors to emerge as the best choices for this algorithm.
LeadersRank, presented in [6§], relies heavily on the notion of leader nodes residing in
the network. The nodes in the graph are ordered in decreasing order according to their
eigenvector centrality. The most central node is the leader of a community that is formed
by including all similar nodes of the leader to it. This process is resumed until all nodes
are assigned to communities. In [69] the authors suggest two variations on the LeadersRank
algorithm that display improved performance in benchmark networks. LGIEM presented
in [[70], introduces a new node metric based on local and global attributes, named LGI in
order to distinguish the & most influential nodes and then follows an expansion strategy to
detect communities. This algorithm can detect meaningful communities but the number of

them, k, must be known in advance.

In the following section, the developed community detection algorithm will be presented

in detail and evaluation results will showcase its strong aspects.
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3.2 Hyperbolic Girvan-Newman

In order to efficiently cluster spatial datasets, discover meaningful relationships between
devices that form the infrastructure of an interconnected environment and also detect com-
munities in OSNs, a novel community detection algorithm is proposed. The Hyperbolic
Girvan-Newman (HGN) algorithm capitalizes on the strong aspects displayed by the origi-
nal GN algorithm discussed previously. Namely, its ability to detect clusters of high qual-
ity in networks where communities are strongly present. Networks generated from spatial
datasets, such those that are created by linking similar measurements from sensor networks
deployed in a Smart City, are expected to display community structure. HGN differs from
GN in the following manners. First of all, it employs an embedding to the hyperbolic metric
space which is a geometric space that follows the principles of hyperbolic geometry. Also,
it evaluates the centrality of the edges with an approximative metric. Moreover, instead of
just removing a single edge at a time, HGN removes edges in batches, until the required
number of communities is discovered. In the following subsections the algorithm’s operation

will be described in greater detail.

3.2.1 Network Embedding

Network embedding refers to the process of assigning coordinates of a metric space to ev-
ery node of the network. Embedding the network in a low dimensional space can aid in
accomplishing many computations more efficiently. The hyperbolic space is proven to be
a suitable space for embedding large complex networks. This is due to the fact that such
graphs, especially networks that display significant power-law degree distribution, have been
conjectured to have an underlying hyperbolic geometry [71]. In the literature there exist
multiple embedding algorithms [[2, [73, [74, 75, [76], aiming to either assist in understand-
ing the process of the network’s evolution or manage to assign coordinates that reflect an
underlying property of the graph. Many of these embedding algorithms are also helpful in
making certain computations less complex.

The Popularity-Similarity (PS) model [77, 73, 78] is one of the most common models
for embedding graphs in the hyperbolic space. Every node is considered to be assigned

two polar coordinates in hyperbolic space, with the two-dimensional H? space usually being
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the common choice. The radial coordinate abstracts the node’s popularity, with nodes that
lie closer to the center of the hyperbolic disk being the most popular ones. The angular
coordinate is used to abstract the similarity between nodes. In the PS model the hyperbolic
distance between two nodes can be regarded as the probability that they are connected in
the network (or that they will be in the future). In [[77] it is proven that networks that follow
the preferential attachment rule for selecting each new node’s neighbors emerge naturally
from the PS model under a condition. This condition is that each new node that joins the
network is connected with a subset of nodes, so that the product between the popularity
and similarity is optimized. Moving towards the opposite direction, a network that displays
the characteristics of the preferential attachment model can be embedded in the hyperbolic
space by estimating for every node its polar coordinates through a Markov Chain Monte

Carlo (MCMC) process.

Extending this work, authors in [73] propose HyperMap. HyperMap utilizes the PS
model and assigns hyperbolic polar coordinates to every node of the network by sorting the
nodes in decreasing order of their degree centrality. Then, the first node is given a zero radial
coordinate and a random angular between [0, 27]. Following that, each one of the remaining
nodes, examined in order of appearance (i.e., ranking in degree centrality), is assigned
a radial coordinate that depends on the degree of the node. All the previous nodes re-
calibrate their assigned radial coordinates. The node is also assigned an angular coordinate,
which is the result of a Maximum Likelihood Estimation (MLE) process. HyperMap can
be used for link prediction applications as well as greedy routing protocols. In order to
speed up the computations required for embedding a network with HyperMap, the authors
in [[78] propose the estimation of the angular coordinates for a subset of nodes based only
on those of their neighbors, without having to solve the corresponding MLE problems. In
[72] the authors propose LaBNE, aiming at enhancing link prediction techniques. In this
algorithm the network is embedded in the hyperbolic space H? using the Laplacian matrix L,
obtained from L = D — A, with D being the degree matrix and A the adjacency matrix. The
coordinates of each node are obtained by first embedding the graph in H? by solving a linear
system and then assigning them radial coordinates that depend on their degree centrality
(in a similar fashion as HyperMap) and angular coordinates dependent on the hyperbolic

embedding coordinates. Another PS embedding approach is the one developed in [74] where
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the authors propose Mercator. Mercator is a method mixing machine learning and maximum
likelihood techniques in order to produce a meaningful embedding regardless of the degree
distribution of the graph. It is also based on the Popularity-Similarity (PS) model both on
the Euclidean and Hyperbolic space (i.e., S'/H?, where S* is the one dimensional sphere
and H? the two-dimensional hyperbolic space). Moreover, hyperbolic embedding can also

assist in routing applications.

In [75] a greedy hyperbolic embedding is proposed, where nodes are assigned coordinates
in the hyperbolic space by embedding a minimal depth spanning tree of the graph. Such
an embedding, guarantees that greedy routing is 100% successful in the embedded network.
Moreover, in the same work, an online embedding algorithm is proposed that is capable of

adjusting the nodes’ coordinates in the events of link failures or new node arrivals.

In HGN, the graph is embedded in the hyperbolic space using the distance preserving
Rigel embedding algorithm [76]. This embedding algorithm operates as follows. First of
all, a small percentage of the nodes, named landmarks, are selected. These landmarks
are the nodes with the highest degree, although different strategies for landmark selection
are possible and have been utilized in relevant algorithms [79]. The landmark nodes are
embedded in the hyperbolic space so that the hyperbolic distance between them is as close
as possible to their shortest path length distance in the network. Following this, the rest of
the nodes are assigned coordinates such that their distance to a randomly selected subset of
the landmarks reflects closely their distance in the network. This is achieved by applying the
Simplex method [80]. Among the many models used to simulate and envision the Hyperbolic
space [81]], Rigel uses the hyperboloid model, where the distance between two points x, y in

an n-dimensional hyperbolic space, is given by the following formula:

6(x,y) = arccosh J (1+ Zxﬂ) -(1+ Zy,?) - Z (x; - yi) (3.2)
i=1 i=1 i=1

After the execution of Rigel, the distance between any pair of nodes should be close
to the true network distance. Thus, by employing this type of embedding, the problem of
calculating the lengths of the shortest paths joining nodes of the network is reduced to a
matter of simple mathematical operations, mitigating in this way the required time. A simple

BFS algorithm in order to find the shortest path in an unweighted and undirected graph
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is of complexity O(|V|+ |E|), while the arithmetic executions require constant time. This
improvement is essential for the operation of the Hyperbolic Edge Betweenness Centrality

of each edge, discussed in detail in the following.

3.2.2 Hyperbolic Edge Betweenness Centrality Coupled with Neo4J

As discussed earlier, Girvan-Newman relies heavily in the computation of the EBC metric for
every edge of the graph, with edges that display high value, having “bridge” like properties,
thus, are likely to join nodes belonging in different communities. In order to identify the most
central edges a new metric is introduced, named Hyperbolic Edge Betweenness Centrality
(HEBC). To compute the HEBC value of every edge, the coordinates obtained by applying
Rigel embedding on the network are used. As in the case of EBC, HEBC quantifies the
number of greedy paths that pass through a specific edge over the total number of greedy
paths joining the nodes of the network.

In order for the HEBC (and thus the whole HGN algorithm) to become more scalable
as the input sizes increase, its execution has been coupled with a graph database as well
as a standard relational one. Graph databases [82] are NoSQL solutions that enable the
storage, querying and retrieval of large linked datasets, such as networks. The Neo4J graph
database [83] is chosen because it is one of the most popular graph databases, used mainly
for its scalability, its performance, the variety of available, implemented and optimized,
graph algorithms, as well as its developer community that supports new implementations
and enhancements.

In Algorithm m, a pseudocode for the HEBC algorithm is provided. This algorithm
returns the batchSize edges that display the highest HEBC, where batchSize is the size of
the batch, meaning the maximum number of edges that can be removed in a single step of
the HGN algorithm. This algorithm can be executed for large graphs with many edges as

it allows the fetching of information in parts from the database.
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In line 8 of Algorithm m, an outer loop sets each node as a potential destination. Inside
this loop, in lines 9-19, the nodes are sorted in a non-increasing order according to their
hyperbolic distance from the destination node. By doing this, nodes can be examined in
the correct order in the following parts. In lines 20-26, the number of greedy paths the
source node and the destination node are calculated. A greedy path is a path constructed
by moving from a node to a destination choosing each time a node nearest to the final
destination [75]. Using greedy forwarding is another novelty of the proposed approach for
speeding up the computation. Greedy forwarding using hyperbolic coordinates is known to
produce greedy paths with length close to the shortest path length. In the last part of the
algorithm, in lines 27-33 the dependencies ¢, namely the number of greedy paths towards
the destination that pass through the other nodes, are calculated for every node of the graph
and so is the HEBC for every edge that appears on a greedy path towards the destination
node. Finally, when the loop that started in line 2 terminates, the value of HEBC of every
edge has been calculated. The reason that the HEBC values of the edges differ from the
nominal EBC values is threefold. First, the number of greedy paths that pass through an
edge is not always the same as the number of the actual shortest paths crossing it. Moreover,
the greedy paths differ from the shortest paths in one more way. The greedy path from i
to node j is not necessarily the same with the path from j to i. To overcome this obstacle
the total HEBC value of an edge, i.e., (i, j) € E, is taken as the sum of the HEBC regarding
the directions i — j and j — i. Finally, the embedding process is not free of errors in the
distances of the nodes. Although the values of the edges concerning the EBC and HEBC
metrics differ, the ranking of the edges according to their centrality values, is very close
especially for the most central edges. In simpler terms, this means that edges that display

a high nominal EBC value, will also display high HEBC values.

Regarding the time complexity of the HEBC algorithm, in line 8 a process is repeated for
every node of the input graph G = (V, E). Then, in line 18, the pairwise distances among
the destination and the rest of the nodes are calculated, imposing an O(|V|) complexity.
The mentioned sorting can be done with an efficient algorithm (e.g., quicksort, mergesort)
imposing a complexity factor of O(|V|log|V]) time complexity. In the next parts, the algo-
rithm in fact check every edge of G, thus including another O(2 - |E|) complexity. Finally,

the loop that begun in line 8 is of complexity O(|V|? +|V|%log|V|+|V|-|E]|). Because |V|-|E]
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Algorithm 1: HEBC - Hyperbolic Edge Betweenness Centrality

Input : src: number of sources from which to estimate the HEBC of edges, Icmp:

largest connected component, batchSize: number of edges in batch,
MaxNodes: maximum number of nodes that can be retrieved at once
from DB.

Output: LargestHEBC, containing top batchSize edges in terms of HEBC

1 # get from database all nodes in component lcmp

2 V =get_nodes(lcmp), nodes_number = len(V)

3 # get number of edges for component Icmp from database
4 edges_number = getEdges(lcmp)

5
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# data structure to store the HEBC value for each edge
HEBC(i, j) = 0, for every i, j denoting edges in lcmp
Pick src nodes of set V, make set V’

for each node s € V' do

# read from database the coordinates of node s
dst = getCoords(s)
dist = [0] * nodes__number
V=V
while V” ! =[] do

pick MaxNodes nodes in list L, remove from V"

node__coords = getMultipleCoords(L)

for u in L do

‘ dist[u] = hyperbolic__distances(dst,node__coords|u])
Sort all nodes in order of decreasing hyperbolic distance towards the destination
s

Obtain S as S={vy vy < ... Zvpn}
# os(u): the number of greedy paths beginning at node u and ending at node s
o = [0] * nodes _number

osls] =1
Ng (i, s) : the greedy neighbors of i in §
fori=N:1 do

v =S[i]

for each u; : u; € Ng(i,s) do
| ol = o] + onli]
delta = [0] * nodes__number
fori=1:N-1do
for each uj € Ng(i,s) do
c= Zi[[{]J * (1 + deltal[i]);
HEBC(i, j) = HEBC(i, j) + c;
HEBC(j,i) = HEBC(j,i) + c;
deltalj] = deltali] + c;
LargestHEBC = zeros(batchSize,2)
Find the edges that correspond to the batchSize largest values of HEBC and fill
matrix LargestHEBC
Return LargestHEBC
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is the dominant factor, the HEBC algorithm is of complexity O(|V||E]).

3.2.3 Community Detection

Hyperbolic Girvan-Newman (HGN) is a modification of the original GN algorithm with
hypebolic geometry aspects. In HGN, the network is embedded in hyperbolic space with
Rigel embedding after proper tuning of the algorithm’s parameters. Having an indication
on the number of communities, the following process is executed. The HEBC values of all
the edges are computed. Instead of removing just a single edge as it is the case in GN, a
fixed number of top ranking edges, called the batch, are removed in each iteration. The
batch is a rather important parameter and must be tuned according to the number of total
edges in the network. As edges are removed two scenarios can occur. Either the batch runs
out of edges with no new community being detected or the graph becomes disconnected. In
the first case, the graph is re-embedded in the hyperbolic space while in the second case,
a new community has been detected and the largest connected component is re-embedded
and the process is repeated until the desired number of communities has been found. In the
flowchart depicted in Figure @ the steps of HGN are described and the points where the
databases are required are highlighted.

An interesting aspect of HGN is its ability to perform well both for clustering spatial
datasets and complex networks. To achieve the former, the problem of data clustering
needs to be mapped to a problem of detecting communities in a graph. The graphs that
are formed by joining data points are called proximity graphs. There are many ways to
produce a proximity graph. In the case of HGN, the Disjoint Minimum Spanning Tree
(DMST) algorithm [84] is preferred. The complete weighted graph is created by computing
the similarity between all pairs of data points (nodes in the graph) and it is given as input
to the algorithm. Then, DMST computes the first k (user-specified) MSTs, each time
removing the edges that participated in the MST of the previous step (thus the disjoint
characteristic). Finally, it joins the nodes with the edges of these k MSTs to produce the
proximity graph. DMST is a sound choice because, with a small (of course, dependent on
the size of the graph) choice of parameter k, it is possible to get a proximity graph that
reflects the relations among the data (i.e., similar observations are linked together). At the

same time, the obtained graph has low density that does not impede the execution time
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Figure 3.1: HGN flowchart.

for the rest of the algorithm. The time complexity of building the full weighted graph by

calculating all the pair-wise distances and performing DMST is O(|V|?).

3.2.4 Evaluation of the HGN Algorithm

In this section, experimental results are presented. These results showcase the strong points
and benefits of the HGN algorithm. To begin with, the accuracy of the HEBC metric
compared to the nominal EBC values on some common benchmark graphs is presented.
Following that, the community detection performance under various options of the batch
parameter is examined, and more specifically the manner in which it affects the execution

time of the HGN algorithm and the quality of the solution in terms of the achieved modu-
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larity score. Then, results on the framework are presented and discussed when applied on

both real and artificial datasets.

3.2.4.1 Evaluation of the HEBC Computation

In this subsection, the accuracy of computing HEBC metric in scale-free artificial networks

and some real social networks obtained from [85] is presented. The main aspects of these

graphs are presented in Table @

Table 3.1: Graphs description

Graph name | #nodes | #edges
scfl 1000 5788
scf2 1000 5821
karate 34 78
dolphins 62 166
lesmis 7 258
polbooks 105 442

Figure @ presents the percentage of correct prediction of the top-k edges ranked ac-
cording to EBC and HEBC and shows that notable scores of accuracy are achieved for
these types of scale-free and power-law degree topologies. EBC ranking is used as a refer-
ence. This figure quantifies the percentage of accuracy achieved by the ranking according
to HEBC with respect to the ranking of the top-k edges by EBC. This is expected, because
using Rigel embedding for power-law and power-law-like (exponential) networks yields less
distortion of the distances in the embedded network, i.e., they are closer to the original ones.
The satisfactory results for the social networks examined are justified, since such networks

are known to follow a power-law or a power-law like degree distribution [f].
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Figure 3.2: Percentage of correct prediction in the top-k ranked edges for the networks
presented in Table Bl. Blue columns denote the accuracy achieved for the top 10 (first of
each triplet of bars), red for the top-k= 3 (second of each triplet of bars) and yellow for the
top-k = 2 edges (third of each triplet of bars).

3.2.4.2 Sensitivity of HGN regarding the batch parameter

As noted earlier, the size of the batch is an important parameter to consider when executing
the algorithm. In Figure @, in the left axis the time needed for the termination of HGN,
when applied on graph7 of Table @ is displayed, while on the right axis the obtained
modularity is depicted. As it can be seen, when the size increases the algorithm tends to
terminate faster until it reaches a certain plateau, where, except for minor fluctuations,
the execution time reduces at a much lower rate. This is because the crucial edges for
community discovery have already been detected and adding more edges to the batch no
longer affects the resulting partition. The slight decrease is due to the fact that the graph
becomes sparser and some computations are completed sooner. Similar conclusions can
be drawn for the modularity metric as well. It is observed that as the size of the batch
increases it is possible to remove edges o