
  

Abstract -- In this study, an alternative approach based on 

redundant fault signatures is proposed for reliable condition 

monitoring of a Brushless DC motor drive in critical 

applications. To improve the fault detection and mitigation 

processes, a multi-source database is synthesized by redundant 

sensor signals. Focusing on Hall-effect position sensor-based 

drives, a data-driven approach for the unbalanced system 

operation diagnosis is presented, while the harmonic analysis 

with the Goertzel algorithm offers robust and fast fault detection. 

Thus, different configurations of misaligned position sensors are 

investigated to verify the effectiveness of the proposed fault 

signatures in identifying the defect and its severity. In addition, 

the position sensor breakdown fault can be detected, while the 

method can easily be expanded to sensorless drives for 

unbalanced operation detection. Finally, the reconstruction of 

the commutation signal and the required one-time commutation 

angle calibration are also feasible with the proposed monitoring 

scheme. 

 
Index Terms -- Brushless motors, Condition monitoring, 

Databases, Fault diagnosis, Frequency-domain analysis, 

Goertzel algorithm, Hall effect devices, Redundancy, Sensor 

fusion, Variable speed drives. 

I.   INTRODUCTION 

LECTRICAL drive systems demanding high reliability 

can be found in both industrial and safety critical 

applications, such as automotive, aviation, and space 

industries, either due to potential extreme financial losses or 

life-threatening safety issues. In addition, Brushless DC 

(BLDC) motor drives are usually exploited in critical 

applications due to their high power density and efficiency in 

a wide speed range [1]–[4]. Motor faults, power electronics 

converter failures, and sensor faults can be distinguished 

among the potential faults of these drives, demanding the 

development of fault tolerant control systems [5]–[7]. 

Commonly, the fault diagnosis process is based on a single 

sensor for minimum implementation cost, but this approach 

either considers single fault types in the system, or neglects 

the possibility that the sensors utilized for the diagnosis can 

also fail. During the last years, multi-sensor control schemes 

are getting increasing attention for critical applications and, as 

a consequnce, more effective and reliable fault diagnosis, 

isolation and mitigation techniques can be developed [8]–[12]. 

More precisely, exploiting multiple sensors enables higher 

diagnostic accuracy through the redundant datasets, which are 

provided by sensors utilized to either measure the same 

quantity for noise and disturbance cancelation or integrate 

information from different aspects [9]. Thus, homogenous and 

heterogenous sensor configurations, either measuring the 

same quantity type (i.e. electrical or mechanical) or a different 

one, can be observed, respectively [10]. 

The unbalanced operation of a BLDC motor drive can be 

observed both in sensor-based and sensorless setups. The 

inaccurate placement of the Hall-effect position sensors, 

known as sensor misalignment defect, and the inevitable 

detection and processing errors in sensorless control systems 

are additional reasons for the observed increased torque ripple. 

It is worth noting that, the misalignment defect can be 

described by the relative commutation angle error (CAE), 

which is responsible for the unequal sectors during the 

electrical cycle, and the absolute error, which determines the 

negative or positive deviation from the ideal sensor position. 

These errors can be expanded in sensorless drives for the 

characterization of a leading or lagging commutation instant, 

i.e. a negative or positive CAE, respectively. Finally, in the 

case of sensor breakdown fault a constant sensor output signal 

will be observed and the control system has to identify the 

sensor as faulty. In the previous cases, unexpected stresses, 

either excessive or not, will occur on the system parts, 

negatively affecting the system reliability and stability, which 

in turn demands the development of a fault tolerant control 

technique for critical applications. 

From the literature analysis, it can be concluded that there 

are three different approaches for the diagnosis of unbalanced 

operation and the commutation signal reconstruction. Thus, 

Back-EMF sensing [13]–[15], position sensor signals 

averaging and transition sequence estimation [16]–[19], 

current sensing [19]–[22], and their combinations can be 

exploited for the identification of the commutation angle error 

and the signal reconstruction. Nevertheless, the required low 

pass filters, the expected detection and processing errors of the 

sensed quantities, the speed dependent amplitude of the Back-

EMF, and the speed controller interference along with motor 

parameters variation affects the accuracy of these techniques. 

The frequency-domain analysis is an alternative approach, 

which offers a noise immune fault diagnosis in a qualitative 

manner. More precisely, the virtual third harmonic Back-EMF 

was exploited in [23], while the Discrete Fourier Transform 

(DFT) and the position sensor signals were investigated in [24]. 

Finally, current monitoring was selected in [25]–[27], since 
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current sensors are commonly utilized in variable speed drives 

for closed loop control and safety features. However, both the 

control technique and the system operating point will partially 

affect the monitored signals and the accuracy of the method.  

The development of a data-driven approach is proposed in 

this study, for the position sensor faults diagnosis. Exploiting 

multiple types of electrical sensors, accurate diagnosis and 

commutation signal reconstruction is feasible, counteracting 

the interference of the control technique and the system 

operating point. Instead of blindly placing sensors around the 

system, the candidate signals of the electronics controller 

input and output power are investigated and a new remedial 

strategy, based on partially redundant and complementary 

data, is proposed. The frequency-domain analysis is exploited 

for the diagnosis of both relative and absolute faults, while 

combined with the commutation signal reconstruction, an 

alternative solution for the overall misalignment fault is 

provided. Given the demand for a relatively fast and robust 

fault diagnosis, the second order Goertzel algorithm is 

selected for the frequency-domain analysis only in a narrow 

band around the online selected harmonic component of 

interest. Finally, early breakdown fault diagnosis can be 

performed, exploiting the previously established commutation 

signal. 

II.   INVESTIGATION OF THE PROPOSED TECHNIQUE 

A comparative analysis of the candidate signals’ main 

features for the identification of reliable fault signatures under 

different types of position sensor faults will be presented in 

this section. For the selection of the final control scheme, 

different sensor signals are combined for a partially redundant 

and complementary implementation of the fault diagnosis. 

A.   System Overview and Theoretical Investigation 

Hall-effect position sensors offer a simple solution to the 

required rotor position sensing in BLDC motor drives. The 

most common configuration is placing three sensors at 120 

degrees apart in order to detect six sectors during the electrical 

cycle for the phase current commutations. Apart from their 

low cost and volume, these sensors are compatible with 

outrunner motor configurations, while under a hybrid 

commutation scheme [18], they could offer the required 

redundancy for a fault tolerant control technique with 

decoupled position sensor transitions and armature currents 

commutations. The block diagram of the investigated drive 

and the positions of all potential sensors is presented in Fig. 1.  
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Fig. 1. Block diagram of a BLDC motor drive system with multiple sensors. 

Multi-sensor systems have several advantages, such as the 

ability to verify every choice made by the control system, 

utilizing redundant and complementary data. Extending the 

number and type of the utilized sensors, additional 

information related to the unreliable behavior of the motor can 

be acquired introducing early fault diagnostic capabilities and 

possible identification of the fault type. Thus, the most 

common sensors in drive systems, apart from those for the 

electrical quantities monitoring, are internal and/or external 

magnetic flux, temperature, rotor speed and position, torque, 

and vibrations sensors. 

Voltage sensors for the DC-link and the motor terminals 

could be selected in order to monitor voltages with respect to 

either the neutral point of a resistor network (n) or the negative 

rail of the DC-link (g) or the half of the DC-link (h). Sensors 

can also be considered for the DC-link and the armature 

currents. Moreover, acoustic emissions and vibration patterns 

could also be exploited for mechanical fault diagnosis [28]. 

Processing of the machine vibration signals is one of the 

earliest monitoring techniques and widely utilized to detect a 

variety of mechanical faults. Especially, regarding BLDC 

motor drives, an experimental analysis of vibration and 

acoustic noise is presented in [29], while a systematic 

approach for the identification of vibration and acoustic noise 

sources is developed in [30]. The suitability of acoustic 

measurements by consumer-grade sensors is presented in [31] 

for detection of unknown electrical nature current instabilities. 

However, for a more compact implementation, sensors only for 

the electrical quantities are considered in this study. 

Considering a BLDC motor with concentrated windings 

and the motor neutral point (s), the terminal voltages and the 

Back-EMFs are expressed by (1) and (2): 

���������� � = �	 0 00 	 00 0 	� ∗ ������� � +  

+ ��� − � 0 00 �� − � 00 0 �� − �� ∗ ��� ������� � + ���������� �  (1) 

 ��� = �����(�� +  ) (2) 

where R, Ls, M, ix (x=a, b, c), exs, Ke, ωm, and �(�) denote the 

phase resistance, self-inductance, mutual inductance, phase 

current, Back-EMF, Back-EMF constant, angular rotor speed, 

and a trapezoidal function, respectively. 

Moreover, the phase currents and Back-EMFs can be 

analyzed with Fourier series as expressed in (3) and (4), 

respectively [23], [26]. 

 �� = ��! + ��" + ��# +  … (3) 

 ��� = ���! + ���% + ���" + ���# + ���& +  … (4) 

where the number in the subscript denotes the harmonic order. 

Furthermore, the mechanical dynamic model of the system 

and the produced electromagnetic torque '�  are expressed by 

(5) and (6), respectively. 
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where θm, TL, B, and J are the rotor position, load torque, 

friction torque coefficient, and mechanical inertia, respectively. 

It is worth noting that, a torque ripple is expected under 

normal operation, as the current waveform depends on the 

system inductances, resulting in a quasi-rectangular shape. 

However, the maximum and constant output torque demands 

the phase currents to be synchronized with the flat top of the 

Back-EMFs, which is not valid in case of erroneous 

commutation instants. Thus, increased torque ripple, 

vibrations, and acoustic noise are observed under unbalanced 

system operation, while even more excessive stresses are 

expected under a sensor breakdown fault.  

B.   Redundant Sensors and Fault Signature Selection 

Since the common BLDC motor drives are not usually 

equipped with a torque sensor at the motor shaft, different 

approaches are considered here for the detection of the 

increased torque ripple due to the position sensor faults. 

Consequently, the estimation of the electromagnetic torque 

ripple by sensing different electrical quantities is investigated 

for a reliable diagnosis with partially redundant and 

complementary fault signatures. 

To that end, a simulation model was built based on the 

parameters of a commercial BLDC motor, presented in Table I. 

For the simulation model a PWM frequency of 16kHz was 

selected along with a sampling frequency of 100kHz, a 

frequency resolution of 0.5Hz and the Hanning window. 

Furthermore, a defective configuration, initially presented in 

[14], with 11.2o, -7.6o, and 4.8o commutation angle errors 

(CAE) for the sensors A, B, and C was assumed, while the 

rated speed and torque were also selected as the system 

operating point. 

The six-step commutation sequence of the motor controller 

and the interaction of the harmonic components of the 

armature currents and the Back-EMFs are responsible for the 

torque ripple and the high amplitude of 6th and 12th harmonic 

components in the electromagnetic torque frequency 

spectrum, even under the normal operating condition, as it is 

illustrated in Fig. 2. Despite the rich frequency spectrum of the 

electromagnetic torque, the increment of the second harmonic 

component (400Hz) could be a clear indicator of the defect. 

 
TABLE I. PARAMETERS OF THE BLDC MOTOR 

Parameter Value 

Rated Power 660 W 

Rated Speed 3000 rpm 

Rated Torque 2.1 Nm 

Rated Voltage 48 V 

Number of Pole Pairs 4 

Phase Resistance 0.08 Ω 

Phase Inductance 0.15 mH 

Rotor Inertia 2400 g/cm2 

 

 

Fig. 2. Waveform and frequency spectrum of the simulated 

electromagnetic torque derived by the FFT analysis under the healthy and 

defective sensor configuration at the rated speed and torque. 

 

A connection between the electromagnetic torque and the 

controller input and output power can be established for the 

investigation of multiple and redundant fault signatures. 

Considering the standard 120-degree commutation logic of a 

BLDC drive, e.g. in the sector where the phases A and B are 

energized and phase C is silent, the controller input and output 

power can be estimated, as it is described in (7): 
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where VxH (x=A, B, C) are the motor terminal voltages with 

respect to the half of the DC-link, VDC is the DC-link voltage, 

iDC is the controller input current, AEFis the controller input 

power, and ABCD  is the controller output power. 

As it can be observed in Fig. 3 to Fig. 5, by approximating 

the Back-EMFs with the motor terminal voltages, motor and 

controller input power are candidate signals. By the close 

resemblance of their frequency spectrum with the one of the 

electromagnetic torque and the different sensors that are 

utilized for the estimation of each signal, the increment of the 

second harmonic component is a reliable fault signature. In 

addition, the diagnosis is independent of the DC-link current 

sensor position, i.e. after (Fig. 3) or before (Fig. 4) the input 

capacitor bank. Moreover, the low amplitude of this harmonic 

component under the healthy configuration enables the 

reliable fault detection. Although DC-link and motor currents 

can independently be utilized for the diagnosis, as it was 

presented in [26], the current work aims in investigation of 

both current signals as complementary signatures for 

redundant fault detection. Modifying this current approach for 

a control system with multiple sensors, the comparison of the 

DC-link current frequency spectrum with the one of the added 

armature currents will permit a redundant implementation of 

the diagnosis, based on the second harmonic component 

increment.  



  

 

 

Fig. 3. Waveform and frequency spectrum of the approximated 

electromagnetic torque by the motor input power, derived by the FFT 

analysis under rated speed and torque. 
 

 

 

Fig. 4. Waveform and frequency spectrum of the approximated 

electromagnetic torque by the controller input power, including input 

capacitor current, derived by the FFT analysis under rated speed and 

torque. 
 

 

 

Fig. 5. Waveform and frequency spectrum of the approximated 

electromagnetic torque by the controller input power, without including 

the input capacitor current, derived by the FFT analysis under rated speed 

and torque. 

On the other hand, the exploitation of the input power 

estimation improves the accuracy of the method, since 

potential fluctuations of the input voltage are also considered, 

and this is the main reason that it is selected in this study for 

further investigation. Finally, the breakdown fault can also be 

detected by the excessive increment of the second harmonic 

component and the highly enriched frequency spectrum of the 

monitored signals. Nevertheless, the observed system 

instability under a breakdown fault along with the required 

time for the harmonic analysis and the fault diagnosis limit the 

method usefulness for the breakdown fault diagnosis. 

C.   Harmonic Analysis and Fault Signature Detection 

The fast and reliable detection of each fault signature 

should be an integral part of a robust sensor fusion scheme. 

However, the entire frequency spectrum is not required for the 

diagnosis and a single component is targeted with the 

proposed method. Therefore, the harmonic analysis can be 

performed in a narrow frequency band around the selected 

component, while both the investigated component and the 

frequency band can be determined online. Consequently, the 

Goertzel algorithm is preferable for the frequency-domain 

analysis of the monitored signals and the diagnosis of the fault.  

The Goertzel algorithm is derived by the DFT, while it 

exploits the periodicity of the phase factor to reduce the 

computational complexity, as the FFT. However, it is more 

effective than the traditional FFT, when it comes for a small 

number of investigated frequencies, while it has a higher 

complexity for covering the entire frequency spectrum [32]. 

Since the first order difference equation contains a complex 

multiplication factor, the second order system expressed by 

(8), is preferred to save computational cost for the output NOPQR estimation [33]. 

 SsPUR = VPUR + 2 cos Z<[O\ ] ^PU − 1R − ^PU − 2R
NOPUR = ^PUR − �,_`abc ^PU − 1R d = 0, … , Q − 1  (8) 

III.   DEVELOPMENT OF CONDITION MONITORING AND 

REMEDIAL STRATEGY 

Investigating the misalignment defect and breakdown fault 

in a unified manner improves both the diagnosis of the latter 

and the system postfault performance, while the redundant 

fault signatures enhance the expected effectiveness of the 

proposed technique. More precisely, the reconstructed 

commutation signal for the mitigation of the misalignment 

defect can also be exploited for the early breakdown fault 

diagnosis [18]. However, both relative and absolute errors 

should be identified and mitigated for an accurate solution in 

case of a more critical fault, such as the sensor breakdown. 

This study extends the work presented in [18] from the 

diagnosis of relative and absolute errors’ point of view. 

Therefore, the proposed technique consists of different 

processes in order to detect the unbalanced operation, 

reconstruct the commutation signal, and eliminate the absolute 

error. The outcomes of these processes are the reconstructed 

commutation signal with minimum commutation angle error 



  

and the decoupling of the position sensor transitions from the 

phase current commutations, which sequentially permits the 

early and reliable diagnosis of the breakdown fault. 

A.   Detection of Unbalanced System Operation 

The first stage of the proposed method is a simple but 

reliable detection of the unbalanced system operation. The 

harmonic analysis of the monitored motor and controller input 

power permits the diagnosis of a single, double, and triple 

defect by the increment of the second harmonic component, as 

it was presented in the previous section. The identification of 

the exact value of each sensor commutation angle error is not 

the target of this stage, since this can be estimated by the 

reconstructed signal of the next stage. Consequently, a 

qualitive analysis is performed with the Goertzel algorithm. 

B.   Commutation Signal Reconstruction 

The commutation signal reconstruction process is 

thoroughly presented in [18] and it is not included here due to 

space limitations. Averaging the sensor transitions, the speed 

and commutation instants can be estimated, while the relative 

errors can also be identified comparing the reconstructed 

signal with the one of the combined sensor transitions. 

Nevertheless, the absolute error cannot be defined at this stage 

and the reconstructed signal is highly affected by the selection 

of the reference sensor. As a result, the new signal may have a 

negative or positive commutation angle error because of the 

leading or lagging position of the reference sensor. 

In other words, the system balancing process results in equal 

absolute errors for the virtual position sensors and a new 

diagnostic process must be implemented in the next stage for 

the calibration of the required reconstructed signal phase shift 

to minimize the absolute error. However, this is by far the most 

challenging defective case due to the system inductances, 

which affect the current slew rates and mask the leading 

reference sensor defect, demanding a sensitive and reliable 

monitoring approach. 

C.   Minimization of the Absolute Commutation Angle Error 

To minimize the absolute commutation angle error the 

reconstructed signal should be shifted according to the 

deviation of the reference sensor from the ideal position. 

However, the real reference sensor position is unknown, 

which is translated into either a random first shifting of the 

reconstructed signal or the requirement of characterizing the 

reference sensor, as leading or lagging, before the first shift. It 

is worth noting that, even if a trial and error process seems to 

be fair enough, it may lead to system instability in case of a 

relatively high absolute error and a wrong default procedure 

that it has to be followed. Thus, a filtering stage is developed 

to detect an increased value of the monitored signal at the 

beginning or the end of a sector. 

A low-power operating point is preferable for the reliable 

characterization of the reference sensor in these drives, since 

the freewheeling diode states can be clearly detected in the 

monitored signals and, depending on the position of these 

states in the investigated sectors, the reference sensor can be 

characterized. The low side diodes freewheeling states occur 

every two sectors in the electrical cycle due to the erroneous 

commutation instants. More precisely, in case of a leading 

position of the reference sensor an increased amplitude of the 

monitored signal is expected at the beginning of a sector 

identified by the failing edge of a position sensor signal. In 

case of a lagging reference sensor position, the indicator can 

be detected at the end of the sector before the falling edge of 

a position sensor signal. The above indicators can be detected 

under a clockwise operation, while a modified approach 

should be considered for the counterclockwise operation. 

Therefore, a simplified and rotation independent approach, 

based on the monitored power signal and a filtering process, 

is proposed for the characterization of the reference sensor. 

By the reconstructed commutation pulsetrain transitions, 

two randomly selected consecutive sectors of the electrical 

cycle can be isolated, since an increased amplitude is expected 

in one of these sectors. To identify the exact position of the 

indicator in the investigated sectors, a filtering process is 

implemented to average the oversampled signal. Dividing this 

time interval into four subsectors, the overall mean value can 

be compared to the four different mean values and the leading 

or lagging case can be identified. In Fig. 6, the previous three 

different cases for the input power monitoring are illustrated 

under different defective configurations of the reference 

sensor. It is evident that, if the mean value of the first or third 

subsectors are higher than the overall mean value due to the 

freewheeling diode state, then the reference sensor has a 

negative commutation angle error, while the mean values of 

the even subsectors can highlight the lagging position of the 

reference sensor.  

 

a) 

 

b) 

 

c) 

 

Fig. 6. Two randomly selected consecutive sectors of the electrical cycle 

of the monitored motor input power (a), controller input power including 

input capacitor current (b), and controller input power without including 

input capacitor current (c) under various negative or positive commutation 

angle errors (CAE). 



  

After the characterization of the reference sensor by the 

filtering process, the reconstructed commutation signal can be 

shifted towards the ideal sensor position to minimize the 

absolute error, without risking the system stability. It is worth 

noting that, at this stage all sensors seem to have the same 

absolute error (which is not necessary zero) due to the 

balancing process, which further simplifies the identification 

of the real sensor positions. The proposed monitoring scheme 

enhances the effectiveness of the technique, since the required 

shifting of the commutation signal can be identified by 

different sensors and at different system operating points to 

cancel undesired noise and disturbances. The second order 

Goertzel algorithm is also exploited in the last stage for the 

reliable diagnosis of the absolute error fault signature by the 

harmonic analysis of the monitored signals. 

As it is illustrated in Fig, 7, the amplitude of the ninth 

harmonic component, in case of input power monitoring, will 

highlight the severity of the absolute error and the need to shift 

the reconstructed signal. Since the fault signatures of the 

relative and absolute errors are detected at different harmonic 

components, an increased accuracy of the proposed method is 

expected, while the low amplitude of these harmonic 

components under the healthy operation further enhances the 

detectability of the technique. Thus, through a perturb and 

observe process, the minimum of the investigated harmonic 

component can be achieved by the shift of the reconstructed 

commutation signal, providing a complete solution to the 

unbalanced system operation.  

In addition, one of the proposed technique advantages is 

the ability to verify every choice made by the control system, 

utilizing redundant and complementary data. Therefore, 

extending the work presented in [26], the armature current 

monitoring can be used in combination with the power 

monitoring, as it permits the reliable identification of the 

absolute error exploiting the second harmonic component. 

This component is also different from the relative error fault 

signature (third harmonic component was presented in [26]), 

and as a result of this it can be considered as a signature. 
 

a) 

 

b) 

 

Fig. 7. Ninth harmonic component of the motor input power (a) and 

controller input power (b) frequency spectrum derived by the Goertzel 

algorithm, under the healthy, leading, and lagging positions of the reference 

sensor at no-load, 3000 rpm and 250 rpm, respectively. 

a) 

 

b) 

 

c) 

 

Fig. 8. Second harmonic component of the armature currents Ia (a), Ib (b), 

and Ic (c) frequency spectrum derived by the Goertzel algorithm, under the 

healthy, leading, and lagging positions of the reference sensor at 250 rpm 

and no-load. 

IV.   CONCLUSIONS 

In this study, an alternative condition monitoring scheme for 

a BLDC motor drive for critical applications is proposed. This 

redundant data-driven approach aims to the identification of 

multiple faults and as a first target the position sensor faults 

have been targeted. Through the proposed technique a unified 

approach for misalignment and breakdown faults mitigation is 

developed, since with both relative and absolute misalignment 

errors been identified, early breakdown fault diagnosis can be 

performed, exploiting the previously reconstructed 

commutation signal. Apart from noise cancelation, the 

multiple sensor scheme offers the ability to detect faults at the 

utilized sensors for the fault diagnosis. Thus, the additional 

sensors where selected to provide mainly complementary 

information of the system condition and, as a result, the motor 

and controller input power monitoring were evaluated. 

Finally, the frequency-domain analysis using the Goertzel 

algorithm was preferred for reliable diagnosis of the relative 

and absolute errors, providing an overall solution. 
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