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A�������: The foreseen upgrades of the Large Hadron Collider (LHC) are expected to increase
the required throughput of the front-end and back-end electronics that support the readout of the
LHC detectors. Therefore, the complexity of the electronics systems will be increased as well. An
example of this is the electronics system of the New Small Wheel (NSW) upgrade of the ATLAS
detector, which will be comprised of a number of Field-Programmable Gate Arrays (FPGAs), and
Application-Specific Integrated Circuits (ASICs). These ASICs will be configured and monitored
by the Slow Control Adapter (SCA), another ASIC designed for this purpose. The Slow Control
Adapter eXtension (SCAX) on the other hand, is an FPGA module designed to support FPGA
systems that are part of the ATLAS electronics scheme by reading and writing their configuration
parameters and status indicators. SCAX emulates both the I2C interface of the SCA used to access
the NSW ASICs, as well as the communication protocol implemented between the SCA and the
back-end infrastructure. It thereby enables using the same OPC-UA server and back-end software
suite that support the ASICs, to also interface with the FPGAs that are part of the same system. This
work describes the context of the SCAX’s implementation, alongside architectural considerations
of the module, features, and techniques to validate its hardware implementation across a variety of
FPGA devices.
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1 Introduction

The New Small Wheel (NSW) [1] upgrade of the ATLAS [2] detector employs a novel Data
AcQuisition (DAQ) scheme. Its core is the Front-End Link eXchange (FELIX) [3, 4], a general-
purpose data routing device comprised of optical links and an FPGA on a PCIe card hosted by a
Linux server. Situated outside the radioactive experimental area, FELIX interfaces with the front-
end nodes via optical links, each operating at a data rate of 4.8 Gb/s. These links propagate slow
control data alongside trigger signals to the detector electronics, and forward the collision-related
hit data to FELIX, which in turn receives and sends the data from and to a commodity network via
25 or 100 Gb/s Ethernet. FELIX will eventually be used by all detector subsystems of ATLAS.
The slow control data mediator between FELIX and the front-end devices under configuration
or monitoring is the Slow Control Adapter (SCA) [5]. The SCA is a radiation-tolerant ASIC
developed at CERN, that interfaces with the back-end slow control software - a dedicated Open
Platform Communications - Unified Automation (OPC UA) server [6], via FELIX. The SCA in turn
uses several protocols, such as I2C , to communicate with other front-end ASICs.

The NSW electronics system however (and any ATLAS DAQ system that may utilize the SCA
in the future), also includes FPGAs which are usually situated outside the experimental cavern,
or in low radiation areas of the detector. The logic in these FPGAs has several configuration
parameters that need to be set during run preparation, similarly to the ASICs. To reduce the
complexity of configuration software, a uniform scheme for configuring both the ASICs and the
FPGAs was desired. Given the available tools that have been described so far, in order to access
these parameters, the user would have to deploy an SCA on the same printed circuit board that
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bears these FPGAs, connect it to the OPC server, via the back-end interface in the FPGA, and then
access the registers in the FPGA via an I2C interface in its logic that communicates with the SCA.
However, this would increase the FPGA board’s complexity and cost. Therefore, the approach of
deploying an FPGA emulated version of the SCA is followed instead. The Slow Control Adapter
eXtension (SCAX) is a custom module deployed within the FPGA itself [7]. Designed purely in
VHDL, this FPGA component interfaces with FELIX in the same fashion as the SCA, making it
transparent to the OPC server. It is designed to access the User FPGA Logic (UFL) registers of any
FPGA that hosts it via sixteen user-defined Register Files, which interface with the SCAX’s core
logic through sixteen distinct I2C Channels. This interface mimics that of the SCA’s, which has
the same number of I2C sub-devices, thus further enhancing the transparency to the OPC server1.
This allows the OPC software suite to access both front-end ASIC and FPGA address spaces within
the context of any system that deploys both SCAs and FPGAs. Also, this approach leverages the
already-existing physical links between devices, as opposed to other well-established configuration
schemes. An example is the IPbus [8], which requires a User Datagram Protocol (UDP) connection
between the FPGA and the back-end, alongside dedicated software.

2 Architecture

The SCAX may be used in any FPGA implementation of the ATLAS DAQ electronics that interfaces
with FELIX. Therefore, flexibility and adaptability are considered to be of utmost importance.
Given that, several design considerations were taken into account in order to facilitate the module’s
deployment in a pre-existing design. Figure 1 provides an overview block diagram of the SCAX’s
architecture.

All inbound frames are received by the Elink2FIFO block, which decodes and bu�ers the
incoming 8b10b encoded data at a maximum rate of 80, 160 or 320 Mb/s. This module, alongside
the FIFO2Elink block, originates from the interface logic of the FELIX firmware. The received
data are presented to the Deframer which registers the frame, checks its integrity via the Frame
Check Sequence checker (see FCS_CHK in Figure 1). The frame’s fields are then forwarded to the
Tra�c Handler; the core logic of the design, with its main purposes being the routing of the inbound
frame fields to the corresponding sub-module and reply bus arbitration. For example, one logic
block that may receive a frame is the Controller, a module loosely based on the corresponding SCA
component, but accommodated to the SCAX’s needs. Most importantly, all tra�c related to the
configuration or querying of the UFL register contents are directed to the I2C Router, which in turn
determines the I2C Channel that will finally receive the data. Whichever the active sub-module may
be, the Tra�c Handler stands by for the active logic to finish processing and generate a reply, which
via the FIFO2Elink block will be forwarded to FELIX and to the back-end software2. This pipelined
design approach allows for operation of the SCAX at relatively high core clock frequencies, which
is a highly desirable feature.

1Note however that the interface to the FPGA registers themselves is direct, not via an I2C serial bus.
2The logic generates replies with latencies ranging from 700 ns to 2 �s, depending on the operation.
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Figure 1. SCAX architecture block diagram. The sub-modules that implement the interface with the back-
end can be seen on the right, while the I2C logic alongside the register files that are part of the connection with
the surrounding logic, are on the left-hand side of the diagram. The Tra�c Handler manages the inbound
and outbound frame data-flow, and two auxiliary logic components deal with all non-I2C related types of
transactions. Note that only three I2C Register File-Channel pairs are depicted here, but the SCAX supports
up to sixteen independent instances, each connected to a specific user logic component.

2.1 The Register File and its Corresponding Channel

As mentioned above, the SCAX accesses the UFL registers via sixteen possible I2C Channels. The
back-end software provides a register address and register contents (for write commands) that will
eventually reach the corresponding I2C Channel, which in turn will interface with the UFL via its
associated Register File. Even though this operation resembles a standard I2C transaction that is
performed by the SCA from the back-end software’s perspective, the SCAX does not internally
operate an actual I2C bus. The I2C Channel receives an address and register contents pair from
the software, and uses these to drive the Register File when a write operation is desired. For this
mode, the Register File essentially acts as a demultiplexer, that switches to the UFL register bound
to that address, and allows the associated I2C Channel to write the desired value into it. For read
operations, the I2C Channel receives an address-to-be-read and uses the Register File, which for
read operations acts as a multiplexer, to access the corresponding register, sample its contents, and
forward them to the software. Each Register File supports interfacing with up to 1024 32-bit3
registers. Figure 2 can be used as a reference to the actual interfacing logic.

Although the logic of the Register File is simple in nature, its source file changes from
implementation to implementation, and may also get quite complex, especially when a significant
number of registers are to be accessed. In order to address this, the ability to auto-generate a
Register File is also provided to potential users of the SCAX (see Section 3).

332 bits is the maximum allowable register width, but it can also be less than that.
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Figure 2. The Register File allows the I2C Channel to access the desired register by using the register
address to switch its multiplexer/demultiplexer. The sub-module allows for interfacing with up to 1024 32-bit
registers, while the data are presented to the registers in parallel. The scheme implies that each Register File
is associated with a specific part of the FPGA’s logic.

2.2 RAM and FIFO Extension

In addition to providing the ability to access conventional registers implemented in the FPGA’s
fabric, the SCAX allows the user to interface with memory elements as well. For instance, the user
may associate the write and status ports of a First-In-First-Out (FIFO) instance with some addresses
of a Register File, thus granting the user writing and reading capabilities into/from the FIFO. Apart
from interfacing with a FIFO, the firmware package also provides the means to interface with the
FPGA’s Random-Access-Memory (RAM) primitives. This can be done via an add-on logic, named
SCAX Memory Controller (SMC), that connects with both the Register File and the memory element
in question. The user provides a RAM port address via the Register File, and the extension module
auto-increments the aforementioned address for each read or write command. This allows the user
to access a wide range of the primitive’s address space while keeping the amount of transactions with
the back-end as low as possible. These two extra features of the SCAX add to its functionalities, but
also increase the complexity of the Register File, as it should support the interfacing with memory
primitives in addition to the FPGA registers. This is one of the other reasons why the concept of
the automated Register File generation was introduced (see Section 3).

2.3 Clock Domain Crossing Considerations

As mentioned above, the SCAX core clock can have a frequency of up to 320 MHz. This places the
module’s logic in a single clock domain. However, since a user might also wish to interface with
registers situated outside this domain, Clock Domain Crossing (CDC) capabilities were considered
when designing the SCAX in order to address this. Each I2C Channel - Register File pair may be
manually switched by the user to “CDC Mode“ prior to deploying the SCAX into their design. This
overrides the default clocking of these two modules (which is the SCAX core clock), with the clock
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that drives the UFL registers to which the pair corresponds. In essence, this option instantiates
two CDC FIFOs in the associated I2C Channel, one for read and one for write transactions. These
FIFOs operate in the UFL register clock and the SCAX core clock domains. Apart from that, the
CDC flavor of the I2C Channel operates in a similar fashion as the original one, with the only
di�erence being that the information is always passed through the corresponding FIFO to ensure
data integrity and timing closure.

3 Automated Register File Implementation

As mentioned above, the SCAX design includes a high-level user interface for the definition and
implementation of application-specific registers. This system provides developers with the ability
to provide a database of desired registers in a CSV form. Entries in this database define properties
of the registers – their bit width, read and write ability, multiplicity, and whether they correspond
to RAM or FIFO primitives.

Upon update of these CSV databases, a continuous integration (CI) pipeline triggers the
construction of automated VHDL implementations of both the package as well as the register
interface itself. Additional code is assembled to define XML configurations for the OPC UA server,
high-level C++ structures for interfacing with the associated OPC UA client, and LATEX tables of
the register database for automated documentation.

Internally, the registers defined in the CSV are used to build a YAML database. Additional
registers are created to support interaction with RAM and FIFO registers, and a dedicated handling
of trigger registers is implemented. Individual output formats built from this database are defined
in templates using the Jinja2 [9] template engine, passed to the wuppercodegen package provided
by the FELIX project [10].

The automation in the code generation builds an output for every template and for every CSV
database in the repository. In this way, prototyping new register configurations is simple and
requires only high-level interactions from the users, and creating additional software interfaces is
easily done by adding additional Jinja2 templates to the repository.

4 Development Process

During the development process of the SCAX, several key features had to be tested, in order to ensure
its compliance with the requirements that had been set. First of all, the back-end interface with
FELIX and the OPC server was verified both at the behavioral simulation level, and in silicon. In
addition, since FELIX is foreseen to be used as the universal DAQ agent of the ATLAS experiment,
and given the fact that any FPGA that interfaces with FELIX can have its registers accessed by
the SCAX, it was considered imperative to ensure that the SCAX can be deployed seamlessly in a
variety of FPGA devices. Finally, the SCAX’s ability to access UFL registers without any errors
was assessed via stress-tests in the actual implementation, which validated both the module’s core
functionality, and the timing constraints that are introduced later in this Section.
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4.1 Pre-Implementation Verification of the OPC Interface

In order to facilitate the SCAX’s development and debugging process, a VHDL-based behavioral
simulation testbench was used to test both the module’s interface with the OPC server, as well as its
UFL register connections. Naturally, the same testbench can be used to ease further developments
and debugging in the future. Before describing the simulation procedure, a brief description of the
back-end interface logic is provided.

During the connection initialization stage of the OPC server with an SCA node, the software
suite addresses several of the ASIC’s internal registers via FELIX. Also, a subset of these registers
are continuously being accessed by the server during runtime, for connection stability checking
purposes. The SCA communication protocol dictates that for every query from the supervising
software, the addressed node should transmit an associated reply. That is, the SCA produces an
outbound packet that indicates which request it is associated with, and whether that request was
successful or not. If applicable, it can also yield more information, such as a register’s contents.
Consequently, the SCAX mimics this behavior, by forming reply packets the same way as the ASIC
does, and by implementing the known set of internal status registers that are routinely queried by
the back-end software upon initialization of the communication, and during runtime.

For the purpose of validating the aforementioned scheme, the OPC’s transactions with the
SCA ASIC were recorded using the associated tools provided by FELIX’s low-level software
infrastructure. The acquired data were used to generate a list of commands and valid responses that
was parsed into a dummy OPC server VHDL module, instantiated within the behavioral testbench
of the SCAX. The simulation would then assess the responses of the SCAX to the dummy server’s
queries, and deem if the transactions resemble those between the actual server and the ASIC.
Through the same simulation environment, the basic functionalities of the SCAX were also tested,
such as accessing of UFL registers.

4.2 Post-Implementation Verification of the OPC Interface

The OPC communication validation was extended to the in-silicon phase of the development as
well. Two bu�ers, one for the inbound, and one for the outbound direction of the back-end interface
were deployed, storing the received and generated packets. An Integrated Logic Analyzer (ILA) was
then used to inspect the memory element contents. Any disagreement between the data recorded
by the SCAX debug bu�ers and FELIX’s tra�c inspection tools would indicate an error in the
physical layer of the link between the two. Any inability of the server to establish a connection with
the SCAX would point to an error in SCAX’s logic, or even in its testbench. The bu�er-recorded
packets, in conjunction with the testbench implementation, aid to the tackling of these issues as
well.

4.3 Timing Constraints Considerations

In addition to validating the back-end interface, the in-silicon implementation testing was also used
to study the timing closure of the design. First of all, since the first FPGA that will make use of
the SCAX is the one hosting the NSW Trigger Processor (TP), the first tests were conducted in a
similar device to that of its first host4. The Xilinx® XC7VX690T-2FFG1761C FPGA was chosen

4The TP’s FPGA is the Xilinx® XC7VX690T-2FFG1158C.
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for the tests, which was provided by a Xilinx® VC709 evaluation board. The initial studies involved
deploying the SCAX in similar register-occupancy conditions as the final NSW TP implementation,
but apart from that, di�erent scenarios were explored, where the Register File size, the device itself,
or even the Register File - I2C Channel address width, would vary. As it will become evident, the
introduction of Multi-Cycle Paths (MCPs) across the critical endpoints in the design was mandatory,
in order to solidify the module’s ability to adapt to di�erent use-cases.

Placement Considerations

In a hypothetical situation where the designers of the FPGA that hosts the SCAX had previously
decided to separate di�erent parts of their logic via FPGA floorplanning, the deployment of the
SCAX could potentially create timing issues, since each group of the pre-existing FPGA logic would
have to be connected to a specific Register File - I2C Channel pair. The same e�ect could also
be caused by the place-and-route procedure of the tool itself, as the automatic physical separation
of loosely-related logic primitives is not uncommon, especially if these belong to di�erent clock
domains. In order to tackle this, some freedom of movement to the Register File - I2C Channel pair
was given, by introducing MCPs on multi-bit buses and pipelines for single-bit control signals on
all paths between each I2C Channel and the I2C Router.

Register File Size and Address Width

The NSW TP’s register address space is relatively small, when compared to the maximum allowable
depth of the Register File. It is foreseen that the NSW TP will deploy around five Register Files
in order to interface with about fifty UFL registers of various widths. However, since the SCAX
can be deployed to a design that may require accessing to a larger amount of parameters, and by
the time that a fully-implemented Register File allows for reading and writing from and into 1024
32-bit registers, this extreme use-case had to be examined as well. Since the Register File is a
module solely comprised of the FPGA’s combinatorial logic elements, as the user adds interfacing
with more UFL registers to a Register File, the complexity of the combinatorial logic will increase.

Studies showed that in a Xilinx® XC7VX690T-2FFG1158C where the SCAX was running at
a core clock of frequency 320 MHz5, a Register File that accessed 256 32-bit registers would cause
timing to fail. The amount of negative slack and combinatorial resource utilization would increase
with the further addition of registers, which made evident that a Register File-related MCP was
needed, in order to ease timing closure on the associated nets. Also, in the expected situation where
the SCAX would be have to be deployed in an already densely-populated logic, this MCP would
a�ect timing closure in a positive manner.

Finally, the introduction of the Multi-Cycle Path would allow to increase the 10-bit address
depth of the Register File, in any future implementations. The choice to implement a 10-bit
address space depth in each Register File stems from the fact that this addressing mode is already
being used by the back-end software to interface with the SCA. However, since the ASIC and the
software support other modes of I2C transactions as well, it would be worth to investigate potential
modifications in the way the SCAX accesses the UFL registers via its Register File, namely by
changing its address space depth. For this reason, the possibility to implement a Register File with

5This is the core clock frequency of the SCAX for the NSW TP.
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di�erent address bus widths was explored. The testing procedure involved implementing a Register
File with address bus widths from 8 to 12 bits, and having it interface with as many 32-bit registers
as its depth allowed, in a Xilinx® XC7VX690T-2FFG1761C FPGA. The Look-Up Table (LUT)
primitive utilization and amount of negative slack for each address space depth can be inspected
in Figure 3. Note that for this testing, no MCP was used, as the e�ect on the negative slack with
respect to the increase in the address bus width had to be studied. Note that all widths cause timing
failures, thus further emphasizing the need for an MCP introduction to the Register File path.

Figure 3. Fully-implemented Register File resource utilization and design timing failure quantification for
several address bus widths, with a frequency of 320 MHz, in a Xilinx® XC7VX690T-2FFG1761C FPGA.
Note that for a 12-bit address Register File, the combinatorial resource utilization is about 8 %. For the native
10-bit addressing mode, the Register File logic alone utilizes about 10000 LUTs, which still corresponds to
3 % of the resources of the aforementioned package.

The design’s default Register File MCP length that was finally introduced6, allows for a Register
File that is connected with 1024 32-bit (native 10-bit address size) registers under an SCAX core
clock of 320 MHz to be deployed successfully in the resourceful Xilinx® XC7VX690T-2FFG1158C.
Table 1 lists the implementation results of five Xilinx® FPGA devices, in which the SCAX was
successfully deployed under the same conditions, with no timing errors. Note that the SCAX core
logic uses a modest 6600 sequential and 3500 combinatorial elements, which correspond to 0.76 %
and 0.5 % of the available resources of a Xilinx® XC7VX690T-2FFG1761C FPGA respectively. In
Table 1, the majority of the combinatorial logic is used by the Register File, due to its size.

6The said MCP length is easily configurable by the user, thus further facilitating the accommodation of the configu-
ration block into their design and device.
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Table 1. Total SCAX LUT utilization in various Xilinx® FPGA devices, where one fully-populated Register
File was deployed at a core clock speed of 320 MHz.

Device Available LUTs LUTs Utilized LUT Utilization (%)
XC7A100T-3FGG676 63400 12907 20%
XC7K160T-2FBG484 101400 12903 13%
XC7A200T-3FBG484 134600 12925 9%

XC7VX330T-1FFG1157 204000 12904 6%
XC7VX690T-2FFG1761C 433200 12905 3%

Stress-Testing

In order to adequately test the SCAX’s functionalities, an extreme situation was chosen, where the
module was deployed in a Xilinx® XC7VX690T-2FFG1761C FPGA. The SCAX had two active
I2C Channels, connected with two fully-implemented Register Files interfacing with 1024 32-bit
registers each. The two I2C Channels were physically separated to emulate the scenario described
earlier in the current Subsection. The layout of the implemented design can be viewed in Figure 4.

Figure 4. SCAX implementation in the FPGA of a Xilinx® VC709. The I2C Router is highlighted in the
middle of the Figure, whereas the two I2C Channels are in two di�erent areas of the die, to emulate a physical
separation that may have been imposed by the designer of the pre-existing logic, or by the implementation
tool. Most of the active cells around the two I2C Channels correspond to the combinatorial logic of the
associated Register File block and the UFL registers themselves.

Two tests were performed to verify the hardware implementation: first, an OPC transaction
stress-test was used to test the back-end interfacing. During this, 400 million frames were sent to
the SCAX at a rate of 11 kreq/s. The server evaluated all SCAX reply frames, and no errors were
found. Also, in order to test the MCPs between the I2C Router and the two I2C Channels, as well as
the MCPs between each I2C Channel and the UFL via the combinatorial-logic-heavy Register File,
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a mass read/write test from/into the registers was used. During this procedure, all 1024 registers
of a given Register File were written into, in random order. This randomization was imperative, as
the random switching of the address bus of the module’s multiplexer/demultiplexer (see Figure 2)
ensured the path would be verified correctly. After writing into all registers, their values were read
back, again in nondeterministic order, and were checked o�ine by a software routine for integrity.
The tests showed no errors over several million transactions.

5 Conclusions

The SCAX FPGA module for configuration and monitoring presented here provides easy user
access to FPGA registers via FELIX and the SCA OPC server/client software suite. A flexible
design, SCAX has been developed in such a way as to be transparent to the surrounding logic of
the FPGA in which it is instantiated. All of its functionalities have been tested thoroughly in actual
FPGA implementations, and the included software package that allows the user to automatically
generate the necessary files that vary depending on the actual application, further enhances the
package’s ease-of-use. The NSW is the first project that will make use of the SCAX, since it also
utilizes the SCA ASIC in its system. The SCAX emulates the SCA’s interfacing with the already
well-established back-end infrastructure (i.e. FELIX and the OPC UA server), thus making it fully
compatible with the pre-existing set of tools that are used to access front-end ASIC address spaces.
These facts make the SCAX an ideal solution for configuring and reading-out status registers of
FPGA-based systems that use FELIX for their communication with the back-end.
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