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ABSTRACT. We prove an estimate for the capacity of the condenser (D,Kr),
r ∈ (0,1), where D is the open unit disc and {Kr} is a compact exhaustion of the
inverse image of a compact set under a Blaschke product B, involving weighted
logarithmic integral means of the Frostman shifts of B. Also, we describe the as-
ymptotic behavior of the capacity of condensers (D,Er), where Er is a connected
component of the inverse image of a closed disc with radius r under universal
covering maps, as r→ 0.

1. INTRODUCTION

A condenser in the complex plane C is a pair (D,K) where D is a proper sub-
domain of C and K is a compact subset of D. The sets K and C\D are called the
plates of the condenser (D,K). Let h be the solution of the generalized Dirichlet
problem on D \K with boundary values 0 on ∂D and 1 on ∂K. The function h is
the equilibrium potential of the condenser (D,K). The capacity of (D,K) is

Cap(D,K) =
∫

D\K
|∇h(z)|2dA(z),

where dA is the two-dimensional Lebesgue measure.
In principle, if the two plates of a condenser get closer, its capacity tends to

infinity. The rate of growth of the capacity of several types of condensers whose
plates are getting closer has been studied in the recent papers [1, 5, 8, 13, 16, 19].
In this paper, we are interested in the rate of growth of the capacity of condensers
and how it depends on geometric or analytic quantities expressing the way their
plates approach each other. In particular, we will consider condensers (D,Kr),
r ∈ (0,1), where Kr is an increasing sequence of compact subsets of the open unit
disk D = {z ∈ C : |z| < 1}, exhausting the inverse image f−1(C) of a compact set
C under certain holomorphic functions f in D having infinite valency.

A function φ : D 7→ C is called inner if φ is a bounded holomorphic function
having unimodular radial boundary limits almost everywhere on the unit circle.
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Every inner function φ(z), z ∈ D, can be expressed as a product λB(z)S(z), where
|λ |= 1,

B(z) =
∞

∏
n=1

z̄n

|zn|
zn− z
1− z̄nz

, z ∈ D,

is the Blaschke product corresponding to the sequence of zeros {zn} ⊂ D of φ

satisfying the Blaschke condition ∑
+∞

n=1 1−|zn|<+∞ and

S(z) = exp
(
−
∫

∂D

ζ + z
ζ − z

dµ(ζ )

)
, z ∈ D,

where µ is a (positive) singular measure on ∂D related to the zeros of φ on the unit
circle. The following characterization of Blaschke products in the class of all inner
functions is well known (see e.g. [15, p. 18]). An inner function φ is a Blaschke
product if and only if

lim
r→1

1
2π

∫ 2π

0
log |φ(reiθ )|dθ = 0.

The rate of growth of the above integral means of log |φ(reiθ )| to 0 as r→ 1 gives
rise to different families of Blaschke products. Let B be a Blaschke product and let

T (r) = T (r,B) :=
1

2π logr

∫ 2π

0
log |B(reiθ )|dθ , r ∈ (0,1).

B is called an exponential Blaschke product if there exists a positive integer M =
M(B) such that, for every n ∈ N, B has at most M zeros on the annulus {z ∈ D :
2−n−1 ≤ 1−|z| ≤ 2−n} counting multiplicities. Then (see [6, Theorem 2]) B is an
exponential Blaschke product if and only if

sup
n∈N
|T (1−2−n−1)−T (2−n)|<+∞.

Also, sup{T (r) : r ∈ (0,1)} < +∞ if and only if B has finitely many zeros. For
more results concerning the relation between the integral means(

1
2π

∫ 2π

0

∣∣∣ log |B(reiθ )|
∣∣∣pdθ

)1/p

, p≥ 1, r ∈ (0,1),

and the distribution of zeros of B see [10] and references therein.
We will examine the asymptotic behavior of the capacity of inverse images of

condensers under Blaschke products. Let D(a,s) = {z ∈ C : |z− a| < s} be the
open disc centered at a ∈C and having radius s > 0. The following result has been
proved in [16].

Theorem A. [16, p. 3552] Let B be an exponential Blaschke product, let (D,C) be
a condenser with positive capacity and let Kn = B−1(C)∩D(0,1−2−n). Then

Cap(D,Kn) = O(n), as n→+∞.

In our first main result we will give an estimate for the rate of growth of the
capacity of the inverse image of a condenser (D,C) under an arbitrary Blaschke
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product, in terms of the integral means of its Frostman shifts. Let B be a Blaschke
product and let

By(z) =
B(z)− y
1− yB(z)

, z ∈ N, y ∈ D,

be the family of Frostman shifts of B. By Frostman’s Theorem (see e.g. [15, p.
35]), By is a Blaschke product for every y ∈ D except on a set of zero logarithmic
capacity. In particular, the set D \B(D) has zero logarithmic capacity. For every
y ∈ D, let T (r,y,B) := T (r,By) and let

T (r,C,B) := sup
y∈C

T (r,y,B).

In the following theorem we give an estimate for the rate of growth of the capacity
of the inverse image of a condenser under an arbitrary Blaschke product.

Theorem 1.1. Let B be a Blaschke product, let (D,C) be a condenser with positive
capacity and let

Kr = B−1(C)∩D(0,r), r ∈ (0,1).
Then

Cap(D,Kr) = O(T (r(1− logr),C,B)), as r→ 1.

Using Theorem 1.1 we obtain the following corollary about the asymptotic
behavior of the capacity of the condensers (D,Kr) for Blaschke products with
Frostman shifts having zero sequences of restricted growth. For every y ∈ D and
r ∈ (0,1), let N(r,y,B) be the number of zeros of the Frostman shift By of B on the
closed disc D(0,r), counting multiplicities.

Corollary 1.2. Let B be a Blaschke product, let (D,C) be a condenser with positive
capacity and let

Kr = B−1(C)∩D(0,r), r ∈ (0,1).
Let s ∈ (0,1) and suppose that

(1.1) N(r,C,B) := sup
y∈C

N(r,y,B) = O((1− r)−s).

Then
Cap(D,Kr) = O((1− r+ r logr)−s), as r→ 1.

Another type of holomorphic functions on the unit disk, with infinite valency,
that we will consider when taking inverse images of compact sets are the universal
covering maps of multiply connected domains. A holomorphic function f : D 7→D
is called a universal covering map if for every z ∈ D, there exists r > 0 such that

f−1(D(z,r)) =
⋃

i

Ai,

where Ai are non empty disjoint subdomains of D and f maps homeomorphically
Ai onto D(z,r), for every i; the disc D(z,r) is called a fundamental neighborhood
of z∈D. For more information about the properties of universal covering maps see
e.g. [7].
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Let D ⊂ C be a Greenian domain; that is, D has a Green function or, equiva-
lently, the complement of D has positive logarithmic capacity (see section 2.4). In
particular, every Greenian domain is hyperbolic; that is, its boundary contains at
least two points. Let f :D 7→D be a universal covering map of D and let D(z,s) be a
fundamental neighborhood of z∈D. Let r ∈ (0,s), let Ei(z,r), i∈N, be an enumer-
ation of the connected components of f−1(D(z,r)) and let Kn(z,r) = ∪n

i=1Ei(z,r),
n ∈ N. Note that, from the conformal equivalence of Ei(z,r) and the conformal
invariance of condenser capacity,

(1.2) Cap(D,Ei(z,r)) = Cap(D,E1(z,r)), i ∈ N.
It has been proved in [16, p. 3554] that for every n ∈ N,

(1.3) Cap(D,D(z,r))≤ Cap(D,Kn(z,r))
n

≤ Cap(D,E1(z,r)).

Also, if the domain D is doubly connected (see [16, p. 3556]),

(1.4) Cap(D,D(z,r)) = lim
n→∞

Cap(D,Kn(z,r))
n

.

The equality (1.4) shows that the first inequality in (1.3) is sharp. From the follow-
ing theorem it follows that the second inequality in (1.3) is asymptotically sharp as
r→ 0.

Theorem 1.3. Let D ⊂ C be a Greenian domain, let f : D 7→ D be a universal
covering map and let z ∈ D. For 0 < r < dist(z,∂D), let E(z,r) be a connected
component of f−1(D(z,r)). Then,

(1.5) lim
r→0

Cap(D,E(z,r))
Cap(D,D(z,r))

= 1.

Note that, from (1.2), the equality (1.5) does not depend on the choice of the
connected component E(z,r).

In the following section we collected several known definitions and statements
that will be used in the proofs of our main results. In section 3 we prove Theorem
1.1 and show how it implies Theorem A and Corollary 1.2. Theorem 1.3 is proved
in section 4.

2. BACKGROUND MATERIAL

2.1. Green energy and equilibrium measure. Let (D,K) be a condenser. If D is
a Greenian domain, the Green equilibrium energy of (D,K) is defined by

I(D,K) = inf
µ

∫∫
GD(z,w)dµ(z)dµ(w),

where GD(x,y) is the Green function of D and the infimum is taken over all prob-
ability Borel measures µ supported on K. When I(D,K) < +∞, the unique prob-
ability Borel measure µK for which the above infimum is attained is the Green
equilibrium measure. The function

UD
µK
(z) =

∫
GD(z,w)dµK(w), z ∈ D,
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is the Green equilibrium potential of (D,K). It is true that UD
µK

= I(D,K) on K
except on a set of zero logarithmic capacity and

(2.1) UD
µK
≤ I(D,K)

on D; see e.g. [14, p. 174]. From the formula (see [14, p. 97])∫∫
GD(z,w)dµ(z)dµ(w) =

1
2π

∫
D
|∇UD

µ (z)|2dm2(z),

we obtain that

(2.2) Cap(D,K) =
2π

I(D,K)
.

For more information about potential theory, see e.g. [2, 14, 18].

2.2. Lindelöf Principle. Let f be a non-constant holomorphic function on a Gree-
nian domain D such that f (D) is Greenian. We denote by m(a) the multiplicity of
the zero of f (z)− f (a) at a ∈ D and by

v(y) = ∑
f (a)=y

m(a)

the valency of f at y ∈ f (D). The following inequality is known as the Lindelöf
Principle (see e.g. [12])

(2.3) G f (D)(y0, f (z))≥ ∑
f (a)=y0

m(a)GD(a,z),

where z ∈ D and y0 ∈ f (D). For fixed y0 ∈ f (D), if equality holds in (2.3) for a
point z ∈ D with f (z) 6= y0, then it holds for every point in D. From the definition
of Blaschke products and Frostman’s Theorem it follows that equality holds in the
Lindelöf Principle for inner functions φ :D 7→D, for every y0 ∈D except on a set of
zero logarithmic capacity. For a characterization of the equality cases in Lindelöf’s
Principle see [4, Theorem 3].

2.3. A condenser capacity inequality. Let (D,K) be a condenser, let f be a non-
constant holomorphic function on the domain D such that the condenser ( f (D), f (K))
has positive capacity, let ν be the Green equilibrium measure of ( f (D), f (K)) and
let E := supp(ν) \ f ({a ∈ K : m(a) ≥ 2}). For every y ∈ E, let N f (y,K) be the
cardinality of the set {x ∈ K : f (x) = y}. If Vf (K) := miny∈E N f (y,K), then

(2.4) Cap( f (D), f (K))≤ Cap(D,K)

Vf (K)
,

see [17, Theorem 3.1].
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2.4. Condenser capacity and logarithmic integrals. Let K be a compact subset
of C and let P(K) denote the family of Borel probability measures on K. The
logarithmic capacity of K is defined by

c(K) := exp
(
− inf

µ∈P(K)

∫∫
log

1
|z−w|

dµ(z)dµ(w)
)
.

When c(K) > 0, there exists a unique measure µK ∈ P(K), called the equilibrium
measure of K, for which the infimum in the above formula is attained. Logarith-
mic capacity is a well studied notion (see e.g. [18]) which can be expressed via
condenser capacity by (see e.g. [9, p. 23])

(2.5) c(K) = exp
(
− lim

r→+∞

( 2π

Cap(D(0,r),K)
− logr

))
,

for all compact sets K ⊂ C.
Let (D,K) be a condenser in C and let S(D,K) denote the family of signed mea-

sures σ = σD−σK , where σD ∈ P(C\D) and σK ∈ P(K). An alternative formula
via logarithmic energy integrals for the Green equilibrium energy of (D,K), due to
Bagby [3], is given by

(2.6) I(D,K) = inf
σ∈S(D,K)

∫∫
log

1
|z−w|

dσ(z)dσ(w).

Remark 2.1. From (2.6) it follows that Cap(D,K)> 0 if and only if D is a Greenian
domain and c(K)> 0.

2.5. Hyperbolic metric. Let D⊂C be a domain whose boundary contains at least
two points, let z ∈ D and let f : D 7→ D be a universal covering map with f (0) = z.
The density of the hyperbolic metric of D at z ∈ D is defined by

λD(z) =
1

| f ′(0)|
.

From the principle of the hyperbolic metric (see e.g. [11, p. 682]) it follows that

(2.7) λD(z)≤ λD(z,dist(z,∂D))(z) =
1

dist(z,∂D)
.

3. BLASCHKE PRODUCTS AND CONDENSER CAPACITY

In this section we will prove Theorem 1.1, Corollary 1.2 and show how Theorem
A follows from Theorem 1.1.

Note that, from the inequality (2.4), Cap(D,Kr) → +∞ as r → 1, for every
Blaschke product having infinitely many zeros.

Proof of Theorem 1.1. For every y ∈ D and r ∈ (0,1), let T (r,y) = T (r,y,B),
N(r,y) = N(r,y,B), E(r,y) = B−1(y)∩D(0,r) and F(r,y) = B−1(y) \E(r,y). It is
well known (see e.g. [6]) that for every r ∈ (0,1),

T (r,0) = N(r,0)− 1
logr ∑

a∈F(r,0)
GD(a,0).
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Applying the above equality for By, for all y∈D such that By is a Blaschke product,
we get

(3.1) T (r,y) = N(r,y)− 1
logr ∑

a∈F(r,y)
GD(a,0),

from which it follows that

(3.2) N(r,y)≤ T (r,y)

and

(3.3) ∑
a∈F(r,y)

GD(a,0)≤ (− logr)T (r,y),

for every r ∈ (0,1). If y ∈ D is a point for which By has no zeros, inequalities
(3.2) and (3.3) hold trivially. If y ∈ D is a point for which By is not a Blaschke
product and has a Blaschke factor B̃y, then the inequalities (3.2) and (3.3) follow
from the corresponding inequalities when applied for B̃y and from the inequality
|By(z)| ≤ |B̃y(z)|. So, the inequalities (3.2) and (3.3) hold for all y ∈ D and for
every r ∈ (0,1).

For every r ∈ (0,1), let µr be the equilibrium measure of the condenser (D,Kr)
and consider the measure

νr(A) = µr(B−1(A)), A⊂C Borel measurable.

Then νr is a probability Borel measure on C, for every r ∈ (0,1). Therefore,

(3.4) I(D,C)≤
∫∫

GD(x,y)dνr(x)dνr(y), for every r ∈ (0,1).

Note that, since D\B(D) has zero logarithmic capacity, GB(D)(x,y) = GD(x,y), for
all x,y ∈ B(D). From the Lindelöf Principle,

∫∫
GD(x,y)dνr(x)dνr(y) =

∫∫
GD(B(z),y)dµr(z)dνr(y)

=
∫∫

∑
a∈E(r−r logr,y)

GD(z,a)dµr(z)dνr(y)

+
∫∫

∑
a∈F(r−r logr,y)

GD(z,a)dµr(z)dνr(y).
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We will estimate the two integrals in the above sum separately. From the inequali-
ties (2.1) and (3.2),∫∫

∑
a∈E(r−r logr,y)

GD(z,a)dµr(z)dνr(y) =
∫

∑
a∈E(r−r logr,y)

∫
GD(z,a)dµr(z)dνr(y)

=
∫

∑
a∈E(r−r logr,y)

UD
µr
(a)dνr(y)

≤
∫

∑
a∈E(r−r logr,y)

I(D,Kr)dνr(y)

=
∫

N(r− r logr,y)dνr(y)I(D,Kr)

≤
∫

T (r− r logr,y)dνr(y)I(D,Kr)

≤ T (r− r logr,C,B)I(D,Kr),(3.5)

since νr is a probability measure.
We will now estimate the second integral. For all a ∈ E(r− r logr,y) and y ∈

C, the function z 7→ GD(z,a) is a positive harmonic function on the disc D(0,r−
r logr). Applying Harnack’s inequality (see [18, p. 14]), we get that for every
z ∈ Kr, a ∈ E(r− r logr,y) and y ∈C,

GD(z,a) ≤
r− r logr+ |z|
r− r logr−|z|

GD(0,a)

≤ 2r− r logr
−r logr

GD(0,a).(3.6)

From the monotonicity property of condenser capacity,

(3.7) I(D,Kr)≥ I(D,D(0,r)) =− logr.

Since µr is a probability measure, from the inequalities (3.6), (3.3) and (3.7) we
get ∫∫

∑
a∈F(r−r logr,y)

GD(z,a)dµr(z)dνr(y)

≤ 2r− r logr
−r logr

∫
∑

a∈F(r−r logr,y)
GD(0,a)dνr(y)

≤ −(2r− r logr) log(r− r logr)
−r logr

∫
T (r− r logr,y)dνr(y)

≤ −2logr
∫

T (r− r logr,C,B)dνr(y)

≤ 2I(D,Kr)T (r− r logr,C,B).(3.8)

Finally, from the inequalities (3.4), (3.5) and (3.8) we obtain that

Cap(D,Kr)≤
3

I(D,C)
T (r− r logr,C,B),
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from which the conclusion follows. �
Proof of Corollary 1.2. Eiko and Kondratyuk [10, p. 170] showed that the

condition (1.1) implies that there exist L > 0 and r0 ∈ (0,1) such that

−1
2π

∫ 2π

0
log |By(reiθ )|dθ ≤ L(1− r)1−s,

for every y ∈C and r ∈ (r0,1). Therefore

T (r,C,B) = O((1− r)−s),

as r→ 1 and the conclusion follows from Theorem 1.1. �
Proof of Theorem A. Since B is an exponential Blaschke product, it follows

from [6, p. 587] and [16, Lemma 3.2, p. 3551] that

R := sup
{
− 1

logr ∑
a∈F(r,y)

GD(a,0) : y ∈C and r ∈ (1/2,1)
}
<+∞.

Therefore, from the equality (3.1), we obtain that

T (r,y)≤ N(r,y)+R≤ (1+R)N(r,y),

for every y ∈C and for all r sufficiently close to 1. Therefore

T (r,C,B) = O(N(r,C,B)), as r→ 1.

From the definition of exponential Blaschke products and [16, Lemma 3.2, p. 3551]
we obtain that there exist M > 0 such that N(1−2−n,C,B)≤ nM, for every n ∈N.
Also, since (1−2−n)(1− log(1−2−n))≤ 1−2−3n for every n ∈ N, we get that

N((1−2−n)(1− log(1−2−n)),C,B) = O(n), as n→+∞,

and the conclusion follows from Theorem 1.1. �

4. UNIVERSAL COVERING MAPS AND CONDENSER CAPACITY

In this section we will prove Theorem 1.3.
Proof of Theorem 1.3. Using the conformal invariance of condenser capacity

and an auxiliary automorphism of D, we can assume that f (0) = z. From the
inequality (2.7)

| f ′(0)|= 1
λD(z)

≥ dist(z,∂D).

Therefore, there exists δ > 0 such that∣∣∣ f (0)− f (w)
w

∣∣∣≥ dist(z,∂D)

2
,

for every w ∈ D(0,δ ) \ {0}. For 0 < r < dist(z,∂D), choose E(z,r) to be the
connected component of f−1(D(z,r)) containing 0 and let r0 > 0 be such that
E(z,r)⊂ D(0,δ ), for r ∈ (0,r0). Then, for all w ∈ ∂E(z,r) and r ∈ (0,r0),

r
|w|

=
∣∣∣ f (0)− f (w)

w

∣∣∣≥ dist(z,∂D)

2
.
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It follows that

E(z,r)⊂ D
(

0,
2r

dist(z,∂D)

)
and

(4.1) Cap(D,E(z,r))≤ Cap
(
D,D

(
0,

2r
dist(z,∂D)

))
=

2π

log dist(z,∂D)
2r

,

for all r ∈ (0,r0).
In order to get a lower bound for the capacity of the condenser (D,D(z,r))

we will use the formula (2.6). Let E be a compact subset of C \D with posi-
tive logarithmic capacity and let τE be the equilibrium measure of E. Also, for
0 < r < dist(z,∂D), let τr be the equilibrium measure of the disc D(z,r); that is,
τr is the normalized Lebesgue measure on ∂D(z,r). We will estimate the Green
equilibrium energy of (D,D(z,r)) using the measure τ = τE − τr ∈ S(D,D(z,r)).
If d is the diameter of the compact set E ∪D(z,r), then

I(D,D(z,r)) ≤
∫∫

log
1

|z−w|
dτ(z)dτ(w)

=
∫∫

log
1

|z−w|
dτE(z)dτE(w)+

∫∫
log

1
|z−w|

dτr(z)dτr(w)

−2
∫∫

log
1

|z−w|
dτE(z)dτr(w)

≤ log
1

c(E)
+ log

1
r
−2log

1
d

= log
d2

rc(E)
.

Therefore,

(4.2) Cap(D,D(z,r))≥ 2π

log d2

rc(E)

.

From the inequalities (4.1) and (4.2) we get

1≤ liminf
r→0

Cap(D,E(z,r))
Cap(D,D(z,r))

≤ limsup
r→0

Cap(D,E(z,r))
Cap(D,D(z,r))

≤ lim
r→0

log d2

rc(E)

log dist(z,∂D)
2r

= 1,

and (1.5) follows.
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