"Endogenous Sex Hormones and Colorectal Cancer Risk: A Systematic Review and Meta-Analysis"

Emmanouil Bouras¹, Christopher Papandreou², Ioanna Tzoulaki^{1,3}, Konstantinos K Tsilidis^{1,3}

¹Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece

²Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain

³Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK

Background

To investigate the associations between endogenous concentrations of sex hormones and colorectal cancer (CRC) risk.

Methods

- Elsevier's MEDLINE-PubMed and Scopus databases were searched up to June 17th 2020
- prospective studies, Only focusing on

Figure 2. Forest plots of sex hormones and CRC risk.

1. TESTOSTERONE

A. Men (per 100 ng/dL)

- endogenous sex hormones, namely plasma testosterone, estradiol, and sex-hormone binding globulin (SHBG) were included.
- Generalized least-square regression was used to express the study-specific estimates on a continuous scale.
- Inverse variance random effects DerSimonian-Laird meta-analysis (MA) was applied to pool study-specific estimates.
- Heterogeneity was evaluated using the l² metric.

Results

- Eight studies were eligible (Figure 1).
- Studies included on average 295 cases (range: 48-732) and 2,105 controls.

B. Women (per 10 ng/dL)

Study	TE s	eTE	R	isk Rati	o	RR	95%-CI	Weight (fixed)	Weight (random)
Orsted, D. D., 2014	-0.03 0.0	0402				0.98	[0.90; 1.06]	67.1%	43.9%
Mori, N., 2019	0.17 0.0	0827		- 18		1.19	[1.01; 1.39]	15.8%	27.6%
Lin, J. H., 2013	0.09 0.0	0797		-		1.09	[0.94; 1.28]	17.1%	28.6%
Fixed effect model				A		1.03	[0.96; 1.09]	100.0%	
Random effects mod	el			¢.		1.06	[0.94; 1.20]		100.0%
Prediction interval		-				-	[0.28; 4.06]		
Heterogeneity: $I^2 = 62\%$,	$\tau^2 = 0.0072$,	p = 0.07	3	1	1				
			0.5	1	2				

2. ESTRADIOL

A. Men (per 10 pg/mL)

Study	TE seTE	Risk Ratio	RR	95%-CI	(fixed)	(random)
Chan, Y. X., 2018	0.14 0.1712		1.15	[0.82; 1.61]	9.2%	9.2%
Chan, Y. X., 2017	0.12 0.1162		1.13	[0.90; 1.42]	20.0%	20.0%
Lin, J. H., 2013	0.01 0.0618	11	1.01	[0.90; 1.14]	70.8%	70.8%
Fixed effect model		\Leftrightarrow	1.05	[0.95; 1.16]	100.0%	
Random effects mod	del	\Leftrightarrow	1.05	[0.95; 1.16]		100.0%
Prediction interval				[0.54; 2.03]		
Heterogeneity: $I^2 = 0\%$,	$\tau^2 = 0, p = 0.61$					
	0.5	1	2			

B. Women (per 10 pg/mL)

 No association was observed for testosterone, estradiol and SHBG in neither men nor women, with evidence for heterogeneity observed only in women (Figure 2).

Figure 1. Flow-chart of study selection.

Study	TE	seTE	Risk Ratio	RR	95%-CI	(fixed)	(random)
Chan, Y. X., 2018	0.08	0.1308	- <u>{</u>]=	1.09	[0.84; 1.41]	8.1%	13.8%
Chan, Y. X., 2017	-0.02	0.0554		0.98	[0.88; 1.09]	44.9%	42.7%
Lin, J. H., 2013	-0.14	0.0542		0.87	[0.79; 0.97]	47.0%	43.5%
Fixed effect model				0.93	[0.87; 1.01]	100.0%	
Random effects mo	del		\Leftrightarrow	0.94	[0.85; 1.05]		100.0%
Prediction interval				-	[0.34; 2.63]		
Heterogeneity: $I^2 = 43\%$	$6, \tau^2 = 0.003$	37, p = 0.17	1	1	12.1 25 1.25		
	aturo antratte	0.5	1	2			

Conclusions

Findings from this MA do not support associations of pre-diagnostic concentrations of testosterone, estradiol and SHBG with incident CRC in men or post-menopausal women.

Partners in cancer research

Funding This research is co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning 2014- 2020» in the context of the project "Sex steroid hormones and cancer: a molecular epidemiology study" 🥩 ΕΣΠΑ **Operational Programme** (MIS 5047651). Human Resources Development,

European Unior

European Social Fund

conference.ncri.org.uk

Education and Lifelong Learning

Co-financed by Greece and the European Union