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Abstract. Suppose (φt)t≥0 is a semigroup of holomorphic functions in the unit disk D with Denjoy-
Wolff point τ = 1. Suppose K is a compact subset of D. We prove that the capacity of the condenser
(D, φt(K)) is a decreasing function of t. Moreover, we study its asymptotic behavior as t→ +∞ in
relation with the type of the semigroup.

1 Introduction

A one-parameter family (φt)t≥0 of holomorphic functions in the unit disk is a semigroup if the
following conditions hold.

(i) φ0(z) = z, for all z ∈ D
(ii) φt+s(z) = φt (φs(z)), for every t, s ≥ 0 and z ∈ D

(iii) limt→s φt(z) = φs(z), for all s ≥ 0 and z ∈ D .

It also follows that for every t > 0, the function φt is univalent.
The introduction of semigroups of holomorphic functions was made by Berkson and Porta in [4].

For the theory and applications of the semigroups, the reader may refer to [1], [5], [7], [9] and [14].
A basic property of (φt) is that there exists a unique point τ ∈ D (the Denjoy-Wolff point of the
semigroup) such that for every z ∈ D,

(1.1) lim
t→+∞

φt(z) = τ ;

see [1, Theorem 1.4.17]. The point τ coincides with the Denjoy-Wolff point of φ1. If τ ∈ D and φt
is not an elliptic automorphism of D for any t ≥ 0, then (φt) is an elliptic semigroup of holomorphic
functions.

In the present work, we are interested in the case where the Denjoy-Wolff point is a boundary
point of the unit disk. Without loss of generality, we can and do assume that τ = 1.

The Denjoy-Wolff point of the semigroup is a fixed point for every function φt, t ≥ 0; namely

∠ lim
z→1

φt(z) = 1. (angular limit)

The angular derivative of φt at 1 is

φ′t(1) := ∠ lim
z→1

φt(z)− 1

z − 1
≤ 1;

see [1], [13]. If φ′t(1) < 1, then (φt) is called a hyperbolic semigroup. If φ′t(1) = 1, for some (hence
for all) t, then (φt) is a parabolic semigroup. For semigroups (φt) with Denjoy-Wolff point 1, there
exists a conformal mapping h : D→ C with h(0) = 0, which satisfies

(1.2) φt(z) = h−1(h(z) + t).
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for every z ∈ D; see [1, Theorem 1.4.22]. This mapping h is called the Koenigs function of the
semigroup.

Moreover, the simply connected domain Ω := h(D) has the following geometric property. If
w ∈ Ω, then {w + s : s > 0} ⊂ Ω by (1.2). By [7, Theorem 2.1], the semigroup is hyperbolic if and
only if Ω is contained in a horizontal strip. Otherwise, (φt) is parabolic.

Fix z ∈ D. The curve γz : [0,+∞) → D with γz(t) = φt(z) is called trajectory of z. The image
of the trajectory under the Koenigs function of the semigroup is the curve (half-line)

h(γz(t)) = h(z) + t,

for t ≥ 0. Note that as t→ +∞, γz(t) tends asymptotically to 1, due to (1.1).
There exists a further partition of the class of parabolic semigroups. A parabolic semigroup is

of zero hyperbolic step, if for any s > 0 and any z ∈ D

lim
t→+∞

dD(φt(z), φt+s(z)) = 0,

where dD denotes the hyperbolic distance; see section 2.3. If the limit is not equal to zero for some
s > 0 or z ∈ D, then the parabolic semigroup is of positive hyperbolic step. In that case, the domain
Ω is contained in a horizontal half-plane, as stated in [5, Theorem 1]. This does not occur when
the semigroup is of zero hyperbolic step.

Suppose K is a compact subset of D with positive logarithmic capacity. The trajectory of K is
the family of compact sets

γK(t) :=
⋃
z∈K

γz(t) =
⋃

0≤s≤t
φs(K), 0 ≤ t < +∞,

which consist of all trajectories of z ∈ K.
As we have stated, due to (1.1), γt(z) tends asymptotically to the Denjoy-Wolff point 1 of the

semigroup. A question that arises is what happens to the trajectory of K, as t→ +∞. Intuitively,
we can say that φt(K) is getting ‘smaller’ and approaches the Denjoy-Wolff point.

We notice, at this point, that for a fixed t, the pair (D, φt(K)) forms a condenser, as D is a
proper domain of C and φt(K) ⊂ D is compact; see Section 2.2. A natural way to measure the size
of a condenser is its capacity.

Therefore, a natural way to study the above question is to examine the capacity of the condenser
(D, φt(K)). In this direction, we obtain the following result.

Theorem 1.1. Let K be a compact subset of D and (φt)t≥0 be a semigroup of holomorphic functions
in D. The capacity of the condenser (D, φt(K)) is a strictly decreasing function of t ≥ 0, unless φt0
is an automorphism of D for some t0 > 0. In this case, the capacity of the condenser (D, φt(K)) is
constant for every t ≥ 0.

Since cap(D, φt(K)) is decreasing, its limit as t → +∞ exists. We examine the asymptotic
behavior of the capacity of the condenser (D, φt(K)) in relation to the type of the semigroup.

Theorem 1.2. Let K be a compact subset of D and (φt)t≥0 be a hyperbolic semigroup. Then

lim
t→+∞

cap(D, φt(K)) = cap(S, h(K)),

where h is the associated Koenigs function of the semigroup and S is the smallest horizontal strip
that contains h(D).

Theorem 1.3. Let K be a compact subset of D and (φt)t≥0 be a parabolic semigroup. If (φt) is of
zero hyperbolic step, then

lim
t→+∞

cap(D, φt(K)) = 0.
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If (φt) is of positive hyperbolic step, then

lim
t→+∞

cap(D, φt(K)) = cap(H,h(K)),

where h is the associated Koenigs function of the semigroup and H is the smallest horizontal half-
plane that contains h(D).

Hence, we see that the capacity of the condenser (D, φt(K)) has a direct connection with the
domain Ω, and therefore with the type of the semigroup.

2 Preparation for the proofs

2.1 Logarithmic capacity Let K be a compact subset of C. The euclidean n-th diameter of K is

(2.1) dn(K) = sup
wµ,wν∈K

∏
1≤µ<ν≤n

|wµ − wν |
2

n(n−1)

and the supremum is attained, since K is compact, for a n-tuple of points, which is called Fekete
n-tuple; see [12, Definition 5.5.1].

The logarithmic capacity of K is the limit

capK = lim
n→+∞

dn(K).

Sets of zero logarithmic capacity are called polar sets and they are negligible in the view of
potential theory.

2.2 Capacity of condensers A condenser is an ordered pair (G,E), where G is a proper domain

of Ĉ and E is a compact subset of G. If both ∂G and E have strictly positive logarithmic capacity,
then the capacity of a condenser is defined as

cap(G,E) =

∫
G\E
|∇v(z)|2dA(z),

where A is the Lebesgue measure on the complex plane. The function v is the solution of the
generalized Dirichlet problem on G\E, with boundary values 0 on ∂G and 1 on ∂E and it is called
equilibrium potential of the condenser.

We will need some properties for condenser capacity. First of all, we say that the condenser
(G1, E1) is contained in the condenser (G2, E2) if G1 ⊂ G2 and E2 ⊂ E1, and we write (G1, E1) ⊂
(G2, E2). Then their capacities have the following relation.

Lemma 2.1. [8, Theorem 1.8] If (G1, E1) ⊂ (G2, E2), then

cap(G1, E1) ≥ cap(G2, E2).

If {(Gn, En)}n is an increasing sequence of condensers, with ∩n∈NEn := E and ∪n∈NGn := G,
we say that it forms an exhaustion of the condenser (G,E).

Lemma 2.2. [8, Theorem 1.11] If {(Gn, En)}n is an exhaustion of the condenser (G,E), then

lim
n→+∞

cap(Gn, En) = cap(G,E).

An important property of condenser capacity is conformal invariance. If f is a conformal map
on G, then

(2.2) cap(G,E) = cap(f(G), f(E)).

Suppose α ∈ C and 0 < r < s. We consider the disks D(α, r) and D(α, s) centered at α of radius
r and s, respectively.
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The capacity of the condenser (D(α, s), D(α, r)) is

(2.3) cap(D(α, s), D(α, r)) = 2π
(

log
s

r

)−1
.

More information on condenser capacity can be found in [8].

2.3 Hyperbolic metric The hyperbolic metric in D is

λD(z)|dz| := |dz|
1− |z|2

,

where λD denotes its density. Let U be a simply connected domain of C. The density of the
hyperbolic metric on U is equal to

λU (z) = λD(f(z))
∣∣f ′(z)∣∣ ,

where f is a conformal mapping of U onto D. The hyperbolic metric on U is independent of the
choice of the conformal map.

The hyperbolic distance between two points a, b ∈ U is

dU (a, b) = inf
γ⊂U

∫
γ
λU (z)|dz|,

where γ is any rectifiable curve that lies in U and joins a, b. The infimum is attained for the
hyperbolic geodesic arc that joins a, b.

The hyperbolic geodesic curves of the unit disk D are the arcs of euclidean circles in D that are
orthogonal to the boundary. Moreover, the hyperbolic distance in the unit disk, for a, b ∈ D, is
defined by

dD(a, b) = arctanh

∣∣∣∣ a− b1− āb

∣∣∣∣ .
The hyperbolic distance is invariant under any conformal automorphism of D. It is known that

every automorphism T of the disk can be represented by

T (z) = eiθ
z − α
1− ᾱz

,

for α ∈ D and θ ∈ R. We denote the set of all conformal automorphisms of D by Aut(D).
Furthermore, the hyperbolic distance is invariant under conformal mappings. More specifically,

if f : U → D is conformal, then

dU (z, w) = dD(f(z), f(w)),

for every choice of z, w ∈ U . We refer to [3] for further properties of the hyperbolic metric.

2.4 Green function-Green capacity Let D be a domain of the extended complex plane Ĉ. The
Green function of D is the mapping

gD : D ×D → (−∞,+∞]

that satisfies the following conditions for every w ∈ D
(1) gD(·, w) is harmonic on D \ {w} and bounded outside every neighbourhood of w,
(2) gD(w,w) =∞, and for z → w

gD(z, w) =

{
log |z|+O(1), w =∞
− log |z − w|+O(1), w 6=∞

(3) gD(z, w)→ 0, as z → ζ, for almost every ζ ∈ ∂D.
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Moreover the Green function is symmetric and it holds

gD(z, w) = gD(w, z),

for every z, w ∈ D, when the boundary of D is not polar.
For instance the Green function on the unit disk D is equal to

(2.4) gD(z, w) := − log tanh dD(z, w) = log

∣∣∣∣1− zwz − w

∣∣∣∣ ,
for z, w ∈ D; see [12, p.109].

If the boundary of a domain D is not polar then the Green function gD exists and it is unique,
and the domain D is called Greenian.

An important property of the Green function is conformal invariance.

Lemma 2.3 (Subordination Principle). [12, Theorem 4.4.4] Let D1, D2 be two domains of Ĉ with
non-polar boundaries and let f : D1 → D2 be a meromorphic function. Then

gD1(z, w) ≤ gD2(f(z), f(w)), z, w ∈ D1,

with equality holding if and only if f is conformal.

Let D be a Greenian domain of Ĉ with Green function gD(x, y), x, y ∈ D. Suppose E is a
compact subset of D. The Green energy of E with respect to D is defined as

V (E,D) = inf
µ

∫
E

∫
E
gD(x, y)dµ(x)dµ(y),

where the infimum is taken over the Borel measures µ with compact support E and µ(E) = 1. There
exists a unique such measure for which this infimum is attained and it is called Green equilibrium
measure. Moreover, the Green capacity of E with respect to D is defined as

(2.5) capD E :=
1

V (E,D)
.

If E and ∂D have positive logarithmic capacity, the capacity of the condenser (D,E) is propor-
tional to the Green capacity of the compact set E and is given by the formula

(2.6) cap(D,E) =
2π

V (E,D)
= 2π capD E.

Further information on Green functions and Green capacity can be found in [2], [10], [11] and
[12].

Finally, a helpful lemma for the proof of Theorem 1.1 is the following.

Lemma 2.4. [6, Lemma 3.2] Let D be a Greenian domain in Ĉ and D′ a subdomain of D such that
the logarithmic capacity cap(D \D′) > 0. Let K be a compact subset of D′ such that capK > 0.
Then

cap(D,K) < cap(D′,K).

3 Preliminary lemmas - Proof of Theorem 1.1

Let (φt) be a semigroup of holomorphic functions in D with associated Koenigs function h. For
the proof of Theorem 1.1, we will need some results from [1].

Lemma 3.1. [1, Proposition 1.4.7] The semigroup (φt) is a group of automorphisms of D if and
only if φt0 is an automorphism of D, for some t0 ≥ 0.

Lemma 3.2. [1, Theorem 1.4.22] The semigroup (φt) is a group of automorphisms of D if and only
if h(D) is a horizontal half-plane or a horizontal strip.
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Moreover, we need the following monotonicity property of the hyperbolic metric.

Lemma 3.3. [14, Chapter III] Let z1, z2 be two distinct points in D. The hyperbolic distance
dD(φt(z1), φt(z2)) is a strictly decreasing function of t ≥ 0, unless (φt) is a group of automorphisms
of the unit disk. In that case, it is constant.

So, from Lemma 3.3 and (2.4) we obtain the following result.

Corollary 3.1. Let z1, z2 be two distinct points in D. The Green function gD(φt(z1), φt(z2)) is a
strictly increasing function of t ≥ 0, unless (φt) is a group of automorphisms of the unit disk. In
that case, it is constant.

Lemma 3.4. Consider the semi-infinite strip

L = {z ∈ C : Re z > 0, 0 < Im z < π}
and the horizontal strip

S = {z ∈ C : 0 < Im z < π}.
For z, w ∈ L,

gL(z, w) = gS(z, w)− gS(z,−w).

Proof. The conformal mapping

σ(z) = Log

(
z + i

z − i

)
maps the first quadrant Q = {z ∈ C : 0 < Arg z < π

2 } onto the horizontal semi-infinite strip L.

Moreover, z2 maps conformally Q onto the upper half-plane H = {z ∈ C : Im z > 0}. For z, w ∈ L,
the Green function of L is equal to

(3.1) gL(z, w) = gQ
(
σ−1(z), σ−1(w)

)
= gH

(
σ−1(z)2, σ−1(w)2

)
= log

∣∣∣∣∣σ−1(z)2 − σ−1(w)
2

σ−1(z)2 − σ−1(w)2

∣∣∣∣∣ ,
see [12, p. 109]. The inverse function of σ is

σ−1(z) = i
ez + 1

ez − 1
.

With calculations in (3.1), we obtain

gL(z, w) = log

∣∣∣∣∣∣∣
−
(
ez+1
ez−1

)2
+
(
ew+1
ew−1

)2

−
(
ez+1
ez−1

)2
+
(
ew+1
ew−1

)2

∣∣∣∣∣∣∣
= log

∣∣∣∣−(ez − 1)2(ew − 1)2

−(ez − 1)2(ew − 1)2
· (ez + 1)2(ew − 1)2 − (ew + 1)2(ez − 1)2

(ez + 1)2(ew − 1)2 − (ew + 1)2(ez − 1)2

∣∣∣∣
= log

∣∣∣∣ez(1− ez+w)− ew(1− ez+w)

ez(1− ez+w)− ew(1− ez+w)

∣∣∣∣ = log

∣∣∣∣ez − ewez − ew

∣∣∣∣− log

∣∣∣∣ez − e−wez − e−w

∣∣∣∣
= gH(ez, ew)− gH(ez, e−w).

Furthermore, Log z maps conformally the upper half-plane H onto the horizontal strip S and we
are led to

(3.2) gL(z, w) = gS(z, w)− gS(z,−w),

due to the conformal invariance of the Green function; see [12, Theorem 4.4.4]. �

We will need the following Lemma concerning the asymptotic behavior of the Green function
gD(φt(z), φt(w)), for z, w ∈ K.
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Lemma 3.5. Let (φt) be a one-parameter semigroup with associated Koenigs function h and K be
a compact subset of D.

(i) Suppose (φt) is a parabolic semigroup of positive hyperbolic step. Then

lim
t→+∞

gD(φt(ζ1), φt(ζ2)) = gH(h(ζ1), h(ζ2)), ζ1, ζ2 ∈ K

where H is the smallest horizontal half-plane that contains h(D).
(ii) Suppose (φt) is a hyperbolic semigroup. Then

lim
t→+∞

gD(φt(ζ1), φt(ζ2)) = gS(h(ζ1), h(ζ2)), ζ1, ζ2 ∈ K

where S is the smallest horizontal strip that contains h(D).

Proof. Let ζ1, ζ2 ∈ K. The limit of gD(φt(ζ1), φt(ζ2)), as t → +∞, exists due to Remark 3.1. Set
Ω = h(D). Suppose K has non-zero logarithmic capacity. For x ∈ Ω ∩ R, define

ε(x) = inf{y < 0 : x+ iy ∈ Ω}
and

M(x) = sup{y > 0 : x+ iy ∈ Ω}.
For every x ∈ Ω ∩ R, we consider the half-strip

Ωx = {z ∈ Ω : Re z > x, ε(x) < Im z < M(x)}.
Fix x ∈ Ω ∩ R. Then for every sufficiently large t > 0,

h(φt(K)) = h(K) + t ⊂ Ωx.

The function

f(z) =
z

π
(M(x)− ε(x)) + x+ iε(x)

maps conformally L onto Ωx and S onto the horizontal strip

S(x) = {z ∈ C : ε(x) < Im z < M(x)}.
The inverse mapping of f is

f−1(z) = π
z − x− iε(x)

M(x)− ε(x)
.

We apply Lemma 3.4 for z̃ = f−1(z) and w̃ = f−1(w) and we get

gL(z̃, w̃) = gL
(
f−1(z), f−1(w)

)
= gS

(
f−1(z), f−1(w)

)
− gS

(
f−1(z),−f−1(w)

)
.

We should notice that

−f−1(w) = π
−w + x− iε(x)

M(x)− ε(x)
= f−1(−w + 2x)

and for w ∈ S(x), its imaginary part Imw = Im{−w + 2x} and so, −w + 2x ∈ S(x). Therefore,

(3.3) gΩx(z, w) = gS(x)(z, w)− gS(x)(z,−w + 2x).

Suppose z = h(φt(ζ1)), w = h(φt(ζ2)), where ζ1, ζ2 ∈ K. From (3.3), it follows that

gΩ(h(φt(ζ1)), h(φt(ζ2))) ≥ gΩx(h(φt(ζ1)), h(φt(ζ2))) = gΩx(h(ζ1) + t, h(ζ2) + t)

= gS(x)(h(ζ1) + t, h(ζ2) + t)− gS(x)(h(ζ1) + t,−h(ζ2)− t+ 2x)

= gS(x)(h(ζ1), h(ζ2))− gS(x)(h(ζ1) + t,−h(ζ2)− t+ 2x),(3.4)

since the Green function of a horizontal strip is invariant under translations parallel to the real
axis.
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Set U the smallest horizontal domain (half-plane or strip) containing h(D). We obtain for
ζ1, ζ2 ∈ K

gU (h(ζ1), h(ζ2)) = gU (h(ζ1) + t, h(ζ2) + t) ≥ gΩ(h(ζ1) + t, h(ζ2) + t) = gD(φt(ζ1), φt(ζ2))

≥
(3.4)

gS(x)(h(ζ1), h(ζ2))− gS(x)(h(ζ1) + t,−h(ζ2)− t+ 2x),(3.5)

Taking the limit as t→ +∞ in (3.5), we have

gU (h(ζ1), h(ζ2)) ≥ lim
t→+∞

gD(φt(ζ1), φt(ζ2))

≥ gS(x)(h(ζ1), h(ζ2))− lim
t→+∞

gS(x)(h(ζ1) + t,−h(ζ2)− t+ 2x),(3.6)

for every ζ1, ζ2 ∈ K. However, it is clear that

lim
t→+∞

gS(x)(h(ζ1) + t,−h(ζ2)− t+ 2x) = 0.

As a result, (3.6) can be written as

(3.7) gU (h(ζ1), h(ζ2)) ≥ lim
t→+∞

gD(φt(ζ1), φt(ζ2)) ≥ gS(x)(h(ζ1), h(ζ2)),

for every ζ1, ζ2 ∈ K. Since (3.7) holds for sufficiently large x, it is true that

gU (h(ζ1), h(ζ2)) ≥ lim
t→+∞

gD(φt(ζ1), φt(ζ2)) ≥ lim
x→+∞

gS(x)(h(ζ1), h(ζ2)),

for every ζ1, ζ2 ∈ K.
Suppose that the semigroup (φt) is hyperbolic. Then the domain Ω is contained in a horizontal

strip; see [7, Theorem 2.1]. Let S = {z ∈ C : ρ1 < Im z < ρ2}, ρ1 < 0 < ρ2, be the smallest
horizontal strip that contains Ω. If x→ +∞, then ε(x)→ ρ1 and M(x)→ ρ2. Thus {S(x)}x is an
increasing sequence of domains converging to S. So, the limit

lim
x→+∞

gS(x)(h(ζ1), h(ζ2)) = gS(h(ζ1), h(ζ2)), ζ1, ζ2 ∈ K

due to the property of domain monotonicity of the Green function. Therefore, we have that

lim
t→+∞

gD(φt(ζ1), φt(ζ2)) = gS(h(ζ1), h(ζ2)),

for any ζ1, ζ2 ∈ K.
In the case, where (φt) is a parabolic semigroup of positive hyperbolic step, the proof is similar.

The domain Ω is contained in a horizontal half-plane; see [7, Theorem 2.1].
Let H = {z ∈ C : Im z > −ρ}, ρ > 0, be the smallest horizontal half-plane that contains Ω. If

x → +∞, then ε(x) → ρ and M(x) → +∞. Thus {S(x)}x is an increasing sequence of domains
converging to H. So, the limit

lim
x→+∞

gS(x)(h(ζ1), h(ζ2)) = gH(h(ζ1), h(ζ2)), ζ1, ζ2 ∈ K

due to the property of domain monotonicity of the Green function. Consequently, the limit

lim
t→+∞

gD(φt(ζ1), φt(ζ2)) = gH(h(ζ1), h(ζ2)),

for any ζ1, ζ2 ∈ K. �

Proof of Theorem 1.1. Suppose first that φt /∈ Aut(D), for any t. Let s > 0. Suppose K is a
compact subset of the unit disk D. Since every function φt of the semigroup is univalent, it holds

(3.8) cap(D, φt(K)) = cap(φs(D), φs(φt(K))) = cap(φs(D), φt+s(K)),

due to conformal invariance.
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By Lemma 2.1,

(3.9) cap(D, φt+s(K)) ≤ cap(φs(D), φt+s(K)).

Since none of the functions φt is an automorphism, there exists a point ζ ∈ D∩∂φs(D). Therefore,
there exists a continuum Γ that joins this point ζ with the unit circle, which has positive logarithmic
capacity.

Then from Lemma 2.4, we obtain

(3.10) cap(D, φt+s(K)) < cap(D \Γ, φt+s(K)).

By the domain monotonicity and Lemma 2.1,

(3.11) cap(D \Γ, φt+s(K)) ≤ cap(φs(D), φt+s(K)).

Combining inequalities (3.10) and (3.11) with (3.8), we conclude that

cap(D, φt+s(K)) < cap(D, φt(K))

and so, cap(D, φt(K)) is a strictly decreasing function of t.
If φt0 ∈ Aut(D), for some t0 > 0, then equality is attained in (3.9) and due to (3.8), the capacity

cap(D, φt(K)) is a constant function of t. �

4 Proof of Theorem 1.2

Suppose that (φt) is a hyperbolic or a parabolic semigroup of positive hyperbolic step with
associated Koenigs function h. Recall from Section 3 that for x ∈ Ω ∩ R, we have defined the
horizontal strip

S(x) = {z ∈ C : ε(x) < Im z < M(x)}.
We obtain the following lemma.

Lemma 4.1. Let K be a compact subset of D. Then

(4.1) lim
t→+∞

cap(D, φt(K)) ≤ cap(S(x), h(K)).

Proof. Let µt be the Green equilibrium measure on h(K) + t with respect to Ω. It follows from
(3.4) that∫ ∫

(h(K)+t)2
gΩ(z, w)dµt(z)dµt(w) ≥

∫ ∫
(h(K)+t)2

gS(x)(z, w)dµt(z)dµt(w)

−
∫ ∫

(h(K)+t)2
gS(x)(z,−w + 2x)dµt(z)dµt(w)

≥
∫ ∫

(h(K)+t)2
gS(x)(z, w)dµ?t (z)dµ

?
t (w)

−
∫ ∫

(h(K)+t)2
gS(x)(z,−w + 2x)dµt(z)dµt(w),(4.2)

where µ?t is the Green equilibrium measure on h(K) + t with respect to S(x). For w ∈ h(K) + t,
the point −w + 2x is not contained in h(K) + t, because Im{−w + 2x} = Imw but

Re{−w + 2x} = −Rew + 2x = x− (Rew − x) < x.
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So, the function gS(x)(·,−w+2x) is harmonic and bounded on h(K)+t; see [12, Definition 4.4.1].
Therefore, it satisfies the Maximum Principle and there exists a point z1 ∈ ∂h(K) + t such as

gS(x)(z1,−w + 2x) = max
z∈h(K)+t

gS(x)(z,−w + 2x), w ∈ h(K) + t.

Due to the fact that the Green function is symmetric [12, Theorem 4.4.8], gS(x)(z1, ·) is harmonic
and bounded on the set {−w + 2x : w ∈ h(K) + t}. Hence, again from the Maximum Principle,
there exists a point w1 ∈ ∂h(K) + t such that

gS(x)(z1,−w1 + 2x) = max
w∈h(K)+t

gS(x)(z1,−w + 2x).

The points z1, w1 ∈ h(K) + t and so, we can write that z1 = h(ζ1) + t, w1 = h(ζ2) + t and

gS(x)(z1,−w1 + 2x) = gS(x)(h(ζ1) + t,−h(ζ2)− t+ 2x), ζ1, ζ2 ∈ K.

As a result,∫ ∫
h(K)+t)2

gS(x)(z,−w+2x)dµt(z)dµt(w) ≤ µt(h(K)+t)2gS(x)(z1,−w1+2x) = gS(x)(z1,−w1+2x)

and (4.2) becomes∫ ∫
(h(K)+t)2

gΩ(z, w)dµt(z)dµt(w) ≥
∫ ∫

(h(K)+t)2
gS(x)(z, w)dµ?t (z)dµ

?
t (w)− gS(x)(z1,−w1 + 2x).

Taking the limit as t→ +∞, we have that

lim
t→+∞

∫ ∫
(h(K)+t)2

gΩ(z, w)dµt(z)dµt(w) ≥ lim
t→+∞

∫ ∫
(h(K)+t)2

gS(x)(z, w)dµ?t (z)dµ
?
t (w)

− lim
t→+∞

gS(x)(h(ζ1) + t,−h(ζ2)− t+ 2x)

= lim
t→+∞

∫ ∫
(h(K)+t)2

gS(x)(z, w)dµ?t (z)dµ
?
t (w).
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Using the Green capacity of h(K)+t with respect to Ω and the strip S(x) (see (2.5)), respectively,
the above inequality can be written as

lim
t→+∞

capΩ(h(K) + t) ≤ lim
t→+∞

capS(x)(h(K) + t) = capS(x) h(K),

since the Green capacity with respect to a horizontal strip is invariant under translations parallel to
the real axis. Let’s also recall that capD φt(K) = capΩ(h(K) + t), due to the conformal invariance
of the Green function. Consequently,

lim
t→+∞

capD φt(K) ≤ capS(x) h(K)

or equivalently, using condenser capacity

(4.3) lim
t→+∞

cap(D, φt(K)) ≤ cap(S(x), h(K)),

for every x > 0. �

This result will also be needed at the proof of Theorem 1.3.
Completion of proof of Theorem 1.2. Suppose that the semigroup (φt) is hyperbolic. Let

Sρ1,ρ2 = {z ∈ C : ρ1 < Im z < ρ2} be the smallest horizontal strip that contains Ω. Then, due to
Lemma 2.1, we have that

cap(D, φt(K)) = cap(Ω, h(K) + t) ≥ cap(Sρ1,ρ2 , h(K) + t) = cap(Sρ1,ρ2 , h(K)).

With the use of (4.1), we obtain the following inequality

(4.4) cap(Sρ1,ρ2 , h(K)) ≤ lim
t→+∞

cap(D, φt(K)) ≤ cap(S(x), h(K)).

Let x → +∞. Then ε(x) → ρ1 and M(x) → ρ2. Therefore, the condensers (S(x), h(K)) form an
exhaustion of the condenser (Sρ1,ρ2 , h(K)) and according to Lemma 2.2,

(4.5) lim
x→+∞

cap(S(x), h(K)) = cap(Sρ1,ρ2 , h(K)).

As a result, taking the limit as x→ +∞ in (4.4), and using (4.5), we find that

lim
t→+∞

cap(D, φt(K)) = cap(Sρ1,ρ2 , h(K)).

�

5 Proof of Theorem 1.3

Suppose first that (φt) is a parabolic semigroup of zero hyperbolic step. According to [5, Corollary
1], for every w ∈ Ω it holds

(5.1) lim
t→+∞

dist(w + t, ∂Ω) = +∞.

Fix w0 ∈ h(K). For every t > 0, let

Rt := dist(w0 + t, ∂Ω),

and due to (5.1), Rt
t→+∞−−−−→ +∞. Then h(K) + t ⊂ ∆t := D(w0 + t, Rt) ⊂ Ω, for sufficiently large

t.
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Hence

cap(D, φt(K)) = cap(Ω, h(K) + t) ≤ cap(∆t, h(K) + t)

= cap(D(w0, Rt), h(K)) ≤ cap(D(w0, Rt), D(w0, diamh(K))

= 2π

(
log

Rt
diamh(K)

)−1
t→+∞−−−−→ 0.

Next we examine the case where (φt) is a parabolic semigroup of positive hyperbolic step. The
domain Ω = h(D) is contained in a horizontal half-plane; see e.g. [5, Theorem 1]. Let Hρ = {z ∈
C : Im z > −ρ}, ρ > 0, be the smallest such half-plane. Then, due to Lemma 2.1, the following
inequality is true

(5.2) cap(D, φt(K)) = cap(Ω, h(K) + t) ≥ cap(Hρ, h(K) + t) = cap(Hρ, h(K)).

According to Section 4 and Lemma 4.1,

lim
t→+∞

cap(D, φt(K)) ≤ cap(S(x), h(K)),

where S(x) = {z ∈ C : ε(x) < Im z < M(x)}. Hence, (5.2) gives

(5.3) cap(Hρ, h(K)) ≤ lim
t→+∞

cap(D, φt(K)) ≤ cap(S(x), h(K)).

Taking the limit x → +∞, we have that ε(x) tends to −ρ, whereas, M(x) tends to +∞. The
condensers (S(x), h(K)) form an exhaustion of the condenser (Hρ, h(K)) and according to Lemma
2.2,

(5.4) lim
x→+∞

cap(S(x), h(K)) = cap(Hρ, h(K)).

Therefore, taking the limit x→ +∞ in (5.3), we obtain

lim
t→+∞

cap(D, φt(K)) = cap(Hρ, h(K)).

�
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