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We examine the conditions under which a model of Tangled Type Theory satisfies the same sentences as a model
of NF (assuming we ignore type indices).
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1 Introduction

Tangled Type Theory (TTT) was introduced by Holmes in [2] as a modified version of Simple Type Theory (TST)
which is equiconsistent with Quine’s “New Foundations” (NF). In this paper, we present conditions under which
a model of TTT is essentially equivalent to a model of NF. We first show that every sentence of the language of
NF can be expressed as a sentence of the language of TTT where all type indices have been erased (we call such
sentences semistratified). We then introduce the notion of tangled type-shifting automorphism for structures of the
language of TTT, and show that every structure that has such an automorphism satisfies the same sentences as a
structure of the language of NF (assuming we ignore type indices). We also prove that the existence of a tangled
type-shifting automorphism is equivalent to a strengthening of the Axiom scheme of Ambiguity which we call the
Axiom scheme of Strong Ambiguity. This new axiom scheme basically asserts that the truth value of a sentence
is preserved when we raise the type of one of its variables. Finally, we define the notion of permutation model in
the context of TTT, and use it to prove the independence of the Axiom scheme of Strong Ambiguity.

We briefly review some of the basic notions that we will use in this paper. We note that our metatheory through-
out this paper will be ZF with ∈ as the membership relation.

1.1 Simple Type Theory

The language of Simple Type Theory (LTST) is the many-sorted language of set theory with one binary rela-
tion symbol ε and countably many types indexed by ω. For each type i ∈ ω, there are countably many variables
vi0, v

i
1, . . . of type i (we use a simpler notation like xi, yi, ui, vi,wi, . . . to refer to these variables). The LTST-

formulas are built inductively from the atomic formulas xi ε yi+1 and xi = yi in the usual way.
Simple Type Theory (TST) is axiomatized by two sets of axioms. The Axiom of Extensionality (Ext) is the set

of all the following sentences for each type i ∈ ω,

∀xi+1, yi+1(xi+1 = yi+1 ↔ ∀zi(zi ε xi+1 ↔ zi ε yi+1)). (Exti+1)

The Axiom scheme of Comprehension (Co) is the set of all the following sentences for each type i ∈ ω and formula
ϕ of LTST,

∀ū∃yi+1∀xi(xi ε yi+1 ↔ ϕ(xi, ū)), (Coi+1)

where yi+1 is not free in ϕ.
The language of Tangled Type Theory (LTTT) is the same as LTST, but its formulas are built inductively from

the atomic formulas xi = yi and xi ε y j for i < j < ω (notice that every formula ofLTST is also a formula ofLTTT).
For each function s : ω → ω and each LTST-formula ϕ, we denote by ϕs the LTTT-formula we get if we replace
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each type index i of a variable in ϕ with s(i) (i.e., if we replace each vik with v
s(i)
k ). Tangled Type Theory (TTT) is

defined as

TTT = {σ s : σ ∈ TST and s : ω → ω strictly increasing}.
A structure A for the language LTST is a sequence (A0,A1, . . . , {εA

i,i+1}i∈ω ), where A0,A1, . . . are non-empty
sets interpreting the ω types of LTST, and each εA

i,i+1 ⊆ Ai × Ai+1 is a binary relation interpreting ε for type i ∈ ω.
Similarly, a structure A for the language LTTT is a sequence (A0,A1, . . . , {εA

i, j )}i< j ), where A0,A1, . . . are non-
empty sets, and εA

i, j ⊆ Ai × Aj, for all i < j < ω.

1.2 New Foundations

The language LNF of New Foundations is the usual one-sorted language of set theory, {ε}, where ε is a binary
relation symbol. To every formula ϕ of LTTT we may assign a unique formula ϕ∗ of LNF which can be obtained
by erasing all type indices from the variables of ϕ. A formula ϕ of LNF is stratified if there exists an LTST-formula
ψ such that ϕ = ψ∗. If � is a set of LTTT-sentences, then we let �∗ = {σ ∗ : σ ∈ �}. New Foundations (NF) is
axiomatized by the Axiom of Extensionality (Ext),

∀x, y(x = y ↔ ∀z(z ε x ↔ z ε y)), (Ext)

and the Axiom scheme of Stratified Comprehension (Co), which consists of all sentences

∀ū∃y∀x(x ε y ↔ ϕ(x, ū)), (Co)

where ϕ is a stratified LNF-formula such that y is not free in ϕ. Notice that NF = TST∗ = TTT∗.
Specker established a very important relation between NF and TST (cf. [6] or [1]). The Axiom scheme of

Ambiguity (Amb) is the set of all σ ↔ σ+, where σ is an LTST-sentence, and σ+ is the LTST-sentence we get
from σ if we raise the type of each variable by one (i.e., the sentence we get if we replace each vik with vi+1

k ).
If A = (A0,A1, . . . , {εA

i,i+1}i∈ω ) is an LTST-structure, then a sequence f = ( f0, f1, . . . ) is called a type-shifting
automorphism of A (or just a tsau) if

(i) for all i ∈ ω, fi : Ai → Ai+1 is a bijection, and

(ii) for all i ∈ ω, x ∈ Ai, and y ∈ Ai+1,

x εA
i,i+1 y ⇐⇒ fi(x) ε

A
i+1,i+2 fi+1(y).

Theorem 1.1 (Specker) IfM is a model of TST + Amb, then there exists anM′ elementarily equivalent to
M with a tsau.

NF is strongly connected to TTT as well. In particular, Holmes showed that these two theories are equiconsis-
tent (cf. [2]). His proof is based on a modification of the argument used by Jensen to prove the consistency of NF
with urelements (cf. [4]).

Theorem 1.2 (Holmes) NF is consistent if and only if TTT is consistent.

Note. It should also be noted that TTT is crucial in Holmes’ proof of the consistency of NF (cf. [3]), a proof
that is still unverified though.

Below, we investigate further how deep this connection between TTT and NF really is.

2 Strong Ambiguity

First of all, let us show how any unstratified LNF-sentence can be expressed as an LTTT-sentence (assuming we
ignore type indices).

Definition 2.1 An LNF-formula ϕ is called semistratified if it is ψ∗ for some LTTT-formula ψ .

Obviously, every stratified LNF-formula is semistratified, but semistratified formulas can express much more.
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Theorem 2.2 For every LNF-formula ϕ, there exists a semistratified LNF-formula ψ such that Ext � ϕ ↔ ψ .

P r o o f . By induction on LNF-formula ϕ. We only need to check the cases where ϕ is unstratified. If
ϕ is x ε x, then Ext � ϕ ↔ ψ∗, where ψ is the LTTT-formula ∃z2(∀v0(v0 ε z2 ↔ v0 ε x1) ∧ x1 ε z2)). The cases
where ϕ is ¬ψ or ∃xψ , for some LNF-formula ψ , are trivial. Assume now that ϕ is Q1 x1 . . .Qn xnϕ1 ∧
Q′

1 y1 . . .Q′
m ymϕ2, for some LNF-formulas ϕ1(x1, . . . , xn, u1, . . . , uk ) and ϕ2(y1, . . . , ym, u1, . . . , uk ). We may as-

sume that the variables x1, . . . , xn, y1, . . . , ym are distinct. By the induction hypothesis, there are LTTT-formulas
ψ1(x

i1
1 , . . . , xinn , us11 , . . . , uskk ) and ψ2(y

j1
1 , . . . , y jmm , ur11 , . . . , urkk ) such that ϕ1 is ψ∗

1 and ϕ2 is ψ∗
2 . Let χ be the fol-

lowing LTTT-formula,

Q1 x
i1+1
1 . . .Qn x

in+1
n ψ1(x

i1+1
1 , . . . , xin+1

n , us1+1
1 , . . . , usk+1

k )

∧∃wr1+1
1 , . . . ,wrk+1

k

( ∧
1≤i≤k

(∀v0(v0 ε usi+1
i ↔ v0 ε wri+1

i ))

∧Q′
1 y

j1+1
1 . . .Q′

m y
jm+1
m ψ2(y

j1+1
1 , . . . , y jm+1

m ,wr1+1
1 , . . . ,wrk+1

k )

)
.

It is easy to see that Ext � ϕ ↔ χ∗. �
Let us now introduce the notion of tangled type-shifting automorphism for LTTT-structures. We will show

that an LTTT-structure with a tangled type-shifting automorphism is basically a “flattened” version of some LNF-
structure, i.e., the two structures satisfy the same LTTT-sentences if we ignore type indices.

Definition 2.3 Let A = (A0,A1, . . . , {εA
i, j }i< j ) be an LTTT-structure. Let f be a sequence of functions

( f0, f1, . . . ). We say that f is a tangled type-shifting automorphism (or just a tangled tsau) of A if

(i) for all i ∈ ω, fi : Ai → Ai+1 is a bijection, and

(ii) for all i < j < ω and k < l < ω, where i ≤ k and j ≤ l, and for all x ∈ Ai and y ∈ Aj,

x εA
i, j y ⇐⇒ fk−1 ◦ · · · ◦ fi(x) ε

A
k,l fl−1 ◦ · · · ◦ f j(y).

Note. We should clarify that f j−1 ◦ · · · ◦ fi denotes the identity when j = i. So, for example, condition (ii)
above implies that

x εA
i,i+2 y ⇐⇒ x εA

i,i+3 fi+2(y) ⇐⇒ fi(x) ε
A
i+1,i+2 y.

Lemma 2.4 Let A = (A0,A1, . . . , {εA
i, j }i< j ) be an LTTT-structure with a tangled tsau f = ( f0, f1, . . . ). Let

M = (A0, ε
M) be the LNF-structure where for all x, y ∈ A0, x εM y iff x εA

0,1 f0(y). For any a1, . . . , an ∈ A0 and

LTTT-formula ϕ(xi11 , . . . , xinn ),

M |= ϕ∗(a1, . . . , an) ⇐⇒ A |= ϕ( fi1−1 ◦ · · · ◦ f0(a1), . . . , fin−1 ◦ · · · ◦ f0(an)).

In particular,M |= NF iff A |= TTT.

P r o o f . By induction on LTTT-formula ϕ. If ϕ is xi = xi, then since fi−1 ◦ · · · ◦ f0 is a bijection, we
have that for all a1, a2 ∈ A0, a1 = a2 iff fi−1 ◦ · · · ◦ f0(a1) = fi−1 ◦ · · · ◦ f0(a2). If ϕ is xi11 ε xi22 , then for all
a1, a2 ∈ A0, a1 εM a2 is equivalent to a1 εA

0,1 f0(a2), which by the definition of a tangled tsau is equivalent to
fi1−1 ◦ · · · ◦ f0(a1) εA

i1,i2
fi2−1 ◦ · · · ◦ f0(a2). The cases where ϕ is¬ψ orψ ∧ χ , for someLTTT-formulasψ and χ ,

are trivial. Assume now that ϕ is ∃xiψ (xi, xi11 , . . . , xinn ), for some LTTT-formula ψ . We haveM |= ϕ∗(a1, . . . , an)
iff M |= ∃xψ∗(x, a1, . . . , an), i.e., iff there is an x ∈ A0 such that M |= ψ∗(x, a1, . . . , an), which by the induc-
tion hypothesis holds iff there is an x ∈ A0 such that A |= ψ ( fi−1 ◦ · · · ◦ f0(x), fi1−1 ◦ · · · ◦ f0(a1), . . . , fin−1 ◦
· · · ◦ f0(an)), which in turn holds iff there is an x ∈ Ai such that A |= ψ (x, fi1−1 ◦ · · · ◦ f0(a1), . . . , fin−1 ◦ · · · ◦
f0(an)) (because fi−1 ◦ · · · ◦ f0 is onto), which is equivalent toA |= ∃xiψ (xi, fi1−1 ◦ · · · ◦ f0(a1), . . . , fin−1 ◦ · · · ◦
f0(an)). �

As we will see, the existence of a tangled tsau is equivalent to a strengthening of the Axiom scheme of Ambi-
guity.
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Definition 2.5 Let σ be an LTTT-sentence and xi be a variable. If σ satisfies the following two conditions,

(i) the variable xi+1 does not appear in σ (i.e., if xi is vik, then vi+1
k does not appear in σ ), and

(ii) for all variables yi,wi+1, the atomic formulas xi = yi, yi = xi, and xi ε wi+1 do not appear in σ ,

then let σ xi+ be the LTTT-sentence we get from σ if we replace each occurrence of xi with xi+1. If σ does not
satisfy the above conditions, then let σ xi+ be σ .

The Axiom scheme of Strong Ambiguity (StAmb) is defined to be the set of all σ ↔ σ xi+, where σ is an LTTT-
sentence σ and xi is a variable.

The following proposition confirms that Strong Ambiguity is indeed stronger than Ambiguity.

Proposition 2.6 If T is an LTTT-theory such that for all i ∈ ω, T � ∀xi, yi(∀wi+1(xi ε wi+1 ↔ yi ε wi+1) →
xi = yi) (note that TTT is clearly such a theory), then T � StAmb → Amb.

P r o o f . Let T be such a theory, and let σ be an LTST-sentence. Let τ be the LTST-sentence we get from σ if
for all variables xi, yi, we replace each occurrence of xi = yi with ∀wi+1(xi ε wi+1 ↔ yi ε wi+1), where wi+1 is a
variable not appearing in σ . Since T � ∀xi, yi(∀wi+1(xi ε wi+1 ↔ yi ε wi+1) → xi = yi), we have that T � σ ↔ τ .
Let xi11 , . . . , xinn be all the variables appearing in τ , and assume that i1 ≥ i2 ≥ · · · ≥ in. By renaming variables if
necessary, we may assume that the variables xi1+1

1 , . . . , xin+1
n do not appear in τ . Using Strong Ambiguity, we may

successively raise the type of each variable xi11 , . . . , xinn , so

T + StAmb � τ ↔ (. . . (τ x
i1
1 +)x

i2
2 + . . . )x

in
n +.

But, (. . . (τ x
i1
1 +)x

i2
2 + . . . )x

in
n + is τ+, so T + StAmb � τ ↔ τ+, and therefore since T � σ+ ↔ τ+ (for the same

reason that T � σ ↔ τ ), we have that T + StAmb � σ ↔ σ+. �

Let us now establish the connection between tangled tsaus, StrongAmbiguity, and satisfiability of semistratified
sentences in LNF-structures.

Theorem 2.7 Let A = (A0,A1, . . . , {εA
i, j }i< j} be an LTTT-structure such that for all i ∈ ω, A |=

∀xi, yi(∀wi+1(xi ε wi+1 ↔ yi ε wi+1) → xi = yi) (note that any model of TTT is such a structure). The follow-
ing are equivalent:

(i) there is an LNF-structureM such that for all LTTT-sentences σ ,

M |= σ ∗ ⇐⇒ A |= σ.

(ii) A |= StAmb.

(iii) A has a tangled tsau.

P r o o f . We show that (i) =⇒ (ii). LetM be an LNF-structure such that for all LTTT-sentences σ ,M |= σ ∗

iff A |= σ . Notice that for any LTTT-sentence σ and variable xi, (σ xi+)∗ is σ ∗, so M |= (σ ↔ σ xi+)∗, which
means that A |= σ ↔ σ xi+. Therefore, A |= StAmb.

Assume now that (ii) holds, i.e., A |= StAmb. We know that A |= ∀x0∃y0∀w2(x0 ε w2 ↔ y0 ε w2) ∧
∀y0∃x0∀w2(x0 ε w2 ↔ y0 ε w2), so by Strong Ambiguity we have that

A |= ∀x0∃y1∀w2(x0 ε w2 ↔ y1 ε w2) ∧ ∀y1∃x0∀w2(x0 ε w2 ↔ y1 ε w2). (1)

Similarly, for all i > 0, we know that

A |= ∀xi∃yi
(∧

j<i

(∀z jj(z jj ε xi ↔ z jj ε y
i)) ∧ ∀wi+2(xi ε wi+2 ↔ yi ε wi+2)

)

∧ ∀yi∃xi
(∧

j<i

(∀z jj(z jj ε xi ↔ z jj ε y
i)) ∧ ∀wi+2(xi ε wi+2 ↔ yi ε wi+2)

)
,
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so by Strong Ambiguity again we have that

A |= ∀xi∃yi+1

(∧
j<i

(∀z jj(z jj ε xi ↔ z jj ε y
i+1)) ∧ ∀wi+2(xi ε wi+2 ↔ yi+1 ε wi+2)

)

∧∀yi+1∃xi
(∧

j<i

(∀z jj(z jj ε xi ↔ z jj ε y
i+1)) ∧ ∀wi+2(xi ε wi+2 ↔ yi+1 ε wi+2)

)
. (2)

By our assumption aboutA , we know that for all i ∈ ω,A |= ∀xi, yi(∀wi+1(xi ε wi+1 ↔ yi ε wi+1) → xi = yi), so
by Strong Ambiguity, we also have that A |= ∀xi, yi(∀wi+2(xi ε wi+2 ↔ yi ε wi+2) → xi = yi). Therefore, from
(1) we get that

A |= ∀x0∃!y1∀w2(x0 ε w2 ↔ y1 ε w2) ∧ ∀y1∃!x0∀w2(x0 ε w2 ↔ y1 ε w2), (3)

and from (2) that

A |= ∀xi∃!yi+1

(∧
j<i

(∀z jj(z jj ε xi ↔ z jj ε y
i+1)) ∧ ∀wi+2(xi ε wi+2 ↔ yi+1 ε wi+2)

)

∧∀yi+1∃!xi
(∧

j<i

(∀z jj(z jj ε xi ↔ z jj ε y
i+1)) ∧ ∀wi+2(xi ε wi+2 ↔ yi+1 ε wi+2)

)
. (4)

Let f0 : A0 → A1 be such that for all x ∈ A0, f0(x) is the unique y ∈ A1 for which A |= ∀w2(x ε w2 ↔ y ε w2).
By definition, we have that for all x ∈ A0 and w ∈ A2,

x εA
0,2 w ⇐⇒ f0(x) ε

A
1,2 w. (5)

Similarly, for i > 0, let fi : Ai → Ai+1 be such that for all x ∈ Ai, fi(x) is the unique y ∈ Ai+1 for which A |=∧
j<i(∀z jj(z jj ε x ↔ z jj ε y)) ∧ ∀wi+2(x ε wi+2 ↔ y ε wi+2). Again, by definition, we have that for all j < i < ω,

x ∈ Ai, and z ∈ Aj,

z εA
j,i x ⇐⇒ z εA

j,i+1 fi(x), (6)

and for all w ∈ Ai+2,

x εA
i,i+2 w ⇐⇒ fi(x) ε

A
i+1,i+2 w. (7)

Let f = ( f0, f1, . . . ). By (3) and (4), we know that for all i ∈ ω, fi is a bijection from Ai to Ai+1. Furthermore, for
all i < j < ω and k < l < ω, where i ≤ k and j ≤ l, and for all x ∈ Ai and y ∈ Aj,

x εA
i, j y ⇐⇒ x εA

i, j−1 f
−1
j−1(y) (by (6) if j > i+ 2)

...

⇐⇒ x εA
i,i+2 f

−1
i+2 ◦ · · · ◦ f−1

j−1(y) (by (6) if j > i+ 2)

⇐⇒ fi(x) ε
A
i+1,i+2 f

−1
i+2 ◦ · · · ◦ f−1

j−1(y) (by (5) if k > i = 0, or (7) if k > i > 0)

⇐⇒
{
fi(x) εA

i+1,i+3 f
−1
i+3 ◦ · · · ◦ f−1

j−1(y), if j > i+ 2 and k > i

fi(x) εA
i+1,i+3 f j(y), if l > j = i+ 2 and k > i

(by (6))

... (by alternating (7) and (6), followed by a number of (6) if necessary)

⇐⇒ fk−1 ◦ · · · ◦ fi(x) ε
A
k,l fl−1 ◦ · · · ◦ f j(y).

So, f is a tangled tsau of A , i.e., (iii) holds.
Finally, (iii) =⇒ (i) follows from Lemma 2.4. �

© 2022 Wiley-VCH GmbH www.mlq-journal.org



Math. Log. Quart. 68, No. 1 (2022) / www.mlq-journal.org 115

3 Permutation models

Assuming that TTT is consistent, Strong Ambiguity is consistent with Ambiguity, but is it independent of it?
In other words, does the consistency of TTT imply the consistency of TTT + ¬StAmb + Amb? In NF (cf. [5]
or [1]), a common way of establishing relative consistency results is through permutation models. We describe a
similar technique in the context of Tangled Type Theory.

Definition 3.1 Let A = (A0,A1, . . . , {εA
i, j }i< j ) be an LTTT-structure. We say that π = {πi, j}i< j is a permuta-

tion of A if for all i < j < ω, πi, j : Aj → Aj is a permutation that moves finitely many elements of Aj. We let
π (A ) be the LTTT-structure (A0,A1, . . . , {επ (A )

i, j }i< j ), where for all i < j < ω and x, y ∈ Aj,

x ε
π (A )
i, j y ⇐⇒ x εA

i, j πi, j(y).

The axioms of TTT are preserved by permutations.

Theorem 3.2 IfA = (A0,A1, . . . , {εA
i, j }i< j ) is a model of TTT, and π = {πi, j}i< j is a permutation ofA , then

π (A ) is a model of TTT.

P r o o f . Notice that if � = {�i, j}i< j and �′ = {�′
i, j}i< j are permutations of A , then τ = {�i, j ◦ �′

i, j}i< j is also
a permutation ofA , and τ (A ) is �(�′(A )). Furthermore, as we know, every permutation that moves finitely many
elements can be expressed as a product of finitely many transpositions. It therefore suffices to prove the theorem
under the assumption that there are k′ < l′ < ω such that πk′,l′ is a transposition, and for all i < j < ω for which
(i, j) �= (k′, l′), πi, j is the identity.

Let s : ω → ω be strictly increasing and i ∈ ω. We first show that π (A ) |= (Exti+1)s, i.e., π (A ) |=
∀xs(i+1), ys(i+1)(xs(i+1) = ys(i+1) ↔ ∀zs(i)(zs(i) ε xs(i+1) ↔ zs(i) ε ys(i+1))). Let x, y ∈ As(i+1) such that for all z ∈
As(i), z ε

π (A )
s(i),s(i+1) x iff z επ (A )

s(i),s(i+1) y, i.e., z ε
A
s(i),s(i+1) πs(i),s(i+1)(x) iff z εA

s(i),s(i+1) πs(i),s(i+1)(y). We know that A |=
(Exti+1)s, so πs(i),s(i+1)(x) = πs(i),s(i+1)(y), and therefore since πs(i),s(i+1) is 1-1, we have that x = y.

We now verify that π (A ) |= (Coi+1)s. Let ϕ(xi, ui11 , . . . , uinn ) be an LTST-formula, where yi+1 is not free in ϕ.
Let u1 ∈ As(i1 ), . . . , un ∈ As(in ). We show that there exists some y ∈ As(i+1) such that for all x ∈ As(i),

x εA
s(i),s(i+1) πs(i),s(i+1)(y) ⇐⇒ x ε

π (A )
s(i),s(i+1) y ⇐⇒ π (A ) |= ϕs(x, u1, . . . , un). (8)

If k′ /∈ ran(s) or l′ /∈ ran(s), then by our assumption about π , we have that for every j1 < j2 < ω, ε
π (A )
s( j1 ),s( j2 )

is

εA
s( j1 ),s( j2 )

, so π (A ) |= ϕs(x, u1, . . . , un) is equivalent to A |= ϕs(x, u1, . . . , un), and therefore (8) holds because

A |= (Coi+1)s. Assume now that k′ = s(k) and l′ = s(l), for some k < l < ω. Let ψ (xi, ui11 , . . . , uinn , vl1, v
l
2) be the

LTST-formula we get from ϕ if for all variables wk, zl , we replace each occurrence of wk ε zl with

(zl = vl1 → wk ε vl2) ∧ (zl = vl2 → wk ε vl1) ∧ (zl �= vl1 ∧ zl �= vl2 → wk ε zl ).

Let v1, v2 be the two elements of Al that are moved by πs(k),s(l). It is easy to see that for all x ∈ As(i),

π (A ) |= ϕs(x, u1, . . . , un) ⇐⇒ A |= ψ s(x, u1, . . . , un, v1, v2). (9)

Since A |= (Coi+1)s, we know that there exists some y ∈ As(i+1) such that for all x ∈ As(i),

x εA
s(i),s(i+1) y ⇐⇒ A |= ψ s(x, u1, . . . , un, v1, v2).

Therefore, by (9) and the fact that πs(i),s(i+1) is onto, we get that there exists some y ∈ As(i+1) such that for all
x ∈ As(i), (8) holds. Hence, π (A ) |= (∀ui11 , . . . , uinn ∃yi+1∀xi(xi ε yi+1 ↔ ϕ(xi, ui11 , . . . , uinn )))

s. �

A permutation π = {πi, j}i< j of an LTTT-structure A = (A0,A1, . . . , {εA
i, j }i< j ) acts on it by permuting the ex-

tensions of certain sets. Note, however, that for i > 0, every set x ∈ Ai has an extension with respect to each Aj for
j < i (let us call it j-extension). Moreover, Strong Ambiguity implies that all these extensions of xmust satisfy the
same definable properties. Therefore, if for some j < k < ω, π rearranges the j-extension and the k-extension of
x so that they differ in some definable way (for example, one is empty and the other one is non-empty), then π (A )
cannot satisfy Strong Ambiguity. Below, we use this argument to show that Strong Ambiguity is independent of
TTT + Amb.
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Theorem 3.3 If TTT is consistent, then

(i) TTT + StAmb is consistent.

(ii) TTT + ¬StAmb + Amb is consistent.

P r o o f . We prove (i). Since TTT is consistent, we know that there is an NF-model M = (M, εM). Let
A = (M,M, . . . , {εA

i, j }i< j} be the LTTT-structure where each εA
i, j is εM. It is easy to verify that A is a model of

TTT. Moreover, A satisfies StAmb because the sequence f = ( f0, f1, . . . ), where each fi is the identity on M,
is clearly a tangled tsau of A .

We now show that (ii) holds. Let A be as above. We know that A is a model of TTT + StAmb, and therefore
of TTT + Amb. Let π0,2 : A2 → A2 be the permutation that permutes the elements w0,w1 ∈ A2, where A |=
∀u1(u1 � ε w0) and A |= ∀u1(u1 ε w1). Notice that A |= ∀u0(u0 � ε w0) since εA

0,2 is εA
1,2 (they are both εM). For

all i < j < ω, where (i, j) �= (0, 2), let πi, j : Aj → Aj be the identity. Obviously, π = {πi, j}i< j is a permutation
of A , so π (A ) is a model of TTT. Furthermore, π (A ) satisfies the same LTST-sentences as A because for
every i ∈ ω, επ (A )

i,i+1 is εA
i,i+1. Therefore, π (A ) satisfies Amb. Finally, suppose that π (A ) |= StAmb. We know that

π (A ) |= ∀z2(∃y0(y0 ε z2) ↔ ∃x0(x0 ε z2)), so by Strong Ambiguity, we have that π (A ) |= ∀z2(∃y1(y1 ε z2) ↔
∃x0(x0 ε z2)). But,π (A ) |= ∃y1(y1 ε w1) because ∃y ∈ A1(y εA

1,2 w1), whereasπ (A ) �|= ∃x0(x0 ε w1) because �x ∈
A0(x εA

0,2 π0,2(w1)). Hence, π (A ) �|= StAmb. �
The argument we just used does not work for the following question.

Question 1 Assume that TTT is consistent. Is TTT + ¬Amb consistent?

Notice that if TTT + ¬Amb is inconsistent, then NF and TTT must have the same stratified theorems (assum-
ing we ignore type indices), i.e., for all LTST-sentences σ ,

NF � σ ∗ ⇐⇒ TTT � σ. (10)

Let us prove it. The right to left implication is obvious because as we noted above, every modelM of NF can be
turned into a TTT-model A such that for all LTST-sentences σ , M |= σ ∗ iff A |= σ . Now, for the left to right
implication, let σ be an LTST-sentence, and assume that NF � σ ∗. Let A = (A0,A1, . . . , {εA

i, j }i< j ) be a model of
TTT. We know that A |= Amb, so B = (A0,A1, . . . , {εA

i,i+1}i∈ω ) is a model of TST + Amb, and therefore by
Specker’s theorem, there is some elementarily equivalent model C = (C0,C1, . . . , {εC

i,i+1}i∈ω ) of TST with a tsau
f . LetM = (C0, ε

M), where for all x, y ∈ C0, x εM y iff x εC
0,1 f0(y). It is easy to show that for all LTST-sentences

τ , M |= τ ∗ iff C |= τ . So, A |= σ .
In his proof for the equiconsistency of TTT and NF (cf. [2]), Holmes showed that for any model A =

(A0,A1, . . . , {εA
i, j }i< j ) of TTT, there is a strictly increasing r : ω → ω such that the LTTT-structure Ar =

(Ar(0),Ar(1), . . . , {εA
r(i),r( j)}i< j ) is a model of TTT + MStAmb, where MStAmb is a slightly stronger version of

Ambiguity (we call it Mildly Strong Ambiguity) defined as the set of all σ ↔ σ s, where s : ω → ω is strictly
increasing and σ is an LTST-sentence. Obviously, Mildly Strong Ambiguity implies Ambiguity and is implied by
Strong Ambiguity, but what about the reverse implications?

Question 2 Assume that TTT is consistent. Is TTT + ¬StAmb + MStAmb consistent? Is TTT +
¬MStAmb + Amb consistent?
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