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ABSTRACT
This paper presents the development of a child-robot interaction
(CRI) system for edutainment scenarios, aiming to provide a frame-
work for their design and to simplify access to social robots by
educators with non-specialized technical knowledge in this chal-
lenging area. Our framework incorporates powerful robotic percep-
tion modules for action and emotion recognition of the interacting
child, allowing the robot to exhibit empathy and be informed of the
child’s activity. Both developed modules are evaluated on respective
datasets, outperforming the current state-of-the-art by a significant
margin, while retaining low computational cost. The modules are
complemented by off-the-shelf automatic speech recognition and
synthesis components to further enable and enrich edutainmment-
focused CRI. Moreover, the developed framework allows custom
CRI scenario-building via a suitable graphical user interface, pro-
viding a valuable asset to educators wishing to utilize social robots
in the classroom.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools;
• Computing methodologies→ Neural networks; Vision for
robotics.

KEYWORDS
Child-Robot Interaction, Robotic Framework for Edutainment, Emo-
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1 INTRODUCTION
Child-Robot Interaction (CRI) is an interdisciplinary field that has
attracted much scientific interest recently due to the increasing use
of robotic agents in everyday life. Many studies in this field focus
on how children’s mental and cognitive development is affected by
CRI [4, 6, 12]. Among the vast number of technologies that have
been developed in the last decades for educational and edutainment
purposes, social robots stand out due to the wide range of applica-
tions they can be used for, e.g., learning handwriting [10], a second
language [29], or even social emotional learning [48].

It has been observed that in classrooms where student-centered
learning is encouraged, robotic agents create more pleasant learn-
ing and motivate children to participate more [27]. When robots
encourage students to interact with them, they achieve to arouse
their curiosity [26]. Indeed, numerous studies focus on topics re-
lated to the conditions under which the integration and use of
robotic agents in the classroom can be beneficial to children and,
as a result, the interaction between them is designed with specific
purposes in mind. Such research goals are the study of children
engagement during CRI, the level of the joint attention achieved
[17, 30], the analysis of parameters crucial to long-term interaction
[12], as well as research for finding appropriate ways to adjust the
curriculum on such interaction and the difficulties faced [41].

Most robotic agents used in such studies are semi-autonomous
or tele-operated, applying the Wizard-of-Oz technique [3]. More
recently though, due to the dramatic advancements in machine
learning techniques and neural networks, increasingly more social
robots have integrated intelligent perception systems that can in-
teract with humans in a more natural way [9]. Thus, their use by
non-experts, e.g., educators or therapists, is expected to increase,
and sectors such as education to benefit from this progress.

Motivated by the above, this paper focuses on developing a
novel CRI system for edutainment scenarios, aiming to provide a
framework for their design and to simplify access to social robots
by educators with non-specialized technical knowledge in this
challenging area. Specifically, the proposed system:

• Incorporates suitably developed and powerful deep neural-
network based architectures for perceiving children actions
and decoding their emotional state robustly through visual
information, which are evaluated on two children databases
where they are shown to outperform the current state-of-
the-art at a low computational cost;
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Figure 1: The proposed CRI edutainment framework. Modules shown in orange color are developed in this work, while ones
in pink are off-the-shelf (robot action is already available in the NAO robot).

• Integrates off-the-self speech recognition and synthesis mod-
ules to further allow pleasant and natural interaction be-
tween children and robot through the speech modality as
well;

• Provides a novel and user-friendly graphical user interface,
designed with educators in mind, allowing them to adjust
existing CRI scenarios, or to create custom ones according
to the curriculum requirements.

An overview of the proposed framework is depicted in Fig. 1, while
in Fig. 2 an example of the developed system is shown set up inside
a classroom.

The remainder of this paper is structured as follows: Section
2 reviews related work; Section 3 presents the developed system,
detailing its components; Section 4 is dedicated to the evaluation of
its perception modules and, finally, Section 5 concludes the work.

Figure 2: Examples of the developed CRI system set up in-
side a classroom with children interacting with it.

2 RELATEDWORK
Recent works on CRI, from an engineering perspective, have fo-
cused on creating complete robotic systems [13, 16, 36], mainly for
therapeutic purposes, that can be installed in purpose-built rooms
and used by experts or people acquainted with technical issues that

might arise. Concerning systems employed in school environments,
the work of Shiomi et al. [42] is noteworthy for using a robotic
agent, called Robovie, in an elementary school. In that paper, the
authors placed the social robot in a science class where the stu-
dents could interact freely by asking questions about science during
their breaks, and Robovie encouraged them to discuss. Even though
Robovie was tele-operated and only incorporated basic systems for
gesture and speech recognition, it is one of the very few studies
that included robots in the educational process in an unconstrained
manner. A more recent work by Levinson et al. [33] compared two
social robots, NAO [38] and a 3d printed puppet-like robot, during
a learning task at a Summer camp. The children, aged five to nine
years old, participated in morphology-related activities to groups
of up to nine children over the span of a three-week session. The
robotic agents didn’t include any automatic recognition modules,
but only recited scripts and performed movements designed to fit
children responses, which the authors concluded to be detrimental
to the interaction.

During human-robot interaction, recognizing the human emo-
tional state can play a significant role in developing robotic agents
with empathy [11, 25]. Empathy allows a robot to perceive and
decode movements and expressions containing information about
the emotional state. Consequently, the robotic agents can change
and adapt their behavior and actions towards the user appropri-
ately. For example, the Pepper robot is capable of basic emotional
analysis [40]. This results in establishing a healthy and long-term
interaction and trust relationship [5]. Not surprisingly, the efficacy
of using robotic agents with empathy, especially in the education
sector, has been studied, concluding that the social robot behavior
agreement with the behavioral state of the human has a positive
impact on their relationship [32].

Generalizing perception components developed for adults to
children is a challenging task, due to the fact that children behavior
and natural characteristics, e.g., voice pitch and height, differ from
that of adults. This fact necessitates the development of perception
components specifically for children [13]. In the case of emotion
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Figure 3: The TSN framework used for action and emotion recognition in the proposed system.

recognition, Goulart et al. propose in [22] a computational system
for estimating children emotion during CRI by exploiting visual
information from both RGB and infrared thermal cameras. Their
system detects facial regions of interest that are relevant to five
basic emotions. In other work on this topic, Lopez-Rincon in [34]
proposes a Convolutional Neural Network (CNN) combined with
a Viola-Jones face detector, trained using the AffectNet database
[37] and tuned on the NIMH-ChEF dataset [15] to classify children
facial expressions into six basic emotions.

Human action recognition is among the most popular computer
vision problems, however action recognition for children has been
examined on a small only scale. In our previous work [14], various
feature extraction approaches, encoding methods, and fusion tech-
niques were explored, resulting in a robust multi-view fusion action
recognition system focused on CRI scenarios. In other work, Mari-
nou et al. [35] proposed an automated approach using 3d skeleton
data and a CNN architecture during robot-assisted therapy sessions
of children with Autism Spectrum Disorders (ASD). Finally, Zhang
et al. [49] also focused on ASD children, proposing an LSTM-based
network fed with the extracted children skeleton by the OpenPose
algorithm [7] after a denoising filter.

Clearly, various fields of study converge on CRI, broadening the
research problems and applications. Some works close to our focus
on developing a robotic edutainment system for CRI have been
presented above to highlight some of the challenges and state-of-
the-art techniques. Undoubtedly, different approaches could also be
proposed, for example viewing the action recognition problem as an
abnormal event recognition task [31, 44]. However, our focus here
lies primarily on developing a robotic system for CRI in edutainment
and use by non-expert stakeholders, such as educators.

3 ROBOTIC SYSTEM
The proposed system consists of a NAO robot, a compact camera
with microphones such as Kinect in order to be portable and light-
weight, and the developed framework. The latter is designed with
modularity in mind and contains three primary modules developed

in this work and two off-the-self-components that provide neces-
sary additional functionality and are based on existing solutions.
The first two primary modules of our framework pertain to the
core perception capabilities of the robot: 1) The Action Recogni-
tion module, which, as the name suggests, has the responsibility
of recognizing the child’s actions, and the 2) Emotion Recognition
module, which decodes the affective state of the child. The third
module is the Scenario Manager that facilitates the educator to
design new edutainment scenarios using flowcharts. Alongside
these, Speech Recognition and Speech Synthesis modules are also
employed, based on existing solutions.

3.1 Perception Modules
Action Recognition Module. This is based on the Temporal Seg-

ment Network (TSN) framework [47], originally introduced for
large-scale action recognition. Under this framework, K differ-
ent segments are randomly sampled from the input video, each
consisting of N consecutive frames. Such random sampling helps
generalization and reduces the computational cost and redundant
information that exists in sequential video frames.

The developed action recognition module architecture can be
seen in Fig. 3. Two different streams are used, one spatial that
takes as input RGB video frames and one temporal that takes as
input the optical flow derived from the video. In order to force the
networks to focus on the child and its actions, pose tracking is
first performed on the input video, and then the region around the
child is cropped during temporal sampling based on the detected
skeleton by OpenPose [7]. The same process is applied to the flow
stream as well.

After obtaining each segment scores by feeding the data to each
network, the segmental consensus function fuses them to obtain
each stream predictions. Finally, the resulting predictions are com-
bined again by weighted average fusion to yield the final action
classification.

Emotion Recognition Module. For consistency and convenience,
the emotion recognition module employs a similar architecture
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to that of action recognition. TSNs have already been shown to
achieve state-of-the-art results in video emotion recognition [18].
Under this framework, static information is leveraged across differ-
ent frames to identify a child’s expression and combined with the
child’s movement dynamics by using optical flow as input. As with
action recognition, each video is cropped around the child’s face
after performing face detection on the input [2]. The final result
is obtained in the same manner, using segmental consensus and
average fusion of the different input modalities.

Off-the-shelf Speech Modules. To enable natural CRI, the robot
must also understand the child’s speech as well as talk back to the
child. Existing cloud-based Text-to-Speech (TTS) [21] and Auto-
matic Speech Recognition (ASR) [20] solutions are employed for
this purpose. The integration of the two modules in the main sys-
tem can be seen in Fig. 4. During the interaction, speech captured
by the microphones is continuously streamed to a cloud service,
which returns the recognition results. The text is then fed to the
scenario manager (described in Section 3.2), which decides if the
robot should reply something back. The text to be synthesized is
then sent to a cloud TTS service, which synthesizes the speech.

Hi, What's
your name?

My name is
Paris

Cloud
Text-to-Speech

Cloud
Speech-to-Text

ASR Module

TTS Module

Figure 4: The ASR and TTS modules of the robotic edutain-
ment framework.

3.2 Scenario Manager and Integration
Scenario Modeling. For managing the flow of the dialog, we adopt

the “Sense, Think, Act" paradigm [19]. Under this paradigm, the
robotic system first uses its perceptual capabilities (Sense), then
decides on the next course of action (Think), and finally executes
the chosen action (Act). In the proposed framework, we model the
paradigm using events [43], similarly to [13]. These are divided
into two categories: Action events, which command the robot to
do something, and Sense events, which fire when the perception
modules perceive something (i.e., a specific action or emotion). The
flow of the interaction is modeled using Harel statecharts [23]. Each
state in the chart has hidden parameters that control the flow, along
with the received events.

Custom Scenario Design. A major novelty of the developed edu-
tainment framework is that it offers educators the ability to design
their own scenarios, using a flexible, user-friendly, and aesthetically
appealing drag-and-drop graphical user interface. Via this interface,
the teacher is empowered to create the desired complex scenarios
by following the aforementioned principles of Scenario Modeling.
Then, the graphical scenario gets compiled into a Harel statechart
that models the flow and deploys it to the robot to execute it. An
example of graphical scenario building can be seen in Fig. 5.

Figure 5: The graphical user interface for building custom
edutainment scenarios.

Edutainment Scenario Example. Next, we present an example
of an edutainment scenario that can be implemented within the
proposed robotic framework, underlining the sequence of the child
and robot actions. In this scenario, the robot tries to teach a child
the concept of angles in mathematics.

robot: Today, we will learn together the types of angles.
Do you know what an angle is?

child: [Points to a corner of the room while saying] There!
robot: [Recognizes the gesture and speech. Then responds]

You are pointing at something. Could you make an
angle with your hands to show it clearly?

child: I can’t! [says while expressing sadness].
robot: [Recognizes the emotion and speech. Then says] Don’t

worry, I’ll show you. [Then performs an action. The
robot makes an angle with its hands.]

Integration. The lightweight system modules communicate via
a message broker, implemented using the TCP/IP protocol. More
specifically, during the interaction, the perception modules send
Sense events to the broker, which in turn transmits the events to
the scenario manager. In addition, when the scenario manager
demands that the robot does something, it sends an Act event to the
corresponding module: the Speech Synthesis module or the robot
itself in the case of an action. All perception modules and scenario
management are deployed in a Linux machine with an RTX 2080
graphics processor unit.

4 EXPERIMENTAL RESULTS
In this section, we proceed to evaluate the proposed architectures
for children action and emotion recognition. Due to the ongoing
CoViD-19 pandemic, we have not yet been able to conduct a system-
wide user evaluation by multiple children and teachers. As a result,
we only evaluate the perception modules separately on available
children data. Examples of such data are depicted in Fig. 6.
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Figure 6: Example images from the BabyRobot action data-
base (upper row) and the EmoReact dataset (lower row).

4.1 Action Recognition
The action recognition module is evaluated on the BabyRobot ac-
tion database [14], that has been created during the BabyRobot
project [1] and contains various interactions among children and
multiple robots. The dataset includes 25 children performing actions
belonging to 13 classes, while interacting in a pantomime game
with a NAO robot. We present the experimental results of various
explored methods compared to the state-of-the-art for single-view
action recognition on this database.

We use a BNInception [45] architecture for the RGB and Flow
streams and consider two different pretraining schemes: pretrain-
ing on the Kinetics [8] action recognition dataset and pretraining
on the ImageNet database. We train each network for 60 epochs
with stochastic gradient descent and cross-entropy loss, sampling
5 segments with length 1 for RGB and length 5 frames for the Flow
stream.

We choose leave-one-out cross-validation in order to allow com-
parisons with our earlier work [14], and we present the results
in Table 1. We can observe that pretraining both the RGB and
Flow models on the Kinetics database achieves significantly higher
accuracy than pretraining on ImageNet. Besides, both the Flow
module and the weighted average fusion with RGB outperform
the previous state-of-the-art method of Dense Trajectory Ensemble
features (which includes Histogram of Oriented Gradients - HOG,
Histogram of Optical Flow - HOF, and Motion Boundary Histogram
- MBH features), as well as the C3D convolutional network of [14].

Regarding the computational costs for training the network, we
note that one epoch of training (with a batch size of 8) using the TSN
framework takes ∼ 11 seconds to complete for the RGB modality
and ∼ 62 seconds for the Flowmodality. During inference, using the
RGB modality takes ∼ 0.8 seconds to classify all 13 classes, while
using the Flowmodality takes∼ 1.5 seconds. Based on the above, for
the action recognition module, we select the best model: weighted
average fusion of the RGB-TSN and Flow-TSN, both pretrained on
the Kinetics dataset.

4.2 Emotion Recognition
In order to evaluate the emotion recognition module on children
data, we employ the EmoReact [39] dataset. The dataset contains

Table 1: Results of the action recognition module on the
BabyRobot action dataset.

model Accuracy (%)

RGB-Kinetics 47.14
RGB-ImageNet 42.75
Flow-Kinetics 74.75
Flow-ImageNet 63.49
RGB-Kinetics + Flow-Kinetics 76.23
RGB-ImageNet + Flow-ImageNet 64.10
Dense Traj. Ensemble [14] 74.15
C3D [14] 59.38

videos of 63 children (32F, 31M) reactions to various subjects, col-
lected from YouTube. The number of all videos across the training,
validation, and test set is 1102. Each video is annotated with one or
more emotions from a total of 8 emotion labels.

We train each TSN for 60 epochs, similarly to the action recog-
nition module, with stochastic gradient descent and binary cross-
entropy loss, using a batch size of 16, sampling 5 segments from
each video, and selecting the epoch with the best validation area un-
der the curve (ROCAUC). For the RGBmodality, the segment length
is set to 1, while for the Flow stream to 5. The CNN architecture we
use is a residual network with 50 layers (ResNet50) [24]. We also
consider two different pretraining methods: 1) using the standard
pretrained ImageNet weights or 2) the weights of a ResNet50 trained
on the most extensive facial expression dataset, AffectNet [37]. We
have trained a ResNet50 on AffectNet, achieving 58.60% accuracy
on the validation set (the test set is not available). Because the label
distribution of AffectNet is highly skewed, we employ balanced
sampling so that the network sees the underrepresented classes
more often.

We also built a traditional baseline scheme by extracting for each
video HOG, HOF, and MBH features, aggregating them using Fisher
Vectors [28], and employing a linear SVM for classification.

The results are presented in Table 2. We observe that both Ima-
geNet and AffectNet RGB pretrained models achieve similar per-
formance, while the Flow network achieves a lower ROC AUC.
Average fusion increases the final ROC AUC. In the same Table,
we also list the current state-of-the-art result on the EmoReact
database [39] and the non-deep learning baseline, showing that our
method achieves better emotion recognition performance.

The computational burden of the emotion recognition module
using RGB is ∼ 40 seconds per epoch of training and ∼ 26 seconds
for inference, while using the Flow modality ∼ 166 seconds per
epoch of training and ∼ 115 for inference. Considering that the
system needs to be lightweight, for the deployment of the emotion
recognition module, we have selected only the RGB-TSN pretrained
on the AffectNet dataset, since the Flow-TSN not only demands sig-
nificantly larger computational resources but also has a minuscule
effect on performance.

4.3 Speech Recognition
As a final experiment, we investigated the performance of the
Google Cloud Speech-To-Text Engine as the ASR module of our
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Table 2: Results of the emotion recognition module on the
multi-label EmoReact dataset.

model ROC AUC

RGB-AffectNet 0.648
RGB-ImageNet 0.636
Flow-ImageNet 0.588
RGB-ImageNet + Flow-ImageNet 0.650
RGB-AffectNet + Flow-ImageNet 0.652
OpenFace with SVM [39] 0.620
HOG, HOF, MBH Ensemble with SVM 0.600

system. For this purpose, we used the BabyRobot Distant Speech
Recognition dataset [46], which includes speech from 25 children
while interacting with multiple robots. We randomly selected 5
utterances from each child (resulting in a total of 125 utterances)
from the dataset and used the Speech-to-Text Engine to recognize
the sentences, achieving a very promising Word Error Rate of 25%.

5 CONCLUSION
In this paper, we proposed a novel lightweight edutainment robotic
framework for CRI. The developed framework aims to become a
valuable educational tool by easily allowing teachers to integrate
robots into the education process without requiring specialized
technical knowledge. This is accomplished through a novel and
flexible graphical user interface that offers easy creation of the
desired CRI scenarios.

In addition, the system employs two deep neural network based
perception modules to recognize actions by children, as well as their
emotions. We have evaluated the proposed modules on databases
of children performing actions and emotions, respectively, and
showed that they achieve high performance, surpassing the current
state-of-the-art. Based on our experimental analysis, and taking into
account the need to balance computational cost and performance,
we have selected the RGB-TSN pretrained on the AffectNet dataset
as the architecture of the emotion recognition module, and the
fusion of Flow-TSN and RGB-TSN, both pretrained on the Kinetics
dataset, for the action recognition module.

In the future, we aim to improve the scenario design module fur-
ther, as well as to conduct extensive system-wide evaluations with
numerous children and multiple use-cases customized by educators.
Such evaluations are unfortunately currently not possible due to
the CoViD-19 pandemic.
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