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Abstract—Nowadays, the increasing number of moving objects
tracking sensors, results in the continuous flow of high-frequency
and high-volume data streams. This phenomenon can especially
be observed in the maritime domain since most of the vessels
worldwide are now transmitting their positions periodically.
Therefore, there is a strong necessity to extract meaningful
information and identify mobility patterns from such tracking
data in an automated fashion, eliminating the need for experts’
input. To this end, a novel approach is presented in this paper,
which fuses the research fields of computer vision and trajectory
classification, in order to deliver a high-precision classification of
mobility patterns. The experimental results demonstrate that the
classification performance of the proposed approach can reach
an f1-score of over 95%.

Index Terms—trajectory classification, computer vision, image
classification, vessel monitoring, AIS

I. INTRODUCTION

In recent years, the large volume of mobility data generated
from thousands of tracking devices has attracted researchers’
interest in data-driven, knowledge discovery techniques. Such
techniques, that often include anomaly detection and trajectory
classification, are able to detect patterns from the generated
mobility data. Mobility data consist of trajectories of moving
objects and can provide spatiotemporal characteristics that
indicate anomalous or suspicious behavior. Today, although
all larger vessels are obliged to carry an Automatic Identi-
fication System (AIS) transponder on board, smaller vessels
have also adopted this technology. AIS is a vessel tracking
protocol that allows vessels to broadcast information about
their whereabouts and identity and to receive information by
nearby vessels as well.

Characterizing parts of the trajectories can help the au-
thorities in decision-making, thus improving the overall Mar-
itime Situational Awareness (MSA). To promote the MSA,
several supervised or unsupervised learning techniques were
developed that take advantage of kinematic and spatiotemporal
features of trajectories. In the literature, the field of trajectory
classification has been extensively studied, but only in recent
years the focus has shifted towards the maritime domain [1]–
[7]. In all those studies, the context of the analysis is typically
the physical world and the geography. Latitude and longitude
are the basic features in a possibly multi-dimensional space
(others can be the speed, direction, etc). However, experts
rely heavily in the visualization of trajectories to manually
identify parts of the trajectory that are of some importance.

This provides an intuition to move the analysis in a different
domain, leveraging computer vision techniques on classifica-
tion. In computer vision, the most commonly used techniques
include convolutional neural networks [8]–[10]. Before the
widespread usage of neural networks, other techniques were
also devised where researchers tried to extract features from
an image or to predict textual information from pixels [11],
[12]. One of the most common goals of computer vision and
specifically image recognition is to classify a set of images to
a predefined set of labels which are of interest.

Similarly, the main concept of our proposed methodology
is to classify the mobility patterns of vessels to a set of
predefined (possibly illegal) activities by visually representing
them as images for the purposes of promoting the MSA at
sea. The novelty of our approach lies in the usage of computer
vision techniques for the classification of trajectories and the
detection of activities in mobility data. The use of computer
vision for the problem at hand and the main contributions
that it offers are: a) The distinct visual difference most
mobility patterns in the maritime domain have, allows for
the increase in the classification performance of trajectories,
b) The classification of trajectories even when the positional
data are not given at fixed intervals (e.g. hourly) such as
the AIS messages1, a problem faced by time-series classifi-
cation methodologies [7], c) A computer vision approach for
trajectory classification skips entirely the pre-processing step
regarding the understanding and analysis of data and feature
extraction. The reason for this is that the same technique for
classifying an image (e.g. Convolutional Neural Networks) can
be applied for the classification of all of the mobility patterns
since all mobility patterns are converted to images. Therefore,
a computer vision approach for trajectory classification yields
a promising universal approach for the classification of mobil-
ity patterns and d) Clustering constitutes often a preliminary
step when dealing with trajectory classification techniques.
Almost all of the well-known clustering algorithms require
input parameters which are hard to determine [13]–[15]. As
our method skips entirely this step, as stated above, we
have eliminated the need of arbitrary user-defined parameters,
making our approach scalable and robust.

1https://help.marinetraffic.com/hc/en-us/articles/217631867-How-often-do-
the-positions-of-the-vessels-get-updated-on-MarineTraffic-
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II. RELATED WORK

With the adoption of the AIS from the International Mar-
itime Organization (IMO) as a mandatory means of vessel
monitoring, studies in the maritime domain focused on data
collected from AIS receivers. Mazzarella et al. [3], analyzed
the behavior of fishing vessels by detecting and clustering
the stops and moves in their trajectory with the DBSCAN
algorithm. As a result, each cluster indicated a dense area of
fishing activity.

Souza et al. [5] presented three classification techniques
with each technique aiming at the identification of a differ-
ent fishing activity. The analysis is focused on three types
of fishing vessels: i) trawlers, ii) longliners and iii) purse-
seiners. Based on their trajectory behavior when engaged
in fishing, authors determined that in each vessel type, a
different classifier is suitable and therefore used three different
classification models. Each classification model identifies parts
in the trajectory that correspond to either fishing activity or not.
The disadvantages of their proposed methodology are that each
classifier performs a binary classification task and that the gear
type is not always given by the AIS, making it harder to choose
a proper classifier in a real-world application setting. Jiang et
al. [16] presented classifiers which use neural networks and
autoencoders achieving a high-accuracy classification perfor-
mance. Their methodology is similar to that of [5], in the
sense that they perform binary classification to detect when a
specific type of fishing vessel is engaged in fishing activity.

Finally, a more recent study of Chen et al. [17] is similar
to our own, in terms of converting AIS trajectories into a
mobility-based trajectory structure (MB) that resembles a low-
resolution image. The final result is a three-dimensional ma-
trix, with the first two axes representing the spatial movement
of the trajectory and the third axis representing its speed. The
goal is to classify the transportation mode of vessel trips when
travelling from an origin port to a destination port. A CNN
is used for the classification of the matrices, resulting in a
maximum f1-score of 84.7%. The main drawback of [17] is
that it does not capture the behavior of the trajectory in its
entirety, since the surveillance space is segmented into large
cells, especially in cases where the vessels perform micro-
movements that eventually form a different mobility pattern.
The main difference of our approach and its novelty lies
in the fact that high-resolution images can be generated by
normalizing the space the vessel moves, capturing every aspect
of the trajectory behavior during a mobility pattern, which can
then be used by any image classifier.

III. METHODOLOGY

A. Maritime Patterns
In total, five different vessels’ mobility patterns have been

studied in our work:
Anchored: During this type of activity, vessels are anchored

offshore in an anchorage area. When anchored, the vessel tends
to move around the anchor and forms circular or semi-circular
patterns (Figure 1a) due to the effects of the wind, the tide or
sea currents.

Moored: During this type of activity, vessels are anchored
inside a port. In general, mooring refers to lassoing, tethering
or tying to any permanent structure. During this type of
activity, the vessel is stopped and the vessel is constrained
by the mooring buoys. Its motion is more limited compared
to an anchored vessel (Figure 1b).

Underway: A vessel is considered underway when it is not
aground, anchored or has not been made fast to a dock, the
shore, or some other stationary object (Figure 1c).

Trawling: There are different kinds of fishing activities such
as trawling and longlining. Trawling vessels typically keep
their speed steady in order to stabilize the fishing net which is
dragged by the boat. Moreover, trawling vessels do not travel
at a straight line, but they tend to frequently change their
course around the fishing area of interest (Figure 1d). The
trawling activity can last from several hours to several days.

Longlining: Vessels engaged in longlining activity set fish-
ing lines with baited hooks attached to them. While setting
the lines the vessels travel at their steaming speed and they
maintain a constant speed. When all lines are set, they are
left in the water and the vessels drift slowly with them.
Although the two fishing activities have some similarities such
as frequent turns and similar speeds, their mobility pattern can
differ visually (Figure 1e).

B. Image Representation

This section describes the approach that creates an image
representation of the trajectories. To visualize and efficiently
classify the movement patterns of the vessels, we need to cap-
ture two key features that characterize the trajectory patterns
in the maritime domain: i) the shape of the trajectory and ii)
the speed.

Shape of the trajectory. Although trajectories might form
similar patterns, the distance each vessel travels through space
is different. Therefore, the bounding box or the surveillance
area in which the vessel moves needs to be normalized. To
efficiently capture and place the shape of the trajectory inside
a normalized bounding box we first need to define the total
distance of both the x and the y axis in which the vessel
moves. To do so, we measure the total horizontal distance
(Eq. (1)) and the total vertical distance (Eq. (2)) the vessel
travels based on the minimum and maximum longitudes and
latitudes respectively. The total horizontal and vertical distance
is defined as:

dx = lonmax − lonmin (1) dy = latmax − latmin (2)

Then, the distance each AIS position m has travelled from
the minimum longitude and latitude can be calculated from
the equations 3 and 4 respectively as follows:

d(mx) = lonm − lonmin

(3)
d(my) = latm − latmin

(4)
From equations 1,3 and 2,4, we can calculate the percentage

of the total distance each AIS position m has travelled so far
from the minimum coordinate in both x and y axes:
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(a) Anchored vessel. (b) Moored vessel. (c) Vessel underway. (d) Vessel trawling. (e) Vessel longlining.

Fig. 1: The movement patterns of 5 distinct vessel activities during an 8 hour window.

norm(mx) = d(mx)÷ dx
(5)

norm(my) = d(my)÷ dy
(6)

Given a predefined image size of N×N , the exact position
of m inside an image can be calculated as follows:

px = norm(mx)×N (7) py = norm(my)×N (8)

Therefore, each AIS position is placed inside a normalized
bounding box or a surveillance space of size N × N that
is essentially an image representation. An example of the
surveillance space normalization can be seen in Figure 2 where
each green circle corresponds to an AIS position and N = 10.
For each AIS position the corresponding longitude and latitude
is denoted by the blue arrows.
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Fig. 2: Example of space normalization.

Finally, in order to make the pattern created by each trajec-
tory more distinctive, a straight line between each temporally
consecutive pixel(pixelx, pixely) or AIS position m is drawn
using the Bresenham’s line algorithm [18]. The Bresenham’s
line algorithm is a line-drawing algorithm that generates points
that form a close approximation to a straight line between two
points of an N -dimensional raster.

Speed. Most common vessel types such as passenger, cargo
or fishing vessels report a speed value between the range of
0 to 22 knots, R = [0, 22]. To represent the speed values
of each AIS position m, the range R was segmented to
2-knot increments with each increment corresponding to a
different RGB color value in the final image. Therefore, an
AIS position with a speed value of 0 ≤ s < 2 has a different
color value compared to an AIS position with a speed value
of 2 ≤ s < 4 . The 2-knot increment was chosen because

we wanted a reasonable amount of color values (11 distinct
color values against 22 color values with 1-knot increments)
while maintaining a relatively high number of increments.
Furthermore, fishing vessels typically report a speed between 2
to 4 knots while fishing [5], [6] which corresponds to a 2-knot
increment. Since the speed can sometimes exceed 22 knots,
speed values greater than 22 have the same color with the
last increment (20 ≤ s < 22 ). Moreover, pixels that do not
contain an AIS position or a line drawn by the Bresenham’s
line algorithm are colored white and pixels that contain the
lines between the AIS positions use the color of the first
increment. Figure 3 illustrates a trawling trajectory that has
been converted to a 224× 224 image.

Fig. 3: Example of a trawling trajectory that has been trans-
formed into an image.

C. Image Features

The next step of the approach is the selection of a proper
methodology able to classify the trajectory pattern images.
There are many methodologies in the literature that use
Convolutional Neural Networks (CNNs) for the problem of
image recognition that require a huge amount of data and a
considerable amount of time for training. Therefore, to per-
form image classification, a methodology is required through
which features can be extracted from the images that can then
be fed to a common classifier such as Random Forests (RFs)
[19]–[21]. For such a methodology, features that can capture
the two key characteristics of a trajectory pattern – the shape
and the speed – are required. To this end, we employed 2
types of features that are widely used in the literature, namely
Hu invariant moments and Color histogram which describe the
image in terms of shape and color respectively:

Hu invariant moments. They were first established by
Ming-Kuei Hu and were used for visual pattern recognition
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TABLE I: Image classification results.

Classifier Temporal Window Cross Validation Hold-out
h Precision Recall F1-score Precision Recall F1-score

Random Forests

1 0.9843 0.9842 0.9837 0.9607 0.96 0.9601
2 0.9483 0.9543 0.9494 0.9669 0.9666 0.9667
4 0.9661 0.9674 0.9649 0.9743 0.9766 0.9767
8 0.9755 0.9705 0.9723 0.9735 0.9733 0.9731

Classifier Temporal Window Cross Validation Hold-out
h Precision Recall F1-score Precision Recall F1-score

Support Vector Machines

1 0.9344 0.9396 0.9311 0.9487 0.9466 0.9468
2 0.9063 0.9012 0.8988 0.9171 0.9133 0.9109
4 0.8651 0.8567 0.8528 0.9366 0.9333 0.9337
8 0.8341 0.8088 0.8015 0.8623 0.86 0.8583

Classifier Temporal Window Cross Validation Hold-out
h Precision Recall F1-score Precision Recall F1-score

Logistic Regression

1 0.9504 0.9487 0.9486 0.9601 0.96 0.9599
2 0.9306 0.9336 0.9296 0.9343 0.9333 0.9325
4 0.9118 0.9176 0.9109 0.9665 0.9666 0.9665
8 0.8942 0.8984 0.8927 0.8533 0.8533 0.8533

[22]. The main idea behind these features is that any ge-
ometrical pattern or shape can be represented by a density
distribution function with respect to a pair of axes fixed in
the visual field [22]. Therefore, the Hu invariant moments are
seven features suitable for identifying shapes such as trajectory
patterns or handwritings and letters. The Hu invariant moments
have been successfully used since then for tasks such as
plant classification [23], biometrics-based identification [24]
and object recognition [25].

Color histogram. The color histogram is a representation
of the distribution of colors in an image. Specifically, the
histogram represents the number of pixels that have a specific
color out of a predefined list of colors. The list or the range
of the colors is given by the number of bins that is used for
the histogram. In our case, the number of the bins is equal to
the number of the color values as described in Section III-B.
Color histograms are a common practice and have been used
for content-based image retrieval [26], [27] and vehicle color
recognition [28].

IV. EXPERIMENTAL EVALUATION

A. Dataset Description

The first dataset used contains AIS messages collected from
a Terrestrial AIS receiver (T-AIS) that covers the Saronic
Gulf (Greece) and contains high quality AIS information
without gaps of information. The AIS messages used for our
ground truth dataset contain activities that have been extracted
from vessels engaged in the following activities: underway,
anchored and moored – hereafter patterns A. The vessels
have been monitored for almost one and a half month period
starting at February 18th, 2020 and ending at March 31th, 2020.
The dataset provides information for 1229 unique vessels and
contains 11, 769, 237 AIS records in total. A small sample of
the dataset can be found here [29].

The second dataset that was used was provided by Marine-
Traffic2 and contains AIS messages from January 1st, 2018 to

2https://www.marinetraffic.com

February 28th, 2018 in the seas of Northern Europe. The AIS
messages used for our ground truth dataset contain the fol-
lowing activities: trawling, longlining, moored and underway
– hereafter patterns B. The total number of AIS messages of
this dataset sums up to 61, 050.

In order to provide good-quality representations of vessel
activities to the classifiers, 200 representative images from
each class from both datasets were selected. The resolution
of the images in both datasets is set to 224 × 224. This
resolution is also used by CNNs trained with the ImageNet3

dataset and allows for a straightforward comparison between
our methodology and CNNs in the future.

B. Experimental Results

To evaluate the image features, we selected three well-
known classifiers, namely Random Forests (RFs), Support
Vector Machines (SVMs) and Logistic Regression (LR). For
each classifier we performed a 10-fold cross validation on the
first dataset (patterns A), keeping at each fold 90% of the data
for training and 10% of the data for validation and reported the
macro-average results. Furthermore, at the end of each cross
validation, we selected the model with the best classification
performance out of the 10 generated models (one for each
fold), and we tested it against previously unseen data of vessel
activities. We repeated each experiment four times for four
different temporal segments or windows of the trajectories:
h = 1, 2, 4, 8, where h is the number of hours. Specifically,
the trajectories of each vessel activity were segmented into
equally-sized temporal-window trajectories of length h. Table
I presents the results of the 10-fold cross validation for each
experiment and the classification performance achieved in
previously unseen data (Hold-out).

It can be observed from the results that all of the classifiers
achieve a f1-score of over 90% most of the times with the
Random Forests yielding the best classification performance
on the unseen data for each temporal window with a maximum

3http://www.image-net.org/
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f1-score of 97.67%. The rest of the classifiers do not fall
further behind, with the SVMs achieving a maximum f1-score
of 94.68% and the LR achieving a maximum f1-score of
96.65%. Finally, on the one hand, we can observe that the
Random Forests classifier yields a rather ascending f1-score
with respect to the ascending temporal window h. This can be
explained by the fact that the mobility patterns of the vessels
require some time to form [6]. On the other hand, we can also
observe that the rest of the classifiers do not follow the same
“ascending f1-score pattern”, but they tend to fluctuate and be
more unstable. Our results fully agree with other studies of
image classification in the literature [19]–[21] which consider
Random Forests to be the most suitable classifier for the task.

Furthermore, we compared our results with other method-
ologies for trajectory classification that are illustrated in this
recent survey of Wang et al. [30]. State-of-the-art method-
ologies for trajectory classification include the use of well-
known classifiers such as RFs on features extracted from the
data points of the trajectories. To this end, we extracted three
features from the trajectories during each type of activity
(Anchored, Moored and Underway): the average speed of
the vessel, standard deviation of its speed and the haversine
distance between the first and the last vessel position. These
features were selected because they demonstrate distinct dif-
ferences between these specific activities. A moored vessel
typically has a zero speed while an anchored vessel moves
with slightly greater speeds on average due to the effects of the
wind. A vessel underway has typically much higher speeds and
the distance between the first and the last position is greater
compared to the distance of anchored or moored vessels. These
features were then fed to two classifiers, Random Forests
and Support Vector Machines. The methodologies used in the
comparison are shown below:

• M1: the proposed methodology of this paper (image
classification with Random Forests).

• M2: the Random Forests classifier with the features
extracted from the AIS messages of the trajectories.

• M3: the Support Vector Machines classifier with the fea-
tures extracted from the AIS messages of the trajectories.

After the feature extraction, we performed 10-fold cross
validation for each methodology similarly to the previous
experiment. The temporal length (h) of the trajectories used
in this comparison is equal to 8 hours. Table II illustrates
the cross-validation macro average results of the comparison
between the different approaches. Results show that our pro-
posed methodology (M1) surpasses the other methodologies
(M2,M3) in terms of classification performance. M1 achieved
a f1-score of 97.23% and (M2,M3) achieved a f1-score of
(96.18%, 91.1%) respectively.

To further evaluate our methodology on vessel activities of
utmost importance to the maritime authorities, we performed
10-fold cross validation on the second dataset (patterns B)
that contains fishing vessels engaged in trawling, longlining,
moored or underway. A fishing vessel is typically moored at a
port, then travels towards a fishing area and is finally engaged

TABLE II: Comparison of methodologies on patterns A.

Methodology Cross Validation
Precision Recall F1-score

M1 0.9755 0.9705 0.9723
M2 0.966 0.9603 0.9618
M3 0.924 0.9138 0.911

TABLE III: Image classification results for fishing vessels.

Experiment Precision Recall F1-score
Cross Validation 0.9686 0.9652 0.9653

Hold-out 0.9887 0.9885 0.9885

in the fishing activity. After the fishing ends, the vessel travels
back to the port and moors. Similarly to the first set of
experiments, at each fold 90% of the data is kept for training
and the rest 10% of the data is kept for validation. Finally,
the best model is used to test the classifier against unseen
data. For this experiment, only the Random Forest classifier
was used since the previous set of experiments demonstrated
that it has the best classification performance. Furthermore, we
only used the temporal window of 8 hours due to the fact that
fishing activities can last from several hours to several days
[6]. The results of this experiment are shown in Table III that
demonstrates a high classification performance.

Finally, we compared the image classification methodology
to the approach proposed in [6] for the fishing vessels (M4)
where they use a set of features suitable for the fishing
activities. Moreover, we also used the methodology of the
previous experiment (M2) which uses features that are suitable
for patterns A. Similarly to the previous set of experiments,
we performed 10-fold cross-validation for each classifier in
trajectories of 8-hour length. The macro average results are
reported in Table IV. The results again validate that the
proposed approach (M1) is more accurate than the set of
features selected specifically for the classification of fishing
activities (M4). Furthermore, results demonstrate that the
methodology M2 does not perform well (f1-score of 76.2%).
This is explained by the fact that the features used for patterns
A are not able to discriminate between patterns B. On the
other hand, the proposed methodology (M1) is able to perform
well in both sets of patterns due to the fact that the patterns
have distinct visual differences, thus eliminating the need for
different feature selection for different mobility patterns.

TABLE IV: Comparison of methodologies on patterns B.

Methodology Cross Validation
Precision Recall F1-score

M1 0.9686 0.9652 0.9653
M2 0.7523 0.772 0.762
M4 0.8455 0.8436 0.8446
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V. CONCLUSION AND FUTURE WORK

In this work we presented a novel approach for trajectory
classification which employs a computer vision technique.
The aim of our approach is to provide a high-precision
classification of different vessel mobility patterns and to create
a universal approach for the classification of vessel activities.
The classification performance of the proposed methodology
was evaluated on two real-world datasets and demonstrated an
f1-score of over 95%.

As a future work, we aim at developing an online system
which will be able to create images from AIS messages and
classify them in real-time. Finally, it is within our future plans
to evaluate the classification performance of CNNs that use
transfer learning.
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