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ABSTRACT Pedestrian modeling remains a formidable challenge in transportation science due to the
complicated nature of pedestrian behavior and the irregular movement patterns. To this extent, accurate and
reliable positioning technologies and techniques play a significant role in the pedestrian simulation studies.
The objective of this research is to predict pedestrian movement in various perspectives utilizing historical
trajectory data. The study features considered in this research are pedestrian class, speed and position.
The ensemble of these features provides a thorough description of pedestrian movement prediction, whilst
contributes to the context of pedestrian modeling and Intelligent Transportation Systems. More specifically,
pedestrian movement is grouped into different classes considering gender, walking pace and distraction by
employing random forest algorithms. Then, position and speed prediction is computed employing suitable
data-driven methods, in particular, the locally weighted regression (LOESS method), taking into account
the individual pedestrian’s profile. An LSTM-based (Long Short-Term Memory) model is also applied for
comparison. The methodology is applied on pedestrian trajectory data that were collected in a controlled
experiment undertaken at the Campus of the National Technical University of Athens (NTUA), Greece.
Prediction of pedestrian’s movement is achieved, yielding satisfactory results.

INDEX TERMS Behavior classification, distraction, pedestrian speed prediction, pedestrian trajectory
prediction, random forests, GNSS, position fix.

. INTRODUCTION

HE ECONOMIC growth and technological advance-

ments of the last decades resulted in a significant
increase in transportation needs while paving the way to
the concept of future cities. This requires all transporta-
tion modes to be integrated in connected and cooperative
intelligent transport systems (C-ITS), necessitating the rep-
resentation of all system actors’ interactions [1]. Although
walking is the most commonly used form of transport,
until recently the majority of research efforts were focused
on vehicular transport, while analyses of pedestrian motion
dynamics is limited. Pedestrian safety, though, comprises a

The review of this article was arranged by Associate Editor Emmanouil
Chaniotakis.

key aspect of sustainable mobility and is essential for the
implementation of C-ITS.

Pedestrian movement is quite complex, as it is sudden with
random or occasional changes [2]. At the same time colli-
sion avoidance systems should accommodate for pedestrian
movement predictions at a millisecond level [3]. Besides, it
is important to develop online solutions that would enable
redirecting suitable information and guidance back to pedes-
trians when moving in public spaces and large facilities
(malls, airports, etc.), but also in cities within the con-
text of pedestrian- vehicle interactions [4]. The development
of C-ITS necessitates for accurate, real-time detection of
pedestrian movement. The analysis of pedestrian behavior
is also crucial for security, marketing and urban planning
purposes as well as for infrastructure design [5]. Nowadays,
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the rapid advancements in localization technologies, coupled
with the development of smart positioning algorithms, pave
the way towards the provision of ubiquitous positioning data
of increased accuracy, robustness and availability [6]-[7],
enabling the improvement of pedestrian trajectory prediction
tools.

In order to make the best of large volume of the pedes-
trian data generated in the big data era, it is imperative
that efficient data management and analysis techniques are
followed. A classical approach includes the classification
of data into individual groups with common attributes.
Classification of pedestrian behavior enables a finer percep-
tion of pedestrian motion, as it assists the differentiation and
interpretation of the way pedestrians react to various distinct
situations. Moreover, the acquisition of different pedestrian
profiles facilitates the training of detailed pedestrian mod-
els. Furthermore, classification approaches provide further
insight on the contribution of different factors in shaping up
pedestrian behavior, thus proving to be a significant tool in
movement prediction.

Pedestrian behavior refers to a multitude of motion
attributes (speed, acceleration, direction, etc.) and it is
affected by various factors [8]. Firstly, pedestrian behav-
ior is highly correlated with the physical and anatomical
characteristics of each individual (e.g., height, age, fitness
level, state of mind). Secondly, it depends on spatial and
temporal variations that pertain to environment type (mall,
airport, metro, etc.), the time of day (rush hour or not),
as well as the terrain type (flat area, multi-level area,
etc.) that all together contribute significantly to movement
dynamics and their variation. Furthermore, pedestrian-to-
pedestrian, pedestrian-to-vehicle, as well as, pedestrian-to-
infrastructure interactions affect pedestrian behavior. It is
therefore apparent that pedestrian behavior is characterized
by great heterogeneity resulting in the generation of vari-
ous pedestrian behavior states. Distraction sources, including
mobile phone use, affect also pedestrian behavior result-
ing, for example, to lower walking speeds [9]-[10]. The
distraction effects incurred by mobile phone usage have
received limited attention [11]-[13], though distracted walk-
ing entails high-risk, particularly in pedestrian-to-vehicle
interactions [11], [14]. For instance, phone distraction and
a fast-walking pace could raise serious safety issues as they
lead in lack of attention. Also, they could lead to sudden
change in route choice — for example, choose the shortest
path while in a rush or the quieter route while talking on a
mobile phone.

In this research, we develop a simple and integrated
methodology to predict pedestrian movement. Initially, we
group the available data into classes of different gender
(male/female), walking pace (fast/normal) and phone use
(if pedestrians make use of a phone or not while walking).
Subsequently, we predict pedestrian position and speed con-
sidering individual heterogeneity. Several researchers have
study pedestrian classification and trajectory prediction sep-
arately, whilst a limited number of studies treat them as part
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of the same system. The present research adopts a holistic
approach treating both these processes.

The structure of the paper is as follows. In the next sec-
tion, the scientific background in the field of pedestrian
behavior classification and pedestrian movement prediction
is described. Following this, the proposed methodological
framework and its partial components, including emerg-
ing data-driven methods such as random forests, locally
weighted regression (LOESS) method and Long Short-Term
Memory (LSTM), are presented. The proposed methodology
is demonstrated utilizing pedestrian trajectory data collected
in a field survey at the NTUA Campus, Greece. Distributions
of the collected data are explored and a classification of
pedestrian behavior is performed. Pedestrian speed and posi-
tion are then predicted using LOESS method and considering
each pedestrian’s heterogeneous profile. An LSTM based
model is also used for comparison with the proposed method.
The analysis of the data is presented followed by the discus-
sion of the results. The conclusions, limitations and some
future prospects are discussed in the last section.

Il. SCIENTIFIC BACKGROUND
Several researchers have dealt with the identification and
classification of pedestrian behavior under various con-
ditions, while different types of parameters have been
employed for different group definitions such as gender,
walking style, and so on. In 2001, Lee and Mase [15]
performed pedestrian behavior classification based on accel-
eration measurements for navigation purposes. They char-
acterized each step as ‘level’, ‘up’ and ‘down’ of a stair-
way. Jan et al. [16] utilized Modified Probabilistic Neural
Networks in order to classify pedestrian behavior into normal
and abnormal and identify security threats. Chen et al. [17]
classified pedestrian trajectory data in classes of different
motion patterns to use them a- priori for vehicle-to-
pedestrian collision avoidance. Okamoto et al. [5] classified
pedestrian behavior in a shopping mall into three categories:
‘going straight’, ‘finding the way, and ‘walking around,
based on each pedestrian’s walking speed, trajectory vari-
ability, stopping rate and the movement of the pedestrian’s
head. Keller and Gavrila [18] and Vo6lz et al. [3] estimated
the next step of the pedestrian as ‘crossing’ or ‘not crossing’,
also utilizing clustering techniques. Quintero et al. [19] clas-
sified pedestrian behavior into four distinct actions: walking,
starting, stopping and standing. Raza et al. [20] recog-
nized pedestrian gender based on body appearance using
deep learning technique. More recently, Fayyaz et al. [21]
employed both conventional and deep convolutional neural
networks for pedestrian gender classification and achieved an
accuracy of 89.3% and 82% respectively in their datasets.
Gender recognition is a key issue in several applications
such as visual surveillance, demographics, human—computer
interaction [21].

Pedestrian speed prediction, utilizing machine learning
techniques, comprises a topic that has attracted attention
especially in recent years. Tordeux et al. [22] showed that
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FIGURE 1. Methodology for pedestrian movement prediction.

neural networks are able to provide better estimation of
pedestrian speed at corridor and bottleneck experiments,
while outperforming the use of classical pedestrian models.
Kouskoulis et al. [23] also suggested superior performance
of a locally weighted regression algorithm compared to a
social force model for speed modeling using real data.
Pedestrian position prediction comprises yet another sig-
nificant element in future cities, as accurate predictions
could prevent a considerable number of traffic injuries
and improve pedestrian safety when employed in collision
warning systems or embedded in autonomous vehicle path
planning [24]. Pedestrian trajectory is usually characterized
as series of generation actions [25]. Several researchers have
used data-driven methods for pedestrian position prediction,
including novel LSTM algorithms, Recurrent Neural
Networks and Gaussian processes [24]-[31]. Pedestrian
movement involves classes of behavioral status, speed and
traveled distance values, as well as movement direction. Most
existing pedestrian movement prediction models tend to deal
with just one of these aspects. In this paper, we propose an
integrated methodological framework to consider them all.

lll. METHODOLOGY

A. METHODOLOGICAL FRAMEWORK

Capturing pedestrian behavior heterogeneity has the poten-
tial to offer accurate input in the development of Intelligent
Transportation Systems. This research is based on [32] in
order to expand the existing methodology considering also
pedestrian trajectory prediction (i.e., position and speed fea-
tures) further to pedestrian behavior classification. Thus,
the present research develops an integrated methodology for
pedestrian behavior classification and pedestrian movement
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prediction. The proposed methodology employs a classifi-
cation and a regression algorithm in order to assign the
obtained data into classes with similar characteristics, as
well as to estimate pedestrian behavior state in real time
and predict pedestrian speed and position in a short time
span. In the proposed approach, the individual pedestrian
profile is formed utilizing observations from previous time
instants. New observations of the following time instants are
then classified into the appropriate classes enabling trajectory
prediction based on this personalized pedestrian profile. The
proposed methodological framework is presented in Fig. 1.

B. PEDESTRIAN BEHAVIOR CLASSIFICATION

For the needs of this study, a database with pedestrian
observations including position, speed, acceleration, etc. as
well as individual characteristics such as age, gender and
height, is utilized. The associations between these parame-
ters are identified for every pedestrian. Initially, mean values
for the attributes of each pedestrian are calculated. The
classification step that follows divides the available obser-
vations into different pedestrian classes (i.e., gender, pace
and distraction conditions). For the implementation of data
classification, the random forests classification algorithm is
applied to the relevant data. Speeds, accelerations and devi-
ations from the mean pedestrian speed are considered in this
process. The final result is a detailed historical database with
classified data, while new data are assigned to the class with
the highest resemblance.

The efficiency of classification methods is usually assessed
via the True Positive and False Negative rates [33].
Evaluation of the classification algorithm performance is
achieved using a confusion matrix for the test data. Values
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on the diagonal correspond to true values (positives or
negatives), whereas the rest correspond to false values.

C. PEDESTRIAN TRAJECTORY PREDICTION

Trajectory is defined as the time-profile of pedestrian motion
states, such as his/ her position and velocity [34]. In order to
develop a pedestrian data-driven model, the required explana-
tory variables should be determined first, and the appropriate
trajectory data should be collected. Data driven modeling
requires reliable data of high precision. Positioning accuracy,
availability and integrity are often considered as the most
critical parameters in the quality of a position fix followed
by the update rate, position coverage, continuity and system
latency [4]. For example, in the case of Global Navigation
Satellite System (GNSS) positioning, the observation condi-
tions of a receiver, such as signal blockage caused due to
high buildings nearby or steep gradients, signal attenuation
resulting from foliage and multipath / interference due to
moving elements (vehicles and/or pedestrians), can result in
poor positioning or even total inability to produce a naviga-
tion solution [34]—-[35]. Therefore, appropriate tools should
be utilized and appropriate measures need to be taken into
account when collecting GNSS positioning data in order to
minimize environmental effects.

In the adopted approach, model training is applied sep-
arately for each pedestrian in order to capture individual
heterogeneity and develop more detailed and representative
models. Since the algorithm is trained for each individual
pedestrian/road user, it is trained in real-time conditions for
the behavior of that individual pedestrian and in the prevail-
ing environmental conditions. Thus, it becomes custom-made
for the particular context of the training dataset that is fed
to the model.

Such an approach is useful within the context of ITS
applications, the operation of which requires a personalized
profile of each user/pedestrian. The application will collect
the required trajectory data of the user during a training
period. The trained algorithm will in turn propose a more
accurate prediction of the individual’s path for the following
time instants. Overfitting can be avoided by using data from
an extensive training period and by setting the appropriate
hyperparameters of the algorithm. As the training process
requires a small amount of time, the training of the algo-
rithm can be iterated utilizing the newly collected data when
the pedestrian stops moving. Naturally, the exact amount of
time depends on hardware constrains and on the size of the
train data. Indicatively, for a dataset of a duration of about
one minute processed on an average PC (RAM 16GB), the
required training time is about 1 sec. The trained algorithm
can give an immediate real-time response of the pedes-
trian’s movement prediction. This response will be useful
in pedestrian-to-vehicle (ex. danger alert for possible col-
lision) and pedestrian-to-infrastructure communication (ex.
synchronization of traffic lights).

In this research, three data-driven sub-models are
developed, one for speed prediction, one for distance
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prediction and the last one for direction angle prediction.
The latter two are utilized to estimate the position of the
pedestrian. The model is trained using all the available obser-
vations up to the time instant t; and it is then tested utilizing
the following time instants.

In general, the training period can vary per case. Two
approaches can be adopted to determine the training period.
The first one is simpler and is usually applied in smaller
datasets, while the second one is more customized and can
be applied when large datasets are available. In the first
approach, the training period is defined as a fixed percentage
of the available dataset size, for example 50% of the obser-
vations are used for training and the rest for testing [35].
In the second approach, the optimal training period is deter-
mined by the desired prediction accuracy [36]. When the
algorithm returns a low prediction error (lower than a set
threshold values), the training process is accomplished at a
satisfactory level. The training process can be repeated for
better performance at suitable time periods, such as when the
pedestrian stops moving. In our case study, the first approach
is chosen due to limitations in the available data.

Model training can be achieved with the employment of
machine learning techniques. In our research we apply the
locally weighted regression algorithm (LOESS) and Long
Short-Term Memory (LSTM). The first method was selected
as it has been utilized for vehicle trajectory prediction
and the results were promising [37]. Thus, in our research
the validity of the method is assessed on pedestrian tra-
jectory prediction. Furthermore, LOESS has been used
for our analysis, as it combines the simplicity of linear
least squares regression with the flexibility of nonlinear
regression. LSTM is utilized, as a reference method, as it
constitutes a fast-evolving field and is widely applied in
trajectory prediction [38].

A number of different explanatory variables can be
selected as input in the prediction algorithm. For instance, the
social force model, a well-known classical pedestrian model,
expresses the directed pedestrian’s acceleration as a function
of the deviation of the pedestrian’s velocity from a desired
velocity (which varies between individuals) and the distance
from obstacles and other pedestrians [39]-[40]. In this study,
we focus on the movement of each individual. In order to
predict the speed v; (4, and distance ds; (4, of pedestrian i
at the time instant t+ t, where 7 is the prediction time span,
we utilize speed vj; and acceleration aj; of the previous time
instant t as explanatory variables (Eq. (1) and (2)). In order
to predict the angle 6; (4. of pedestrian i at the time instant
t+ 7, the angle 6; and the transition on x and y axis of the
previous time instant, dX;j; and dYj; respectively, are used
as explanatory variables (Eq. (3)). As function f, various
data-driven methods can be used. In our research, LOESS
method is proposed and LSTM is used for comparison.

Vi_t+r ~ f(Vie + aip) (D
dsi_t+r ~ f(vie + ai) ()
Oi_t+c ~ f (O + dXie + dYi) 3
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The performance and efficiency of the algorithms
are evaluated using the Normalized Root Mean Square
Error (RMSN) metric. RMSN assesses the overall error and
performance of the proposed method on speed prediction
estimating the normalized difference between the observed
(Yobs) and simulated values (Ysim) (Eq. (4)) [41].

N i\ 2
IV (v — vgim)
ZnNzl Yobs
The Final Displacement Error (FDE) metric is also used
in order to estimate the difference between the predicted
coordinates (Xgim, Ysim) and true final points (Xobs, Yobs)
(pedestrian’s positions).

RMSN =

“4)

ppp . ey (X8 =) o (v — ) s
N

D. METHODOLOGICAL COMPONENTS
For the classification step of the methodology, random for-
est algorithms [42] are used. They adhere to a machine
learning method which allows data classification consider-
ing both numerical and categorical variables [43]. Also, they
have been used for classification of pedestrian trajectory
data [44]-[45]. Decision trees are built during the training
process. Associations and interactions among the input data
are identified. In each tree, the optimal prediction is selected
among a subset of random predictions on each node [46].
This randomization reduces the correlation between the trees
and contributes to overfitting avoidance.

For speed, distance and direction angle prediction, data-
driven models are developed using the LOESS method and
LSTM. LOESS was firstly introduced by Cleveland [47] and
the following analysis is based on [48]. Locally weighted
regression y; = g(x;) + &, where i = 1, ..., n is the index
of observations, g is the regression function and &; are resid-
val errors, provides an estimate g(x) of each regression
surface at any value x in the d-dimensional space of the
independent variables. The LOESS method identifies corre-
lations between the observed response variable y; and the
explanatory variables x;. In particular, it estimates a function
g(x) at the point X = X considering the parameter values
in a parametric category. A regression surface is adapted
to the data in the neighborhood of x¢. Hyperparameters of
the LOESS method include the ‘span’ and the ‘degree’. The
span is a smoothing parameter of the surface which deter-
mines the percentage of the data that are taken into account
for each local fit. Each local regression uses either a first or
a second-degree polynomial that is specified by the value of
the “degree” parameter of the method. The data are weighted
according to their distance from the center of neighborhood
X, therefore a distance and a weight function are required.
In the application of the LOESS method, the Euclidean dis-
tance has been utilized as the distance function p to weight
the data.

LSTM constitutes a Recurrent Neural Network (RNN)
which is widely used in regression analysis, e.g., estimating
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TABLE 1. Scenarios of the conducted experiment.

Conditions
Pedestrian
pace Base Scenario | Talking on the phone Texting
Normal Scenario 1 Scenario 3 Scenario 5
Fast Scenario 2 Scenario 4 Scenario 6

values of future time-steps according to the observed values
of past time-steps by minimizing a loss function. An LSTM
network contains one or more LSTM layers that take as
input a time series and produce as output another time series
for future prediction. More specifically, LSTM architecture
consists of three parts, known as gates: the input gate, the
forget gate and the output gate [49]-[50]. Each LSTM has
a cell state through which the information is carried to the
gates. In the input gate, new information is stored in the cell.
In the forget gate, the information is filtered and unnecessary
information is dismissed. Finally, in the output gate, the final
output, namely the prediction for the next time instant is
produced. The whole process is run for a number of epochs
(also known as iterations) in order to ensure more accurate
prediction. The equations of the gates in LSTM are the
following:

i1 = o (wi - [he, xe1] + bi) (6)
fer1 = U(Wf : [htst-l] + bf) (N
Ot41 = U(Wo : [ht» XH-I] + b()) 3)

where, iy is the input gate, fi; is the forget gate, oy
is the output gate, o a sigmoid function, h; the state of the
current time step and Xqy] the input at the next timestamp,
wi, wr and w, the weights of the respective gates, b;, by and
b, bias of the respective gates.

The equations for the final output are the following:

Ciq1 = tanh(we - [y, Xip1] + be) )
Cerl =frg1 - €+ g1 - Crpl (10)
het1 = 0441 - tanh(ci41) (11)

where, ¢ denotes the cell state, ¢4 is the candidate for the
cell state at timestamp t + 1, ciy1 is the cell state memory
at timestamp t + 1 and h¢y; represents the hidden state.

IV. CASE STUDY

A. EXPERIMENTAL DATA

To develop and evaluate our approach, a field experiment
took place at the NTUA Campus, Greece [12]. More specif-
ically, during a controlled experiment participants were
instructed to walk along a 220 m path under six scenar-
ios (Table 1). These involved two pace conditions: normal
and fast, and three distraction conditions: no distraction (base
scenario), talking on the phone (distracted scenario) and tex-
ting (distracted scenario) while walking. This resulted in a
total of six walks for each participant, the order of which
differed between the participants to avoid order effects.
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FIGURE 2. Experimental set-up. (a) Route followed by participants, (b) SPP (red)
and PPK (blue) solutions trajectory comparison, (c) GNSS equipment employed for
pedestrians.

The walking path of the experiment is indicated with the
red line in Fig. 2a. In total, trajectories of 36 pedestrians
were recorded utilizing low cost GNSS technology. As this
is ongoing research, about 15.000 observations (17 pedes-
trians) have been processed and studied for the six walking
scenarios: base, talking on the phone and texting, all of them
both at normal and fast pace.

The low cost GNSS receivers u-blox EVK-M8 /NEO-
MST, u-blox C94-M8P, the high-quality geodetic type
Pinwheel 702-GG satellite antenna of NovAtel, as well as
the RTKLIB software and the RTKGPS+ mobile applica-
tion were used for the collection of the pedestrian data.
The Base Station GNSS data were collected utilizing the
u-blox C94-M8P receiver connected with the geodetic grade
satellite antenna (NovAtel Pinwheel 702-GG) placed on a
geodetic pilar of known coordinates. At the same time, it
was ensured that the pedestrian localization sensor place-
ment was as non-intrusive as possible to minimize potential
effects on pedestrian motion. For this purpose, a u-blox
EVK-MS8/NEO-MS8T GNSS receiver was placed in a small
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FIGURE 3. Density plot for fast and normal walking.

bag and the GNSS patch antenna was placed on the pedes-
trian’s cap (Fig. 2(c)). The Rover Station raw GNSS data
logging was handled by a smartphone device connected to
the receiver via USB and running the RTKGPS+ application.

Notwithstanding the selected test site is generally free of
obstacles, partial satellite obstruction and signal multipath
effect due to nearby buildings - mainly due to the high-
rise building located east of the area - pose a challenge
to GNSS positioning. Preliminary evaluation highlighted the
limitations of a single-point positioning (SPP) solution pro-
viding average accuracy at the order of ~3 m while the
differential post-processing kinematic (PPK) solution pro-
vided accuracy levels of a few decimeters (Fig. 2(b)) leading
to the selection of this data processing approach. The extrac-
tion of pedestrians’ trajectories was implemented using the
RTKLIB software resulting in an average position trueness
of 0.2 m. The sampling rate of the data collection was set
at 5 Hz. During analysis observations were down-sampled
at 1 sec. Pedestrians’ coordinates were computed during
the experiment including computation of pedestrian speed
and acceleration. From this point onwards the data analysis
and classification, as well as the development of data-
driven algorithms, have been performed in R programming
language [51].

B. DATA PRESENTATION
This section presents the available data in order to draw
a few preliminary conclusions. Regarding the walking pace
two trends can be identified in Fig. 3. The curves that exhibit
a sharp peak correspond to “fast” observations while those
shown relatively flattened curves correspond to “normal”
observations. The first set of curves associates with high
speed values and deviations from pedestrian’s mean speed,
while the second one covers a wider area with lower speed
values and deviations from pedestrian’s mean speed.
Nowadays, the use of smartphones has been inherent part
of our life, and thus, constitutes a new distraction on pedes-
trians’ movement that takes various forms (e.g., talking or
texting). As shown in Fig. 4, a consequence of phone related
distraction while walking is slowing down the speed. From
the same plot it is apparent that pedestrian speed decreases
more rapidly when texting. Table 2 summarizes the average
speed observed for different pace scenarios.
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FIGURE 4. Speed density plot for different types of phone distraction.
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FIGURE 5. Speed density plot for pedestrian groups with different age and gender
(base scenario and texting).

TABLE 2. Mean speed for all the experimental scenarios.

Pedestrian Mean s.peed ()
Normal 1.40 1.38 1.32
Fast 1.70 1.59 1.54

Speed densities are plotted for different pedestrian groups
for different conditions (base scenario and texting scenario)
in Fig. 5. Results indicate that speed reduction is more
intense for women.

Also, analysis proved that in addition to the walking speed,
distraction can affect pedestrian route choice. Few pedestri-
ans may not turn on time due to lack of attention resulting by
phone distraction. Fig. 6 illustrates this effect for a number
of indicative routes and different distraction states.

C. PEDESTRIAN BEHAVIOR CLASSIFICATION

Following the preliminary analysis we classify the available
data according to gender, walking pace and distraction state.
For all the classifications, the following variables have been
considered for every pedestrian: walking speed and accel-
eration, deviation from the mean speed, traveled distance
(Euclidean distance) as well as pedestrian age and height.
The height variable has been omitted for gender classifi-
cation as this variable was highly correlated. Half of the
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FIGURE 6. (a) Indicative routes (X and Y coordinates) under the three different
scenarios: base, talking on the phone, texting. (b) Indicative routes (X and Y
coordinates) under the three different scenarios: base, talking on the phone, texting.

TABLE 3. Gender recognition- confusion matrix.

Real Data
Prediction T
Male Female
Male 1779 94
Female 7 1870

available data were used as train data and the remaining
as test data. At first, we develop a random forest for gen-
der classification using the train data and the explanatory
variables per time instant. In this case the objective of the
classification is to classify all observations of all datasets to
gender classes, based on the movement characteristics. The
number of decision trees is selected to be 500 as defined
by the algorithm which ensures the optimal classification of
the available data. Then, the trained algorithm is applied on
the test data leading up to 97% gender recognition accuracy.
The performance of the algorithm is evaluated considering
the confusion matrix (Table 3).

At a second stage, a random forest is developed using
the train data in order to identify relationships between the
explanatory variables and the predictor variable “walking
pace” at a time instant.
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TABLE 4. walking pace recognition- confusion matrix.

. Real Data
Prediction
Fast Normal
Fast 1196 202
Normal 499 1853

deviation_v_aver_ped

T T T T T
-1.5 1.0 -05 00 05

FIGURE 7. Variable relationships for “fast” and “normal” walking pace.

TABLE 5. Phone use recognition- confusion matrix.

Real Data
Prediction Base (do nothing Using the phone (talking/
| while walking) texting)while walking

Base (do nothing

while walking) 258 141

Using the phone

(talking/  texting)

while walking 896 2455

Then, the trained algorithm is applied on the test data
leading to 81% (Table 4) accuracy for pedestrian’s walking
pace prediction, either normal or fast.

Fig. 7 plots two classes of pedestrians, those walking at
fast pace and those at normal pace. Evidently, the higher the
walking speed the higher the acceleration and the deviation
from pedestrian’s mean speed. In the same plot, the class
with high values of these features is depicted with grey
color and corresponds to the fast motion. When walking
at a fast pace, pedestrians tend to move at higher speeds
and perform more abrupt maneuvers than they usually do,
resulting in higher values of accelerations and deviations
from their mean speed.

Finally, the development of a random forest aiming at
investigating the effects of phone use (texting or talking) was
attempted. The trained random forest recognized the type of
phone use with 73 % accuracy. The phone use recognition
confusion matrix is presented in the Table 5. As this is an
ongoing research, the last of the three random forests should
be further improved, by exploring alternative explanatory
variables through increasing the number of previous time
instants and using a larger number of data series in general.
Deep learning could also be tested in this context.
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FIGURE 8. RMSN (%) of speed prediction for the pedestrians under three different
scenarios using LOESS method.

For the aforementioned classifications, all the variables are
significant, as p-values of less than 2.2e-16 were estimated.

D. SPEED PREDICTION

In this case study, pedestrian speed is computed every
time instant (time step of 1 sec) considering the speed
and the acceleration values obtained at the previous time
instant (viy; ~ V¢ + a;). A LOESS algorithm is trained
separately for each pedestrian, so that personalized pro-
files are developed. For every pedestrian, the first half of
the dataset is used for training purposes and the remain-
ing set of data for testing. The optimal hyperparameters
have been chosen using the ‘train’ function, which estimates
algorithm performance through resampling [52]. The train-
ing step involves the selection of the optimal span (between
0.1 and 0.9) and degree (1 or 2). ’Span’ at a value of 0.75
and ‘degree’ at a value of 1 were chosen as the optimal
values of hyperparameters by this function.

Fig. 8 presents the results obtained using RMSN as a
quality metric. The results are promising, as the algorithm
provides an error less than 1% of the complete dataset. The
less accurate speed prediction seems to correspond to walk-
ing while texting situations. This can be attributed to the
fact that texting causes the highest reduction on pedestrian
speed compared to the other scenarios, namely the base and
the walking while talking on the phone scenario.

E. POSITION PREDICTION
The position prediction includes the computation of the dis-
tance (ds) between sequential position fixes and the direction
angle (0). The distance ds¢; at the next time instant is esti-
mated considering the speed v; and the acceleration a; of the
previous time instant (dsiy1 ~ V¢ + a¢). The direction angle
Oi+1 at the next time instant is estimated considering the
pedestrian’s transitions dX; and dY; and the direction angle
0 of the previous time instant (641 ~ 6¢ + dX¢ 4+ dYy).

In order to estimate the predicted pedestrian coordinates
at the next time instant based on the predicted distance and
direction angle (Fig. 9), the following formulas are used:

12)
13)

Xir1 = Xi + dsgy1 * coS Oy 1
TH_] = Tt + dSH_] * sin GH—I
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(Xt+1lYt+1)

dxt+1

FIGURE 9. Estimation of predicted coordinates.

TABLE 6. Final di 1t error per pedestrian, per io and method.
Final Displacement Error (m)
Talking on
Scenarios Base the phone Texting
“Y “Y 1]

Pedestrian id ~ ~ ~ N N ~
20 0.22 0.22 0.21 0.31 0.20 0.22

21 0.25 0.30 0.20 0.23 0.18 0.31

22 0.32 0.40 0.28 0.48 0.18 0.40

23 0.18 0.26 0.31 0.46 0.18 0.40

24 0.30 0.46 0.27 0.29 0.25 0.28

25 0.33 0.28 0.46 0.33 0.20 0.34

26 0.31 041 0.48 0.41 0.39 0.32

27 0.30 0.50 0.30 0.30 0.32 0.40

28 0.20 0.18 0.19 0.40 0.24 0.27

29 0.24 0.39 0.20 0.24 0.20 0.21

30 0.30 0.27 0.18 0.29 0.19 0.32

31 0.40 0.37 0.34 0.42 0.35 041

32 0.25 0.53 0.47 0.49 0.16 0.35

33 0.34 0.36 0.61 0.63 0.44 0.53

34 0.38 0.43 0.25 0.22 0.28 0.61

35 0.65 0.53 0.46 041 0.28 0.42

36 0.31 0.48 0.19 0.51 0.36 0.42
Average 0.31 0.37 0.32 0.38 0.26 0.37

As LSTM approach is widely used in trajectory prediction,
it is also utilized in this study for prediction performance
comparison (Table 6). We built an LSTM Model in R pro-
gramming language using TensorFlow 2.7.0 [53] and Keras
2.7.0 [54]. The hyperparameters were tuned based on the
validation error. An LSTM layer is followed by two dense
layers whilst the Rectified Linear Units (ReL.U) are used as
an activation function.

The loss function to minimize is the Mean Squared Error.
We train the model with a batch size of 60 for a time span
of 20 epochs. The learning rate is 0.001 and the validation
split is 0.5.

Table 6 contains the results of the aforementioned anal-
yses. In our case study, both algorithms offer good results.
However, the LOESS method seems to produce slightly bet-
ter results. The results of less accurate prediction correspond
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FIGURE 10. Position prediction with high accuracy for pedestrian No. 34 and the
scenario walking while texting.

to situations such as walking while talking on the phone.
This is accounted to distractions resulting in bypasses on
the pedestrian’s route as opposed to other (base and texting)
scenarios — see (Fig. 6a, b).

Alahi et al. [26] have managed to achieve a pedes-
trian trajectory forecasting for a fixed period of 4.8 sec
with an average Final Displacement Error at the order of
0.60 m using the Social Force Model and 0.61 m using
their proposed Social- LSTM model. Li et al. [55] obtained
final point errors 0.12-0.28 m in normal crossing scenar-
ios at 1 sec ahead using data-driven methods including
Gaussian Process (GP), LSTM, GP-LSTM, Character-based
LSTM, Sequence-to-Sequence (Seq2Seq) and attention-
based Seq2Seq. In addition, Rasouli ef al. [30] propose an
algorithm based on an RNN encoder-decoder architecture for
trajectory prediction. Their model outperforms state-of-the-
art by 26% on their dataset. More specifically, they achieved
a prediction error of 1.44 km/h (equals to 0.40 m/sec) for
a time span of 1 sec. They also adopted an LSTM-based
model that produced a prediction error of 1.91 km/h (equals
to 0.53 m/sec) for a time span of 1 sec.

In this study, considering the findings of previous research,
we exercise the LOESS method leading to an average Final
Displacement Error at the order of 0.26 m at a time span
1 sec, and an LSTM model resulting to an average Final
Displacement Error at the order of 0.37 m for the tex-
ting scenario. Generally, our proposed model offers good
performance in comparison to the existing baselines.

Indicatively, Fig. 10 and Fig. 11 show an accurate and
a less accurate prediction of a pedestrian’s route. Even for
the less accurate prediction, the route is very similar to the
observed one. This is confirmed in Fig. 12 and Fig. 13 where
the observed versus predicted coordinates are plotted for all
pedestrians and scenarios.

V. CONCLUSION

In this research, a methodology for pedestrians’ speed and
trajectory prediction, adopting pedestrian classification as
an intermediate step, has been proposed. The proposed
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FIGURE 13. Y observed coordinates versus Y predicted coordinates of the
pedestrians.

methodology utilizes random forests and the LOESS method,
while an LSTM algorithm is used to provide further
evidence.

The results indicate the potential of the proposed method-
ology and a slightly better performance of LOESS technique
in comparison to LSTM for trajectory prediction on the

VOLUME 3, 2022

available data. Gender recognition, walking pace and mobile
phone usage recognition have also been predicted satis-
factorily, though further investigation is necessary. Speed
and position prediction has been achieved successfully for
the majority of the data. The identification of personalized
profiles can contribute to more robust pedestrian mod-
els for various regimes. The proposed methodology can
predict pedestrian characteristics (gender) and characteris-
tics of pedestrian movement (walking pace, distraction) as
well as pedestrian trajectory. This type of information may be
extremely useful in the context of Intelligent Transportation
Systems and can be used as input for smart applications
which are now being developed for pedestrian and vehicle
movement prediction such as smart traffic lights, application
for danger proximity, interactions with autonomous vehicles,
etc.

This research contributes to pedestrian modeling as it
offers an integrated methodology for classification and tra-
jectory prediction, utilizing data driven methods. However,
there are some limitations. At first, the proposed methodol-
ogy is validated on experimental data considering a limited
number of participants, and therefore, limited variability.
In addition, the data were produced through an experiment
undertaken under controlled conditions leading to discrepan-
cies in pedestrian behavior between real life and experimental
conditions. Nevertheless, despite the inherent limitations in
data collection, the experimental data set offers a great oppor-
tunity to apply and test the proposed methodology, as well
as a firm basis for further development. As far as the limi-
tations in the application of the methodology are concerned,
the methodology was applied for the prediction of pedestrian
movement in a constrained time span. Any future efforts
should extend the time span. Finally, the study does not
deal with interactions between pedestrians, but focuses on
the movement of one individual.

In order to cope with these limitations, further testing
is necessary to study the discrepancies between realistic
and controlled conditions either through incorporating pedes-
trian interactions at high density scenarios or scenarios that
would adopt vehicle-pedestrian interactions. In this study
we estimated the speed and the trajectory at the subsequent
time instances using the values of the previous time instant.
A multi-step ahead prediction can also be applied utiliz-
ing the estimated values for the prediction of additional
time instant(s), aiming at a longer prediction time hori-
zon, a methodology that has already been applied in other
studies (e.g., for vehicles in [56]). Furthermore, in order to
demonstrate the effectiveness of the proposed methodology,
it should be tested on multiple datasets.

As data-driven approaches are becoming increasingly pop-
ular within the ITS domain, the utilization of novel and more
efficient positioning systems is making it possible to adopt
more detailed models for such applications [1]. Finally,
provided that microscopic modeling reliability depends on
the positioning quality and by extension on the effective-
ness of the underlying pedestrian detection technologies, the
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collection of high-quality datasets in a minimally-intrusive
manner still remains a widely open issue.
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