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The accurate time-domain numerical modeling of graphene surface conductivity due to the interband contribution is presented
in this paper. Initially, the lower frequency limit for the interband conductivity inclusion is studied, highlighting that even in
the far-infrared regime it should not be ignored. Then, a precise vector-fitting technique is utilized to decompose the analytical
conductivity function into complex conjugate pairs. Every pair is connected to a complex surface current, while the frequency
dispersion is evaluated via a proper recursive convolution scheme. Finally, a straightforward algebraic manipulation is conducted
to eliminate the complex terms from the update equations of the electromagnetic components, concerning the finite-difference time-
domain (FDTD) algorithm. The precision and efficiency of the proposed methodology are thoroughly validated by comparing the
numerically extracted surface wave propagation characteristics to those obtained in terms of analytical expressions.
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I. INTRODUCTION

T
HE rapid evolution of communications shifts the fre-

quency regime towards the THz scale owing to the

increased requirements for spectral bandwidth [1]. To this aim,

advanced materials are employed, such as graphene, which

exhibits an impressive electromagnetic response, despite its

negligible thickness. Specifically, its ability to support strongly

confined surface plasmon polariton (SPP) waves facilitates

the design of various promising THz devices, like nano-

antennas [2]–[4] and plasmonic filters [5], [6]. Indeed, the

investigation and optimization of such advanced components

is not viable through analytical approaches; therefore, properly

adjusted numerical techniques are required, such as the popular

finite-difference time-domain (FDTD) algorithm.

The efficient incorporation of graphene in the FDTD method

is, nowadays, a straightforward procedure since it can be

efficiently modeled as an equivalent surface current. The latter

is imported to the conventional update algorithm either via

the direct connection to the electric field [7] or using a

split technique for the tangential magnetic components to

enforce the corresponding boundary condition [8]. Moreover,

the far-infrared dominant intraband conductivity term follows a

standard Debye frequency dispersion, and various well-known

schemes, like the auxiliary differential equation (ADE) and the

recursive convolution method (RCM), have been effectively

employed. Nevertheless, the transient numerical modeling of

graphene beyond mid-infrared frequencies remains a chal-

lenging task, since non-trivial interband electron transitions

dominate its conductivity. During the previous years, several

interesting modifications have been discussed for the FDTD

method. In particular, the Padé polynomial approximation [9]
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and its enhancement using an iterative procedure [10] have

been proposed, while some promising results have been ac-

quired via the complex conjugate pair modeling [11].

In this paper, the latter scheme is extended to a rigorous im-

plementation that requires the minimum number of graphene

terms, while the storage of previous time-steps is effectively

avoided. As a first step, the significance of the interband term

is investigated for the accurate graphene modeling, even at

the far-infrared regime, especially for low chemical potential

values. Additionally, the introduction of the two-dimensional

(2D) material in the conventional FDTD scheme is achieved

by utilizing one complex surface current for each complex-

conjugate pair, whereas a robust recursive convolution method

(RCM) is applied. Then, an appropriate algebraic manipulation

is realized to import the aforementioned complex surface

current into the real-valued update equations of the electric

field. Finally, the proposed scheme is verified, in terms of

accuracy and efficiency, by means of a thorough comparison

of the numerically calculated surface wave propagation char-

acteristics to those acquired trough theoretical formulas.

II. THEORETICAL FORMULATION

A. Graphene Surface Conductivity

Throughout our work, graphene is considered as an infinites-

imally thin material, characterized via its surface conductivity

σgr(ω, µc,Γ, T ), where ω is the frequency, µc and Γ are the

chemical potential, and scattering rate, respectively, and T is

the temperature. The surface conductivity expression is derived

using the Kubo formula, where two terms are distinguished,

based on the electron transitions [12]

σintra(ω) =
Aµc

jω + 2Γ
, (1a)
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Fig. 1. Frequency limit for 1% error, when only the intraband term is used
for the modeling of graphene.

σinter(ω) =

∞
∫

0

AE(E)
jω + 2Γ

(jω + 2Γ)2 + 4(E/~)2
dE, (1b)

with Aµc
a frequency independent term, ~ the reduced Planck

constant and AE(E) defined as

AE(E) = |qe|
2 fd(−E)− fd(E)

π~2
, (2)

for qe the electron charge and fd(ε) the Fermi-Dirac distribu-

tion. The conductivity term in (1a) is the intraband one and it is

dominant up to low THz frequencies. Moreover, it is described

by a simple Debye model; thus, its time-domain modeling is,

nowadays, trivial. Conversely, the interband term of (1b) can

not be interpreted through a well-known dispersion function,

such as a Debye, Lorentz, or Drude model.

As already mentioned, the interband term is generally

deemed negligible at low THz frequencies. However, this is

not accurate, especially for low chemical potential values, as

illustrated in Fig. 1. Herein, the frequency limit is computed

at the point where σintra/σinter = 100, both for the real

and imaginary part. The value of 100 is arbitrarily selected

and corresponds to the upper limit for approximately 1%
error of the graphene conductivity when the interband term

is neglected. Indeed, the requirement for a decreased error

reduces considerably this upper limit. Therefore, it is evident,

now, that the incorporation of the interband term is crucial,

even at the far-infrared regime for the precise modeling of

graphene. As an indicative example, the defined limit for

µc = 0.1 eV is approximately at 1THz.

B. Interband Conductivity Approximation

It is apparent that (1b) can not be described by any well-

known dispersion model; consequently, its numerical modeling

in a transient solver is proven to be demanding. For this reason,

a vector-fitting technique [13] is applied to decompose the

surface conductivity into N pairs of complex-conjugate Debye

components in the form of

σinter(ω) ≈

N
∑

p=1

(

cp
jω + αp

+
c∗p

jω + α∗

p

)

. (3)

The performance of this vector-fitting algorithm is validated

using the realistic µc = 0.1 eV and Γ = 0.11meV graphene
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Fig. 2. Graphene surface conductivity due to the interband contribution and
its approximation through the vector-fitting technique.

TABLE I
GRAPHENE INTERBAND CONDUCTIVITY COMPONENTS

USING THE VECTOR-FITTING TECHNIQUE

Component αp cp

1 5.08× 1014 1.21× 1010

2 (2.42± j3.05)× 1014 (0.12± j8.66)× 109

3 4.69× 1013 7.60× 107

4 2.84× 1017 1.74× 1013

parameters. The approximation of the original function, for the

desired error tolerance of 10−5, is depicted in Fig. 2, proving a

remarkable behavior. Moreover, all the αp and cp values of the

required Debye-like components are summarized in Table I.

Evidently two different types of functions can be evaluated, ei-

ther real-valued (components 1, 3, and 4) or a pair of complex-

conjugate (component 2). It is, also, worth mentioning that the

4th component is almost 3 orders of magnitude larger than

the maximum frequency, namely 100THz; hence, it can be

estimated via the constant conductivity c4/α4 = 61.26µS,

since α4 ≫ jω. Interestingly, this value is almost equal to

graphene’s constant conductivity at optical frequencies [12].

C. Graphene Modeling in the FDTD Method

The efficient modeling of graphene in the FDTD algorithm

is accomplished by treating it as the equivalent surface current
~Jgr = σgr(ω) ~E, separated into the intraband and the interband

conductivity mechanisms, as

~Jgr = ~Jgr,intra + ~Jgr,inter = ~Jgr,intra +

N
∑

p=1

~Jp, (4)

where ~Jp corresponds to the extracted components of the

vector-fitting technique. All the surface current vectors are

located at an identical position to the electric ones of the

Yee cell, as demonstrated in Fig. 3, considering graphene at

the xz-plane. Moreover, the FDTD implementation for the

intraband term is an easy procedure [7], while the real-valued

components of Table I can be handled equivalently, as they

are described by the standard Debye function. Therefore, the

challenge is the appropriate determination of the conductivity

components due to the complex-conjugate pairs.
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Fig. 3. The modified Yee cell including the surface current components for
the incorporation of graphene at the xz-plane.

Initially, the time-domain transition is conducted for the
~Jp(ω) components via the inverse Fourier transformation as

~Jp(ω) = σp(ω) ~E(ω)
IFT
−−→ ~Jp(t) = σp(t) ∗ ~E(t), (5)

where σp is the p complex-conjugate component of (3), i.e.

~Jp(t) =
(

cpe
−αpt + c∗pe

−α∗

p
t
)

∗ ~E(t). (6)

Then, the Euler formula is employed for the exponential

terms and a straightforward algebraic manipulation is con-

ducted

~Jp =
(

2ℜ{cp}ℜ{e
−αpt}+ 2ℑ{cp}ℑ{e

−αpt}
)

∗ ~E, (7)

with ℜ{·} and ℑ{·} indicating the real and imaginary parts,

respectively. Interestingly, the complex values are eliminated,

which facilitates the application of a standard RCM technique

for each term in (7). However, we propose an additional

simplification to efficiently minimize the required surface

current calculations, stemming from the symmetry of (7). In

particular, the complex surface current ~Jc,p is introduced

~Jc,p(t) = e−αpt ∗ ~E(t), (8)

where, only the αp value is used for the p complex-conjugate

component. Next, the the RCM is calculated in terms of

J
n+ 1

2

c,p = J
n− 1

2

c,p eαpt + En∆t. (9)

Based on the above aspects, the contribution of the omitted

cp value and the elimination of the complex values is realized

directly in the electric field update equation to derive

En+1 = En +
∆t

ε0
∇× ~Hn+ 1

2

+
∆t

ε0∆y

N
∑

p=1

(

2ℜ{cp}ℜ{J
n+ 1

2

c,p }+2ℑ{cp}ℑ{J
n+ 1

2

c,p }
)

. (10)

Note that the modified update expression for the electric field

results from Ampere’s integral law [7]. It is, finally, important

to stress that the entire procedure requires one complex surface

current for each complex-conjugate pair, while the leapfrog

procedure advances without the requirement of any previously

stored value.
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Fig. 4. Interband conductivity components in the time-domain.
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Fig. 5. Comparison of surface wave propagation properties evaluated theo-
retically and by means of the proposed FDTD technique.

III. NUMERICAL VALIDATION

The validity of our scheme is examined through the numer-

ical evaluation of the SPP propagation properties on graphene

and their comparison to their theoretical values

λSPP=
2π

ℜ{kρ}
, LSPP=

0.5

ℑ{k∗ρ}
, ζ=

1

ℜ
{√

k2ρ − k20

} , (11)

with k0 the free-space wavenumber, kρ defined as

kρ = k0

√

1− 4/(σgrη0)2, (12)

and η0 the free-space wave-impedance. Observe that σgr

includes both intraband and interband contributions.

The characteristics of graphene are selected, as previously,

to be µc = 0.1 eV and Γ = 0.11meV, while the conductivity

components of Table I in the time-domain are plotted in

Fig. 4. It can be detected that the purely real ones present an

exponential decay in contrast to the oscillation pattern of the

complex-conjugate pair which is, also, real-valued. Component

4 has been omitted since it corresponds to the constant

conductivity value 61.26µS, as explained in Section II-B.

The FDTD domain is discretized into 200×100×200 cubic

cells, while three different setups are considered to cover the

entire frequency range. In particular, the cell-size ∆ is selected

1µm, 0.1µm, and 10 nm, leading to a stable time-step ∆t of

1.9 fs, 0.19 fs, and 19 as, correspondingly. Furthermore, open
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Fig. 6. Electric field distribution of the normal, to graphene, vector at different
frequencies.

boundaries are terminated via a 16-cell thick perfectly matched

layer (PML), extended in graphene to drastically attenuate

surface waves [10]. In this context, the results are depicted

in Fig. 5, proving a remarkable accuracy, especially beyond

10THz, where the interband term dominates. Moreover, the

electric field distribution is illustrated in Fig. 6 for the xy-plane

at the z = 0 point, where a z-axis oriented dipole source is

placed. Th specific cross-section is selected since it highlights

that the SPP wavelength is considerably decreased at 20THz,

whereas the propagation length is drastically reduced as com-

puted in Fig. 5. Also, the surface wave is absent at 50THz,

because graphene behaves like a pure conductive layer.

Lastly, the efficiency of the proposed methodology is con-

sidered through the comparison with a typical, graphene-free,

FDTD code. Obviously, the required memory and CPU time

are increased, yet only by a slight percentage, namely, 1.3%
and 0.9%, proving that the performance of the FDTD method

is effectively retained.

IV. CONCLUSION

The interband conductivity of graphene has been modeled

efficiently in this paper via a robust vector-fitting technique

for its time-domain numerical representation. The significance

of the interband contribution in the total surface conduc-

tivity has been, firstly, evaluated. Then, the vector-fitting

approximation has been applied, leading to pairs of complex-

conjugate Debye-like terms. Finally, an appropriate algebraic

manipulation facilitated the elimination of the complex values,

while the symmetry of the complex-conjugate pairs has been

exploited to minimize the required surface current terms. The

proposed algorithm has been verified successfully through the

comparison of the numerically computed SPP characteristics

to their corresponding theoretically-derived outcomes.
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