
1460 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 6, JUNE 2019

VADER: Voltage-Driven Netlist Pruning for Cross-Layer
Approximate Arithmetic Circuits

Georgios Zervakis , Konstantina Koliogeorgi, Dimitrios Anagnostos, Nikolaos Zompakis, and Kostas Siozios

Abstract— Leveraging the inherent error resilience of a large number
of application domains, approximate computing is established as an
efficient design alternative to improve their energy profile. In this brief,
we design energy optimal cross-layer approximate arithmetic circuits by
enabling the efficient application of voltage overscaling (VOS). Departing
from the conventional approaches followed today, we introduce the
voltage-driven functional approximation and present the VoltAge-Driven
nEtlist pRuning (VADER) framework. VADER is an automated synthesis
framework that can be seamlessly integrated in any hardware design flow
and implements a voltage-driven gate-level netlist pruning. Experimental
evaluation shows that VADER reduces the error of the VOS application by
52% on average and delivers on average designs with 34% higher energy
savings compared to state-of-the-art approximate adders and multipliers.

Index Terms— Approximate computing, arithmetic circuits,
cross-layer approximation, netlist pruning, voltage overscaling
(VOS).

I. INTRODUCTION

Since the end of Dennard’s scaling era, energy efficiency has
become a primary design concern [1] and radical changes to conven-
tional approaches are mandatory to sustain and improve our systems’
efficiency. Approximate computing emerges as a promising design
alternative and exploits the inherent error resilience of several appli-
cation domains to trade accuracy for energy/performance gains [2].
It is shown that such applications spend, on average, 70% of their
energy consumption in error tolerant computations [1]. Hardware-
level approximate computing mainly targets arithmetic units (e.g.,
adders [2]–[7] and multipliers [8]–[13]) as they constitute the key
components of a vast number of error-tolerant applications [1]. In
hardware design, approximate computing can be applied in two
distinct layers, i.e., the functional and the physical. In the physi-
cal layer, voltage overscaling (VOS) and overclocking are applied
[14]. VOS is one of the most effective methods in reducing a
circuit’s energy consumption. Nevertheless, the exploitation of VOS
in approximate computing works is still limited since: 1) quantifying
the power-error characteristics of voltage overscaled circuits is a very
complex task [15] and 2) high voltage decrease leads to unacceptable
error values. In the functional layer, logic [5]–[10] and algorith-
mic [2]–[4], [11]–[13] approximations are applied. However, they
mainly provide ad hoc solutions and cannot be reused in different
applications and/or circuit architectures. In order to maximize the
design efficiency, cross-layer approximation is also proposed, com-
bining approximation techniques from both layers [16]. Such works

Manuscript received October 8, 2018; revised January 5, 2019; accepted
February 6, 2019. Date of publication March 7, 2019; date of current
version May 22, 2019. This research is co-financed by Greece and the
European Union (European Social Fund- ESF) through the Operational
Programme “Human Resources Development, Education and Lifelong Learn-
ing 2014-2020” in the context of the project “Automated methodology for
production and execution of data-centric multi-level approximate equiva-
lent applications for heterogeneous computing platforms” (MIS 5005377).
(Corresponding author: Georgios Zervakis.)

G. Zervakis, K. Koliogeorgi, D. Anagnostos, and N. Zompakis are with the
Department of Electrical and Computer Engineering, National Technical Uni-
versity of Athens, Athens 15780, Greece (e-mail: zervakis@microlab.ntua.gr).

K. Siozios is with the Department of Physics, Aristotle University of
Thessaloniki, Thessaloniki 54124, Greece.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2019.2900160

apply functional approximation and translate the obtained delay gain
to voltage scaling, delivering considerably higher energy savings. Yet,
they use up most of the error margin in functional approximation and
are then forced to apply conservative voltage decrease to adhere to
the quality requirements, restricting the energy gains of aggressively
decreasing the voltage value. Therefore, despite the high efficiency
of cross-layer approximation, its exploitation is very limited and the
efficient application of VOS remains an open issue.

In this brief, we design energy-efficient approximate arithmetic
circuits by enabling effective VOS application and leveraging cross-
layer approximation. We introduce the voltage-driven functional
approximation that constrains the VOS error and achieves higher
voltage decrease for the same error bound. On this basis, we propose
VADER (VoltAge-Driven nEtlist pRuning), an automated synthe-
sis framework for cross-layer approximate adders and multipliers.
VADER leverages the effectiveness of voltage-driven functional
approximation and applies VOS at the physical layer and netlist
pruning at the functional one. VADER operates over the gate-level
netlist and is build upon industry strength tools, seamlessly extending
any hardware design flow. Experimental evaluation shows that the
proposed voltage-driven functional approximation reduces the VOS
error by 52% on average and that compared to state-of-the-art
approximate adders and multipliers, VADER delivers on average 34%
higher energy reduction.

II. RELATED WORK

Approximate solutions for arithmetic circuits are further divided
into operation-specific techniques, as well as to general-purpose
frameworks. Targeting approximate adders, logic approximation is
applied in [5]–[7], while algorithmic approximation is used in [2]–[4].
The approximate cell replacement presented in [7] outperformed [5],
[6], while the configurable segmentation scheme in [2] delivers more
efficient circuits than those in [3] and [4]. Approximate multipliers are
designed in [8]–[10] using logic approximation and cell replacement,
while algorithmic approximations are proposed in [11]–[13]. A Pareto
analysis is performed in [13] showing that [13] delivers more energy-
error efficient solutions than those in [9]–[12]. However, [2]–[13] are
operation specific and/or architecture dependent. Their application
over differing architectures is arguable and their optimality has not
been comprehensively evaluated. For example, the proposed logic
approximations may deliver different error values when applied to
different circuit architectures due to the different carry propagation.
Similarly, the energy savings of the algorithmic approximations
depend on the circuit architecture, and thus, a configuration that
is optimal for an adder/multiplier architecture may be suboptimal
for another one. All these limitations heavily increase the already
increased complexity of hardware design, since the designer has
to verify both functionality and optimality in addition to operating
within the error bounds. To address this complexity, general-purpose
approximation frameworks have been proposed. The “don’t care”
conditions are leveraged in [17] and [18] to generate approximate
logic circuits. Logic minimization and probabilistic pruning are
proposed in [14], while Schlachter et al. [19] extends the latter
and presents the gate-level pruning framework. To avoid design
complexity, these techniques focus only on functional approximation,

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8110-7122
https://orcid.org/0000-0002-0285-2202

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 6, JUNE 2019 1461

Fig. 1. VOS error versus voltage value graph for an 8-bit 4:2 Dadda
multiplier.

neglecting the benefits originated by cross-layer approximation and
the VOS application.

III. VOLTAGE-DRIVEN FUNCTIONAL APPROXIMATION

VOS is one of the most effective techniques in decreasing the
energy consumption [20]. Decreasing the voltage value leads to
significant energy savings, but the circuit becomes slower and
output errors are generated due to the paths that fail to meet
the time requirements. In this analysis, the mean relative error
distance (MRED) [13] is used to evaluate the accuracy of the
approximate circuits. MRED is the average relative error and is
calculated by (1/N)

∑N
1 |(OApprox − OCorrect)/OCorrect| [13], [19],

where OApprox, OCorrect are the approximate and accurate outputs,
respectively, and N is the number of computations. For the rest of this
brief, when referring to a circuit’s error, we refer to its MRED value.
A small voltage decrease leads to almost negligible error value, since
very few paths violate the timing constraint. With further voltage
reduction, the number of violating paths increases and the error value
starts to slightly increase. After a voltage threshold, the number of
violating paths increases significantly and the error increase becomes
exponential [20], as illustrated in the example in Fig. 1. These
large error values produced by VOS prohibit its wide adoption in
approximate circuits.

In this brief, we enable the exploitation of the full potential of
VOS by introducing the voltage-driven functional approximation. The
main idea is that by moving the aforementioned voltage threshold
toward lower voltage values, we will be able to apply higher voltage
decreases for the same error bounds and, thus, increase the energy
savings and satisfy the error constraints. This can be achieved by
making the circuit faster, or else, by reducing the number of paths
that violate the timing constraint, i.e., the paths that are susceptible to
producing errors due to VOS. Therefore, we propose to strategically
apply functional approximation at the circuit paths that violate the
timing constraint, in order to reduce their delay and, consequently,
decrease the error generated due to VOS. Leveraging the error com-
pensation achieved by applying synergetic approximation techniques,
we can decrease the error rate of a voltage overscaled path by
applying directed functional approximation in addition to VOS in
that path. In Fig. 2, a representative example is depicted, considering
a small path of three NAND gates. The error rate reported in Fig. 2(a)
and (b) is calculated through voltage-aware circuit simulations using
a randomly generated data set of 104 inputs. Decreasing the voltage
supply from 1.1 to 0.88 V [Fig. 2(a)], results in an error rate of 9.5%.
In Fig. 2(b), we apply functional approximation and replace the
first NAND with a constant “1.” Then, decreasing the voltage value
to 0.88 V results in a (combined) error rate of 6.2%, i.e., 1.5×
smaller. Since VOS mainly affects the paths that drive the most
significant bits, applying functional approximation in these paths may
lead to large error values. The key point is to apply the suitable
functional approximations that deliver the lowest error value but still
manage to adequately decrease the path delays. Thus, the functional
approximation must be applied in a very disciplined manner and low
error rate approximations must be used.

Fig. 2. Error rate of applying (a) only VOS and (b) netlist pruning and VOS.

Fig. 3. Proposed VADER framework flow diagram.

To conclude, voltage-driven functional approximation applies tar-
geted and light approximations at the VOS-affected paths to constrain
the VOS error and benefit from the aggressive voltage decrease.
Voltage-driven approximation should implement the following steps.

1) Identify the paths affected by VOS.
2) For each path identify, the functional approximation candidates,

i.e., possible approximations with low error rate.
3) Apply the bare minimum set of approximations in order to keep

the induced functional error to its lowest value.
4) Find the lowest voltage value that satisfies the error bound.

IV. VADER FRAMEWORK

In this section, VADER, the proposed synthesis framework for
approximate arithmetic circuits is described. VADER enables effec-
tive exploitation of cross-layer approximation by implementing the
proposed voltage-driven functional approximation. The proposed
framework applies the VOS and gate-level netlist pruning approxi-
mation techniques in the physical and functional layers, respectively.
VADER operates on the circuit’s synthesized netlist and is build upon
industry strength tools. As a result, it can be applied to any circuit
and can be seamlessly integrated to any typical hardware design flow.

An abstract overview of the proposed framework is illustrated
in Fig. 3. The circuit is synthesized at the desired clock period
and voltage value and the highest voltage value that violates the
error constraint is identified. Next, VADER partitions the circuit into
two distinct parts. The first one, named high part, contains all the
circuit paths that violate the timing constraint (i.e., paths that may
produce errors due to VOS), and the second one, named low part,
contains the circuit’s remaining paths. Then, VADER applies the
voltage-driven functional approximation, by applying light pruning
to the high part and aggressive pruning to the low part. Finally,
VADER synthesizes the pruned netlist to remove any floating cells
and leverage the optimizations performed by the synthesis tools. The
output of our framework is the synthesized pruned netlist and the
respective overscaled voltage value. VADER’s flow is described in
detail hereafter:

A. Netlist Partitioning

First, the circuit is synthesized at the desired clock period and
voltage value to produce its gate-level netlist. Then, a binary search
is invoked to efficiently find the highest voltage value at which the
error bound is violated. This voltage value will be used next to
guide the netlist partitioning and pruning. In every step of the binary
search, the circuit is simulated to measure its error at the voltage
value under investigation. This simulation is performed using the
Synopsys CCS model and the VOSsim tool [15] that enables very fast
VOS-aware simulation at gate level. Note that since the VOS error

1462 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 6, JUNE 2019

is monotone with respect to the voltage decrease, invoking a binary
search minimizes the number of required voltage-aware simulations.
Next, using the CCS model, VADER performs a static time analysis
of the synthesized netlist (at the previously computed voltage value)
and extracts the circuit paths that violate the timing requirements.
These paths constitute the circuit’s high part, while the remaining
paths constitute the circuit’s low part. In the low part, we subtract all
the subpaths that also belong in the high part so that the two parts are
mutually exclusive. As a result, there are no wires crossing the two
parts and pruning low part wires does not affect the high part. Finally,
an advantage of performing VOS-aware simulations at gate level is
that VADER also computes the circuit’s value change dump (VCD)
file at the desired voltage value, thus allowing immediate comparison
with the respective accurate one and straightforward calculation of
the VOS error frequency (VERF) of every path in the high part (i.e.,
how often the path is activated when VOS errors occur).

B. Voltage-Driven Netlist Pruning

After partitioning the circuit, the next step of VADER is to apply
the functional approximation and prune the netlist accordingly. The
pruning procedure is applied to both the high and low parts but
with different objectives. The objective of the high part pruning is to
minimize the number of violating paths, while the goal of the low
part pruning is to maximize the number of pruned wires. VADER
implements the netlist pruning by replacing a wire with a “0” or “1.”

VADER uses a verilog python parser to read the gate-level netlist
and produces its directed acyclic graph. The graph nodes represent the
netlist gates and the graph edges the wires. Using the python parser,
we can evaluate at high level, and thus very fast, the error induced by
pruning a wire without performing gate-level simulations. Moreover,
using the output of the static time analysis, we annotate each graph
node with the delay of the respective cell, and thus, when pruning a
wire (edge), we can accurately estimate the obtained delay reduction.

1) High Part Pruning: The goal of the high part pruning is to
apply those approximations that decrease the VOS error. VADER
achieves this by pruning the respective wires that reduce the delay
of the paths with the highest VERF while respecting the circuit’s
error bound. The high part paths are sorted by decreasing VERF
(in order to approximate first the paths that produce VOS errors
more frequently) and then a pruning loop procedure is invoked.
The iterative Algorithm 1 is used to prune the high part wires. For
each path in the high part, the algorithm evaluates its delay and
if the time requirement is violated, a pruning process is invoked.
In the pruning process, VADER has to decide which wires to
prune and by which value. To identify the optimal pruning, VADER
subsequently and separately sets every wire in the path first to “0”
and then to “1” and the followings are calculated: 1) the resulting
error; 2) the error rate; and 3) the path’s delay reduction. Then,
the algorithm finds all the pairs (wire, bv), with bv ∈ {0, 1}, that
respect the error bound and decrease the path delay. Among these
pairs, the one that minimizes the product error × error rate is
selected and the respective wire is pruned by being replaced by the
binary value bv. Algorithm 1 terminates when all the paths meet the
time requirement or when no further approximations can be made
without violating the error bound. To ensure that adequate error
margin remains for approximating the low part, we set the high part
error bound (in Algorithm 1) equal to 70% of the total error bound.

2) Low Part Pruning: After pruning the high part, VADER reper-
forms a binary search to find the lowest voltage value that satisfies
the error bound. Ideally, this would be the voltage value extracted by
the first binary search (or smaller). However, this cannot be known
a priori and a second binary search is required to find the lowest
value that satisfies the error constraint. After this step, we obtain: 1)

Algorithm 1 High Part Netlist Pruning

the pruned high part of the netlist; 2) the voltage value that will be
used to apply VOS; and 3) the error value of applying both high part
netlist pruning and VOS. Based on the VADER’s netlist partitioning,
approximations in the low part do not affect the high part. Therefore,
the circuit’s total error (EC) is given by EC = EH&V + EL , where
EL is the error of the low part and EH&V is the combined error of
the high part and VOS. Hence, if EB is the circuit’s error bound,
the available error margin for pruning the low part is given by
EB − EH&V , where EH&V is obtained from the second binary
search. A similar loop procedure to Algorithm 1 is used in order
to prune the wires of the low part. The high part pruning procedure
is path-centric and Algorithm 1 performs per path approximations
targeting to reduce the delay of each violating path. On the other
hand, in the low part pruning, the goal is to maximize the number
of pruned wires regardless of the paths they belong to. This pruning
procedure, in every iteration, evaluates the error of pruning each wire
in the low part and prunes the one that induces the least error. The
low part pruning procedure terminates when no further approximation
can be made without violating the low part error margin.

Finally, after pruning the high and low parts, the generated netlist is
synthesized in order to remove any floating cells as well as to leverage
the high optimization efficiency of the circuit synthesis tools.

C. VADER Implementation

One of the main objectives of VADER is its usability and seamless
integration in existing design flows. VADER comprises only of
bash, tcl, and python scripts and does not require any modification
of the circuits hardware description. Moreover, it is implemented
over widely used, industry strength tools, i.e., Synopsys Design
Compiler, PrimeTime, and Mentor Questasim. The gate-level voltage-
aware timing simulation is performed by VOSsim [15] which also
operates over the same tools. However, both VADER and VOSsim are
independent of these tools and can be adapted to any tool with similar
functionality (by changing the tool specific commands in our scripts).
Therefore, VADER can be out-of-the-box integrated into any typical
hardware design flow with zero user-overhead. Moreover, to minimize
VADER’s execution time, the majority of the evaluations is performed
at high level and over the circuit’s graph. Python’s bitwise operators
are used to emulate the functionality of each graph’s node and pruning
is performed by removing the respective edge and replacing the input
of the nodes that it connects with “0” or “1”. Finally, voltage-aware
simulations are required only during the two binary searches. Hence,
up to 2�log2(M)+1� simulations are required, where M is the VOS
range. In this brief, up to 20% voltage reduction is examined, and
thus, 10 voltage-aware simulations are performed at most.

V. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the proposed VADER
framework by comparing it against state-of-the-art approximate
computing works. Moreover, we examine the efficacy of the
voltage-driven functional approximation (implemented in VADER)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 6, JUNE 2019 1463

in decreasing the VOS [21] error. The ripple carry adder (RCA) [7]
and the 4:2 Dadda multiplier [8] are used as our driving circuits.
Two bitwidths, 8-bit and 16-bit, are considered for every circuit. The
efficiency of VADER in image processing is also examined, by using
the adders and multipliers produced by VADER in the Sobel filter [1]
and in image multiplication [22], respectively. VADER is compared
against operation-specific techniques that apply logic approximation
[7], [8] and algorithmic approximation [2], [13]. InXA [7] and
GeAr [2] build approximate adders, while ACMP [8] and ROPE [13]
design approximate multipliers. VADER is also compared against the
GLP framework [19] that is applied to both adders and multipliers.
MRED [13] and mean structural similarity (MSSIM) [22] are used to
evaluate the accuracy for the arithmetic units and image processing
applications, respectively. The error and energy consumption of all
approximate designs are calculated through exhaustive simulation.
Two different randomly generated input data sets are used in our
evaluation. The first one (104 inputs) is used during VADER’s
evaluations and the second one (106 inputs) is used to compute the
error and energy metrics of the examined approximate arithmetic
circuits. For the Sobel and Image Multiplication, ten 8-bit 256 pixel
images are used. All the designs are synthesized and simulated at
the critical path delay of the respective accurate one. The Nangate
45-nm standard cell library is used and the nominal voltage value is
1.1 V. The experiments run on a dual Xeon Gold 6138 server with
128-GB RAM.

In Fig. 4, we evaluate the proposed voltage-driven functional
approximation, and we examine the effectiveness of VADER to
decrease the error produced by the VOS application [21]. Specifically,
the normalized error of VADER with respect to VOS-only application
(ratio of VADER error over VOS error) for varying voltage decreases
is presented. In order to evaluate the efficacy of the voltage-driven
functional approximation, for each examined voltage value, we apply
pruning only in the high part. As shown in Fig. 4, in almost all
the examined voltage values, VADER decreases the VOS [21] error
significantly. On average, for all the examined designs and voltage
values, VADER reduces the VOS error by 52% enabling us to
apply significantly higher voltage decreases (and thus higher energy
savings) for the same error bounds. For the large designs (16-bit adder
and multiplier), VADER achieves higher error reduction, i.e., 68%
on average, while for the smaller ones (8-bit designs), the error
decrease is 35% on average. Similarly, for higher voltage decreases,
VADER delivers, mainly, higher error improvements. For larger
circuits or lower voltage values, the number of paths that violate
the timing constraint increases significantly. As a result, the number
of wires that can be pruned increases, and hence, VADER has more
flexibility and can apply less significant approximations in the high
part. If there are only a few wires, pruning any of these wires will
induce considerable error, and thus, VADER will not be able to
decrease significantly the delay of the violating paths. However, even
in the case of a very small circuit as the 8-bit RCA, VADER delivers
an average 32% error reduction. In total, VADER fails to reduce the
VOS error merely in four cases, and only due to the voltage values
being higher than the voltage threshold of the respective design. As
a result, a few paths violate the time constraint and VADER cannot
prune any of them without increasing the error. Note, however, that
at these cases, the error is almost negligible. Finally, by applying
voltage-driven functional approximation in addition to VOS, not only
is the VOS-only error decreased but also the energy consumption is
reduced. On average, for all the designs and voltage values in Fig. 4,
VADER reduces energy consumption compared to VOS-only [21]
by 37%. The energy reduction ranges from 0% (the four cases that
VADER could not apply functional approximation in addition to
VOS) up to 65%. Note that this comparison refers to isovoltage
conditions. In addition, since VADER also features lower error than

Fig. 4. Error reduction delivered by applying the voltage-driven functional
approximation (VADER) with respect to VOS-only application.

VOS, the energy savings of VADER under isoerror conditions will
be higher.

Next, we compare VADER against the accurate design and state-of-
the-art functional approximate ones. Fig. 5 depicts the relative energy
consumption of the examined approximate designs compared to the
respective accurate one. First, Fig. 5(a), (b), (d), and (e) evaluates
the effectiveness of VADER in producing approximate multipliers
and adders. Next, the approximate multipliers and adders are used
in the image multiplication and sobel benchmarks, respectively. All
the designs that feature average MSSIM greater than 0.9 are depicted
in Fig. 5(c) and (f). Regarding the approximate adders and multipliers,
varying error bounds are examined that range from 1% up to 5%. The
designs produced by VADER exhibit MRED less or equal to the error
bound while the distribution of their RED is right-skewed featuring
low dispersion. On average, for the examined designs and error
bounds, the median absolute deviation of RED is 1.1% with a maxi-
mum value of 2.8% for 5% error bound. The approximate adders and
multipliers produced by VADER apply both functional approximation
and VOS. Regarding VOS, the designs shown in Fig. 5(a), (b), (d),
and (e) have undergone on average 16% voltage reduction (ranging
from 6% up to 20%). Similarly, regarding functional approximation
VADER prunes, on average, 35% of wires, ranging from 6% for the
8-bit adder and 1% error bound to 64% for the 16-bit multiplier and
5% error bound. This high pruning rate is translated to significant
area savings. Compared to the accurate circuits, VADER delivers
49% area reduction on average, ranging from 10% up to 82%.
Regarding the energy efficiency, i.e., our main target, VADER delivers
on average 62% energy reduction compared to the accurate designs
that ranges from 24% for the 8-bit RCA [Fig. 5(e)] with 1% error
bound up to 90% for the 16-bit Dada multiplier [Fig. 5(a)] with
5% error bound. As shown in Fig. 5, VADER delivers higher energy
savings for larger circuits and error bounds. This comes in compliance
with Fig. 4, where VADER is more efficient when the number of
violating paths increases. Compared to state-of-the-art approximate
adders [2], [7], [19] [Fig. 5(d) and (e)], the designs produced by
VADER deliver on average 40% higher energy reduction. Similarly,
compared to the existing approximate multipliers [8], [13], [19]
[Fig. 5(a) and (b)], VADER delivers 29% higher energy savings on
average. As illustrated in Fig. 5, VADER is always the most energy
efficient (from 9% up to 66%) regardless of the operation type, circuit
size, and error bound. Finally, the GLP framework [19] also applies
netlist pruning following, however, a conventional approach widely
used in approximate computing, i.e., approximate the paths that affect
the LSBs in order to constrain error value. Compared to GLP, VADER
delivers 28% higher energy reduction on average that ranges from
14% up to 39%. This significant energy gain highlights the high
efficiency of the proposed voltage-driven functional approximation.
In image processing [Fig. 5(c) and (f)], VADER achieves significant
energy reduction and very high MSSIM values. Compared to the
accurate design, in image multiplication, VADER attains from 31%
up to 60% energy reduction for 0.985 and 0.915 average MSSIMs,
respectively. For the Sobel filter, the respective values are 48% up to
69% lower energy for 0.991 and 0.906 average MSSIM. Compared
to the state-of-the-art techniques, in both benchmarks, the designs of

1464 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 6, JUNE 2019

Fig. 5. Comparison of VADER against the state-of-the-art approximate works InXA [7], GeAr [2], ACMP [8], ROPE [13], and GPL [19]. (a) Multiplier
16-bit. (b) Multiplier 8-bit. (c) Image Multiplication. (d) Adder 16-bit. (e) Adder 8-bit. (f) Sobel Filter.

VADER are always at the Pareto front, constituting the most efficient
ones. For average MSSIM bound of 0.9, VADER features 72%, 56%,
and 23% less energy consumption compared to [2], [7], and [19],
respectively [Fig. 5(f)]. In Fig. 5(c), the respective values are 35%,
60%, and 48% compared to [8], [13], and [19].

Regarding time complexity, VADER requires a few minutes for
the 8-bit adder and up to 4 h for the 16-bit multiplier. Although the
time required by VADER is considerable, it is comparable, and even
significantly smaller, to existing approximate design frameworks. For
example, in our evaluation [19] required 13 h for the 16-bit multiplier,
while Miao et al. [18] reports requiring more than 20 h for 8-bit
multipliers. In every iteration of Algorithm 1, VADER estimates if a
path is affected by VOS based on its delay. If the delay is higher than
the timing constraint, VADER assumes that the path produces VOS
errors. Hence, in each loop, VADER does not need to perform circuit
syntheses and voltage-aware simulations. Moreover, all the functional
error evaluations are performed very fast at high-level using python
and the CCS model is used for the paths’ delay estimations.

VI. CONCLUSION

In this brief, we introduce the voltage-driven functional approxima-
tion technique and we demonstrate its high effectiveness in decreasing
the error produced by the VOS application. Furthermore, we propose
VADER, an automated synthesis framework for approximate cross-
layer arithmetic circuits, which implements the voltage-driven func-
tional approximation and enables the efficient VOS application and
cross-layer approximation automation. We show that VADER delivers
very energy-efficient approximate circuits and it significantly outper-
forms existing state-of-the-art approximate adders and multipliers.

REFERENCES

[1] A. Yazdanbakhsh, D. Mahajan, P. Lotfi-Kamran, and H. Esmaeilzadeh,
“AxBench: A benchmark suite for approximate computing across the
system stack,” Georgia Inst. Technol., Atlanta, GA, USA, Tech. Rep.
GT-CS-16-01, 2016.

[2] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic
accuracy configurable adder,” in Proc. IEEE 52nd ACM/EDAC Design
Automat. Conf., Jun. 2015, pp. 1–6.

[3] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong, “Design of
low-power high-speed truncation-error-tolerant adder and its application
in digital signal processing,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 18, no. 8, pp. 1225–1229, Aug. 2010.

[4] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-
oriented approximate adder design and its application,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design, Nov. 2013, pp. 48–54.

[5] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate
xor/xnor-based adders for inexact computing,” in Proc. IEEE 13th Int.
Conf. Nanotechnol., Aug. 2013, pp. 690–693.

[6] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power dig-
ital signal processing using approximate adders,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 32, no. 1, pp. 124–137,
Jan. 2013.

[7] H. A. F. Almurib, T. N. Kumar, and F. Lombardi, “Inexact designs for
approximate low power addition by cell replacement,” in Proc. IEEE
Design Autom. Test Eur. Conf. Exhib., Mar. 2016, pp. 660–665.

[8] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and analysis
of approximate compressors for multiplication,” IEEE Trans. Comput.,
vol. 64, no. 4, pp. 984–994, Apr. 2015.

[9] H. Jiang, J. Han, F. Qiao, and F. Lombardi, “Approximate radix-8 booth
multipliers for low-power and high-performance operation,” IEEE Trans.
Comput., vol. 65, no. 8, pp. 2638–2644, Aug. 2016.

[10] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi, “Design
of approximate radix-4 booth multipliers for error-tolerant computing,”
IEEE Trans. Comput., vol. 66, no. 8, pp. 1435–1441, Aug. 2017.

[11] S. Hashemi, R. I. Bahar, and S. Reda, “Drum: A dynamic range unbiased
multiplier for approximate applications,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, Nov. 2015, pp. 418–425.

[12] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and
M. Pedram, “Roba multiplier: A rounding-based approximate multiplier
for high-speed yet energy-efficient digital signal processing,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2, pp. 393–
401, Feb. 2017.

[13] V. Leon, G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi, “Walking
through the energy-error Pareto frontier of approximate multipliers,”
IEEE Micro, vol. 38, no. 4, pp. 40–49, Jul. 2018.

[14] A. Lingamneni, C. Enz, K. Palem, and C. Piguet, “Synthesizing parsi-
monious inexact circuits through probabilistic design techniques,” IEEE
ACM Trans. Embed. Comput. Syst., vol. 12, no. 2s, p. 93, May 2013.

[15] G. Zervakis, F. Ntouskas, S. Xydis, D. Soudris, and K. Pekmestzi,
“Vossim: A framework for enabling fast voltage overscaling simulation
for approximate computing circuits,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 6, pp. 1204–1208, Jun. 2018.

[16] S. Lee, L. K. John, and A. Gerstlauer, “High-level synthesis of approxi-
mate hardware under joint precision and voltage scaling,” in Proc. IEEE
Design Autom. Test Eur. Conf. Exhib., Mar. 2017, pp. 187–192.

[17] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “Salsa: Systematic logic synthesis of approximate circuits,” in
Proc. IEEE DAC Design Autom. Conf., Jun. 2012, pp. 796–801.

[18] J. Miao, A. Gerstlauer, and M. Orshansky, “Multi-level approximate
logic synthesis under general error constraints,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design, Nov. 2014, pp. 504–510.

[19] J. Schlachter, V. Camus, K. V. Palem, and C. Enz, “Design and
applications of approximate circuits by gate-level pruning,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 5, pp. 1694–1702,
May 2017.

[20] Y. Liu, T. Zhang, and K. K. Parhi, “Computation error analysis in
digital signal processing systems with overscaled supply voltage,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 4, pp. 517–526,
Apr. 2010.

[21] G. Karakonstantis and K. Roy, “Voltage over-scaling: A cross-layer
design perspective for energy efficient systems,” in Proc. IEEE 20th
Eur. Conf. Circuit Theory Design, Aug. 2011, pp. 548–551.

[22] M. H. Moaiyeri, F. Sabetzadeh, and S. Angizi, “An efficient majority-
based compressor for approximate computing in the nano era,”
Microsyst. Technol., vol. 24, no. 3, pp. 1589–1601, Mar. 2018.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

