
����������
�������

Citation: Amanatiadis, S.;

Zygiridis, T.; Kantartzis, N. Accurate

Time-Domain Modeling of

Arbitrarily Shaped Graphene Layers

Utilizing Unstructured Triangular

Grids. Axioms 2022, 11, 44. https://

doi.org/10.3390/axioms11020044

Academic Editor: Nhon

Nguyen-Thanh

Received: 7 December 2021

Accepted: 19 January 2022

Published: 22 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Accurate Time-Domain Modeling of Arbitrarily Shaped
Graphene Layers Utilizing Unstructured Triangular Grids
Stamatios Amanatiadis 1,* , Theodoros Zygiridis 2 and Nikolaos Kantartzis 1

1 Department of Electrical & Computer Engineering, Aristotle University of Thessaloniki,
GR-54124 Thessaloniki, Greece; kant@auth.gr

2 Department of Electrical & Computer Engineering, University of Western Macedonia,
GR-50100 Kozani, Greece; tzygiridis@uowm.gr

* Correspondence: samanati@auth.gr

Abstract: The accurate modeling of curved graphene layers for time-domain electromagnetic simula-
tions is discussed in the present work. Initially, the advanced properties of graphene are presented,
focusing on the propagation of strongly confined surface plasmon polariton waves at the far-infrared
regime. Then, the implementation of an unstructured triangular grid was examined, based on the De-
launay triangulation method. The electric-field components were placed at the edges of the triangles,
while two different techniques were proposed for the sampling of the magnetic ones. Specifically, the
first one suggests that the magnetic component is placed at the triangle’s circumcenter providing
more accurate results, although instability may occur for nonacute triangles. On the other hand, the
magnetic field was sampled at the triangle’s centroid, considering the second technique, ensuring
the algorithm’s stability, but further approximations were required, leading to a slight accuracy
reduction. Moreover, the updating equations in the time-domain were extracted via an appropriate
approximation of Maxwell equations in their integral form. Finally, graphene was introduced in
the computational domain as an equivalent surface current density, whose location matches the
corresponding electric components. The validity of our methodology was successfully performed via
the comparison of graphene surface wave propagation properties to their theoretical values, whereas
the global error determination indicates the minimal triangle dimensions. Additionally, an instructive
setup comprising a circular graphene scatterer was analyzed thoroughly, to reveal our technique’s
advantages compared to the conventional staircase discretization.

Keywords: auxiliary differential equation; curved modeling; equilateral triangle; FDTD; finite inte-
gration; surface current density; surface wave

1. Introduction

In previous years, graphene attracted rapid scientific attention due to its extraordinary
properties in a broad field of applications. Particularly, this naturally two-dimensional
carbon allotrope presents significant and useful characteristics, in spite of its negligible
thickness [1]. From an electromagnetic point of view, a finite surface conductivity is ob-
served, thus enabling several exotic phenomena, such as gyrotropy and the propagation
of strongly confined surface plasmon polariton (SPP) waves at the far-infrared frequen-
cies [2–4]. The latter paved the way for the design of a wide class of plasmonic devices at
the THz regime [5–8].

The majority of these devices require efficient simulation techniques for their pre-
cise characterization. Therefore, the development of suitable numerical algorithms that
model graphene accurately has been triggered. A very popular numerical scheme is the
finite-difference time-domain (FDTD) technique, which facilitates broadband simulations
of complex structures [9] owing to its explicit time-domain nature. For this reason, sev-
eral algorithms have been reported that modify the conventional FDTD method properly,
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while open-source implementations are available [10]. In general, graphene is treated as
a surface boundary, and its inherent frequency dispersion can be modeled through an
auxiliary differential equation [11,12] or by exploiting the magnetic-field boundary condi-
tions [13]. Additionally, more advanced properties have been implemented, such as the case
of magnetically biased graphene [14–16], its third-order response [17,18], and its complex
conductivity at optical frequencies [19,20]. Despite its apparent flexibility, the main draw-
back of the original FDTD algorithm is the discretization of the computational domain with
a structured orthogonal mesh. On the other hand, it should be kept in mind that various de-
vices feature optimized designs exploiting curved surfaces. As a consequence, an extremely
fine mesh is required for the staircase approximation of such configurations [21–23], which
degrades the simulation’s performance. Alternatively, frequency-domain numerical solvers
can be employed [24–27], sacrificing the advantages of time-domain solutions.

In this paper, we propose the accurate numerical modeling of arbitrarily shaped
graphene layers in the time domain via the discretization of the computational space with
unstructured triangular meshes. The analysis starts with the presentation of graphene main
attributes, such as its surface conductivity and the fundamental propagation properties of
the supported SPP waves. Furthermore, the basic aspects of the unstructured triangular
grids were investigated for time-domain electromagnetic simulations. Specifically, two
different sampling techniques for the magnetic components were examined, at the triangle
circumcenter and at its centroid, while the electric components were placed at the edges
of the triangles. Then, the graphene contribution is introduced as an equivalent surface
current density, while a recursive convolution method (RCM) was developed for the
consistent modeling of its frequency dispersion. The proposed algorithm was successfully
validated through the direct comparison of the numerically extracted SPP wave propagation
properties with the analytical values, while the global error calculation indicated certain
discretization limitations. Finally, an interesting configuration that includes a circular
graphene scatterer was designed, and the comparison with the conventional staircase
approximation highlighted the superiority of the unstructured grids, in case of problems
with nonorthogonal features.

2. Theoretical Formulation
2.1. Graphene Surface Conductivity and Surface Wave Propagation Properties

Throughout this work, graphene is considered to be a naturally infinitesimally thin
material, characterized via its surface conductivity σgr(ω, µc, Γ, T). The latter depends on
the radial frequency ω, the chemical potential µc that can be controlled either via chemical
doping or an electrostatic bias application, the scattering rate Γ that constitutes the main
loss mechanism of the material, and the temperature T. Graphene’s surface conductivity is
evaluated utilizing the Kubo formula [28], leading to the following compact expression in
the absence of an external magnetostatic field [29]:

σgr(ω, µc, Γ, T) =
e2(jω + 2Γ)

πh̄2 ×

 1
(jω + 2Γ)2

∞∫
0

ε

(
∂ fd(−ε)

∂ε
− ∂ fd(ε)

∂ε

)
dε

+

∞∫
0

fd(−ε)− fd(ε)

(jω + 2Γ)2 + 4(ε/h̄)2 dε

, (1)

where e is a single electron charge, h̄ the reduced Planck’s constant and fd(ε) is the Fermi–
Dirac distribution

fd(ε) =
1

(e(ε−µc)/kBT + 1)
, (2)

with kB the Boltzmann’s constant. It is evident that (1) consists of two terms that are
connected to the major electron transitions in graphene, namely the intraband and the
interband. The former dominates at lower frequencies, approximately until the far-infrared
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regime, while the latter becomes considerable beyond the mid-infrared frequencies. Al-
though the proposed methodology can be extended to incorporate more complex graphene
properties, we focus on the lower regime, where the interband term is negligible. Conse-
quently, the graphene’s surface conductivity expression can be significantly simplified to a
Debye dispersion relation:

σgr,intra(ω, µc, Γ, T) =
e2kBT

πh̄2(jω + 2Γ)

[
µc

kBT
+ 2 ln(e−µc/kBT + 1)

]
=

Aµc

jω + 2Γ
, (3)

where Aµc is the frequency-independent term. It is important to mention that isotropic
graphene conductivity is considered instead of the anisotropic one since our analysis is
performed for a two-dimensional computational domain.

The capability of graphene to support strongly confined SPP waves at the far-infrared
regime is well established. The propagation properties of such waves depend on graphene’s
surface conductivity, and their characterization can be performed via the propagation
constant kρ. The latter has been evaluated analytically for a free-standing graphene layer of
infinite dimensions by means of [29]

kρ = k0

√
1−

(
2

σgrη0

)2
, (4)

where k0 and η0 are the free-space wavenumber and wave impedance, respectively. Now,
the main propagation attributes, such as the SPP wavelength λSPP, the propagation length
LSPP and the confinement ζ, were straightforwardly extracted from the propagation con-
stant kρ via

λSPP =
2π

<{kρ}
, LSPP = − 1

2={kρ}
, ζ =

1

<
{√

k2
ρ − k2

0

} , (5)

with <{·} and ={·} denoting the real and the imaginary part of the argument, respectively.

2.2. Unstructured Triangular Grids for Electromagnetic Analysis in the Time Domain

The FDTD approach constitutes one of the most popular methods for electromagnetic
simulations in the time domain [30]. The conventional algorithm solves the differential form
of Maxwell equations by applying a finite-difference scheme on a structured rectangular
grid. Despite the algorithm’s powerful characteristics, the use of a rectangular grid enforces
staircase approximations to curved interfaces, which may lead to inaccurate results. For
this reason, unstructured triangular grids have been proposed to effectively model such
surfaces [31,32]. In our approach, the integral form of Maxwell equations is utilized for
isotropic media ∮

C
E · dl = −

∫∫
A

µ0µr
∂H
∂t
· dA, (6)

∮
C

H · dl =
∫∫

A

(
ε0εr

∂E
∂t

+ σE
)
· dA, (7)

where A is the area limited by the closed-loop C with length l, ε0 and µ0 are the electric
permittivity and magnetic permeability of free-space, respectively, and εr, µr are their
relative equivalents.

Our work focuses on a transverse electric two-dimensional (2D) case. The computa-
tional domain is discretized into triangular elements using an efficient Delaunay triangula-
tion algorithm, as depicted in Figure 1. Here, the electric-field components are tangential to
the 2D domain and located along the edges of the triangles. It should be mentioned that the
sampling of the magnetic components, which are considered normal to the domain, is not a
trivial issue. In particular, two different approaches, depicted in Figure 1, are investigated.
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The initial one (Figure 1a) places the magnetic components at the triangle circumcenter,
namely the center of the circle that is defined by its vertices creating thus, a Voronoi diagram [31].
The advantage of this approach is that the magnetic-field connection between two adjacent
triangles is perpendicular to their common edge. This is important, since the inner product at
the right-hand side of (7) suggests that the electric component is vertical to the virtual area of
the connecting magnetic fields. Unfortunately, these points may lie outside the element for an
obtuse triangle case, potentially influencing the algorithm’s stability.

To circumvent this hindrance, a second technique can be used (Figure 1b), where the
magnetic components are located at the triangle centroid, namely the averaged coordinates
of its three vertices [32]. Although this approach ensures that each magnetic component
lies inside the corresponding element, the magnetic-field connection between adjacent
triangles is not necessarily vertical to the common electric component. Hence, an angular
correction is required for the accurate implementation of (7). Note that the two techniques
are identical for the case of equilateral triangles. In this manner, an optimal triangulation
can be considered to consist of such elements.

di,j

Hi

Hj

Ei j, ,Jgr[ , ]i j

Ei k,Ei l,

l i
l,

graphene

i

j

k

l

(a) Circumcenter sampling

graphene

Hi

Hj

d i,j

q
Ei j, ,Jgr[ , ]i j

Ei k,

Ei l,

l i
l,

i

j

k

l

(b) Centroid sampling

Figure 1. Topology of the unstructured triangular grid and the electromagnetic field assignment
concerning the two magnetic field sampling techniques. In particular, the arrangement of the electric
components is at the edges of the triangles, while the magnetic components lie inside the triangle
(a) at its circumcenter or (b) at its centroid.

Now, a finite integration was applied to (6) and (7). First of all, the temporal discretiza-
tion of fields was defined to coincide with the conventional FDTD algorithm, i.e., E was
updated at n∆t and H at (n + 1/2)∆t instants, where ∆t is the time-step. Then, considering
element i, (6) was developed into

En
i,jli,j + En

i,kli,k + En
i,l li,l = −µ0µr

Hn+1/2
i − Hn−1/2

i
∆t

A,

Hn+1/2
i = Hn−1/2

i − ∆t
Aiµ0µr

(En
i,jli,j + En

i,kli,k + En
i,l li,l). (8)

The finite integration of (7) depends on the applied magnetic field component sam-
pling technique. The circumcenter-sampling case provides the following straightforward
update equation for Ei,j

Hn−1/2
i − Hn−1/2

j =

(
ε0εr

En
i,j − En−1

i,j

∆t
+ σ

En
i,j + En−1

i,j

2

)
di,j

En
i,j =

2ε0εr − σ∆t
2ε0εr + σ∆t

En−1
i,j +

2∆t
2ε0εr + σ∆t

(Hn−1/2
i − Hn−1/2

j )
1

di,j
. (9)
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For the centroid-sampling case, an angular correction must be included to model the
finite integration accurately. Explicitly,

En
i,j =

2ε0εr − σ∆t
2ε0εr + σ∆t

En−1
i,j +

2∆t
2ε0εr + σ∆t

(Hn−1/2
i − Hn−1/2

j )
1

di,j sin θ
. (10)

The electromagnetic properties (described by εr, µr, σ) of each element are assumed
to be constant within each element. Consequently, the tangential continuity of the electric
component is satisfied a priori. Each set of di,j and li,j is shared between two adjacent
elements. Additionally, Ei,j is shared between triangles i and j, and a unique definition of
its orientation must be selected. Herein, the positive direction is counterclockwise with
respect to the element with a lower index (i in Figure 1). Thus, a negative contribution is
assumed for the element with a larger index (j in Figure 1).

Finally, a stability criterion should be established, similar to the conventional FDTD
algorithm. In essence, the time increment should satisfy the relation [31]

∆t 6 min

 1
c0

√√√√√ 2Ai
3
∑
1

li,{·}
di,{·}

, (11)

where Ai is the area of the element i, li,{·} the length of the common edge with triangle
{·}, di,{·} the magnetic-field distance from the corresponding triangle (Figure 1), and c0 the
free-space speed of light. Particularly, the inner expression of (11) was calculated for all

triangles, where the ratio
li,{·}
di,{·}

corresponds to the cell’s dimensions since it is connected

to all three triangle edges. Then, the stable time increment was defined via the mini-
mum value of the aforementioned calculations. It is worth mentioning that this criterion
converges to the popular Courant–Friedrichs–Lewy condition of the conventional FDTD
structured discretization.

2.3. Graphene Modeling within Unstructured Triangular Grids

Graphene was embedded in the computational domain in terms of an equivalent
surface current Jgr = σgrE, as demonstrated in Figure 1. Observe that the locations of
the surface current components are identical to the corresponding electric ones. The
contribution of this surface current is included into the computational domain via Ampere’s
law, namely (7) via∮

C
H · dl =

∫∫
A

(
ε0εr

∂E
∂t

+ σE
)
· dA +

∫∫
A

Jgr · dA. (12)

Consequently, the electric-field updating Equation (9), for the circumcenter sampling
case, was properly modified to

En
i,j =

2ε0εr − σ∆t
2ε0εr + σ∆t

En−1
i,j +

2∆t
2ε0εr + σ∆t

(Hn−1/2
i − Hn−1/2

j )
1

di,j

− 2∆t
2ε0εr + σ∆t

Jn−1/2
gr[i,j]

1
di,j

. (13)

One may observe the di,j parameter in the denominator, which is attributed to the
fact that graphene is modeled as a surface current density, instead of a volume density.
Therefore, the infinitesimally thin nature of the material was retained. Similarly, (10), for
the centroid sampling case, was modified to
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En
i,j =

2ε0εr − σ∆t
2ε0εr + σ∆t

En−1
i,j +

2∆t
2ε0εr + σ∆t

(Hn−1/2
i − Hn−1/2

j )
1

di,j sin θ

− 2∆t
2ε0εr + σ∆t

Jn−1/2
gr[i,j]

1
di,j sin θ

. (14)

Now, the main concern is the modeling of graphene’s frequency dispersion. Firstly, a
transition of Jgr = σgrE and the surface conductivity (3) into the time domain should be
performed using an inverse Fourier transform (IFT)

Jgr[i,j](ω) = σgr(ω)Ei,j(ω) =
Aµc

jω + 2Γ
Ei,j(ω)

IFT−−→ Jgr[i,j](t) = Aµc e−2Γt ∗ Ei,j(t). (15)

Although a procedure that involves a convolution should be performed for the surface
current updating, the efficient RCM concept is utilized, i.e.,

Jn+1/2
gr[i,j] =

n

∑
m=0

{
Aµc e−2Γ(n−m)∆tEm

i,j∆t
}

,

Jn+1/2
gr[i,j] = Aµc e−2Γ∆t Jn−1/2

gr[i,j] + Aµc ∆tEn
i,j. (16)

Interestingly, there is no connection between the frequency-dispersion modeling and
the computational-domain discretization with unstructured triangular meshes. Therefore,
more advanced schemes, such as interband conductivity approximation, third-order re-
sponse, or anisotropic conductivity due to a magnetostatic-bias application, for 3D domains,
can be straightforwardly combined with the triangular grids. Additionally, other complex
dielectrics are easily importable via equivalent frequency-dispersion schemes, such as the
auxiliary differential equation of conventional FDTD, since they are, also, independent of
the computational-domain discretization.

The entire procedure of the proposed algorithm is summarized in the block diagram
of Figure 2. Here, every individual step is included, such as the initialization and the
electromagnetic component updating via the well-known leap-frog scheme.

Mesh
generation

H locations

E locations

Element size

Initialization

E updating
eq. (12) or (13)

n n+1/2

Simulation

H updating
eq. (7)

Jgr updating
eq. (15)

Figure 2. Block diagram of the proposed scheme.

3. Proposed Algorithm Validation

The validity of the featured algorithm is pursued through the well-established setup of
surface wave propagation onto a straight free-standing graphene layer of infinite size. The
advantage of this example is its direct comparison to the analytical expressions (4) and (5).
Moreover, the conventional FDTD method is able to provide accurate results for this orthog-
onal setup, in order to calculate reliably the global error within computational domain. To
this aim, graphene chemical potential was selected µc = 0.2 eV, and its scattering rate was
set to Γ = 0.11 meV, while the analysis was performed at the far-infrared spectrum, namely
from 1 to 3 THz. The dimension of the computational domain is 600 µm × 150 µm, with
the graphene layer located along the x-axis. As discussed, an unstructured Delaunay trian-
gulation was utilized with a maximum edge size ∆max = 3µm, resulting in approximately
32,000 elements. The time-step was selected 3.7 fs to ensure the algorithm’s stability, while
open boundaries were terminated via an 8-cell thick perfectly matched layer (PML). It is
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important to mention that PML is selected instead of an Absorbing Boundary Condition
since it is possible to extend graphene inside the PML region. This leads to the effective ab-
sorption of the strongly confined SPP waves. Finally, 8-cells are adequate for the considered
applications due to the inherent losses of graphene surface waves.

The numerically extracted propagation properties of the supported surface wave on
graphene are compared to the aforementioned theoretical calculations in Figure 3. It is
clear that the matching of the results is evident, especially until 2.5 THz. Beyond this
frequency, the SPP wavelength is less than 30µm, and the conventional λ/10 discretization
limit is exceeded, leading to small discrepancies. It is important to mention that the
simulated results represent both magnetic-field sampling techniques, since their differences
is negligible. Furthermore, the distribution of the magnetic field at 2 THz is demonstrated
in Figure 4, clearly indicating the propagation of the strongly confined surface wave on
the graphene surface. Consequently, the proposed integration of the infinitesimally thin
material into an unstructured triangular grid was validated successfully.

1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

Frequency [THz]

L
en

gt
h
 (

m
)

m

Theoretical
Simulation

z

lSPP

LSPP

Figure 3. Numerical validation of surface wave propagation characteristics for a graphene layer with
µc = 0.2 eV and Γ = 0.11 meV.

x-axis [ m]m

y
-a

x
is

 [
m

]
m

−200 −150 −100 −50 0 50 100 150 200

−50

0

50

Figure 4. Distribution of the magnetic-field component for a graphene layer with µc = 0.2 eV and
Γ = 0.11 meV at 2 THz.

Finally, the global error in the computational domain was investigated for different
element sizes, to check the influence of the element size. For this reason, a numerical simulation
through the conventional orthogonal grid of the FDTD method was conducted using a
considerably fine mesh (∆x = ∆y < λSPP/20). The mean global error was calculated for the
magnetic-field component, while it was normalized to the mean magnetic-field value of the
computational domain. The calculated results are depicted in Figure 5, and it is apparent that
smaller triangle dimensions lead to more precise results. Note that the shape of the curves is,
generally, altered with ∆max since different triangular meshes are generated. In addition, the
magnetic-field sampling at the triangle circumcenter (technique 1) presents a slightly lower
global error. In any case, the satisfaction of the well-known ∆max < λSPP/10 rule secures
reliable numerical results.
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Figure 5. Global error of the magnetic field, normalized to the mean computational domain value,
for different triangle size discretization of the two proposed techniques.

4. Incident Field toward a Circular Graphene Scatterer

Although the previous example validated the accuracy of the proposed methodology,
the computational efficiency is not optimal compared to the conventional FDTD algorithm.
The main reason for the degraded performance is the requirement for the storage of ad-
ditional parameters, such as triangle dimensions as well as pointers to identify adjacent
elements. For this reason, a second example is discussed in this section to exploit the
advantages of the triangular computational domain. Particularly, a plane wave propagates
toward a periodic structure of circular graphene scatterers of radius R = 20µm and period-
icity of w = 100µm, as illustrated in Figure 6. The graphene chemical potential is set to
0.2 eV, and its scattering rate is 0.11 meV at the frequency range 1–3 THz. The computational
domain is divided into 23,000 triangular elements of maximum edge size ∆max = 3µm,
while the time-step is selected 3.7 fs. The side boundaries satisfy periodic conditions, and
the extracted quantity of interest is the configuration’s transmission coefficient.

R w
ky

Ex

Hz

graphene

periodic
boundaries

Figure 6. Setup of an incident plane wave toward a periodic structure of circular graphene scatterers.

The extracted numerical results of the proposed algorithm are compared to the conven-
tional staircase approximation of the FDTD algorithm, as well as the commercial software
COMSOL Multiphysics® commercial package [33] for reference. Figure 7 proves the excel-
lent behavior of our methodology. On the other hand, the staircase approximation fails to
track the resonance frequencies accurately, even when using a very fine mesh (∆ = 1µm).
This performance is explained via the distribution of the electric field in the scatterer in
Figure 8. Specifically, the edge effects of the staircase approximation degrade the plasmonic
resonances on the graphene, in contrast to the proposed method, where the electric field is
smoothly distributed on the material surface.
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1 1.5 2 2.5 3
−20

−15

−10

−5

0

Frequency [THz]

T
ra

n
sm

is
si

on
 c

o
ef

fi
ci

en
t 

[d
B

]

COMSOL
Proposed method
Staircase FDTD ( =5 m)D m
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Figure 7. Transmission coefficient comparison between the proposed method and the conventional
staircase FDTD algorithm for a circular graphene scatterer of 20µm radius.

(a) Staircase (b) Proposed
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−0.4
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0
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0.4

0.6

0.8

1

[V/m]

Figure 8. Comparison of the electric field distribution between the proposed method and the
conventional staircase FDTD algorithm for a circular graphene scatterer of 20µm radius at 1.72 THz.

5. Conclusions

The accurate time-domain modeling of curved graphene layers was accomplished
in the present work using an unstructured triangular mesh. Initially, the fundamental
characteristics of the two-dimensional material were investigated, as well as the finite
integration scheme for the proposed computational grid. Particularly, two techniques
were examined that coincide for equilateral triangle discretization. The strength of the
first one relies on its more physical representation to achieve increased accuracy, but acute
triangles are required to ensure stability. This problem is resolved via the second technique,
although the necessity of further approximations slightly decreases the algorithm’s accuracy.
Then, graphene was introduced into the numerical algorithm as an equivalent surface
current density, while its frequency dispersion was treated via an RCM technique. The
proposed methodology was thoroughly examined in terms of the surface wave propagation
properties, validating the proposed implementation. Finally, a circular graphene scatterer
setup was designed to exploit the algorithm’s applicability and advantages, compared to
the conventional staircase approximation.
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