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A full-vectorial finite-difference (FD) scheme is proposed in this work to accurately extract the propagating modes on a magnetically
biased graphene microstrip. Initially, the anisotropic surface conductivity of graphene is introduced, and the appropriate eigenvalue
problem is formulated starting from Maxwell’s equations. In particular, an FD approximation is utilized, while the discretization of
the computation domain is based on the popular Yee cell. Then, the relationship between tangential, to the propagation direction,
electromagnetic components is derived, leading to a linear eigenvalue problem. The numerical results highlight the expected difference
between the propagation properties of the edge modes, thus validating the successful implementation of the featured modal solver.
Moreover, it is shown that the number of unknown components is efficiently reduced due to the proper elimination of the longitudinal
fields and the linearity of Maxwell’s equations.

Index Terms— Computational methods, dispersion diagram, graphene, magnetic anisotropy, sparse matrices, surface waves.

I. INTRODUCTION

WAVEGUIDING systems based on graphene are able
to facilitate long-range propagation at the far-infrared

regime [1]. This is possible due to the strongly confined
surface plasmon polariton (SPP) waves that are supported onto
this truly 2-D carbon allotrope [2]. Thus, simple graphene
waveguiding systems, such as microstrips, have been examined
thoroughly, indicating the support of an infinite number of
propagating modes [3]. Two major categories are identified,
that is, the edge and the bulk modes, where the former
exhibit increased confinement due to the respective electron
concentration at the microstrip edges. Also, the application of
a magnetostatic bias field, normal to the graphene microstrip,
initiates even more complex phenomena because of the extra
Lorentz forces imposed on electrons [4].

Hence, the development of efficient, in terms of com-
putational resources, modal solvers is imperative for the
accurate surface wave characterization of magnetically biased
graphene microstrips. The attributes of the supported modes
are extracted through the finite-element method (FEM) which
solves the quadratic eigenvalue problem retrieved from the
Helmholtz equation [5]–[7]. Although this is a powerful
approach, its quadratic nature doubles the required unknown
quantities during the linearization process. Therefore, lin-
ear eigenvalue problems have been established, utilizing
Maxwell’s equations and finite-difference (FD) schemes both
for isotropic [8] and anisotropic [9] media. Herein, the domain
is discretized into a Yee-cell manner for the approximation of
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differential equations via appropriately defined FDs. An extra
merit of this concept over the FEM is its direct incorporation
into the FD time-domain (FDTD) technique for full-wave
simulations due to the rectangular-grid similarity.

In this article, we propose a modal solver for magneti-
cally biased graphene waveguides stemming from Maxwell’s
equations. The applied FD scheme results in the prior eigen-
value problem, where only the tangential, to the waveguide
cross section, components are required; thus, the number of
unknown quantities is considerably decreased. The suggested
method is employed for the accurate mode extraction on a real-
istic setup, namely a magnetically biased graphene microstrip.
Numerical results indicate a deviation between the propagation
properties of the edge modes as the applied magnetostatic field
increases. This fact proves the validity of the proposed scheme,
as the strong Lorentz forces guide electrons toward a specific
edge, augmenting the concentration of the electric field.

II. THEORETICAL ASPECTS

A. Graphene Conductivity and Surface Waves

In our work, graphene is considered as a 2-D material on
the xz-plane at the far-infrared regime, while both electrostatic
(corresponding to the chemical potential μc) and magneto-
static, B0, biases are applied. Consequently, graphene can be
characterized by its dyadic surface conductivity [10]

¯̄σgr(ω) =
⎡
⎣σxx (ω) 0 σxz (ω)

0 0 0
σzx(ω) 0 σzz(ω)

⎤
⎦ (1)

where the individual elements are calculated through

σxx (ω) = σzz(ω) = σd(ω) = σc
jω + 2�

ω2
c + ( jω + 2�)2 (2a)
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σxz (ω) = −σzx (ω) = σo(ω) = σc
ωc

ω2
c + ( jω + 2�)2 (2b)

with σc being the frequency-independent term

σc = q2
e

π h̄2�
kB T ln

�
2 cosh

μc

2kB T

�
(3)

where � is the scattering rate, ωc = qe B0u2
F/|μc| is the

cyclotron frequency, determined by the bias fields, T is the
temperature, qe is the electron charge, uF is the Fermi velocity,
and h̄ and kB are the Planck and Boltzmann constants,
respectively.

The propagation attributes of the supported surface waves
on graphene are strongly dependent on its surface conductivity.
Explicitly, the propagation constant kρ of the dominant trans-
verse magnetic (TM) term is derived via the solution of [10]

kρ =
�

1

η2
0σ

2
d

�
j s2 +

	
η2

0σ
2
d − s4

�2

+ 1



k0 (4)

with s2 = (η0σd)
2/4 + (η0σo)

2/4 + 1 and η0 = (μ0/ε0)
1/2 the

free-space wave-impedance.

B. FD Formulation for Modal Analysis

The featured modal solver considers a uniform waveguiding
system toward the propagation direction that is valid for the
majority of modern applications. In this manner, the problem
is simplified significantly, since only a normal cross section is
required. The analysis is based on Maxwell’s equations, where
graphene contribution is imported as the equivalent surface
current �Jgr = ¯̄σgr �E in Ampère’s law, that is,

∇ × �E = − jωμ0 �H, ∇ × �H = jωεrε0 �E + �Jgr. (5)

Also, propagation is assumed toward the z-axis with a e− jγ z

dependence for all components, where γ is the complex
propagation constant of the waveguide. Note that the electric
components are appropriately scaled by the free-space wave-
impedance η0 to ensure the balancing between the fields. Then,
every individual component of (5) is computed through

− jk0 Hx = ∂ Ez

∂y
+ jγ Ey (6a)

− jk0 Hy = − jγ Ex − ∂ Ez

∂x
(6b)

− jk0 Hz = ∂ Ey

∂x
− ∂ Ex

∂y
(6c)

jk0εr Ex + η0(Jxx + Jxz) = ∂ Hz

∂y
+ jγ Hy (7a)

jk0εr Ey = − jγ Hx − ∂ Hz

∂x
(7b)

jk0εr Ez + η0(Jzx + Jzz) = ∂ Hy

∂x
− ∂ Hx

∂y
. (7c)

Herein, partial derivatives are approximated via an FD
scheme at a computational domain with 2-D Yee cells, as in
Fig. 1. Although a non-grid-aligned graphene layer can still
be modeled via the staircase approximation, in this article,
we deal with a material aligned at the xz-plane. Thus,
we derive

− jk0Hx(i, j) = Ez(i, j + 1) − Ez(i, j)

�y
+ jγ Ey(i, j) (8a)

Fig. 1. Two-dimensional Yee cell including the graphene layer (in red color).

− jk0 Hy(i, j) = − jγ Ex(i, j)− Ez(i + 1, j)−Ez(i, j)

�x
(8b)

− jk0 Hz(i, j) = Ey(i + 1, j) − Ey(i, j)

�x

− Ex(i, j + 1) − Ey(i, j)

�y
(8c)

jk0εr Ex(i, j) + η0

�y

�
σd Ex(i, j) + σo Ez(i, j)

�
= Hz(i, j)−Hz(i, j − 1)

�y
+ jγ Hy(i, j) (9a)

jk0εr Ey(i, j) = − jγ Hx(i, j)− Hz(i, j)−Hz(i − 1, j)

�x
(9b)

jk0εr Ez(i, j) + η0

�y

�
σd Ez(i, j) − σo Ex(i, j)

�
= Hy(i, j) − Hy(i − 1, j)

�x

− Hx(i, j) − Hx(i, j − 1)

�y
. (9c)

It is stressed that the equivalent surface current compo-
nents have been normalized to the perpendicular cell size,
�y, to enable the graphene 2-D nature. Note that Ex(i, j)
and Ez(i, j) in (9a) and (9c) are not collocated; hence,
a proper averaging is applied via the adjacent components.
Also, we intend to acquire the propagation properties in terms
of the neff = γ /k0 effective index, that is, the ratio between the
mode propagation constant γ to the free-space wavenumber k0.
The effective index provides an intuitive waveguide perception
because of its direct comparison to the free-space wavenumber.
Specifically, neff values larger than 1 lead to slower waves
with a smaller wavelength compared to free-space propagation.
To this end, (8) and (9) are written in the compact matrix
form of

− j

⎡
⎣Hx

Hy

Hz

⎤
⎦ =

⎡
⎣ 0 jneffI Uy

− jneffI 0 −Ux

−Uy Ux 0

⎤
⎦

⎡
⎣Ex

Ey

Ez

⎤
⎦ (10)

⎛
⎝ j

⎡
⎣εr 0 0

0 εr 0
0 0 εr

⎤
⎦ + 1

ωε0�y

⎡
⎣ σ d 0 σ o

0 0 0
−σ o 0 σ d

⎤
⎦

⎞
⎠

⎡
⎣Ex

Ey

Ez

⎤
⎦

=
⎡
⎣ 0 jneffI Vy

− jneffI 0 −Vx

−Vy Vx 0

⎤
⎦

⎡
⎣Hx

Hy

Hz

⎤
⎦ (11)

where I is a square identity matrix and εr a diagonal
matrix corresponding to the relative permittivity of each cell.
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Also, Ux , Uy , Vx , and Vy are sparse square matrices deter-
mined by means of the finite differentiation and the boundary
conditions. The form of these matrices depends on the num-
bering of the unknown components in the computational grid
and in the case of a sequential order, Ux is given by

Ux = 1

k0�x

⎡
⎢⎢⎢⎢⎢⎣

1
−1 1

. . .
. . .

−1 1
−1

⎤
⎥⎥⎥⎥⎥⎦ (12)

with similar expressions holding for the other matrices.
Evidently, the set of equations for the longitudinal compo-
nents, for example, Ez and Hz, does not involve neff . So, they
can be eliminated by replacing them with their tangential
counterparts. This process is, also, possible before the FD
approximation and other discretization schemes, such as the
FE, are applied via an entirely different formulation. However,
the featured FD method exploits the arrangement of compo-
nents at the Yee cell to retain the rationale of partial derivatives
in Maxwell’s equations. Then, some matrix manipulations are
conducted in (10) and (11) to eliminate the longitudinal com-
ponents, as mentioned above, and solve for neff . In this context,
our eigenvalue problem receives the linear matrix form of⎛

⎜⎜⎝
⎡
⎢⎢⎣

Aee
xx 0 Aem

xx Aem
xy

Aee
yx 0 Aem

yx Aem
yy

Ame
xx Ame

xy 0 0
Ame

yx Ame
yy Amm

yx Amm
yy

⎤
⎥⎥⎦ − neffI

⎞
⎟⎟⎠

⎡
⎢⎢⎣

Ex

Ey

Hx

Hy

⎤
⎥⎥⎦ = 0. (13)

Here, A{··· }
{··· } are, also, sparse matrices that refer to the

relationship between the tangential, to the propagation,
electromagnetic components and they are extracted as

Aee
xx = − jUx

�
jεr + σ d

ωε0�y

�−1
σ o

ωε0�y

Aem
xx = − jUx

�
jεr + σ d

ωε0�y

�−1

Vy

Aem
xy = jUx

�
jεr + σ d

ωε0�y

�−1

Vx + I

Aee
yx = − jUy

�
jεr + σ d

ωε0�y

�−1
σ o

ωε0�y

Aem
yx = − jUy

�
jεr + σ d

ωε0�y

�−1

Vy − I

Aem
yy = jUy

�
jεr + σ d

ωε0�y

�−1

Vx

Ame
xx = Vx Uy

Ame
xy = jεr − VxUx

Ame
yx = − jεr + VyUy + j

σ o

(ωε0�y)2

�
jεr + σ d

ωε0�y

�−1

σ o

Ame
yy = −VyUx

Amm
yx = j

σ o

ωε0�y

�
jεr + σ d

ωε0�y

�−1

Vy

Amm
yy = − j

σ o

ωε0�y

�
jεr + σ d

ωε0�y

�−1

Vx .

Fig. 2. Graphene plasmonic waveguide that consists of a w-wide microstrip
and a perpendicular, to its surface, magnetostatic bias B0.

Fig. 3. Dispersion curves for a free-standing 40 μm-wide graphene layer
with � = 0.11 meV, μc = 0.2 eV, and B0 = 0.5 T. The black dotted line
corresponds to the propagation on a sheet with infinite dimensions.

It is stressed that parallel components have been efficiently
eliminated by the proposed FD scheme, thus reducing notably
the number of unknown coefficients. Finally, the computa-
tional domain is terminated by an eight-cell perfectly matched
layer (PML) to annihilate artificial reflected waves [9].

III. NUMERICAL VALIDATION

To verify our solver, we examine the magnetically biased
free-standing 40 μm-wide graphene strip of Fig. 2. Its para-
meters are μc = 0.2 eV and � = 0.11 meV at temperature
T = 300 K, while B0 = 0.5 T with its direction normal
to graphene. Our analysis is performed at the 0.5–5 THz
range and the domain is 300 μm × 200 μm. The unit cells
on graphene and its vicinity are chosen much smaller than
the free-space wavelength λ0 to model precisely the rapid
fluctuations of surface waves. So, �x and �y are set to
λ0/400 at each evaluation frequency.

The dispersion curves of various propagating modes are
given in Fig. 3. Interestingly, there is not any cut-off frequency
for the first mode, indicating a surface wave propagation at the
entire spectrum. The second mode appears at around 1.25 THz,
whereas the remaining ones propagate effectively beyond
2 THz. Note that the first two modes degenerate into edge
ones and present a constant difference in their effective indices.
All the other modes, identified as bulk ones, concentrate at the
microstrip body and converge to the infinite layer propagation
properties, calculated via (4), at higher frequencies.

The electric field distribution is displayed in Fig. 4. Here,
the concentration at the left edge, the first mode, is remarkably
increased compared to the right edge, the second mode, since
the electric field amplitude is almost doubled. This is expected,
as the Lorentz forces on electrons, due to the magnetostatic
bias, predict a higher field concentration at a specific edge.
Thus, surface wave phenomena are more intense at this edge,
explaining the prior constant difference between the effective
indices of the edge modes. For the bulk modes, that is, the

Authorized licensed use limited to: University of Western Macedonia. Downloaded on December 16,2022 at 17:27:27 UTC from IEEE Xplore.  Restrictions apply. 



7501304 IEEE TRANSACTIONS ON MAGNETICS, VOL. 58, NO. 9, SEPTEMBER 2022

Fig. 4. Distribution of the electric field component that is normal to a free-
standing 40 μm-wide graphene layer with � = 0.11 meV, μc = 0.2 eV, and
B0 = 0.5 T at 3 THz. The colorbar limits are identical for all modes.

Fig. 5. Effective index variation of the edge modes on a 40 μm-wide
graphene microstrip versus the magnetostatic bias field at 3 THz.

Fig. 6. Convergence of the proposed modal solver compared to a conventional
FEM one in terms of the required number of unknown components.

third, fourth, and so on, the electric field concentrates at
the microstrip main body, while oscillations increase with
the mode order.

Next, the influence of the magnetostatic bias on the edge
modes is studied in Fig. 5. The frequency is constant at 3 THz
and the variation of B0 reveals that the neff difference between
the edge modes augments for stronger fields. In particular, the
two modes propagate identically in the absence of B0, yet their
difference is almost 33% for B0 = 1 T. Indeed, the Lorentz
forces drive the electrons to the left edge, while the right one
approximates the infinite layer propagation, as derived via (4).

Finally, the efficiency of our algorithm versus the eigen-
value problem complexity is compared to a typical FEM
modal solver [7]. The first mode of the graphene microstrip
waveguide is analyzed using different discretization levels.
As the mesh becomes denser, we expect that the solution
converges, yet the number of unknowns increases. Indeed,
Fig. 6 indicates that a relatively coarse mesh (less than
100 000 unknowns) is not adequate for both solvers, as the

error is over 1%. The featured scheme converges to the correct
neff value for about 310 000 unknowns; almost half compared
to the FEM solver. This is, mainly, due to the linearity of
the eigenvalue problem and the elimination of the normal,
to the cross section, components. Regarding time consumption,
the Arnoldi process is used for both solvers and the required
time is equivalent (less than 10% deviation) for matrices of
the same size.

IV. CONCLUSION

A Maxwellian-oriented linear eigenvalue solver has been
introduced in this work for the accurate mode extraction of
magnetically biased graphene waveguides. The fundamental
differential equations are approximated by an FD scheme,
which discretizes the computational domain in a Yee-cell fash-
ion. The validity of our algorithm has been successfully proved
via the popular graphene microstrip setup since the expected
propagation difference between the edge modes emerged.
Lastly, the efficiency of the proposed technique, with regard to
the necessary unknown variables, has been highlighted because
of its linear nature and the necessity of exclusively tangential,
to the waveguide cross section, electromagnetic components.
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