
A Design Flow Framework for Fully-Connected Neural
Networks Rapid Prototyping

Nikolaos Zompakis
n.zompakis@microlab.ntua.gr

MicroLab-ECE-NTUA
Athens, Greece

Dimitrios Anagnostos
anagnostos.d@microlab.ntua.gr
MicroLab-ECE-NTUA, Greece

Katholieke Univ. Leuven, Belgium

Konstantina Koliogeorgi
konstantina@microlab.ntua.gr

MicroLab-ECE-NTUA
Athens, Greece

Georgios Zervakis
zervakis@microlab.ntua.gr

MicroLab-ECE-NTUA
Athens, Greece

Kostas Siozios
ksiop@auth.gr

Aristotle University
Thessaloniki, Greece

ABSTRACT
The current work deploys a framework for rapid prototyping of
Fully-Connected Neural Networks (FCNs). The scope is to provide
an automatic design flow that generates a template-based VHDL
code considering the accuracy, the resource utilization and the de-
sign complexity. More precisely, the deployed tool incorporates
hardware optimizations in the implementation of the multiplica-
tions, the activation function and the definition of the fixed-point
types providing user-defined configurations thought a GUI. The
FCNs of two applications (Alexnet and Lenet) were implemented
to evaluate our approach. The results seem promising and prove
the design flexibility of our framework generating optimized code
that exceeds the 10K lines for each hardware instance within a few
hours, while preserving low levels of latency that does not exceed
400 cycles for our applications.

KEYWORDS
fpga, neural networks, fully-connected, accuracy, rapid prototyping,
DNN, vhdl, bit precision,
ACM Reference Format:
Nikolaos Zompakis, Dimitrios Anagnostos, Konstantina Koliogeorgi, Geor-
gios Zervakis, and Kostas Siozios. 2019. A Design Flow Framework for Fully-
Connected Neural Networks Rapid Prototyping. In COINS ’19: COINS’19:
International Conference on Omni-layer Intelligent systems, MAY 05–07, 2019,
Crete, GR. ACM, New York, NY, USA, 6 pages.

1 INTRODUCTION
Deep Neural Networks (DNNs) have penetrated in everyday life
from web search engines to computer vision applications. The key
feature is that they deal with incorrect and incomplete data with-
out programming. DNNs capture the desirable property, exploiting
representative training sets. One of the main challenge is the huge
inputs. Even a low resolution image processing DNN algorithm
of just one-megapixel has an input dimension of three billions pa-
rameters, considering the three RGB channels. The fully connected
neural networks (FCNs), imitating the human brain, require high

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
COINS’19, May 5–7, 2019, Crete, Gr
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

computational and memory resources for training. Respectively,
the convolutional neural networks (CoNNs) overcome this issue
applying a parameter sharing approach [5] splitting the problem
in sequential filtering stages/layers that decrease the dimension
complexity. However, CoNNs’s face optimization difficulties to par-
allelize in hardware designs.

More precisely, CoNNs consist of three main layer types 1) the
convolutional layer (CoL), 2) the pooling layer (PL) and 3) the fully
connected layer (FCL). While CoLs are typically execution time
dominant, in real conditions due to the memory data accesses lead
on substantial execution stalls, influencing the performance bot-
tlenecks. Such stalls in case of FCLs can reach up to 30% of the
total stall time[18] at image processing applications like AlexNet
and VGG16, representing just 5-10% of the total execution time.
These stalls occurs due to on-chip (L1, L2 cache) and off-chip mem-
ory misses. Thus, while GPUs have a clear benefit in accelerating
CoLs, they face critical latency issues due to memory misses. FP-
GAs overcome these issues due to the different architecture and
due to the memory locality close to the processing elements. An-
other issue that enforce FPGA as a choice is the prohibitive GPU
power consumption (>100W) for embedded applications. FPGAs
also implement more efficiently non-linear complex operation due
to the existence of extended number of DSPs. Moreover, FPGAs are
ideal platforms for rapid prototyping ASIC-oriented designs.

2 RELATEDWORK
The above considerations motivate the DNNs implementation in
FPGAs. The majority of the literature are high level synthesis (HLS)
approaches [3] that focus on the CoLs optimization [5] due to the
uniform functionality of the matrix multiplications that simpli-
fies the hardware implementation process. A few works follow a
more customized approaches [10],[17] that concentrate on an op-
timized application mapping. More sophisticated template-based
approaches [12] provide more fine grain optimization but literature
lacks of FCLs customized solutions with automatic design flows.
Most of the existing works incorporate the FCL [4] as a special
CoL or exploit system generator library blocks [14],[11] without
considering their special characteristics, partially scarifying the de-
sign efficiency. Typical implementations that highlight this impact
are accessible in[9]. More precisely, the existence or not of FCLs
despite their theoretical limited execution time can decrease the
achieved performance in frames-per-second (fps) by a factor of 12
at AlexNet and up to 50% at VGG-16 [9]. The FCL influences the
CoNNs accuracy so in many cases it has to be included.



COINS’19, May 5–7, 2019, Crete, Gr N. Zompakis et al.

The scope of the current work is to deploy a rapid-prototyping
framework for FCLs on FPGAs, considering latency and resource
utilization in trade-off with achieved accuracy. The rest of the pa-
per is organized as follows: Chapter II outlines the contribution,
Chapter III describes the methodology steps, Chapter IV presents
the deployed Framework tool and the incorporated optimization,
Chapter V presents the experimental results and the Chapter VI
includes the final conclusions.

3 CONTRIBUTION OVERVIEW
Traditional programming languages such as C/C++ as hardware de-
scription languages lack the capability to express hardware timing
explicitly. Moreover, HLS synthesizers [3] infer generic hardware
descriptions that influence negatively the final performance. A hard-
ware description language, like VHDL,[12] provides a closer super-
vision of the hardware design at the final netlist. In this direction,
we have developed a hand-optimized template-based framework
that allows the automatic generation of optimized VHDL code,
directly from software training tools. For our training needs, we
exploit the Matlab neural toolbox [16]. After training, all the re-
quired VHDL code libraries and simulation files, are automatically
generated, ready for implementation. The required time depends
on the complexity of the targeted neural architecture (number of
nodes), the utilized workstation and the required accuracy in bit
precision. Outlining the main breakthroughs of our framework: 1)
it optimizes the hardware implementation of the multiplications im-
proving performance, 2) it adjusts the data types definition saving
in resources, 3) it optimizes the activation function hardware im-
plementation improving accuracy and 4) it generate automatically
the required HDL source files.

The FCNs deployment is a complex task considering several
parameters (the number of layers, the number of nodes, the acti-
vation function etc) that effect the final performance. No reliable
ways exist for a optimal FCN configuration for a given dataset.
Software modeling tools provide flexibility in design exploration
and verification. The challenge for the current work is to create a
software/hardware co-design for FCN rapid-prototyping in FPGAs,
deploying a framework that instantiates the high level design ex-
ploration in optimized VHDL. The goal is to provide an efficient
approach, in terms of 1) FCN parameterization flexibility (number
of neurons, activation function, training method etc), 2) perfor-
mance, 3) resource utilization and 4) accuracy. Compared with the
most relevant existing works Table 3 outlines the supported specs
in respect with 1) the automation in FCN topology exploration, 2)
the bit precision adjustment, 3) the optimization of the multiplica-
tions, 4) the variable resizing based on the value fluctuation, 5) the
optimization of the activation function and 6) the optimal resource
mapping.

Table 1: State of the Art Comparison

Topology
Eplor.

Bit
Prec.

Mult.
Opt.

Var. re-
sizing

Activ.
Opt.

Res.
Map

Work#1 [11] 2� 2� - - - -
Work#2 [14] - 2� 2� - 2� -
Work#3 [4] - 2� 2� - 2� -
Work#4 [17] - 2� 2� - - 2�
Work#5 [12] - 2� 2� - 2�
Proposed 2� 2� 2� 2� 2� -

4 METHODOLOGY
The current section deploys the proposed methodology. Our goal
is to maximize the FCN generalization, achieving high predic-
tion/accuracy rates. Our dataset is fragmented in three sets for
training, validation and testing. We exploit the training sets as
learning examples for our network, the validation sets as fine-tune
parameters to prevent an over-fitting, and the testing sets to evalu-
ate the accuracy The methodology steps (see Fig 2) are described
in detail below.

Figure 1: Methodology

4.1 Data pre-processing
Importing the training and the evaluation data set (Step1), an in-
put normalization follows (Step2). FCNs training convergence is
usually faster if the average of the training input is close to zero.
Considering for example that all the inputs are simultaneously
positive or negative, the respecting weights will be updated by an
amount proportional to δx (where δ is the (scalar) error at that
node and x is the input vector) and these weights will decrease or
increase simultaneously. Thus, if a weight has to change direction
does extreme zigzagging which is inefficient and converge very
slowly. Instantiating many networks, we consider a normalization
of the input values in the range [-1.25 1.25] as the most efficient.

A heuristic algorithm proposes a recommended number of nodes
based on a data set complexity analysis (due to limited space the
heuristic will published in future work). The recommended nodes
should provide enough storage and generalization capacity for the
network. However, this suggestion does not always provide a fixed
optimal solution. The designer can rely on the tool recommenda-
tion and to adjust the nodes number based on the training results
(Step4). If training leads to many errors, extra nodes have to be
added. Respectively, no errors lead to node pruning. A trial and
error procedure (Step5) will specify the optimal FCN architecture
for the final implementation. Each FCN consists multiple node lay-
ers where each node is interconnected with the nodes of the next



A Design Flow Framework for Fully-Connected Neural Networks Rapid Prototyping COINS’19, May 5–7, 2019, Crete, Gr

and previous layer in a dense network. Increasing layers also in-
creases the learning capacity, but it also increases the hardware
overhead. At CoNNs, FCLs rarely exceed the three layers. Based
on this assumption, we give priority at our Framework (Section
IV) to the node scalability, supporting for now up to three layers,
without excluding the possibility with a design effort to be added
extra layers.

4.2 FCN Trainning
In the training phase (Step4) back-propagation algorithms fit well
to the targeted FCN feed-forward topology. After a combined trial-
and-error procedure along with search in literature, we have con-
cluded that the most efficient algorithm, in terms of efficiency and
speed is LevenbergâĂŞMarquadt algorithm [7], which blends the
steepest descent method and the GaussâĂŞNewton algorithm [1].
Fortunately, it inherits the speed advantage of the GaussâĂŞNew-
ton algorithm and the stability of the steepest descent method. A
study highlights the advantages of the specific algorithm [8], how-
ever it is noticed that its usability is limited to networks with up to
a few hundred hidden nodes due to significant required memory
resources. We use conjugate gradient methods as alternatives for
large networks.

4.3 Building of the VHDL Code
After training is finished, a template-based hardware code gen-
eration is triggered (Step6). This process includes three critical
optimizations: 1) a FCN data types optimization by re-sizing the
involved variables, 2) a multiplier optimization and 3) a activation
function optimization. All the aforementioned improvements are
explained at the following section. The goal is to achieve an op-
timal trade-off that maximizes the benefits in terms of prediction
rate/accuracy and implementation cost. After training, the designer
can import the derived VHDL and simulation files to the corre-
sponding FPGA EDA tool.

5 FRAMEWORK TOOL
A Scripting Framework (see Fig 2) like Matlab APP, supports the
aforementioned methodology, decreasing the design and the im-
plementation overhead. A GUI configures the FCN through user-
defined fields. We outline the most critical of them: 1) the number
of the nodes - defines the learning capacity, 2) the preferable bit
precision - influences the added hardware logic 3) activation func-
tion - two options one high precision calculation and another less
based on the added hardware overhead, 4) multiplication style -
defines the hardware multiplications implementation, which will
be explained later and 5) number of training instances - number of
the compared instances to define the best training. The rest of this
section provides extensive analysis of the main hardware modules
that utilize the aforementioned fields.

5.1 FCN Top Module
The FCN Top module implements the structure and the central
control of the entire design. It instantiates the nodes and distributes
tasks on them. A Top FSM arbitrates the whole execution (see Fig
3). Except from the ’Enable’ and ’Reset’ signals, it includes special
signals to trigger the node module function and to apply a selective
activation of a nodes subset. While the last option is not exploited
in the current study it is usefully for dynamic nodes pruning at

Figure 2: Proposed Framework

Figure 3: Hidden Layer FSM

future works. A main control process behaves like large AND gate
that combines the ’flag’ signals from all the nodes of each layer
and verifies if all the nodes are enabled in order to proceed to
the next computation stage. Figure 3 outlines the FSM function
at the two last node layers (last hidden and output layer). ’Run’
state sets the enable signals of the hidden nodes and orders their
respective FSMs to start computations, whereas âĂĲrun_nextâĂİ
state switches off hidden nodes while switching on output nodes.
The same functionality is applied between each node layer.

5.2 Library Module
Library module consists of a package of customized types, variables,
component declarations and functions that are utilized as global
objects/constants to the entire design and facilitates the design
scalability. Thus, any design modification or extension can be easily
Incorporated thought this module, gathering all the necessary in-
terfaces. Library also holds the auto generated types that define the
possible node FSMs states in the entire design, providing a good vis-
ibility of the expected latency in clock cycles. It also holds the node
data variables including weights and bias that represents the stored
âĂĲknowledgeâĂİ. The input, output and intermediate values of
each nodes are also stored. Considering the inputs of the FCN can
be of different lengths, it would be a waste of valuable resources
to use the same fixed-types. As mentioned in the methodology
section, training is more efficient when the FCN input is normal-
ized in the range [-1.25 +1.25]. Respectively this value restriction
is propagated to the other interconnected layer nodes, decreasing



COINS’19, May 5–7, 2019, Crete, Gr N. Zompakis et al.

also the expected value range and the respective necessary bits. We
will show at the node module how this improves the multiplication
latency. So we use a customized fixed-point type (explained below)
for each variable exploring the maximum values individually, given
exactly the amount of the required bits. While this process is hard
to be implemented for each node especially for large FCNs, the
framework does this process automatically, generating the adjusted
fixed-points in VHDL code. This can improve dramatically the de-
sign effort considering the potential scaling of the nodes in the
network providing a fine-grain optimization that HLS tools is hard
to support.

Library module also declares the estimation accuracy based
on the user definitions. Considering that decimal numbers are in-
evitable in FCN and the float pointing numbers are computationally
expensive for hardware implementations, fixed-points are preferred.
However, EDA tools do not support fixed-point by default. For com-
patibility and optimization reasons, we have built our own libraries.
A flexible type of signed fixedâĂŞpoint type (fixedX) for fast and
resource efficient implementations where two constants specify
the length of integer and fraction part. We have incorporated some
extra choices to improve the design trade-offs:

(1) In the implementation of the rounding routine two options
exist: round and truncate. Rounding provides more accurate
results with added resources (it ensures fourth decimal place
rounding) while truncating is less expensive (user defines
the bit precision) but it should have adequate bits to not lose
critical information due to truncation.

(2) Overflowing routine also offers two options: Saturate and
wrap. Saturation is more accurate routine, but in terms of
hardware consumes important resources, so in most cases it
is preferred the wrap option.

5.3 Activation Function Module
The activation function is the non-linear part of the FCN influ-
encing the training sensitivity and the achieved accuracy. After
experimentation, we have concluded that sigmoid function (logsig)
provides more accurate training results for the same number of hid-
den nodes, compared to a) hyperbolic tangent function (tansig), b)
combinations of tansig and logsig and c) RelU function. Relu while
being widely acceptable especially at convolutional DNNs, carries
some disadvantages for the training process. One of its issue is that
the negative values become zero, restricting the training ability to
trace and fit properly these values influencing the accuracy. Relu is
also a linear function with no upper bound, which is convenient for
implementation in GPUs but a disadvantage for FPGA implementa-
tions for given limited word sizes. On the other side, the sigmoid
function is a non-linear function with high computational needs
that are addressed more efficiently exploiting the special FPGA
DSP components. The improved accuracy in activation function
is translated to less required FCN nodes for the same detection
results which means less hardware resources. We rely on this effect
to further improve the hardware implementation of the sigmoid
applying some heuristic modifications that are analyzed below.

f (x) =
1

1 + e−x
(1)

To instantiate efficiently the Logistic sigmoid function (see EQ.1)
in hardware, we have to deal with the time consuming division

and exponential operations. Our approach relies on [15] taking
advantage of two basic attributes of the function:

• f(x) is practically 0 if x ≤-8, and practically 1, if x≥8.
• It is a symmetrical function, f(-x)=1-f(x)

Heuristic 1 performs the implementation of the comparisons
between -8 and 8 instead utilizing comparing signs (leq , geq) that
require hardware expensive substractors. More precisely, we utilize
a more simplified logic as follows.

• Input bits, except the 3 LSBs, are checked through AND/OR
operations to quickly decide if the value does not reside in
the [-8,8] range, in which case depending on the sign 0 or 1
is returned.

• If the value is in the [-8,8] range, then 3 bits per integer/fraction
part are preserved and the value is calculated through a fast
AND-OR tree, as described in [15].

Algorithm 1: Sigmoid Activation Function

1: ToZero = Input(MSB) ∧ Input(MSB-1) ...∧... Input(3))
2: ToOne = Input(MSB) ∨ Input(MSB-1) ...∨ ...Input(3))
3: if ToZero then
4: Output = 0
5: else if ToOne then
6: Output = 1
7: else
8: if Input(MSB) = 0 then
9: Keep 3 bits from decimal
10: Use LUT to output logsig(Input)
11: else
12: Keep 3 bits from decimal
13: Use LUT to output 1-logsig(-Input)
14: end if
15: end if

5.4 Node Module
Nodes are the FCN processing units consisting a activation func-
tion module and a local FSM. All nodes share the same code. The
node output is the result of the log_sigmoid function with a range
between [0, 1]. For the binary expression of the node output a 8-bit
fixed point is used, 7 of which is dedicated to the decimal part. The
weights and biases of the training are the structural elements of the
FCN that are declared in the library module and are exploited in
the node modules. When a node is enabled, parallel multiplications
are triggered. Each input from the previous layer nodes is multi-
plied by its corresponding weight. The multiplication outcomes are
accumulated and pass to the activation function to generate the
node output. Equation 2 expresses this accumulation, where F is
the activation function.

output = F (
∑

(weiдhts × input + bias)) (2)

A number of operands which is equal to the number of inputs
from the previous layer need to be summed, and the sum will be
used as input to the log_sigmoid function in order to provide the
final output of the node. The scheme of additions is of critical im-
portance, because if we choose adders with many operands this



A Design Flow Framework for Fully-Connected Neural Networks Rapid Prototyping COINS’19, May 5–7, 2019, Crete, Gr

Figure 4: Hidden node pipeline stages

will eventually be the bottleneck of our system and will have neg-
ative effect in timing performance. Eventually, we choose to add
operands in pairs of two, thus the formed adder tree will have a
depth of ceil(log2(N_inputs)). Fig.4 shows an example of the de-
scribed adder tree, which in this case handles 6 inputs, so the depth
of the tree will be ceil(log2(6)) = 3, that means that 3 cycles are
required for the final sum.

A remarkable number of multipliers is required, even for medi-
umâĂŞsized networks. For example a given network of 8 Input
Nodes, 100 Hidden Nodes and 10 Output Nodes would consist of
10x100 + 100x8 =1800 multipliers. FPGAs needs to consume valu-
able resources to efficiently supports such estimations, but apart
from the resource restrictions, multiplications have impact at the
design latency, since require significantly extended number of clock
cycles. However, some conditions allow a more efficient approach
of the nodes’ multiplications. The first is that the training weights
(the first multiplications operand) remains stable. The second is that
for small fluctuation of the node inputs (the second operand), the
multiplications can be simplified evenmore by replacing multipliers
with Look-Up-Tables (LUTs). As mentioned, the FCN input data
are normalized in the range [-1.25, 1.25]. Knowing the weights and
the bias, the input maximum value range can be also pre-estimated
as the nodes are interconnected and the normalized values are
propagated in the network.

Considering that the node output is next-layer node input, hav-
ing a limited range [0, 1] due to the logsig function result and after
experimentation, we decide that seven bits for the fraction part
provides the best trade-off between accuracy and implementation
overhead. Thus, a 7-bits fraction defines 128 discrete values for the
each node input defining a set of potential combinations based also
on the user’s desired bit precision in the intermediate operations
(multiplications and accumulations). Thus, the discrete logsig input
values and the weights consist a combination of multiplications
predefined in LUTS that can totally replace multipliers. The key
is that this is implemented transparent to the designer saving in
logic units (DSPs), decreasing the required clock cycles. Framework
provides the option to the designer to choose between to fully im-
plemented multiplications in LUTs (activation function and weight
multiplications) or to partial excluding the weights multiplication at
the intermediate node layer(s) with the utilization of conventional
multipliers.

6 EXPERIMENTAL RESULTS
The deployed methodology was applied utilizing the aforemen-
tioned framework, with two representative (CoNNs) datasets. The

first CoNN network is the LeNet-5 trained on the MNIST database
of handwritten digits [6], while the second one is AlexNet trained
on a subset of the caltech256 dataset [2]. Both examples attempt
input image classification based on feature extraction through con-
volution layers on a first stage, followed by a selection through
dense FCLs. Both cases include a FCN with a number of parameters
comparable to the convolutional part, that heavily affects the total
latency [9],[18]. The main objective is to build the FCNs : 1) pruning
nodes at the intermediate hidden layer (the input and output layers
are stable for compatibility with the rest CoNN) 2) evaluating the
generated VHDL code in a real platform modifying the accuracy in
bit precision and 3) evaluating the hardware deployment time.

Considering that AlexNet has two orders of magnitude more
classes than LeNet (1000 compared to 10) and due to limited com-
putation resources for retraining AlexNet’s FCN, we reduced the
examinedAlexNet classes at 40 (the intersection between caltech256
and ImageNet datasets). Our intention in case of AlexNet is not to
compete with the original AlexNet topology but to examine our
framework’s scalability and to study the implementation impact
modifying the accuracy . The fully AlexNet implementation will be
part of future work utilizing hardware training accelerators.

For this work, we utilize the pretrained models from Caffe Model
Zoo [13] for the convolutional networks to extract the inputs to the
FCLs, then utilizing the described framework for the creation of the
FCLs. Training, testing and validation sets are segmented per the
suggested recommendations for caltech256 to 40-10-50, whereas
MNIST offers separate datasets.

Tables 2, 3 outline the results for both cases. Software accuracy
is estimated after FCN training keeping the best among 10 train-
ings and represents the theoretical bottleneck for the hardware
instantiation. The objective is to examine the trade-offs between bit
precision, latency, resource utilization and accuracy in hardware.
For the scope of our measurements, we utilize the Zynq Ultra Scale
(xqku095) platform of Xilinx and the Vivado EDA tool. Analyzing
our results we conclude that: 1) a 7-bit precision seems to be enough
to achieve a close to the maximum accuracy, 2) the bit precision
does not seems to remarkably influence the resource utilization
and the latency for a step of one bit in case of up to 200 #hidden
nodes, 3) latency remains low just few hundred cycles even for
quite complex FCNs (1000 #hiden nodes), 4) the code extraction
time for cases up to 200 hidden nodes does not exceed the 1 hour
while for big designs (1000 #nodes Alexnet) it is up to 8-9 hours
in a server (2x Intel(R) Xeon(R) CPU E5-2658A v3 @ 2.20GHz 12
Cores - 24 Threads 128Gb Ram) at Matlab environment and 5) our
templated-based source code exceed the 10K -50k lines for each
instance that corresponds to hundred man hours for deployment
by hand.

7 CONCLUSION
In the context of the current study, we deployed a methodology
flow for FCN rapid prototyping. The target is to provide an auto-
matic Framework that generates optimized VHDL code considering
the accuracy, the latency, the resource utilization and the design
complexity. Our tools incorporate optimizations in several phases
applying customized solutions concentrating mainly at the optimal
hardware implementation of the calculation operations. Two FCN
application prove Framework flexibility, generating optimized code
that exceeds the 10K lines for each instance within a few hours.



COINS’19, May 5–7, 2019, Crete, Gr N. Zompakis et al.

Table 2: Lenet - FCN Experimental Results

(a) # Hidden Nodes 40 - Software Accuracy 32%, Freq. 250 MHz

Bit Prec. LUTS DSPs Hard. Accuracy Latency (cycles)
5 108483 5 30.7% 72
6 109096 5 31.2% 72
7 109986 5 31.8% 72
8 110456 5 32% 72

(b) # Hidden Nodes 60 - Software Accuracy 58.4%, Freq. 250 MHz

Bit Prec. LUTS DSPs Hard. Accuracy Latency(cycles)
5 156398 6 36.2% 96
6 156403 6 42.7% 98
7 156453 8 47.9% 98
8 157393 8 58.1% 98

(c) # Hidden Nodes 80 - Software Accuracy 89.7%, Freq. 250 MHz

Bit Prec. LUTS DSPs Hard. Accuracy Latency (cycles))
5 169829 6 76.4% 110
6 175213 8 78.5% 110
7 175497 7 81.1% 113
8 176593 8 81.7% 112

(d) # Hidden Nodes 100 - Software Accuracy 98.2%, Freq. 250 MHz

Bit Prec. LUTS DSPs Hard. Accuracy Latency (cycles)
5 182344 8 91% 121
6 198781 11 93% 123
7 199111 14 97.1% 124
8 208781 13 97.8% 124

Table 3: Alexnet - FCN Experimental Results

(a) #Hidden Nodes 200 - Software Accuracy 32,7%, Freq. 180 MHz

Bit Prec. LUTS DSPs Hard. Accuracy Latency (cycles)
5 217668 115 21,1% 179
6 233119 124 26,4% 185
7 256993 128 30,9% 178
8 257891 143 32,4% 183

(b) #Hidden Nodes 400 - Software Accuracy 54,3%, Freq. 180 MHz

Bit Prec. LUTS DSPs Hard. Accuracy Latency (cycles)
5 269834 89 39,3% 283
6 289345 91 48,4% 284
7 309819 96 52,1% 292
8 324891 93 53,8% 298

(c) #Hidden Nodes 800 - Software Accuracy 76%, Freq. 180 MHz

Bit Prec. LUTS DSPs Hard. Accuracy Latency (cycles)
5 316366 97 68,4% 326
6 339738 105 72,9% 323
7 346671 102 75,1% 345
8 369643 107 75,3% 361

(d) #Hidden Nodes 1000 - Software Accuracy 84.6%, Freq. 180 MHz

Bit Prec. LUTS DSPs Hard. Accuracy Latency (cycles)
5 367541 181 80% 375
6 369632 186 82.7% 370
7 379505 182 83.89% 387
8 387591 190 83.9% 390

ACKNOWLEDGMENT
This research is co-financed by Greece and the European Union
(European Social Fund- ESF) through the Operational Program
“Human Resources Development, Education and Lifelong Learning
2014-2020” in the context of the project “Automated methodology
for production and execution of data-centric multi-level approximate
equivalent applications for heterogeneous computing platforms” (MIS
5005377).

REFERENCES
[1] Wei-Sheng Chin, Bo-Wen Yuan, Meng-Yuan Yang, and Chih-Jen Lin. 2018. An

efficient alternating newton method for learning factorization machines. ACM
Transactions on Intelligent Systems and Technology (TIST) 9, 6 (2018), 72.

[2] Gregory Griffin, Alex Holub, and Pietro Perona. 2007. Caltech-256 object category
dataset. (2007).

[3] Yijin Guan, Hao Liang, Ningyi Xu, Wenqiang Wang, Shaoshuai Shi, Xi Chen,
Guangyu Sun, Wei Zhang, and Jason Cong. 2017. FP-DNN: An automated frame-
work for mapping deep neural networks onto FPGAs with RTL-HLS hybrid
templates. In Field-Programmable Custom Computing Machines (FCCM), 2017
IEEE 25th Annual International Symposium on. IEEE, 152–159.

[4] Muhammad K Hamdan and Diane T Rover. 2017. VHDL generator for a high
performance convolutional neural network FPGA-based accelerator. In ReConFig-
urable Computing and FPGAs (ReConFig), 2017 International Conference on. IEEE,
1–6.

[5] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-scale video classification with convolutional
neural networks. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition. 1725–1732.

[6] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 11 (Nov 1998), 2278–2324. https:
//doi.org/10.1109/5.726791

[7] Chen Lv, Yang Xing, Junzhi Zhang, Xiaoxiang Na, Yutong Li, Teng Liu, Dongpu
Cao, and Fei-Yue Wang. 2018. Levenberg–Marquardt Backpropagation Training
of Multilayer Neural Networks for State Estimation of a Safety-Critical Cyber-
Physical System. IEEE Transactions on Industrial Informatics 14, 8 (2018), 3436–
3446.

[8] Chen Lv, Yang Xing, Junzhi Zhang, Xiaoxiang Na, Yutong Li, Teng Liu, Dongpu
Cao, and Fei-Yue Wang. 2018. Levenberg–Marquardt Backpropagation Training
of Multilayer Neural Networks for State Estimation of a Safety-Critical Cyber-
Physical System. IEEE Transactions on Industrial Informatics 14, 8 (2018), 3436–
3446.

[9] Ingo LÃĳtkebohle. 2017. Xilinx CHai w/ 1024DSP @ 250/500MHz. https://github.
com/Xilinx/CHaiDNN/. [Online; accessed 06-Dec-2018].

[10] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. 2017. An automatic RTL
compiler for high-throughput FPGA implementation of diverse deep convolu-
tional neural networks. In Field Programmable Logic and Applications (FPL), 2017
27th International Conference on. IEEE, 1–8.

[11] Leonardo Reis, Luis Aguiar, Darío Baptista, and Fernando Morgado-Dias. 2014.
A software tool for automatic generation of neural hardware. Neuron 1, 1 (2014),
229–235.

[12] Hardik Sharma, Jongse Park, DivyaMahajan, Emmanuel Amaro, Joon Kyung Kim,
Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh. 2016. From high-level deep
neural models to FPGAs. In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE Press, 17.

[13] Marcel Simon, Erik Rodner, and Joachim Denzler. 2016. ImageNet pre-trained
models with batch normalization. arXiv preprint arXiv:1612.01452 (2016).

[14] Alin Tisan and Jeannette Chin. 2016. An end-user platform for FPGA-based
design and rapid prototyping of feedforward artificial neural networks with
on-chip backpropagation learning. IEEE Transactions on Industrial Informatics 12,
3 (2016), 1124–1133.

[15] MT Tommiska. 2003. Efficient digital implementation of the sigmoid function
for reprogrammable logic. IEE Proceedings-Computers and Digital Techniques 150,
6 (2003), 403–411.

[16] Andrea Vedaldi and Karel Lenc. 2015. Matconvnet: Convolutional neural net-
works for matlab. In Proceedings of the 23rd ACM international conference on
Multimedia. ACM, 689–692.

[17] Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei
Hwu, and Deming Chen. 2018. DNNBuilder: an automated tool for building
high-performance DNN hardware accelerators for FPGAs. In Proceedings of the
International Conference on Computer-Aided Design. ACM, 56.

[18] Hengyu Zhao, Colin Weinshenker, Mohamed Ibrahim, Adwait Jog, and Jishen
Zhao. 2017. Layer-wise Performance Bottleneck Analysis of Deep Neural Net-
works. The 1st International Workshop on Architectures for Intelligent Machine
(2017).

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://github.com/Xilinx/CHaiDNN/
https://github.com/Xilinx/CHaiDNN/

	Abstract
	1 Introduction
	2 Related Work
	3 Contribution Overview
	4 Methodology
	4.1 Data pre-processing
	4.2 FCN Trainning
	4.3 Building of the VHDL Code

	5 Framework Tool
	5.1 FCN Top Module
	5.2 Library Module
	5.3 Activation Function Module
	5.4 Node Module

	6 Experimental Results
	7 Conclusion
	References

