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Abstract
A health diagnosis mechanism of rolling element bearings is necessary since the most
frequent faults in rotating electrical machines occur in the bearing parts. Recently, con-
volutional neural networks (CNNs) have redefined the state‐of‐the‐art accuracy for
bearing fault detection and identification, extracting location invariant feature mappings
without the need for prior expert knowledge. With the use of convolution operations as
the core of the process, CNNs consider the local spatial coherence of the input. However,
one major drawback of the convolutional models is the weakness to capture global in-
formation about the input vector and to derive knowledge about the statistical properties
of the latter. The authors propose a deep learning (DL) model that concatenates the
features that are produced from two neural streams. Each consists of an attention
mechanism that intends to learn different representations of the input vector, and so
finally to produce a feature mapping that contains global and spatial locally information.
Simulation results on two famous rolling element bearings fault detection benchmarks
show the effectiveness of the method. In particular, the proposed DL model achieves
99.60% in the Case Western Reserve University bearing data set and 99.10% in the
Paderborn University bearing data set.

1 | INTRODUCTION

The demand for effective fault detection and identification has
been drastically increased due to the complexity and cost of
modern industrial systems. Indeed, successful health diagnosis
enhances security and reliability, preventing catastrophic un-
expected downtimes and reducing the cost and time of repair
operations. Rotating components are core elements of me-
chanical systems and their health condition ensures perfor-
mance and stability. On the other hand, the most common
(over 40%) failures of the rotating electrical machines occur in
their rolling element bearings [1].

Therefore, efficient bearing fault diagnosis and identifica-
tion is crucial in modern industrial applications. Vibration,
acoustic, current and temperature measurements have been
widely used in fault diagnosis techniques, preventing the losses
of bearing element failures [2, 3]. Among them, vibration
sensor measurements are extensively employed in industrial

applications due to the following: (a) the appearance of bearing
defects induces vital changes in the form of the vibration
signals and (b) the recent advances in sensor technology have
resulted in the efficient measurement and storage of vibration
signals with a low signal‐to‐noise ratio. Moreover, signal pro-
cessing techniques and machine learning classification ap-
proaches exploit the vibration measurements in applications of
bearing fault diagnosis.

The signal processing techniques are mainly classified in
time‐domain and frequency‐domain approaches [4, 5]. In the
time‐domain analysis, statistical indicators such as peak value,
root mean square value, crest factor, kurtosis, and others are
estimated from raw vibration signals. Alternatively, spectrum
analysis investigates the energy in different frequency regions
performing Fourier transform. Also, in cases of non‐stationary
vibration signals, the combination of time and frequency
domain has been successfully used, applying techniques as a
wavelet transform.
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Traditional machine learning approaches require a vast
amount of raw data and perform in three phases: initial pre-
processing, extraction of hand‐crafted features, and training of
the conventional supervised algorithm. Artificial neural net-
works (ANNs) [6], support vector machines (SVMs) [7],
Bayesian networks (BNs) [8], neuro‐fuzzy inference logic
(NFIL) [9–12], hidden Markov models (HMMs) [13], and
NN‐based multi‐agent systems (MASs) [14] have been applied
to fault diagnosis applications where each method has specific
advantages and disadvantages. Therefore, ANNs are predis-
posed to over‐fitting, while SVMs generalise well even with a
limited amount of training data. HMMs are ideal for cases with
unobserved states but their training is computationally
expensive. Finally, BNs and FNIL‐based models are relatively
easy to interpret and can handle uncertainties and non‐
linearities.

Deep learning (DL) models achieve feature hierarchy with
the processing of information through multiple non‐linear
neural layers. In that way, the extracted features acquire rep-
resentation, abstraction, and discriminative capabilities. The
DL models have restated the accuracy results in many research
fields such as image recognition, natural language processing,
recommendation systems, automatic speech recognition, and
others [15]. Also, DL‐based models have shown superior
performance in the tasks of fault detection and diagnosis in the
rotating components of electrical machines, stimulating the
interest of the scientific community. Therefore, in the last few
years, deep belief networks [16], deep Boltzmann machines
[17], deep auto‐encoders [18], deep recurrent models [19], and
deep generative adversarial networks (GANs) [20] have been
employed successfully in the task of bearings fault detection.

The most commonly used models of the DL framework in
the fault detection and identification task are the convolutional
neural networks (CNNs) [21] and their variants. One of the
main advantages of CNNs over conventional neural networks
is their ability to learn location‐invariant features, exploiting the
local spatial coherence of the input mapping. The CNN
framework considers the input as a hierarchy of local regions
and so each weight filter is moved across the input. In that way,
convolutional models employ the weight‐sharing property and
have fewer learning parameters, enhancing the generalisation
ability.

In [22], the raw vibration sensor signals are transformed
into two‐dimensional images and, in the sequel, a CNN model
based on LeNet‐5 architecture is used to detect and classify
faults. In the same task, a deep CNN with wide first‐layer
kernels presents robustness to noise and domain adaptation
abilities [23]. In another research effort [24], the original raw
data signal is transformed into the time‐frequency domain.
Then, the resulting continuous wavelet transform scalogram
acts as input in a CNN model. Also, a CNN model is employed
successfully in an experimental environment for fault diagnosis
of induction motor [25] and a broad convolutional neural
architecture [26] achieves high performance, with the ability to
adapt and so to include new abnormal cases. Finally, a
comprehensive review of bearing fault detection applications
using CNNs is presented in [27].

In the last few years, many advancements of CNNs have
been proposed trying to improve their architecture and
training. Thus, deep residual and densely connected CNNs
present state‐of‐the‐art accuracy in many tasks, exploiting the
use of short connections between successive layers [28, 29]. In
particular, the practice of skip connections reduces the impact
of vanishing gradient and deals with over‐fitting problems.
Also, the feature mappings concatenation of subsequent layers
in the densely connected neural framework reinforces the
feature reuse and substantially reduces the number of param-
eters. In the current research effort, the authors employ the use
of dense connections between the feature mappings of
successive layers, to make use of their advantages.

Also, another influential DL advancement that recognises
the dependencies of the sequential feature mappings is the
attention mechanism. This mimics the human visual practice to
concentrate and focus on the most relevant regions of visual
information for inference. For example, such an attention
mechanism is used in the task of natural language processing
and especially in neural machine translation systems where it
acts as an enhancement of the classical encoder–decoder
framework, succeeding to identify long‐range dependencies
[30]. Furthermore, attention‐based DL models have been used
for speech recognition, document classification, image caption
generation, and others [31, 32].

In the domain of bearing fault diagnosis, the attention
mechanism is used in [33] to focus on the most informative
regions of the data segments, corresponding to successive
vibration signals, and thus to augment the representation
strength of the extracted features. Also, an attention mech-
anism combined with a dense convolutional network is
applied successfully for bearing fault identification in [34].
The latter model has fewer learning parameters than the
conventional one and generalises better in cases of small
training data sets. However, in both research efforts, the
attention framework recognises the temporal dependencies of
successive feature mappings, which correspond to subsequent
segments of the input vibration signal. In contrast, these
authors uses the attention mechanism to (i) reconstruct the
input vibration signal, using dynamic convolutional layers,
focussing on the most informative regions of the latter, and
(ii) extract global features that correspond to the long‐range
interactions of the input. Finally, the extracted local and
global attentive features are concatenated to identify the type
of bearing fault.

One main drawback of convolution layers is the defect in
the occupation of global knowledge about the input mappings
since they operate only in a local region. Indeed, convolution
operations extract location‐invariant hierarchical representative
features but do not recognise the global consistency of the
input mappings. The work carried out in [35] deals with the
above deficiency using a combination of self‐attention and
constitutional features for visual discrimination and achieving
improving on the performance. In the current research effort,
the authors propose the use of two independent neural
streams, each integrating with spatially local and global infor-
mation of the input. The feature mappings that are generated
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from the neural streams are concatenated and inserted in the
final discriminative layers of the network.

In more detail, the first neural stream identifies the spatial
consistencies of the input mappings using as core convolution
operations. Furthermore, the first block of layers in the first
stream acts as a convolution‐based local attention mechanism
that transforms dynamically the input mapping emphasising its
most valuable segments. The most important regions of the
input are estimated with the use of a convolutional layer,
exploiting its ability to recognise local patterns. On the con-
trary, the second neural stream examines the global consistency
of the input signal, seeking to extract features that combine
statistical and energy properties of the latter. Likewise, the first
block of the stream provides an attentive mechanism based on
a simple feed‐forward neural network and concentrates on the
most significant parts of the input mapping. In both spatially
local and global attention mechanisms, a softmax layer is
applied to capture the probabilistic contributions of the
attention weights.

A summarisation of the contributions of the current
research effort is as follows:

� A convolutional‐based attention block of layers is proposed
that recognises the spatial consistencies of the input vibra-
tion signal, focussing on the most informative region of the
latter.

� Global information is identified by another attention
mechanism considering the global context of the input
mapping with the use of dense layers.

� The extracted features mapping combines spatially local and
global information.

� The proposed model identifies successfully the fault classes,
achieving state‐of‐the‐art results in two well‐known rolling
element bearings data set benchmarks. Especially, in one of
them, the DL model achieves recognising not only the type
of bearing fault but also its severity.

� The robustness of the proposed model is demonstrated also
(by simulation means) under the presence of additive noise.

In Section 2, a brief overview of the rolling element
bearings and their corresponding failure causes is given. In
Section 3, the components of the proposed attention steam
network are described. The bearing data set benchmarks, the
simulation experiments, the comparison with state‐of‐the‐art
literature, and the corresponding results are presented and
thoroughly discussed in Section 4. Finally, in Section 5 the
conclusions and future work are outlined.

2 | BRIEF OVERVIEW OF THE
ROLLING ELEMENT BEARINGS AND
THEIR FAULTS

There are many types of rolling element bearings, the most
common of them being the ball, needle, and roller ones
(Figure 1a–c). For example, ball bearings have spherical rolling
elements and are mainly used in low to intermediate load

applications, in contrast to roller bearings which use cylindrical
rolling elements and are found in heavier load‐carrying re-
quirements. More manufacturing options also apply for
example regarding the number of rows of the rolling elements
so that they can be found as single, double, or multiple‐row, the
groove geometry (shallow or deep), etc. Without loss of gen-
erality, the basic elements of a rolling element bearing are
shown in Figure 1d, where apart from the basic diameters
which characterise the component, the seals, the inner and
outer rings, along with their corresponding races, and the
retainer which keeps the rolling elements (balls here) in place,
are depicted. Moreover, many important factors should be
taken into account during selection of the appropriate bearing
such as the available space, the type of load, the rotational
speed, the noise, precision and stiffness requirements, the
operating environment, etc.

Despite the little attention or maintenance in service which
may be required, it is apparent that all of the elements are
potentially subject to failure. Figure 2 shows three fault types
usually met in electrical machinery, that is inner‐race fault,
outer‐race fault, and ball fault. There are several reasons for
which bearings fail. The primary contributors to abnormal
bearing signatures are possible imbalance, misalignment, rotary

F I G U R E 1 Common rolling element bearings types: (a) ball type,
(b) needle type, (c) roller type, (d) ball bearing parts (exploded view)

F I G U R E 2 Typical bearing faults: (a) outer‐race fault, (b) inner‐race
fault, (c) ball fault
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instability, excessive or abnormal loads, and mechanical
looseness [36]. The following describe the most common ones.

Removal of small material particles subsequent to a
running surface breakage leads to the so‐called spalling or
fatigue failure. This failure can show up on the balls, or the
inner or outer ring. Once initiated, it exhibits a progressive
behaviour and further operation spreads it out. The further the
operation, the more progressive the failure. Of course, the
vibrations which accompany it mark an increment.

When the ring's material elastic limit is exceeded as a result
of loading, we have the situation of brinelling (named after the
Brinell scale of hardness). The marks in this case are shown in
the raceways as permanent indentations. Actually, brinelling
may be caused by any severe impact or static overload. Simi-
larly to fatigue failure, vibration and resultant noise are
increased.

Premature fatigue may be caused by excessive loads.
Improper fits (tight or loose), improper preloading conditions,
and brinelling can also lead to early fatigue failure. A solution
to this case is a load reduction or the use of a greater capacity
bearing.

Another cause relates to overheating. Discolouration (gold
to blue) of the cages, balls, and rings constitutes a typical
symptom. The ring and ball materials can also be annealed if a
temperature of 400 °F or above is reached. The capacity of the
bearing is reduced due to the loss in hardness and early failure
appears. Element deformation may be noticed in extreme
cases. The bearing lubricant will also be destroyed or at least
degraded with the temperature rise.

Lubricant failure and overheating are strongly connected.
A blue/brown discolouration in the balls and their tracks de-
notes bad lubricant, resulting in consequent excessive wear of
balls and rings, which in turn leads to overheating and in turn
catastrophic failures. The bearing's health is largely dependent
on a very thin film of lubricant (millionths of an inch) with
adequate viscosity, which should be continuously present be-
tween the races/balls and between the cage/rings/balls [37].

Contamination and corrosion are also among the leading
causes of bearing failure. The usual contaminants such as sand,
water, and dirt, but also corrosives and chemicals also cause
failures. The former dilute the thin oil film and reduce the
lubricant viscosity, while the latter corrode the bearing surfaces
and thus create many abrasive particles. The denting of the
bearing balls and raceways is then inevitable, resulting in high
vibrations and wear. Discolouration of red/brown areas on the
raceways and balls is a usual symptom of corrosion, while in
some cases it can initiate fatigue failures.

Misalignment and improper fitting are also usual bearing
failure causes. It is worth noting that although some, but not
all, bearings tolerate minor misalignment between shaft and
bearing housing, in most of them a 1/1000th of an inch per
inch misalignment leads to abnormal temperature rise and wear
of the ball retainer. Excessive vibration then is introduced.

In cases where loose fits are present, and the relative
motion between mating rotating parts (shaft/inner ring) may
be slight but continuous, fretting occurs. Fretting is the gen-
eration of fine metal particles which oxidise forming an

abrasive material (leaving a distinctive brown colour), which, in
turn, will aggravate the looseness. On the contrary, if a tight fit
is indicated (e.g. the rotating interference fits exceed the radial
clearance), a heavily loaded balls situation is encountered. The
results include high load torque, temperature rise, and rapid
wear and fatigue in continuous operation [38].

It is thus evident from the above that a reliable and very
precise fault diagnosis method is of critical importance to avoid
electrical machine damages. The current research is towards
this direction.

3 | DESCRIPTION OF THE PROPOSED
DL MODEL

The architecture of the proposed DL model is illustrated in
Figure 3. The latter takes as input the raw vibration signal,
provided by sensors, and outputs the class that corresponds to
the normal state or the type of electrical motor bearing fault.
With respect to Figure 3, a brief description of the layers of the
DL model follows.

The convolutional layer tries to stimulate the structure of
the biological visual cortex, where each cortical neuron oper-
ates only in a restricted region of the visual space (receptive
field). The receptive fields of neighbouring neurons overlap to
cover and so to represent the entire visual field. The artificial
visual process is stimulated by the convolving of the input
signal with a set of learnable kernel weights. The responding
feature representations correspond to the kernel weights of the
convolutional layer. The mathematical operation of the con-
volutional layer is given by the following equation

so ¼
X

P
Kl � si þ b

l
; ð1Þ

where the operator (∗) is the dot product, Kl denotes the l‐th
kernel filter of the convolutional layer which is shared across
the local region P, bl is the bias of the l‐th filter, and si, so are
the input and output of the convolutional layer, respectively.
With the passing of the same kernel filter over the input
mapping, the property of weight sharing and the extraction of
location invariants features are achieved. The setting hyper‐
parameters of the convolutional layer are the quantity of the
kernel filters, their dimensions, the stride, and the padding. The
reader may refer to [21], for a recent broad survey which
describes and analyses in detail the improvements in CNNs on
many and different aspects.

The batch normalisation (BN) layer enhances the learning
process of DL models, eliminating the effect of covariate shift
[39]. The latter is the variation in the distribution of the acti-
vations of the internal layers during training. To restrict the
phenomenon of covariate shift, the activations of each layer are
normalised to zero mean and unit variance. In the sequel, to
maintain the representation capability of each layer, a trans-
formation of the normalised mapping is applied using the
learnable parameters γ(k) and β(k). Through the above stable
conversion of the distribution of activations, larger values of
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learning rate parameter can be applied improving the speed of
training. The d‐dimensional activation of the inner layer as
si ¼ ðs

ð1Þ
i ; s

ð2Þ
i ;‥; s

ðdÞ
i Þ is now considered. Then, the BN trans-

formation sðkÞo of the input mapping sðkÞi is described by the
following mathematical formula

bsi ðkÞ ¼
sðkÞi − EðsðkÞi Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðsðkÞi Þ
q

sðkÞo ¼ γðkÞbsi ðkÞ þ βðkÞ:

ð2Þ

Activation layers apply the non‐linear transformation of
the input mappings, improving the representation and
discriminative capability of the DL model. The most typical
activation function is the rectified linear unit [ReLU(z) = max
(0, z)] since it addresses the vanishing gradient problem and
is computationally efficient. In the current research effort,
right before the concatenation of the features from both
neural streams, we apply the hyperbolic tangent activation
function (tanhðzÞ ¼ ez−e−z

ezþe−z) to permit the dying ReLU prob-
lem and get representation balance. Also, in the last layer of
the multi‐class classifier, the authors use the softmax activa-
tion function which firstly normalises the activation vector
into a probability distribution using exponential terms and
thereinafter returns the position of the maximum value of the
normalised vector.

The output mappings of convolutional layers provide in-
formation about the exact location of features in the input.
This results in the sensitivity of the feature mappings in minor
alterations of the input, like shifting, cropping, and rotation. To
deal with the described problem, the authors employ pooling
layers that apply down‐sampling in the feature mappings with
maximum or mean operations. In addition to the advantage of
invariance to local translation, the down‐sampling of the
activations reduces the learning parameters of the network,
preventing over‐fitting and reducing computational cost. A
global mean pooling layer is applied in the proposed model to
extract robust locally spatial features provided by the con-
volutional neural stream.

Also, we use dense layers that implement fully connections
between the input and output neurons of successive layers. The
latter executes a multiplication between a learnable weight
matrix and the vector mapping achieving the extraction of global
features. Furthermore, the concatenation layer deploys the
connection of the feature mappings s1 ¼ ½s

ð1Þ
1 s
ð2Þ
1 ‥ sðpÞ1 �

and s2 ¼ ½s
ð1Þ
2 s
ð2Þ
2 ‥ sðqÞ2 � as so ¼ Concatðs1; s2Þ ¼ ½s

ð1Þ
1 s
ð2Þ
1 ‥

sðpÞ1 s
ð1Þ
2 s
ð2Þ
2 ‥ sðqÞ2 �.

Finally, the authors practice the dropout technique to
prevent the over‐fitting phenomenon and enhance the regu-
larisation capability of the DL model [40]. To achieve the latter,
at each training iteration a set of randomly selected neurons is
dropped out. Hence, a set of different neural models is trained
to learn the pattern object, forming an ensemble of models,
and producing better classification accuracy. Dropout effec-
tiveness is limited in combination with convolutional layers and
so the authors employ dropout at the final classification
network where they operate dense layers.

It can be observed from Figure 3 that the DL model can be
separated into three individual neural parts. Two are streams
that generate features, which are concatenated and inserted
into the final classification network. The architecture of the
latter is simple and is commonly used in any DL classification
model since it consists of two dense layers that are connected
with a batch normalisation layer and a dropout one. Further-
more, Figure 3 provides information about the number of
filters and the sizes of kernels in the convolutional layers and
the number of nodes in the dense ones.

F I G U R E 3 Architecture of the proposed deep learning model
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3.1 | Extraction of locally spatial features

The neural stream that extracts locally spatial features (left in
Figure 3) consists of the attention mechanism followed by
three convolutional blocks. Each convolutional block is made
of the convolutional layer, the BN layer, and the activation
layer. The produced feature mappings from successive con-
volutional blocks are concatenated to take advantage of the
densely connected framework [29]. With the adoption of
concatenation connections, the authors achieved extraction of
features that correspond to different levels of hierarchical
representation and reinforce the propagation of information
through the network.

The locally spatial attention mechanism (Figure 4) re-
constructs the input signal focussing on the most important
and informative regions of the latter. To accomplish the
transformation of the input, a convolutional layer is employed
in the first place to recognise the feature patterns with
discriminative strength. Therefore, each output vector of the
convolutional layer ci corresponds to the identification of an
individual kernel filter fi in the input signal s. In particular, cðjÞi
indicates the presence of filter fi in the neighbourhood of input
s around the position j. Then, a global average pooling layer is

applied to detect the recognition of each kernel filter in the
input signal s as

ai ¼
X

j
cðjÞi =P; ð3Þ

where P is the length of the input signal and the convolutional
feature mappings too, since the authors use zero padding to
preserve the original input size. It is worth noticing that the
values ai intuitively indicate the appearance of kernel filter fi in
the input signal and so the discriminative importance of feature
mapping ci.

Afterwards, the softmax function is used to normalise the
values ai into a probability distribution using the following
equation

ei ¼
eai
P
j eaj

: ð4Þ

Each convolutional feature vector ci is multiplied with its
normalized significance term ei and then an element‐wise
addition follows.

α¼
XQ

i¼1
ei � ci: ð5Þ

In Equation (5), Q denotes the quantity of the kernel filters
in the convolutional layer. Through the process, the attentive
vector holds vital information about the regions of the input
signal that have been activated through the convolutional
process. Finally, the input signal s is dynamically adapted by its
element‐wise multiplication with the attentive vector α.

so ¼ α * s ð6Þ

3.2 | Extraction of global features

The assignment of the global attention mechanism (Figure 5) is
to extract features considering the global context of the input
signal. The convolutional operation acts locally and thus has no
power to recognise the long‐range interactions and the statis-
tical properties of the input. To achieve the extraction of global
information, the global attention mechanism is based on dense
layers, performing linear transformations of the input vector by
its multiplication with weight matrices.

Therefore, two dense neural blocks are employed to pro-
duce the global attentive vector. Each dense block consists of a
dense layer, a batch normalisation layer, and an activation
function. Firstly, as activation function the ReLU operation is
used and subsequently the softmax one is used to normalise
the attentive features into a probability distribution. The input
signal is adapted by its point‐wise multiplication with the globalF I G U R E 4 Architecture of spatial attention mechanism
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attentive features and finally, the neural stream applies another
dense block to extract the final global feature mappings.

4 | SIMULATION EXPERIMENTS,
RESULTS, AND STATE‐OF‐THE‐ART
COMPARISON ANALYSIS

To confirm the feasibility of the proposed DL model in the
detection and identification of bearing faults, the authors apply
simulation experiments with the employment of two well‐
known benchmark data sets: the Case Western Reserve data set
and the Paderborn University fault detection data set. The
overall simulation code is written in Python ver. 2.7 pro-
gramming language and is based on the Keras (a highly
modular neural networks library) library, running "on top" of
Theano software library.

The objective function during the optimisation process is
the categorical cross‐entropy loss. Also, the stochastic gradient
descent, with Nesterov momentum enabled, has been selected
as the optimiser. The learning rate during the optimisation
process, the decay, and the momentum parameters of Nesterov
momentum were set to 10−3, 0.0, and 0.9, respectively. The
training was completed within 200 epochs and the batch size
was 200.

Furthermore, a convolutional neural network (CNN) has
been developed as a comparison tool for the specific bearing
fault diagnosis task. The latter is made of three convolutional

blocks, each consisting of a convolutional layer, a batch
normalisation layer, and a ReLU activation layer. The final
classification part of the CNN is identical with the proposed
model. Figure 6 displays the architecture of the CNN model
with details about the hyper‐parameter of each layer. Also, to
bypass the effect of the stochastic initialisation of the neural
weights, the authors run each experimental simulation 10
times and present the mean and standard deviation values of
fault detection accuracies for both models and each simula-
tion case.

4.1 | Simulation experiment 1: CWRU
bearing data set benchmark

The Case Western Reserve University (CWRU) [41] fault
detection and identification data set supplies vibration signal
samples that correspond to normal and faulty bearings of a
motor shaft. The experiments are conducted in a test rig that is

F I G U R E 5 Architecture of global attention mechanism

F I G U R E 6 Architecture of the developed convolutional neural
network (for comparison purposes)
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made of a 2 Hp Reliance Electric motor, a torque encoder, and
a dynamometer (Figure 7). The single‐point failures of the
bearings were caused by electric discharge machining (EDM)
processes with varied fault diameters. The vibration signals are
collected from accelerometers attached to the housings with
magnetic bases of the drive‐end, the fan‐end, and the motor‐
supporting base plate. The sampling rate during the acquisition
of the digital vibration samples is 12 kHz. Also, the electric
motor operated under four loading conditions, from 0 to 3 Hp
and so the motor speed varied between 1792 and 1730 rpm.

In the current research effort, the drive‐end bearing signals
are used in the detection of five types of failures: ball, inner
race, and three classes of outer race faults. The position of the
outer race fault concerning the load zone of the bearing affects
significantly the vibration signal. In the CWRU data set
benchmark, data samples were acquired with the outer race
faults placed at 3 o'clock (directly in the load zone), at 6 o'clock
(orthogonal to the load zone), and at 12 o'clock. Also, the
vibration signals correspond to different diameters of faults
and, in more detail, there are faults of 0.007, 0.014, 0.021, and
0.028 inches.

Regarding the types of faults and their severity, a classifi-
cation problem with 16 classes is built (Table 1). Furthermore,
taking into account the sampling rate of 12 kHz and the motor
speed of 1797 rpm, the number of sample points per revolu-
tion is estimated at approximately 400. Therefore, the input
dimension of each vibration signal is 400 and during the cre-
ation of the training and the testing data set, 20 sampling
points are used as an overlap between two successive samples.
It is worth noting that the training and the testing data set
contain samples that correspond to all the loading conditions
of the electric motor. Finally, the data sets of Table 2 are built
which are composed of a diverse amount of samples, to
explore the efficiency of both neural models under
comparison.

The simulation results of both examined DL models are
shown in Table 3. The superiority of the proposed model is
noticed, adopting the concatenation of the attentive neural

streams, over CNN especially in cases where the amount of
training samples is limited. Indeed, the proposed model pre-
sents 99.08% accuracy using training data set A with 100
samples per class. On the contrary, CNN performs 98.66%
with the use of the same training data set. Finally, it is observed
that an accuracy of 99.60% is achieved using 400 training
samples from each class and s not only the type of fault but
also its severity can be successfully identified.

Also, the confusion matrix of the performance of the
proposed model trained with data set C is demonstrated in
Table 4. It is observed that the normal condition is classified
with success (100%) and so the proposed model detects the
appearance of a fault with absolute accuracy. Also, it is
considered that the state‐of‐the‐art refers to identification
levels of 98.5% and above, then it can be noticed that the
system has̒ difficulties’ in identifying classes with ID 14 and 10.
In particular, the recognition of classes 14 (outer@12.00 fault

F I G U R E 7 Experimental test stand of Case Western Reserve
University benchmark data set

TA B L E 1 Description of classes of CWRU benchmark data set

Class ID Condition Fault diameter(inches)

1 normal –

2 Ball 0.007

3 inner 0.007

4 outer@6.00 0.007

5 outer@3.00 0.007

6 outer@12.00 0.007

7 Ball 0.014

8 inner 0.014

9 outer@6.00 0.014

10 Ball 0.021

11 inner 0.021

12 outer@6.00 0.021

13 outer@3.00 0.021

14 outer@12.00 0.021

15 Ball 0.028

16 inner 0.028

Abbreviation: CWRU,Case Western Reserve University.

TA B L E 2 Training and testing data sets of CWRU benchmark data set

Data sets # Samples per class # Total samples

Training data Set A 100 1600

Training data Set B 200 3200

Training data Set C 400 6400

Testing data Set 400 6400

Abbreviation: CWRU, Case Western Reserve University.
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with diameter 0.021 inches) and 10 (ball fault with diameter
0.021 inches) is not as successful as the others, since the
proposed system classifies correctly with 96.575% and 98.3%,
respectively. However, the system for most classes has an
accuracy of approximately 100%.

Finally, Figure 8 shows a visualisation in 2D‐space via the
t‐Distributed Stochastic Neighbor Embedding (t‐SNE)
method of the extracted features of the proposed DL model,
produced from the concatenation of the feature mappings of
both local and global attention neural streams. The t‐SNE
method is a stochastic non‐linear dimensionality reduction
technique that projects each high‐dimensional sample point
into a low‐dimension space focussing on data visualisation
[42]. The main advantage of the t‐SNE algorithm is preser-
vation of the local structure of the data, estimating conditional
probabilities in higher and lower dimensions to match most
similar neighbours. It is observed from Figure 8 that the
produced clusters correspond to each class. Therefore, the
extracted features hold representation and discrimination
capability and the task of the classification mechanism of the
proposed DL model becomes easier.

4.2 | Simulation experiment 2: Paderborn
University bearing data set

The Paderborn University bearing benchmark data set [43]
provides high‐resolution vibration data, obtained from exper-
iments conducted on six healthy and 26 damaged bearing sets.
The test rig apparatus (Figure 9) consists of a permanent
magnet synchronous motor, a torque measurement shaft, the
test modules, and a synchronous servo motor acting as the
load motor. With the use of a rolling element bearing module,
changing testing bearings are applied under constant radial load
and so the vibration signal of the inner housings is acquired
and stored.

Herein, the authors used vibration signals from five healthy
bearings and 10 faulty bearings obtained from accelerated life
testing. Half of the faulty bearings correspond to a failure in
the inner race, while the other half correspond to a failure in
the outer race. Therefore, a fault detection problem with three
classes was built. Also, the authors simulated the fault detection
task by trying to create conditions that prevail in real‐life
situations. Therefore, they used healthy bearings of a different

TA B L E 3 Performance (%) of compared
neural models in the CWRU benchmark data
set

# Training Samples Convolutional NN Attention Stream Net (Proposed)

1600 98.66 ± 0.4 99.08 ± 0.3

3200 99.12 ± 0.37 99.52 ± 0.28

6400 99.48 ± 0.13 99.60 ± 0.14

Abbreviation: CWRU, Case Western Reserve University.

TA B L E 4 Confusion matrix (%) of Attention Stream Net trained with data set C in the CWRU benchmark data set

Predicted Class ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Actual Class ID 1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 99.9 0 0.025 0 0 0 0 0 0.075 0 0 0 0

5 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 99.9 0 0.1 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 99.825 0 0 0 0.175 0 0 0 0 0

8 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

10 0 1.7 0 0 0 0 0 0 0 98.3 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

12 0 0 0 0 0 0.025 0 0 0 0 0 99.125 0 0.85 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

14 0 0 0 0 0 0.025 0 3.4 0 0 0 0 0 96.575 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 99.975 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
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strain with varying total sum of operating hours under different
operating conditions and faulty bearings with varying charac-
teristics of damage, different damage combinations (single,
repetitive, multiple), and a different arrangement of damages
(regular, random, none). In particular, the following bearing
codes of the Paderborn data set benchmark are used: for the
normal class (K001, K002, K003, K004, K005), for the outer
race (KA04, KA15, KA16, KA22, KA30), and for the inner
race (KI04, KI14, KI16, KI18, KI21). Also, the operation
settings of a rotational speed of 1500 rpm, load torque of
0.7 Nm, and a radial force of 1000 N are employed in the
current research effort.

Taking into account the sampling rate of 25 kHz, the
authors estimate the number of sample points per revolution
as 2560. Furthermore, to obtain sufficient information in the
input of the model for one revolution, they set the input
dimension to 2560. Similarly to the previous simulation case,
they use training data sets with a different number of samples

(Table 5). The simulation results are shown in Table 6, where
they perceive the superiority of the proposed DL model over
the CNN model. Indeed, the model that combines the atten-
tive streams performs better regardless of the training data and
achieves 99.10% classification accuracy trained with the 500
samples per class data set. Also, although it consists of more
learnable unknown parameters, it generalises better and pre-
sents robustness to over‐fitting. Furthermore, from the
confusion matrix of Table 7 it is noticed that the normal class
is recognised with absolute success.

The visualisation of the feature mappings using the t‐SNE
method is illustrated in Figure 10. It is noticed that the
number of forming clusters is greater than the number of
classes. The phenomenon of the greater number of clusters is
explained by the fact that each class contains samples that
correspond to different modes of operation. Indeed,
observing Figure 10 15 clusters are counted, equal to the
number of bearing codes of the data set. Also, it is noticed
that each class is separated from the others since each class is
made of a group of separated clusters. It is worth mentioning
that distances between clusters and cluster sizes are mean-
ingless in the t‐SNE plots [44]. The lack of information about
the global distances prohibits the extraction of conclusions
from the position of the clusters. On the other hand, some-
one can obtain intuition knowledge based on the membership
of the clusters. In any case, the t‐SNE algorithm is a visual-
isation method for high‐dimensional data and the use of
clustering methods based on distance or density after its
application is not appropriate.

4.3 | Effect of additive noise

In a real industrial environment, the vibration signals captured
from accelerometers suffer from the presence of additive

F I G U R E 8 Visualisation in 2D‐space via t‐SNE of the extracted
features for the Case Western Reserve University data set

F I G U R E 9 Experimental test stand of the
Paderborn University bearing data set

TA B L E 5 Training and testing data sets of the Paderborn benchmark
data set

Data Sets # Samples per class # Total samples

Training Data Set A 300 900

Training Data Set B 400 1200

Training Data Set C 500 1500

Testing Data Set 500 1500
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noise. To explore the robustness of the compared DL models
in the presence of noise, firstly the authors train the networks
with the original vibration signals and then check their per-
formance with noisy signals of varying signal‐to‐noise ratio
(SNR) containing additive Gaussian noise. The training data set
A of the CWRU bearing data set is chosen with 1600 samples
(100 samples per class). Also, the balanced testing data set with
6400 total samples of vibration signals is modified to include
additive noise. By choosing a limited number of training
samples, the authors examine the robustness of the models in
the most challenging case.

Figure 8 contains the simulation results under the
appearance of noise for both models. It is perceived that for all
examined cases of varying SNR, the proposed DL model
overpowers the convolutional one. More particularly, the dif-
ference in fault identification accuracy is more noted for cases
where the level of noise is higher (SNR 10 and 15), confirming
the robustness of the proposed DL model (Table 8).

4.4 | Comparison with state‐of‐the‐art
methods using the CWRU benchmark data set

Finally, the proposed Attention Stream Net model is compared
against other state‐of‐the‐art models in Table 9 in the CWRU
bearing data set. The table presents a description of themethods,
the corresponding references, the accuracies during the identi-
fication task, the number of the classes, and the percentages of
the used sample points concerning the whole amount of sam-
pling points in the CWRU data set. Therefore, [45] generates
synthetic frequency spectrums using the GAN framework and
applies a stacking denoising auto‐encoder to classify six faulty
situations achieving 99.20% accuracy. In [46], a convolutional‐
based DL model detects six types of bearing faults with a per-
formance of 99.63%. Wavelet kernel local fisher discriminant
analysis is employed first and, in the sequel, support vector
machines solve the fault identification task in [47]. Furthermore,
in [34] the temporal coherence of the bearing signals is recog-
nised, utilising a simple attention mechanism that is based on a
feed‐forward neural model. The inception framework is used in
[48], building a multi‐scale CNN for the identification of 10
classes. Also, the dependencies of successive bearing signals are
recognised in [49], practicing LSTM blocks over CNN ones.

In Table 9, it can be noticed that only [34] and the model
proposed herein identify 16 classes trying to recognise not only
the type of bearing faults but also their severities and so solving
a more difficult task. Also, the authors observed that the
proposed Attention Neural Stream and the models of [34, 47]

TA B L E 6 Performance (%) of compared
neural models in the Paderborn benchmark
data set

# Training samples Convolutional NN Attention stream net (Proposed)

900 97.95 ± 1.01 98.44 ± 0.41

1200 98.06 ± 0.37 98.95 ± 0.33

1500 98.39 ± 0.36 99.10 ± 0.27

TA B L E 7 Confusion matrix (%) of attention stream net trained with
data set C in the Paderborn benchmark data set

Predicted Class ID

1 2 3

Actual class ID 1 100 0 0

2 0 98.54 1.46

3 0 1.24 98.76

F I G U R E 1 0 Visualisation in 2D‐space via t‐SNE of the extracted
features for the Paderborn data set

TA B L E 8 Performance (%) of compared neural models using training
data set A of the CWRU bearing benchmark under the presence of additive
noise

# Noise Level (SNR) Convolutional NN Attention Stream Net

10 dB 90.98 ± 3.69 92.74 ± 2.99

15 dB 92.06 ± 3.38 94.44 ± 2.84

20 dB 98.65 ± 0.42 98.96 ± 0.26

Abbreviation: CWRU, Case Western Reserve University.
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use fewer training sampling points. Despite the above, the
proposed model achieves an accuracy of 99.60%. From the
models under comparison, [46, 49] have similar performance
but both use a larger training data set and identify fewer fault
classes.

5 | CONCLUSIONS AND FUTURE
WORK

The current research effort introduces an artificial intelligence
model based on deep learning (DL) techniques for the task of
rolling element bearings fault detection and identification in
electrical machines. The proposed Attention Stream Net
(ASN) is based on the concatenation of two independent
neural streams that in parallel produce features with different
characteristics. The first stream explores the spatially local
consistency of the vibration signal based on an attentive con-
volutional operation, while the second produces features that
examine the global content of the input mapping. Simulation
experiments on two famous bearing data set benchmarks
strongly confirm the efficiency of the method with state‐of‐
the‐art accuracies. Also, experimental results with the presence
of additive noise show the robustness of the proposed artificial
intelligence method. Future work can be applied to considering
the temporal coherence of the input vibration signals with the
employment of an extra attention mechanism.
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