
Optimizing SVM Classifier through Approximate
and High Level Synthesis Techniques

Konstantina Koliogeorgi, Georgios Zervakis, Dimitrios Anagnostos, Nikolaos Zompakis, Kostas Siozios*
School of Electrical & Computer Engineering, National Technical University of Athens, Greece

*Department of Physics, Aristotle University of Thessaloniki, Greece
{konstantina, zervakis, anagnostos.d, nzompaki}@microlab.ntua.gr

ksiop@auth.gr

Abstract—Leveraging the inherent error resilience of a large
number of application domains, approximate computing is es-
tablished as an efficient design alternative to improve their
performance. Support Vector Machine (SVM) classifier is a
widely adopted machine learning algorithm, that exhibits high
error resilience and requires real-time execution. In this paper, we
propose a highly optimized approximate SVM FPGA accelerator,
utilizing arrhythmia detection in ECG signals as a case study. The
proposed methodology applies two algorithmic approximation
techniques, i.e., precision scaling and loop perforation, imple-
mented in a coordinated manner in High-Level Synthesis (HLS).
As a second level of performance enhancement, an exploration of
the in-build optimization techniques of the HLS tool, with respect
to the applied approximation, is also performed. Experimental
evaluation shows that the proposed approximate SVM classifier
attains a 15× speedup, while maintaining an accuracy of 96.7%.

I. INTRODUCTION

The ever increasing computational demands in today’s em-
bedded systems call for radical changes to conventional ap-
proaches, in order to sustain and further improve the efficiency
of our systems. A very promising novel approach lies in the
field of approximate computing. Recent research by Intel, IBM
and Microsoft has demonstrated that there is a large number of
application domains that exhibit an intrinsic error tolerance [1].
Approximate computing, exploits this inherent error resilience
to trade accuracy for gains in other metrics (e.g., performance,
energy) and manages to be established as an alternative for
efficient systems design [1]. Driven by this high potential for
performance and utilization efficiency, designing approximate
circuits has attracted significant research interest. In hardware
design, algorithmic and logic approximations are applied [1]–
[7]. Approximate design mainly targets arithmetic units (e.g.,
adders [1], [2] and multipliers [4], [5]), but their efficient appli-
cation in complex accelerator circuits is not comprehensively
analyzed and remains arguable. Despite significant results for
approximate accelerators, e.g., [6]–[8], research activities on
approximate FPGA accelerators are still limited. Considering
that signal/image processing applications and neural networks
(such as classifiers) are perfect candidates for both FPGA
design and approximation, we examine the combined impact
of two well-known and efficient algorithmic approximation
techniques (precision scaling [7] and loop perforation [9]) in
designing approximate FPGA accelerators.

A well established representative of machine learning ker-
nels is Support Vector Machines (SVM) classifier. SVM-based
classifiers [10] have grown very popular in many machine

learning applications and have been extensively used for classi-
fication tasks in fields such as bio-medicine, image processing,
and deep learning [11], [12]. These are data-intensive appli-
cations and often need to operate under real-time constraints.
Therefore, they are in high need of acceleration. Due to their
error resilience, approximate computing can be leveraged to
that objective. Targeting approximate SVM implementations,
[13] introduces an approximate adder and multiplier, and
incorporates them to the SVM. The approximation is based on
truncating the less significant bits of operands and results. In
[14], a different approach is proposed, that applies approxima-
tion by removing control signals in their proposed multi-stage
ripple carry adder.

In this paper, we propose an approximate FPGA-based
SVM accelerator developed in Vivado HLS. We use as a
case study arrhythmia detection based on ECG signal anal-
ysis and performed through SVM classification. The SVM
prediction model was trained and tested on real ECG data [15]
from MIT-BIH Arrhythmia Database [16]. The performance
enhancement achieved is two-fold since speedup is acquired
by both approximations and high level synthesis optimization
techniques. The approximation techniques employed target
both precision scaling and loop perforation that reduce the
computational latency. This approximate version is further
tuned by performing design space exploration of high level
synthesis optimization techniques.

II. PROPOSED APPROXIMATE SVM CLASSIFIER

Considering the data dependencies of the kernel and the
complexity of the performed computations, we apply approxi-
mate techniques, that reduce both the number and complexity
of the performed operations, as well as high level synthesis
optimization techniques that boost performance. For the rest
of the paper, the accuracy of the approximate SVMs refers to
the percentage of correct classifications in a set of heart beats.

A. Theoretical Background
Support Vector Machines (SVMs) are supervised machine

learning models used for data-driven modelling and classifi-
cation. An SVM is trained to classify an input feature vector
into one of two classes. The training phase of the algorithm
is performed offline and its outcome is a set of N sv support
vectors, i.e. critical points of the different classes that define
the classification hyper-planes. A new input vector with D sv
features, is classified according to its distance from the support
vectors. A kernel function K, in this case the Radial Basis

Function (RBF) is used to map input vectors to a space where
different classes are linearly separable. The classification result
is calculated based on Eq. 1, 2:

Class = sgn(

N sv∑
i=1

(yi ∗ ai ∗K(x, sup vectori))− b), (1)

K(a, b) = exp(−γ||a− b||2), (2)

whrere K is the kernel function, sup vectori is the i-th
support vector, yi, ai are coefficients and b a bias value derived
during training.

Listing 1: SVM original prediction code
const float sv_coef[N_sv];
const float sup_vectors[D_sv][N_sv];
void SVM_predict (float test_vector[D_sv], int * y){
loop_i:for (i=0; i<N_sv; i++){
loop_j:for (j=0; j<D_sv; j++){
diff=test_vector[j]-sup_vectors[j][i];
norma = norma + diff*diff;}

sum = sum + exp(-gamma*norma)*sv_coef[i];
norma=0;}

sum = sum - b;
if (sum<0) *y = -1;
else *y = 1;}

Listing 1, introduces the C-language based implementation
of equation 1. The input is a new feature vector to be classified
and the outcome is the class label of the input vector. The
SVM model utilized features 1222 support vectors and 18 test
vector width, with 99.88% classification accuracy.

B. Approximate Techniques
1) Loop Perforation: The first approximate technique that

we examine is loop perforation [9], i.e., omitting loop itera-
tions. Loop perforation was introduced in software approx-
imation, but since it is an algorithmic technique it can be
equivalently applied in HLS. Although it can be applied to
any algorithm, its optimal tuning is application-specific. In
this case, the data dependencies of the SVM accommodate
loop perforation. As seen in Listing 1, the squared euclidean
distance of a single test vector and each sup vector is
computed (norma), filtered through the RBF kenrel and even-
tually accumulated to a variable that defines the classification
result. The contribution of each support vector to the total
sum is irrelevant to the contribution of the others. Hence,
loop perforation appears to be a very promising approximation
candidate for SVM that allows us to eliminate operations
(and thus the total latency of the kernel), as well as the area
footprint, at a small accuracy loss.

In order to efficiently apply loop perforation, we utilize a
greedy approach to identify the support vectors to be omitted.
In this study, we consider loop perforation ranging from 2%
up to 10% with step 2%. Given a target of p% perforation,
our greedy algorithm implements an iterative procedure. In
each iteration, we perforate an additional support vector. The
iterations terminate when p% perforation is reached. Given the
support vector matrix of the previous iteration, we evaluate the
classification accuracy when also perforating each one of the
remaining support vectors. Then we perforate the respective
vector that achieves the highest accuracy. Table I, presents
the accuracy and speedup over the exact-SVM, of the SVMs

TABLE I: Impact of Loop Perforation on SVM Accuracy.

Perforation % Accuracy% Speedup
2% 98.02% 1.41
4% 97.12% 1.45
6% 96.27% 1.47
8% 92.85% 1.51

10% 90.43% 1.54

TABLE II: Fixed point Data types Initial Configuration in Bits

Variable Bit-Width Integer Bits Decimal Bits
test vector 24 2 22
sup vectors 24 2 22
sv coef 32 10 22
diff 25 3 22

norma 31 9 22
sum 32 10 22

produced by our greedy approach. The attained accuracy
ranges from 98.0% for 2% perforation target to 90.4% for 10%
perforation target. The respective speedups range from 1.41×
to 1.54×. As it can be seen, in the latter case extra perforation
comes at a significant accuracy loss without compensating
with significant additional speedup. Further perforation is not
of interest in this application due to lower accuracy rates.

2) Precision Scaling: Vivado HLS provides fixed-point
precision data types for C/C++ kernels. We can leverage this
feature to apply precision scaling, i.e., implement the SVM
kernel with smaller bit-widths. This will result in smaller
hardware operators and thus faster circuit.

Migrating from standard C types to arbitrary precision
types is not trivial in terms of maintaining the correctness.
For that reason, we perform an exploration to refine the
utilized data types to their optimal size. Six different data
types are defined for variables test vector, sup vectors,
sv coef , diff , norma, sum of Listing 1. We use fixed
point representation for each data type and examine varying
precision for the decimal part that ranges from 12 up to 22 bits.
In our exploration we evaluate all the possible combinations
with respect to the data type and its precision. For example
Table II shows the precision assigned to each data type for
the most accurate configuration resulted by this exploration.
The accuracy of this configuration is 99.82% and its attained
speedup is 2× with respect to the exact implementation.

C. Design Space Exploration of HLS Directives

Performance of the SVM kernel can be further improved by
meticulously tuning the HLS directives available by Vivado
HLS. The tool performs some optimizations by default and
also allows the user to impose directives and constraints of
his own choice. The set of directives provided by HLS, aim
at performance and area optimization and can be applied on
functions, loops, arrays and regions containing one or more of
the above. Table III summarizes the HLS directives that have
been incorporated in the design exploration.

The directives and their assignment to specific elements of
the code, were selected after considering the inherent paral-
lelism of the algorithm. On a coarse-grain level, parallelism is
exploited by calculating the contribution of different support
vectors simultaneously. On a fine-grain level, parallelism is

found within the computations required for calculating the
contribution of a single support vector, i.e. loop j. The com-
putations regarding each element of the vectors in loop j can
be performed independently of each other and thus in parallel.

Taking these into account, the directives examined are Loop
pipeline and Unroll, Array partition and Reshape (Table III)
[17]. Both outer and inner loop can be unrolled by applying
unroll directive and directives partition and reshape can be
applied to the arrays accessed by the respective iterators, to
increase the number of their ports or their word-width and al-
low simultaneous access to their elements. A full search space
exploration consists of all valid combinations of the directives
and their configuration. To avoid an exhaustive design space
exploration, we utilize the framework proposed in [18], which
applies effective pruning strategies and reduces the search
space from 100000 to approximately 1000 configurations.
The proposed pruning guidelines are based on an efficient
arrangement of data on BRAMS, which guarantees that the
elements which are required simultaneously, are either packed
together into the same word or accessible from an adequate
number of BRAM ports.

D. Methodology
The techniques described so far should be combined in a

synergetic and strategic manner to deliver a highly optimized
approximate SVM classifier. The non-linear and nontrivial
inference effects between the applied approximation tech-
niques as well as the HLS optimization directives regarding
both performance as well as accuracy require the use of
heuristic algorithms in practice. A brute-force evaluation of
all possible combinations of the examined techniques, would
lead to an enormous design space. In order to avoid an
exponentially growing search space, we propose a framework
that incrementally exploits each technique and gradually builds
up to the implementation of an efficient FPGA SVM classifier,
accelerated through both approximate and high level synthesis
optimization techniques.

As a first step, we apply loop perforation, carefully adjusted
to the kernel’s requirements. Specifically, loop perforation
technique is applied to the exact SVM classifier, using the
greedy algorithm described in Section II. This step results
in constructing five approximate SVM classifiers, each one
exhibiting a perforation percentage of 2%,4%,6%,8% and 10%
respectively and an initial boost in performance.

As a second level of optimization, we explore the perfor-
mance enhancement that can be extracted by meticulously
tuning the in-build optimization knobs of HLS tool with re-
spect to the previously conducted approximations. To avoid an
exhaustive design space exploration, we utilize the framework
proposed in [18], which elegantly prunes the design space and
efficiently converges towards the Pareto front. The basis of the
proposed pruning strategies lies in customizing the memory
architecture according to the computation and memory access
patterns of the algorithm. Since different perforation percent-
ages result in different memory layouts and thus different
optimal configurations of HLS directives, each approximate-
perforated SVM should be evaluated separately. Therefore, we
perform an efficient design space exploration and acquire a
resource utilization-speedup Pareto-front for each approximate

SVM resulted by loop perforation. Note that all design points
within the same Pareto exhibit the same classification accuracy.

On the last optimization level, we further boost the perfor-
mance by applying precision scaling. For each Pareto point,
an exploration is performed to refine the utilized data types
to their optimal precision. We evaluate all the possible combi-
nations (Section II-B2), and a new Pareto Front is extracted.
The aproximate designs in this Pareto front, apply both loop
perforation and precision scaling, as well as HLS optimization.

III. EXPERIMENTAL EVALUATION

In this section, an evaluation of the proposed framework is
provided. Xilinx Vivado-HLS(v2018.2) and the Zynq7 ZC706
Evaluation Board are used to implement all SVM accelerators.
Two different datasets are used in our evaluation. A training
set of 47856 inputs is utilized for the implementation of the
approximate SVMs and the design space exploration, and a
separate testing set of 52291 inputs is utilized to evaluate the
classification accuracy of the proposed approximate SVMs.
Both sets are composed of feature vectors, extracted from real
ECG signals of the MIT-BIH Arrhythmia Database.

Fig. 1 depicts the Pareto Front, which is the output of
our methodology. This study explores the trade-off between
speedup and classification accuracy when all optimization
levels have been applied. Accuracy ranges from 90% to
99% and speedup from 1× to 18×. The highest speedup is
achieved for aggressive approximation, i.e. 10% perforation
and significant precision scaling. The trade-off of course is
reduced accuracy, which is crucial for an application such as
arrhythia detection. Fig.2 presents the speedup achieved for the
fastest configuration resulting by each technique with a target
accuracy of 95%. Perforation technique satisfies this constraint
for 6% perforation, 1.47× speedup and 96.27% accuracy,
whereas precision scaling delivers a configuration with 4×
speedup and 97.32% accuracy. Our proposed methodology,
delivers a configuration that combines 2% perforation, preci-
sion scaling and HLS optimization techniques and outperforms
them by delivering 15× speedup and 96.7% accuracy. Finally,
Fig. 3 presents the resources utilization for the corresponding
SVMs. The precision scaling technique is the most efficient
one in resources utilization, since reducing the bit width leads
to fewer BRAMS for storing the support vectors and smaller-
width operators. The small decrease in resources utilization
due to perforation, is attributed to storing less support vectors
at BRAMS. Our proposed technique shows greater utilization,
due to the HLS directives, that require more resources to
increase parallelism and dominate over the resources savings
achieved by perforation and precision scaling. This increase is
compensated by the greater speedup.

IV. CONCLUSION

In this paper, we present a highly optimized approximate
SVM accelerator implemented in Vivado HLS. The SVM
model assists in arrhytmia detection in real ECG signals from
MIT-BIH Arrhythmia Database, and requires acceleration to
meet its real-time constraints. To boost its efficiency, the
proposed SVM combines, in a co-ordinated manner, two
approximate computing techniques and in-build tuning knobs
provided by the HLS tool. Our experimental evaluation shows

TABLE III: HLS directives

Directive Description
PIPELINE Reduces the initiation interval by concurrent execution of operations within a loop or function.

DATAFLOW Task level pipelining. Functions and loops are executed concurrently. Used to minimize interval.
INLINE Inlines a function, removing all function hierarchy. Used to enable logic optimization across function boundaries and improve

latency/interval by reducing function call overhead.
UNROLL Unrolls for-loops to create multiple independent operations rather than serial executed ones.

ARRAY PARTITION Partitions large arrays into multiple smaller arrays or into individual registers, to improve access to data and remove block-RAM
bottlenecks.

ARRAY MAP Combines multiple smaller arrays into a single large array to help reduce block-RAM resources.
ARRAY RESHAPE Reshape an array from one with many elements to one with greater word-width. Useful for improving block-RAM accesses

without using more block-RAM.

0

2

4

6

8

10

12

14

16

18

20

89 90 91 92 93 94 95 96 97 98 99

Sp
ee

d
u

p

Accuracy %

Fig. 1: Pareto Front for Accuracy and Speedup Metrics

0

2

4

6

8

10

12

14

16

exact perforation precision scaling proposed

Sp
e

e
d

u
p

SVM Approximate Classifiers

Fig. 2: Speedup for Fastest SVM of each technique.

0

5

10

15

20

25

30

BRAM DSP FF LUT

U
ti

liz
at

io
n

 %

Type of Resource

exact SVM

perforation

precision scaling

proposed

Fig. 3: Resources Evaluation for Fastest SVM of each tech-
nique.

that the proposed SVM attains up to 15× speedup compared
to the exact design and that it significantly outperforms state-
of-the-art approximation techniques.

ACKNOWLEDGEMENT

This work was supported in part by Greece and the Euro-
pean Union (European Social Fund) through the Operational
Programme Human Resources Development, Education and
Lifelong Learning 20142020 in the context of the project
Automated methodology for production and execution of data-

centric multi-level approximate equivalent applications for het-
erogeneous computing platforms under Grant MIS 5005377.

REFERENCES

[1] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic
accuracy configurable adder,” in Design Automation Conf., June 2015.

[2] H. A. F. Almurib, T. N. Kumar, and F. Lombardi, “Inexact designs
for approximate low power addition by cell replacement,” in Design,
Automation Test in Europe, 2016.

[3] G. Zervakis, S. Xydis, K. Tsoumanis, D. Soudris, and K. Pekmestzi,
“Hybrid approximate multiplier architectures for improved power-
accuracy trade-offs,” in International Symposium on Low Power Elec-
tronics and Design, July 2015, pp. 79–84.

[4] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi, “Design
of approximate radix-4 booth multipliers for error-tolerant computing,”
vol. 66, no. 8, pp. 1435–1441, Aug 2017.

[5] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Pekmestzi,
“Design-efficient approximate multiplication circuits through partial
product perforation,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 10, pp. 3105–3117, Oct 2016.

[6] A. Lingamneni, C. Enz, K. Palem, and C. Piguet, “Synthesizing parsi-
monious inexact circuits through probabilistic design techniques,” ACM
Trans. Embed. Comput. Syst., vol. 12, no. 2s, pp. 93:1–93:26, May 2013.

[7] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu, “Joint precision optimiza-
tion and high level synthesis for approximate computing,” in Design
Automation Conference, 2015, pp. 104:1–104:6.

[8] G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi, “Multi-level
approximate accelerator synthesis under voltage island constraints,”
IEEE Trans. Circuits Syst. II, pp. 1–1, 2018.

[9] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in Proc. 19th ACM SIGSOFT Symp. 13th Eur. Conf. Found. Softw. Eng.
(ESEC/FSE), 2011.

[10] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[11] Y. Zhang, S. Wang, G. Ji, and Z. Dong, “An mr brain images classifier
system via particle swarm optimization and kernel support vector
machine,” The Scientific World Journal, vol. 2013, 2013.

[12] Y. Tang, “Deep learning using linear support vector machines,” arXiv
preprint arXiv:1306.0239, 2013.

[13] Y. Zhou, J. Lin, and Z. Wang, “Energy efficient svm classifier using
approximate computing,” in ASIC (ASICON), 2017 IEEE 12th Interna-
tional Conference on. IEEE, 2017, pp. 1045–1048.

[14] Y. Wu, X. Yang, A. Plaza, F. Qiao, L. Gao, B. Zhang, and Y. Cui,
“Approximate computing of remotely sensed data: Svm hyperspectral
image classification as a case study,” IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, vol. 9, no. 12, pp.
5806–5818, 2016.

[15] D. Azariadi, V. Tsoutsouras, S. Xydis, and D. Soudris, “Ecg signal
analysis and arrhythmia detection on iot wearable medical devices,”
in Modern Circuits and Systems Technologies (MOCAST), 2016 5th
International Conference on. IEEE, 2016, pp. 1–4.

[16] G. B. Moody and R. G. Mark, “The impact of the mit-bih arrhyth-
mia database,” Engineering in Medicine and Biology Magazine, IEEE,
vol. 20, no. 3, pp. 45–50, 2001.

[17] T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.
[18] V. Tsoutsouras, K. Koliogeorgi, S. Xydis, and D. Soudris, “An explo-

ration framework for efficient high-level synthesis of support vector
machines: Case study on ecg arrhythmia detection for xilinx zynq soc,”
Journal of Signal Processing Systems, vol. 88, no. 2, pp. 127–147, 2017.

