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Abstract—In the last decade, convolutional neural networks
have achieved great success in the automated fault diagnosis
of rotating equipment in electrical machines. However, the
application of convolutional models encounters some challenges
to deal with such as (i) the requirement of a vast amount of
training data and (ii) the selection of the neural architecture, and
particularly the sizes of the convolutional kernels that effectively
extract features from the raw input signal. To alleviate the above
challenges, we propose a deep learning network consisting of mul-
tiple independent densely connected convolutional streams with
different sizes of kernels and of a simple attention mechanism
that fuses the extracted features, producing a feature mapping
with generalization and discrimination power. Simulation cases
with a widely used bearing fault detection benchmark show the
effectiveness of the proposed approach, especially in cases of a
restricted amount of training samples.

Index Terms—Attention mechanism, convolutional neural net-
works, electrical machines, fault detection, rolling elements bear-
ing.

I. INTRODUCTION

Rolling bearings are core elements of rotating electrical
machines. Scientific studies state that bearing failures are the
most common in modern complex systems, making the early
fault detection (FD) of rolling bearings imperative. Indeed, a
fast and accurate FD of rolling bearings can prevent disastrous
equipment destruction, unexpected and sudden shutdowns, and
economic losses.

Over the years, many methods have been applied suc-
cessfully for bearing FD such as signal processing tech-
niques and machine learning classification algorithm. Most
approaches use vibration measurements from sensors attached
to the bearings because of their discrimination potential and
progress in sensor technology. Recently, Deep Learning (DL)
based approaches [1] have restated the accuracy of bearing
FD, stacking multiple nonlinear neural processing layers, and
achieving the auto-extraction of features [2]. Drawbacks of
DL methods are the vast amount of raw data, needed to build
effective discrimination models and their intensive training in
terms of computational complexity.

Convolutional Neural Networks (CNNs) and their variants
are the most successful among DL models in bearing FD
[3], [4]. The main reasons behind the impressive effectiveness

of CNNs are (i) the extraction of location invariant features
with the direct processing of raw data and (ii) the convolution
operation as core process of CNNs uses weight sharing, result-
ing in fewer unknown parameters and so better generalization
capability and robustness to over-fitting.

The number of training weights depends on the kernel size
of the convolutional layer. So, a straightforward solution is
to use small kernel sizes, reducing the number of unknown
parameters and the computation complexity of the process.
On the other hand, the kernel size of a convolutional layer
determines the effective receptive field that is applied in the
input signal and so plays a vital role in the effectiveness
of the extracted features. So, the sizes of kernel filters are
important hyper-parameters that need to be tuned, and their
optimal estimation is difficult.

In the current research study, we apply multi-scale con-
volutional layers with different sizes of kernel filters. More
particularly, we adopt three independent densely connected
convolutional blocks with various kernel sizes. In that way, the
local receptive field varies in each convolutional stream and
so different parts of the input signal are processed. Moreover,
we employ the densely connected architecture of CNNs [5]
to enhance features diversity and reuse, ease the vanishing
gradient problem, and substantially decrease the number of
learning parameters.

In the sequel, the question that arises is the handling of
the feature mappings, provided from the densely convolutional
streams. The concatenation of the feature vectors increases
the dimension of the final mapping, raising the number of
learning parameters and causing over-fitting. Their addition
results in a reduction of information and consequently in cut
of performance. So, to merge effectively the feature mappings
of the convolutional streams, we apply a simple attention
mechanism, another successful architecture of DL [6], [7]. The
latter exports the most valuable information of each mapping,
processing and estimating the most informative feature keys.
Attention mechanism has been employed before on rolling
bearings FD [8], [9] but to analyze the temporal coherence
of subsequent segments of the input vibration signal. To the
best of our knowledge, this is the first time where multi-scale
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convolutional blocks with various kernel sizes are used in a FD
task and the merging of the produced feature vector mappings
are achieved with an attention mechanism.

The organization of the paper follows. Section II describes
the proposed architecture with its components. The following
section presents the simulation cases and analyses the results.
Finally, we complete with conclusions and possible future
work.

II. ARCHITECTURE OF THE PROPOSED DL MODEL

The proposed DL architecture adopts multi-scale convo-
lutional processing of the raw vibration signal using three
identical independent densely connected convolutional blocks
(Fig. 1). The difference of the convolutional streams lies in
the first convolutional layer and more particularly to its kernel
size. So, the kernel sizes of the independent neural streams are
8, 16 and 32 accordingly. With the process of diverse receptive
fields of the input, we achieve to extract multi-scale knowledge
of the raw signal, capturing spatial dependencies of various
resolutions and so enhancing the representation ability of the
model.

Additionally, the use of multi-scale convolutional blocks is
combined with less kernel filters in each stream. In that way,
we achieve the increase of the representation ability of the
model without a burden in the number of parameters and in
the computation complexity.

By the use of the densely connected framework, we rein-
force the reuse of features, accomplishing to derive features
that belong to different levels of representation. As shown in
Fig. 1, Batch Normalization is used to stabilize the learning
process [10]. Also, we notice that in the forward processing
of the densely connected convolutional stream, the ReLU
activation function is used to deal with the vanishing gradient
problem. However, the applied non-linearity in the final feature
mapping is the hyperbolic tangent activation function (Tanh)
to produce responses even for negative input values. In that
way, we exploit the advantages of both activation functions.

Continuing, the handling strategy of the produced multi-
scale feature mappings follows. By the fusing of the feature
vectors in a concatenation mode, we retain information but
we increase the dimension of the concatenated vector and
so the number of the learning parameters, causing possibly
over-fitting and finally performance reduction. On the other
hand, by the element-wise addition of the feature vectors we
lose information since we don’t check the importance of each
feature mapping in the discrimination procedure.

In the current study, a simple attention mechanism processes
the multi-scale features fi and outputs their weighted mean
considering their discrimination capability (Fig. 2) [11]. The
attention mechanism is made of a simple feed-forward network
with one layer and one output neuron. The applied non-
linearity in the output of the neural model is the Tanh. The
network process each multi-scale feature mapping fi and
estimates the reward value ei that represents the significance
of the corresponding feature. A following softmax layer
normalizes the reward values into a probability distribution.
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Fig. 1. Densely Connected Convolutional Stream (DCCSi).
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Fig. 2. Attention Mechanism block based on feed-forward NN.

Subsequently, the attentive feature vectors ci are estimated
taking into account the normalized importance ai of each
feature map fi (ci = ai ∗ fi) and finally we sum up to
estimate the attentive vector c. Alternatively, the self-attention
framework [12] could also be used. However, the employment
of self-attention will increase the training parameters and the
complexity of network and thus this is avoided here.

Figure 3 presents an illustration of the proposed Multi-Scale
Attention DL model. We notice that the final classification
block consists of a dense neural network and batch normal-
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Fig. 3. Multi-Scale Attention Model.

ization layers. Also, we observe the use of dropout layer [13]
in the classification block to further avoid over-fitting and
enhance the regularization power of the model.

III. EXPERIMENTAL SIMULATIONS

To show the effectiveness of the proposed DL model, we
simulate a FD task with the use of a well-established dataset
benchmark: the Case Western Reserve University (CWRU)
dataset [14]. Using the bearing signals under the sampling
rate of 12kHz and under 4 loading conditions, we build the
training and testing datasets of a fault recognition problem. In
more details, there are 5 types of defects: ball, inner race and
three classes of outer race failures. Furthermore, we consider
the severities of the faults that correspond to the diameter of
the failures and recognize faults of 0.007, 0.014, 0.021, and
0.028 inches, ending up with the identification of 16 classes.

In order to compare against in the FD task, another CNN
model has been built. The latter has 3 convolutional blocks
in a similar way of the proposed model. The kernel sizes of
each convolutional layer are 32, 5 and 3 while the number
of filters are 32, 48 and 64. The final classification block is
identical with the one of the proposed model except from the
dense layer that has 128 output neurons. Both models under
comparison have about the same number of parameters. In
more details, the learning parameters of the proposed and
of the competing simple CNN model are 27,024 and 29,536
accordingly and so we consider that have the same learning
capacity. It is worth mentioning that the simple CNN model
achieves accuracy close to state-of-the-art when the number
of training samples is sufficient.

Moreover, both models employ the categorical cross-entropy
loss function and the stochastic gradient descent optimizer
with Nesterov momentum decay during training. The learning
rate is set to 10−2 and the parameters of momentum are equal
to 0.0 and 10−3, respectively. Finally, the number of training
epochs and the selected batch size both are both set equal to
200.

To explore the feasibility of the models under comparison,
we create training datasets with different numbers of samples.
Specifically, the amount of training samples varies from 960

TABLE I
PERFOMANCE OF MODELS UNDER COMPARISON USING THE CWRU

BEARINGS DATASET

# Simulation
Case

# training
samples

Accuracy of
CNN model

Accuracy of
Proposed Model

1 960 94.71(±1.11) 97.51(±0.98)
2 1600 97.80(±0.40) 98.84(±0.28)
3 3200 98.65(±0.37) 99.20(±0.39)
4 4800 99.14(±0.26) 99.39(±0.20)
5 6400 99.48(±0.14) 99.57(±0.17)

(60 samples per class) to 6400 (400 per class) while the testing
dataset is made of 6400 samples for all cases. Also, we set the
input of the vibration signal to 400, which corresponds to the
amount of sample points per revolution. During the formation
of the samples, we apply an overlap of 20 points between
successive ones.

In the simulation’s development procedure, the program-
ming language Python 2.7 in combination with the DL frame-
work ”keras” are adopted. To bypass the effect of initial
random initialization of the neural weights, we train and
estimate the FD accuracy of both models for 10 times. So,
Table I shows the mean accuracy and the standard deviation
for each model and simulation case.

Observing Table I, we notice that the proposed model
achieves better performance from the competing CNN in all
simulation cases. We see that for simulation cases #1, #2
and #3 where the number of training samples is limited, the
multi-scale convolutional model performs much better than
the CNN. Especially in simulation case #1, where the number
of training samples is very small (60 samples per class), the
proposed model overcomes the CNN one with a difference in
performance of about 3 percentage points. So, the proposed
model is robust to over-fitting and identifies the bearing failure
patterns with effectiveness since achieves impressive results
either with less or more training samples.

Furthermore, to obtain intuition of the arrangement of the
produced feature vector mappings c and to illustrate their
discrimination power, we display their visualization via t-
Distributed Stochastic Neighbor Embedding (t-SNE) algo-
rithm. In more details, we train the proposed model and
in the sequel we estimate and visualize the output feature
vectors for each testing input. The t-SNE algorithm is a
widely used visualization method since it transforms each
high-dimensional vector to a low dimensional space in such
a way that related or similar objects are placed nearby while
dissimilar ones are placed in distance. Figure 4 shows that the
representation vectors that belong to the same type of fault are
modeled by nearby points and are divided clearly by dissimilar
ones, aiming the classification block to further distinguish the
failure classes.

Also, to strengthen the knowledge behind the attention
mechanism, we plot the histograms of the attentive values
αi, i ∈ {1, 2, 3} belonging to the normalized importance
vectors α (Fig. 5). In a similar way, we train the model
and subsequently gather the normalized attention vectors α
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Fig. 4. Visualization via t-SNE of the extracted feature mapping.

Fig. 5. Histogram of the attentive values αi, i ∈ {1, 2, 3} that belong to the
normalized importance vectors α.

corresponding to each testing sample. Each attention value ai
indicate the importance of the independent dense multi-scaling
feature in the discrimination process. So, by the observation
of the plot, we extract knowledge about the significance of
each independent stream. We notice that the stream which
corresponds to the convolutional layer with kernel size of 8
has the greater mean value while the other two have about the
same means. Thus, it is the most important in the classification
mechanism concluding that smaller kernel sizes in the 1D
convolutional operation are more efficient since it process the
input raw signals with greater resolution.

IV. CONCLUSIONS & FUTURE WORK

In the current research paper, the use of multi-scale dense
convolutional blocks, trained in parallel, is introduced aim-
ing to rolling bearings fault detection in industrial motor
drives. The produced training feature vectors, corresponding

to each multi-scale neural stream, are fused with the aim of
a simple attention mechanism. In that way, we merge the
features achieving to keep information without increasing the
dimension of the vector and thus avoiding over-fitting. The
impressive simulation results, especially in cases of limited
training datasets show the generalization and discrimination
superiority of the proposed scheme. Future work can explore
the application of more complex multi-scale architectures with
a simultaneous recognition of the temporal coherence of the
input vibration signal via attention mechanisms.
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