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A new method for interpreting Vickers microindentation data is proposed, based on continuum mechan-
ics and, more precisely, the Gradient Elasticity framework. The main feature is the elastic properties’ cal-
culation from the initial (elastic) region of the load vs. depth indentation data, which makes the
calculation independent of the maximum indentation depth. This approach deviates significantly from
the semi-empirical method of Oliver and Pharr, which calculates the material properties (such as elastic
modulus and hardness) from the elastic unloading region, with the calculated values of the elastic mod-
ulus and hardness being strongly dependent on the indentation depth and, therefore, giving rise to the so-
called indentation size effect (ISE). The proposed framework considers the Vickers indentation as a com-
pression test with a complex geometry, as the pyramidal indenter tip applies load to directions perpen-
dicular to its four faces. An elastic displacement field is initially assumed following Boussinesq’s solution
before an indent is made, while afterwards the displacement of the material in contact with the tip is
assumed to follow the Vickers tip’s geometry. The respective von Mises equivalent strain calculated
through a continuum mechanics approach can qualitatively capture thin film delamination micrographs
and shear band formation, showing the potential of the present formulation to model such micro-
deformation problems. The traction vector calculated on each of the four sides of the Vickers tip, leads
to the generation of load-displacement data, which compare well with experimental indentation data,
with the elastic properties (i.e. elastic modulus) thus calculated being in accordance with the correspond-
ing literature values.
Copyright � 2022 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the International Confer-
ences & Exhibition on Nanotechnologies, Organic Electronics & Nanomedicine – NANOTEXNOLOGY 2021.
1. Introduction

Various approaches [1–2] use computational routines based on
the Oliver-Pharr method or in-situ imaging and SEM/AFM tech-
niques to determine mechanical properties of various materials
(steels, metals, elastic solids) via Vickers indentation experiments.
The unloading part of the load–displacement (P-h) curves is nor-
mally taken into consideration and simplified 1-D models try to
theoretically predict the generated P-h experimental data by
power law relations using geometric approximations for the pyra-
midal tips [3].The residual impressions of the Vickers indents nor-
mally allow for an estimation of acoustic emission [4] whereas
plastic deformation can be described from the volume recovery
by thermal annealing, especially in glass bulk samples [5] or during
crack propagation [6–8]. During Vickers indentation experiments,
the generated residual stresses and fracture toughness of compos-
ite coatings have been shown to be affected by a change in the
coating thickness [9]. The induced stress fields can be numerically
modelled via finite element analysis in conjunction with the Yoffe
analytical model [10].

However, in most cases there are deviations from the theoreti-
cal predictions of the Oliver-Pharr approach; a detailed analysis of
these can be found in [11–15]. A continuum mechanics-based
framework capable of modeling indentation imprints, displace-
ment as well as strain/stress fields and associated shear band for-
mation has been recently proposed [16].

The motivation for performing this research is to try to remedy
some shortcomings of Vickers indentation. To this end, the
gradient elasticity theory (proposed by Aifantis and co-workers
ronics &
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[17–19]) was appropriately used as in [20], providing mechanically
based strain and stress fields which depend on material parame-
ters, such as the elastic modulus, Poisson’s ratio, the maximum
elastic deformation as well as the so-called gradient coefficient.
Varying these parameters allowed for a means for interpreting thin
film delamination and shear band formation near Vickers indenta-
tions, as shown recently in [16].

One of the shortcomings that the proposed formulation tried to
address is the calculation of the elastic modulus from the elastic
loading regime and not from the elastic unloading one. The pro-
posed work avoids making erroneous assumptions on the similar-
ity of axisymmetric tips with the Vickers ones and, on the contrary,
it attempts to solve the 3-Dimensional problem of material defor-
mation underneath a Vickers tip by using an upside-down square
based pyramid. This leads to the calculation of strain and stress
tensors from which an interpretation of the ‘‘damage” localization
near a Vickers indentation can be made; in addition, through the
corresponding traction vector, the value of the elastic modulus
can be calculated.
Fig. 1. Qualitative 3D plot of the displacement field under a Vickers indenter tip.
2. Gradient elasticity approach for Vickers indentation

2.1. Deformation field under a Vickers indenter

This work is an extension of the one by Konstantinidis et al [20],
in which they started from the deformation field underneath a Ber-
kovich tip, calculated directly from the assumption that as the
pyramidal tip penetrates the material, it deforms it in directions
perpendicular to the tip’s faces, and not in the z direction. Calculat-
ing the deformation gradient tensor they were able to calculate the
Green strain tensor’s components. Next, they assumed classical
elasticity as well as gradient elasticity, and they have shown that
the rzz component of the stress tensor in gradient elasticity has
the same dependency with the pressure under the tip and, thus,
can be used for modeling the tip geometry’s effect on indentation
data modeling.

Following the same procedure as in [20], the displacement field
uV r; h; zð Þ in cylindrical coordinates under a Vickers tip which has
penetrated the material surface by a depth h, is calculated as:

uV r; h; zð Þ ¼
uV
r r; h; zð Þ
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A qualitative 3D plot of the displacement field under a Vickers

indenter tip is shown in Fig. 1.
Then, calculating the deformation gradient tensor FV as
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the infinitesimal strain tensor, eV ¼ 1
2 FV

� �T
þ FV

	 

� I, is

derived as

eV ¼
eV11 eV12 eV13
eV21 eV22 eV23
eV31 eV32 eV33
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with
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eV11 ¼ �0:14033 1þ sin2hj jð Þ ; eV22 ¼ 0:34733=rð Þ hþ zð Þ � 0:404027 r½ �
1þ sin2hj jð Þ ;
eV33 ¼ �0:85967 ; eV12 ¼ eV21 ¼ 0:17366=r sin2hj jð Þ hþ zð Þ � 0:404027 r½ �

sin 4arctan cosh=sinhð Þ½ � ;
eV13 ¼ eV31 ¼ �0:17366 2þ sin2hj jð Þ; eV23 ¼ eV32 ¼ 0.

2.2. Introduction of initial elasticity (Boussinessq’s solution)

In [16] it was assumed that for very small forces the Vickers tip
just ‘‘pushes” the material surface elastically up to a maximum dis-
placement hel, without forming an indent. While, when the tip
starts forming an indent, the material next to the tip is elastically
deformed and this elastic deformation seems to ‘‘move” radially
away from the tip by the radius a of the imprint. Thus, it is
assumed that the elastic displacement of material points around
the tip (and not in contact with it) now starts from the Vickers’
edges instead of its apex, i.e. is given by the same function but with
r ! r þ a. More precisely, the material points in contact with the
Vickers tip exhibit a displacement given by Eq. (1) plus the afore-
mentioned maximum elastic displacement in the z direction, i.e.
uV
z þ hel, while the displacement of the material points not in con-

tact with the tip is given by Boussinessq’s solution [21], but for
r ! r þ a. Then, the total displacement (utot

r , utot
h , utot

z ) is a superpo-
sition of the Boussinessq displacement field, for material points not
in contact with the tip, and the one dictated by the Vickers geom-
etry (uV

r , u
V
h , u

V
z ) given by Eq. (1), for material points in contact with

the tip, as:

utot
r ¼ ur j r!rþa þ uV

r ;

utot
h ¼ uhj r!rþa þ uV

h ¼ 0;

utot
z ¼ uzj r!rþa þ uV

z þ hel: ð4Þ
The respective plot of the total displacement under a Vickers tip

given by Eq. (4) is shown in Fig. 2.
In this case, the infinitesimal strain tensor under the Vickers tip

in cylindrical coordinates is given by

e ¼
e11 e12 e13
e21 e22 e23
e31 e32 e33

2
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3
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with its components being functions of space and material
characteristics (Poisson’s ratio, maximum elastic displacement
before the formation of an indent) given by



Fig. 2. Qualitative 3D plot of the displacement field under a Vickers indenter tip,
including the Boussinessq’s [21] solution.

A.K. Kampouris, Kimon-Ioannis Lappas, A.A. Konstantinidis et al. Materials Today: Proceedings 67 (2022) 964–970
e11 ¼ h2el z 4r4 m�1ð Þþ2r2z2 3m�1ð Þþz4 2m�1ð Þ½ �þ r2þz2ð Þ5=2 1�2mð Þ
� �

2r2 r2þz2ð Þ5=2 1�mð Þ
� 0:14033

1þ sin2hj jð Þ;
e22 ¼ h2el 2 zr2� r2þz2ð Þ3=2

� �
1�mð Þ�z3 2m�1ð Þ

� �
r2þz2ð Þþ r2þz2ð Þ5=2

� �
2r2 r2þz2ð Þ5=2 1�mð Þ

þ 0:34733
r

hþ hel þ zð Þ � 0:404027 r½ � 1þ sin2hj jð Þ;
e33 ¼ h2el z 2 r2þz2ð Þ m�3 z2½ �

2 r2þz2ð Þ5=2 1�mð Þ
� 0:85967;

e12 ¼ e21 ¼ 0:17366 hþ hel þ zð Þ � 0:404027 r½ � sin 4arctan cosh=sinhð Þ½ �
r sin2hj j ;

e13 ¼ e31 ¼ �3h2el rz
2

2 r2þz2ð Þ5=2 1�mð Þ
� 0:17366 2þ sin2hj jð Þ; e23 ¼ e32 ¼ 0,

where r; h; zð Þ are cylindrical coordinates (chosen for brevity in
the components’ expressions), m denotes Poisson’s ratio, h the pen-
etration depth and hel the maximum elastic displacement before an
indent is formed, while the Vickers’ tip apex angle was taken as
u ¼ 680.

From the infinitesimal strain tensor, a local (microscopic) strain
tensor, accounting for heterogeneity effects within the material
representative volume element (RVE) may be assumed in the form
egrad ¼ e� l2r2e, with l denoting an internal length characterizing
the heterogeneity of RVE, along the lines of internal length gradient
(ILG) mechanics approach [22]. Then, the equivalent von Mises
strain is calculated from the egrad strain tensor as [16]
eeq ¼

ffiffiffi
2
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3
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which is, again, a function of the cylindrical coordinates r; h; zð Þ,
the Poisson’s ratio m, the maximum elastic displacement before an
indent is formed hel, the internal length l as well as of the penetra-
tion depth h.

It is noted that although the internal length l is usually charac-
terizing material heterogeneity, in this case it also corresponds to
non-local interactions due to the heterogeneous loading applied
by the non-flat tip geometry [16].

Next, gradient elasticity [17–19] was assumed for modeling the
relation between the strain and stress tensors underneath the
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Vickers tip, where the so-called gradient coefficient c in this case
can be thought of as the square of the respective internal length
l, i.e. c ¼ l2. The stress tensor calculated using the above infinites-
imal strain components reads:

rgrad ¼ k treð Þ1þ 2leþ cr2 k treð Þ1þ 2le½ �; ð7Þ
with its components being parametric functions of space and

material characteristics (Poisson’s ratio m, maximum elastic dis-
placement hel before the formation of an indent, Lamé constants
k;l or, equivalently, elastic modulus E), as well as of the gradient
coefficient c. Due to their cumbersome form, the stress compo-
nents are not given here, but they can be directly calculated by

Eqs. (5) and (7). A typical 3D contour plot of the rgrad
zz component

for specific values of hel; k and c under a Vickers tip is illustrated
in Fig. 3.

2.3. Elastic modulus calculation

A novel aspect of the proposed formulation is the calculation of
the elastic modulus from the first part of the loading curve, i.e.
within elasticity, in contrast with the common practice of calculat-
ing it from the elastic unloading regime [23]. For the elastic mod-
ulus to be calculated, the traction vector at the direction
perpendicular to one of the tip’s faces is first calculated. This is
done by taking the inner product of the normal to the face unit vec-
tor with the stress tensor:

T ðnfaceÞ ¼ nface � rgrad; ð8Þ
with the normal to one of the Vickers tip’s faces unit vector

given by nface ¼ cos68o p=4 sin68o� �T , in cylindrical coordinates.
The traction vector at the direction perpendicular to the tip’s

face is considered to be herein the mode of loading in an indenta-
tion experiment. More precisely, the deformation field was calcu-
lated based on the assumption that as the tip penetrates the
material, it deforms the material on directions perpendicular to
its faces, and not in the z direction. Thus, a 3-D formulation of
the indentation problem is considered, in contrast to the common
practice of assuming that the deformation is taking place perpen-
dicular to the specimen’s surface, rendering the test to be one-
dimensional.

From Eq. (8) the traction vector is calculated through the
stress tensor on the same direction that the deformation is
assumed to take place, and is a function of space. Its numerical
integration over the tip’s face provides the mean force over the

face area T
�ðnfaceÞ

� �
, which can be multiplied with the area Aface

� �
to lead to the mean load applied by one of the tip’s faces to the
material, as:
T
�ðnfaceÞAface ¼ P h; E; m; hel; cð Þ; ð9Þ

which is a parametric function of the indentation depth, with
the parameters being, again, the modulus of elasticity (or the
related first Lamé constant) the Poisson’s ratio, the maximum elas-
tic displacement and the gradient coefficient. This mean force
value is actually ¼ of the total force applied by the indenter on



Fig. 3. A 3-D contour plot of the rgrad
zz component for specific values of the hel, k and

c under a Vickers tip.
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the material’s surface. It turns out that the mean force vs. penetra-
tion depth relation coming from the proposed formulation has the
following form:

P h; E; m; hel; cð Þ ¼ 1:65 f E; m;hel; cð Þ h� helð Þ2; ð10Þ
Fig. 4. Contour plots of the equivalent strain predicted by Eq. (6) for: (a) t
h ¼ 100nm;hel ¼ 11nm; l ¼ 1:5nm; (c) the x� z plane for h ¼ 100nm; hel ¼ 10nm; l ¼ 1
Poisson’s ratio was taken as m ¼ 0:25.
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where f E; m;hel; cð Þ is a function of k; m;hel; c, with a cumbersome
form and, thus, not explicitly given herein. Equation (10) is a load
vs. indentation depth relation which will be compared with
experiments.

Comparing the predictions of Eq. (10) on the load vs. depth rela-
tion with respective indentation measurements data results to the
estimation of the various parameters of the f E; m;hel; cð Þ function.
This is actually a novel way for elastic modulus’ estimation from
the elastic part. A second novelty concerning the theoretical load
vs. depth prediction of Eq. (10), is that from the fitted elastic load-
ing curve an estimate of the depth where the elasto-plastic transi-
tion takes place could possibly also lead to a depth threshold after
which the bulk material hardness should be calculated.
2.4. Sensitivity analysis of equivalent strain

In [16] a 2D parametric study investigated the dependence of
the von Mises strain and stress fields on different values of their
parameters E; m;hel; lð Þ. In this section we first test the sensitivity
of the equivalent strain given by Eq. (6). It turns out that its depen-
dence on the values of the Poisson’s ratio is not significant. Fig. 4
shows the equivalent strain contours on the x� y plane z ¼ 0ð Þ,
as well as on the x� z plane x ¼ 0ð Þ, for different maximum elastic
depth–to–indentation depth ratios, namely hel=h ¼ 0:1,
hel=h ¼ 0:11, i.e. a 10% variation of the hel parameter for a given
indentation depth h value, as well as with a simultaneous 50% vari-
ation of l, namely l ¼ 1nm; l ¼ 1:5nm.

It can be seen from Fig. 4 that there is no sensitivity of the mod-
el’s prediction for the equivalent strain by Eq. (6) on changes of the
values of the maximum elastic depth hel as well as of the internal
length l.
he x� y plane for h ¼ 100nm; hel ¼ 10nm; l ¼ 1nm; (b) the x� y plane for
nm; (d) the x� z plane for h ¼ 100nm; hel ¼ 11nm; l ¼ 1:5nm. For all plots the
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The sensitivity of the model’s predictions of Eq. (10) on the load
vs. depth with small (10%) changes in the values of the various
parameters was also checked. It again turns out that the model’s
predictions do not vary significantly with small variations in the
value of the Poisson’s ratio, which in all cases is taken equal to
m ¼ 0:25. The following cases are considered: a) hel ¼ 10nm;

E ¼ 100GPa; c ¼ 100nm2, b) hel ¼ 11nm; E ¼ 100GPa; c ¼ 100nm2,
c) hel ¼ 10nm; E ¼ 100GPa; c ¼ 110nm2, and d) hel ¼ 10nm;

E ¼ 110GPa; c ¼ 100nm2, i.e. changing the values of hel; E; c by
10%. The load vs. displacement plots for the aforementioned cases
are shown in Fig. 5, indicating that the model’s predictions are not
sensitive to small variations of the values of the hel; c parameters,
and there is a small sensitivity on the modulus of elasticity value,
but only for large indentation depths.

But in order for the potential of Eq. (10) predictions to be
shown, load vs. depth predictions with large differences in the
aforementioned parameters values are depicted in Fig. 6. It can
be seen from Fig. 6 that by changing the parameter values one
Fig. 5. Sensitivity analysis of the load vs. displacement predictions of Eq. (10) for
hel ¼ 10nm; E ¼ 100GPa; c ¼ 100nm2 (blue line), hel ¼ 11nm; E ¼ 100GPa;
c ¼ 100nm2 (red dashed line), hel ¼ 10nm; E ¼ 100GPa; c ¼ 110nm2 (black line),
and hel ¼ 10nm; E ¼ 110GPa; c ¼ 100nm2 (green line). There is no sensitivity on
small changes of the hel; c parameters, and a small sensitivity on E for large
indentation depths. For all cases the Poisson’s ratio was taken as m ¼ 0:25. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 6. Prediction of load – depth curves by Eq. (10) for different set of parameters
E;hel; c. Black dashed curve for hel ¼ 1lm; E ¼ 100GPa; c ¼ 1nm2. Setting hel ¼ 2lm
(red curve) leads to a ‘‘shift” of the prediction towards larger depth values;
increasing the elastic modulus to E ¼ 100GPa (green curve) increases the predic-
tion’s curvature; setting c ¼ 55nm2 (black solid curve) leads to a small ‘‘rotation”.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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can approximate experimental load vs. displacement Vickers data,
with an ultimate goal of calculating the modulus of elasticity E, as
done in the next Section of this work. More precisely, increasing
(decreasing) the hel parameter leads to a ‘‘shift” of the load vs.
depth prediction to larger (smaller) depths, increasing (decreasing)
the E parameter leads to predictions with larger (smaller) curva-
ture, while an increase (decrease) of the c values leads to a small
‘‘rotation” of the load vs. depth prediction of Eq. (10).
3. Validation of the proposed formulation

3.1. Shear band formation modeling

In [1] aluminum specimens were experimentally investigated
with a Vickers indenter. Fig. 7a shows a Vickers’ impression on alu-
minum for a load of 255 mN, with small characteristic shear bands
around it, which are semicircular and ‘‘embrace” each side from
the one edge to the other. The Young’s modulus and Poisson’s ratio
are given equal to 70 GPa and 0.33, respectively [1], while the
indentation depth was calculated as the mean diagonal / 7, and
found approximately equal to 2850 nm.

The von Mises equivalent strain of Eq. (6) is used to capture the
Vickers impression. The theoretical model’s prediction can be seen
in Fig. 7b, where the maximum elastic deformation was taken
equal to hel ¼ 60nm and the gradient coefficient value was taken
as c ¼ 324lm2.

As can be seen in Fig. 7, there is a striking qualitative as well as
quantitative agreement between the theoretical model’s predic-
tions of Eq. (6) and the reported in [1] Vickers impression with
the surrounding shear bands, indicating the potential of the pro-
posed formulation to describe deformation patterns underneath a
Vickers tip.

3.2. Modeling load-displacement curves – calculation of elastic
modulus

Based on the theoretical framework presented in the previous
section, we compared our model’s predictions on load vs. depth
as given by Eq. (10), with respective Vickers indentation data on
Alumina and Glass samples [3], as shown in Fig. 8.

Since the proposed formulation is based on gradient elasticity,
only the initial loading part pertaining to the material’s elastic
behavior is of interest. Although this ‘‘elastic” region for the mate-
rial in contact with the tip is very difficult to be defined, it is con-
sidered to start when the imprint starts to form, i.e. when h � hel,
and ends when all the material underneath the tip has yielded.
Thus, only a number of the initial load vs. depth measurements
can be approximated through the proposed formulation, providing
this way an indirect estimation of the material’s elastic region. In
the two test cases considered, the theoretical predictions coincided
with the experimental measurements for depths up to 9 lm and
4.5 lm for the Alumina and Glass specimens, respectively, indicat-
ing an estimate of the ‘‘elastic” region of the material under the
Vickers tip.

At larger depths all the material under the Vickers tip will have
already yielded. This is considered to be a loading threshold for the
material’s surface similar to the yield stress in the bulk material.
Above this load (or the corresponding depth) level the asymptotic
(bulk) value of hardness should be reached.

It is noted at this point that the volumetric ratio between a
Vickers pyramid tip and an ideal rectangular parallelepiped, is
VV=VP � 1=6, which actually means that the corresponding strain
induced by Vickers indentation is 6 times smaller than the one
induced by compression. This, in turn, means that in order to pro-
duce the same level of strain, the depth of a Vickers indentation



Fig. 8. Fitting the initial (elastic) part of the load – displacement measurements [3] of (a) Alumina, and (b) Glass samples, for elastic modulus calculation. The predictions of
the theoretical model were taken with hel ¼ 10nm; m ¼ 0:21; c ¼ 1000nm2; E ¼ 215GPa for the Alumina sample, as well as hel ¼ 10nm; m ¼ 0:23; c ¼ 800nm2; E ¼ 75GPa for
the Glass sample.

Fig. 7. (a) Vickers impression on an aluminum sample [1]; (b) Theoretical prediction of the equivalent von Mises strain derived from the gradient infinitesimal strain tensor,
as predicted by Eq. (6) at z ¼ 0, with hel ¼ 60nm and c ¼ 324lm2. A qualitative / quantitative similarity is obvious. The out-of-plane tip shape is shown with dashed lines.
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should be 6 times larger than the corresponding depth during
indentation with a flat tip (similar to compression). Now, the val-
ues of 9 lm and 4.5 lm for the Alumina and Glass data, respec-
tively, multiplied by 6 correspond to 54 lm and 27 lm,
respectively, above which the asymptotic value of the hardness is
actually reached, as also reported in [3]. This is another indication
of the potential of the proposed formulation.

The various parameters used in the comparison between the
theoretical predictions of Eq. (10) with the experimental data [3],
shown in Fig. 8, were: hel ¼ 10nm; m ¼ 0:21; c ¼ 1000nm2; E ¼
215GPa for the Alumina sample, as well as hel ¼ 10nm; m ¼ 0:23;
c ¼ 800nm2; E ¼ 75GPa for the Glass sample. The elastic modulus
estimated in each case is in very good agreement with values
reported in the literature.
4. Conclusions

In the present work an initial attempt is made to formulate a 3D
continuum mechanics-based approach for interpreting load vs.
depth data measured during Vickers indentation. In this approach
969
it is assumed that the deformation underneath the tip is taking
place in directions perpendicular to the tip’s faces and forming
self-similar indents. The displacement field of the material points
in contact with the Vickers tip is supposed to follow the real (up-
side-down pyramid with rectangular base) tip’s geometry, with
no approximations made.

The present work aims at providing a different setting for: a)
providing displacement/strain/stress fields near the Vickers tip;
b) providing an estimate of the elastic region underneath the tip;
c) calculating the modulus of elasticity from elastic loading, and
the theoretical predictions seem to provide results in accordance
with Vickers indentation experiments.

Of course, the proposed formulation concerns only the calcula-
tion of displacement, strain and stress fields, as well as of the elas-
tic modulus based on Vickers indentation data. Erroneous
measurements of the load and the depth during Vickers indenta-
tion, possibly due to a blunt tip or a rough specimen surface, are
not dealt with in the proposed formulation. As all other indenta-
tion approaches (e.g. [23]) the proposed formulation assumes, as
a first approximation, an ideal tip geometry, as well as a perfectly
flat and homogeneous specimen.
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But the incorporation of an internal length through gradient
elasticity [22] in Eqs. (6) and (10) provides to the proposed formu-
lation a means for taking into account material heterogeneity. As
was mentioned earlier, this internal length although originally
used to account for material heterogeneity, it could also incorpo-
rate the effect of inhomogeneous loading due to a non-flat or
non-ideal tip shape. The potential of the proposed formulation to
take into account, through the incorporated internal length, mate-
rial heterogeneity and/or heterogeneous loading conditions (possi-
bly due to tip bluntness or specimen roughness) should be
explored and will be the subject of a future publication.
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