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ABSTRACT: Raman spectroscopy is a group of analytical techniques, currently applied in several research fields, including clinical diagnos-
tics. Tissue-mimicking optical phantoms have been established as an essential intermediate stage for medical applications with their employ-
ment from spectroscopic techniques to be constantly growing. This review outlines the types of tissue phantoms currently employed in different
biomedical applications of Raman spectroscopy, focusing on their composition and optical properties. It is therefore an attempt to present an

informed range of options for potential use to the researchers.
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Introduction

Raman spectroscopy (RS) is a group of techniques based
around the analysis of inelastic (Raman scattered) light
resulting from the interaction between light and matter.
Raman scattered light provides information on the molecu-
lar bond vibrations, which can be exploited for the acquisi-
tion of sample-specific molecular fingerprints. Due to its
non-invasive nature, Raman spectroscopy has been employed
in different modes to address various biomedical issues over
the last few decades. Some of them include cancer screen-
ing,! pathogen identification,?3 body fluid analysis,* transfu-
sion blood assessment,’ disease diagnosis,®® drug analysis,’
or even as a process analytical tool for cell therapies.1?

The continuous need for tissue-like samples in the stand-
ardization and development of spectroscopic and other opti-
cal applications combined with the limited availability of
human tissue due to ethics reasons, has led to the adoption of
tissue-mimicking phantoms or #issue models. The optical tis-
sue phantoms are synthetic models mimicking not only
human tissue properties, but also light propagation and inter-
actions through it. This presents a significant quality for spec-
troscopic techniques, which have recruited tissue phantoms
over time for (a) feasibility and reproducibility testing, (b)
optimization, and (c)calibration reasons.

Tissue phantoms are essentially diffuse matrices of various
composition, geometry, and optical properties. They exist in
many different forms but are generally divided into those of
solid, hydrogel, and liquid state. Their common feature is that
absorption, scattering, and other optical properties can be con-
trollably modeled during fabrication. A different category of tis-
sue phantoms is the ex vivo animal tissue, which is often used in
spectroscopy studies for a more realistic approach. Although ani-
mal phantoms cannot be easily controlled in terms of optical

properties, they provide an inherent heterogeneity in tissue com-
position which is very similar to the human one.

The flexibility and properties of tissue phantoms have ren-
dered them an important part of technology development and
translation process. Over the past few decades, tissue phantoms
have been extensively used for ex vivo measurements preceding
the implementation of any optical technique in clinical set-
tings.!! In this review, we attempt to outline most of the tissue
phantoms employed for biomedical applications in Raman
spectroscopy, focusing on three different aspects: (a) most com-
monly used tissue phantom types, (b) phantom design, and (c)
biomedical applications in the field of Raman spectroscopy
involving optical tissue phantoms. We hope that this review
will inform researchers on the current applications of synthetic
and animal tissue phantoms, facilitating their choice in future
research.

Types of Phantoms

The most commonly used phantoms are liquid tissue phan-
toms, solid silicone or polymer phantoms, gelatin/ agarose
phantoms, and animal phantoms (Figure 1). As the different
types of phantoms have been extensively described in com-
prehensive reviews before,'?-14 they are only briefly mentioned
below.

Liquid tissue phantoms are the easiest and most flexible in
fabrication, as they can be easily controlled and managed in
terms of volume and consistency. Because of the latter, the
optical properties of liquid phantoms can be adjusted just by
changing the relative proportions of absorbing and scattering
agents in the phantom solution. The liquid phantoms are com-
monly made of mixing a commercially available lipid emulsion
(Intralipid, Liposyn) and added absorber (eg, ink) in a con-

tainer. The container material may vary depending on the
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Figure 1. Examples of simple tissue phantoms: (A) liquid tissue phantom, (B) solid tissue phantoms of a human wrist and rat leg,'* (C) gelatin phantom
(reproduced with permission),'s and (D) animal tissue phantom. (A and D are images from the authors’ unpublished work).
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Figure 2. Transmission of light through an absorbing (A) and diffusely scattering (B) medium.'®

application and the possibility of light reaching the container
walls. The liquid nature of the phantoms allows for significant
flexibility in sample measurements, such as incorporation of
Raman scattering or fluorescence features, even after the fabri-
cation process has been completed. Another major advantage
of liquid phantoms over the solid ones is the uncomplicated
and rapid synthetic procedure.

On the other hand, solid phantoms can be time-consuming
and not flexible in fabrication, as their optical properties can-
not easily change by adding or removing components to the
matrix. Solid phantom samples have been made using bulk
matrices of different degrees of transparency, such as polymers,
silicone, and wax. Although polymer-based phantoms have
been reported to be sometimes instable in size during polym-
erization,® they are generally considered to be preserved better
and for a longer period of time compared to animal tissue or
liquid tissue phantoms. A special category of semi-solid tissue
phantoms are the hydrogel-based ones, including agarose and
gelatin matrices. Both phantom types have been extensively
used for imaging'? and assessed for biocompatibility.)” Since
hydrogel phantoms contain water as their main component,
evaporation of the solvent can take place, changing the dimen-
sions and optical properties of the phantom within a short
period of time. As such phantoms are also prone to bacterial
growth, preservatives may be used for lifetime extension.

Animal phantoms are the most realistic choice as they accu-
rately simulate the heterogeneity, mechanical properties, and
consistency of the human tissue. Ex vivo animal tissue is com-
monly used in Raman spectroscopy not only for their intrinsic
scattering and absorbing properties but also for their morphol-
ogy and chemical composition. In combination with their

morphological complexity and presence of autofluorescence
induced by chromophores which are also found in human tis-
sue, ex vivo animal tissue can serve as a highly accurate model
for light propagation.!® Despite their benefits, animal tissue
phantoms are difficult to be controlled in terms of sample com-
position for reproducible measurements as their optical prop-
erties cannot be adjusted precisely. In addition, reduced tissue
absorption is expected in the excised animal tissues, due to
decrease in blood volume during removal. However, animal
phantoms are useful as an intermediate stage prior to human or
in vivo animal studies, as they allow researchers to investigate
healthy and diseased tissues in ways that would be inaccessible
in a human patient due to ethics.

Phantom Design
Optical properties

While photons propagate through tissues, they are being scat-
tered or absorbed by the tissue molecules. During scattering,
which is more commonly taking place at interfaces of tissue
components with different refractive indices, light photons
interact with matter and change their direction, with (inelastic
scattering) or without (elastic or diffuse scattering) losing
energy. The more scattering the medium is, the more the pho-
tons will deviate from the original forward direction (Figure 2).
In the case of absorption, the photons will be absorbed only
when the energy of the photon matches the energy gap between
the initial and the final energy states of the atom or molecule.
How efficiently the photon will travel through the tissue,
depends on the fraction of light which will be absorbed or scat-
tered by it, which is described principally by the scattering and

absorption coefficients. In biological tissues, absorption and



Vardaki and Kourkoumelis

32
30
28
26
24
22
20 L 4
18
16
14
12

10
+ A

0.01 g/mi TiO,
1M ICG

0.3 pl/ml India Ink

0.18 mg/ml Nigrosin
150 g/L Hemoglobin

reduced scattering coefficient (cm)

o N &~ O ®
(@)

0 0.5 1 1.5 2 2.5

absorption coefficient (cm)

A Skin epidermis
Brain white matter
3.5% milk ¢ Brain (mean)
@ Breast
O Prostate
# Skin subcutaneous
fat
A Skull

@ A Cranial bone

Intralipid 1% O Liver

O Muscle
Liposyn 20%
@ Stomach wall
0.01 g/ml TiO, (mucosa)
@ Whole blood
3 3.5 4 45 5 A Colon (mucosa and

submucosa)

Figure 3. Reduced scattering and absorption coefficients for typical concentrations of scattering and absorbing agents commonly used in tissue phantom
fabrication, in comparison with optical properties of different types of healthy human tissues at 830 nm.

scattering are commonly taking place in the same sample with
the effect of absorption to be much stronger than one would
expect as a result of the extra optical path length.

The scattering coefficient (u,) depends on the probability of
the medium per unit length to redirect the incident photons
into new directions and therefore prevent the forward on-axis
transmission of light. The average distance that a photon trav-
els between scattering events is called mean free path length.
Similarly, the absorption coefficient (u,) describes the proba-
bility of the medium per unit length to absorb the photons.?
Because in biological tissues the light is not scattered in all
possible directions but is mainly forward directed (anisotropic
scattering),?>?? it is convenient to define a mean scattering
angle which is described by the value of anisotropy (g).2* To be
more precise in the description of scattering in biological tis-
sues, scattering coefficient and anisotropy are combined into
the expression of reduced scattering coefficient (u) which is

defined as
Wo=p (1 -g) 1)

The optical properties described above (u,, W, H; and g)
are characteristic of tissue and vary for different types of
human tissue. To appropriately simulate visible or infrared
light propagation in a certain tissue, it is necessary to repro-
duce its optical properties at the measuring wavelength. By
replicating optical properties, we simulate co-dependent
parameters such as the concentration of various chromo-
phores inside the tissue (absorption coefficient), and the form,
size and concentration of the scattering components in the
tissue (scattering coefficient).?*

Commonly used scatterers for the fabrication of tissue
phantoms include fat emulsions such as Intralipid and Liposyn,
milk, TiO,, latex, and polystyrene microspheres. Absorbing
media include different types of inks (India ink, black ink, red

ink), dyes (blue dye, naphthol green dye, nigrosin, indocyanine
green), and biological absorbers (hemoglobin, B-carotene, mel-
anin). The desirable optical properties in the phantom volume
can be achieved by mixing the correct proportions of scattering
and absorbing agent.

Below we present typical concentrations of scatterer and
absorber media, commonly used in tissue phantom fabrication,
in correlation with the optical properties of characteristic
human tissues (Figure 3). The reduced scattering and absorp-
tion coefficients are based on experimental data of healthy
human tissue at 830nm for different skin layers,> brain 26?7
breast,28 cranial bone,?? liver,3° muscle,?! stomach wall mucosa,32
colon, prostate,3* skull,?® and whole blood.® Optical proper-
ties of the scattering and absorbing media included in the plot
were also derived from the literature for nigrosin,’ TiO,,3
milk,® Liposyn,3’ hemoglobin,® indocyanine green (ICG),*
Intralipid,*! and India ink.*? The exact values used in the figure
can be found in Supplementary Material (S1).

Geometry and chemical composition

Even if a phantom exhibits optical properties equivalent to a
certain tissue, the morphology of the phantom is a significant
feature to match the tissue in terms of the anatomical shape.
For cases where feasibility evaluation of a spectroscopic tech-
nique is required, the macroscopic geometry of the sample
should be ideally reproduced in the tissue phantom.

Another prerequisite for the phantoms to fully simulate the
respective tissue is to match the chemical properties. This is
especially important in Raman spectroscopy because of the
sensitivity of the technique to tissue chemistry on a molecular
level. The chemical composition of a tissue is particularly chal-
lenging to reproduce in a phantom. This has led to the intro-
duction of ex vivo animal tissue, or animal phantoms.
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Figure 4. (A) Photograph of a tissue phantom with a mineral “bone” inclusion (HAP) embedded in the centrifuge material (Cytop) and placed in the fiber
holder of a Raman tomographic imaging setup. (B) Raman signal acquired with the collection fibers, for different HAP concentrations of the “bone”

phantom inside its plastic centrifuge tube.

Source: Adapted with permission from Demers et al*¢ © The Optical Society.
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Figure 5. (A) Rat tissue phantom reconstructed from a rat leg model. (B) Rat tissue phantom reconstructed as in (A) but with hemoglobin and Intralipid
omitted to make the bone layer visible. (C) Rat tissue phantom transcutaneous Raman spectrum of the bone layer showing major Raman bands (average

signal recovered from 47 individual collection fibers).4”

Liquid and solid tissue phantoms both lack realistic com-
plexity that can be otherwise found in mammalian tissue. To
further improve the realistic complexity of such phantoms,
multiple layers of identical or different optical parameters and
Raman-scattering features have been introduced to the bulk
matrix. An example of the latter is well-represented by mineral
inclusions, commonly used to enhance the biological impor-
tance of phantoms simulating rich-calcification tissues (eg,
breast). Inclusions of hydroxyapatite (HAP), a type of apatite
synthesized calcification powder, are often added inside the
phantom to represent pathological calcifications.®® Other
strong scattering materials, such as calcium carbonate, #rans-
stilbene or polymers, can also be used, especially when there is
a need of multiple inclusions with different scattering

and distribution within the simulated tissue. Liquid tissue
phantoms allow for easy addition or removal of inclusion in the
sample volume. In contrary, robust phantoms cannot easily
incorporate inclusion features following fabrication, but allow
for the presence of a more realistic surrounding tissue such as
in the case of animal phantoms.

Tissue Phantoms in Biomedical Applications

Optical tissue phantoms have a wide and diverse range of bio-
medical applications in the field of Raman spectroscopy (Table 1),
and especially deep RS and Raman fiber probe measurements,
where the studies mainly focus around lesion detection in can-
cer and bone disease diagnosis, or glucose sensing in blood.
Numerous applications of tissue phantoms can be also found in
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the field of surface-enhanced Raman spectroscopy (SERS),
where the signal of the molecule of interest can be significantly
enhanced using nanoparticles. This review outlines most of the
aforementioned applications, with an emphasis on the types of
phantoms employed in each case.

Bone studies

Optical phantoms of osteochondral tissues are regularly used
to simulate Raman measurements on either bone or soft tissue.
Such phantoms are employed for the study of bone diseases or
system optimization and characterization. In these studies, by
probing the bone below soft tissue, Raman spectroscopy can
provide useful information on (a) bone demineralization rele-
vant to osteoporosis or other metabolic bone diseases, and (b)
bone changes induced by rheumatoid arthritis or monitoring of
bone graft osseointegration.

Raman tomography is a modality providing Raman signal
combined with spatial and distribution information of the
sample. The setup arrangements either consist of multiple exci-
tation and collection fibers surrounding the sample, or by
acquiring signal of a rotating sample in a transmission mode.
Tissue phantoms have been employed in both modalities to
assist the recovery of Raman signals from subsurface bone tis-
sue. Schulmerich et al acquired computed tomographic (CT)
data from skin and bone animal tissue. The CT data were then
calibrated against scattering phantoms of agarose matrix with a
Teflon sphere inclusion, in order to reconstruct a canine limb
through diffuse Raman tomography.*%* Apart from calibra-
tion reasons, bone tissue phantoms have also been employed
for optimization and system development in Raman tomogra-
phy. In a fiber optic coupled Raman system for measurements
on musculoskeletal tissues, gelatin tissue phantoms with a min-
eral inclusion have been used for the optimization of the posi-
tion of excitation and collection fibers.*6#” Esmonde-White
et al* have measured phantoms of human lower and upper
extremities with a variety of fiber optic probe configurations for
specific anatomical sampling locations. It was shown that
although the transcutaneous Raman signal of the bone could
be recovered from 1 to 3cm of soft tissue, the signal signifi-
cantly depends on the phantom and therefore the anatomical
location geometry. A follow-up study confirmed the feasibility
of transcutaneous bone Raman measurements using Raman
tomographic imaging, by testing tissue phantoms with mineral
inclusions in the range of physiological HAP concentration in
bone (Figure 4).# The system response was assessed through
the contrast between the mineral and background (surround-
ing tissue) signal, whereas a multichannel detection version of
the technique demonstrated multifold sensitivity and highly
accurate position recovery of the inclusion.*

A different simulation of osteochondral interfaces has been
achieved with scattering gelatin-based phantoms consisted of
HAP and chondroitin sulfate to mimic bone and cartilage,
respectively. Measurements on tissue phantoms of different

optical properties which were conducted using fiber-optic
Raman spectroscopy,” indicated that osteoarthritis parameters,
such as optical scattering and thickness of cartilage, signifi-
cantly affect photon propagation in the tissue and the subse-
quent bone signal recovery.

In other Raman fiber optic studies, rat tissue phantoms have
acted as the intermediate stage for assessing the quality of
implanted grafts.>~>3 The gelatin-based phantoms were con-
structed in line with CT scans and in identical morphology to
a rat leg (Figure 5). The phantoms incorporated scattering
(Intralipid), absorption (Hemoglobin), and fluorescence
(Hemoglobin and Hydroxyapatite) properties, which allowed
calibration of the system’s response (position of the fibers) for
the assessment of bone quality during graft osseointegration.*”

Deep Raman spectroscopy, an emerging field of RS mainly
consisting of spatially offset RS (SORS) and transmission RS
(TRS), has utilized tissue phantoms to demonstrate feasibility
of acquiring Raman signals from different sampling depths.
The technology is based on decoupling the excitation from the
collection area and has been extensively applied in the biomed-
ical field.>*>> In the case of applications related to bone, SORS
has been employed to non-invasively assess the mineralization
of bone underneath skin, in tissue engineering scaffolds
implanted in a sheep bone defect. Dooley et al’® conducted
measurements on 3D printed composite scaffolds with poly-
caprolactone (PCL) and hydroxyapatite (HA) microparticles,
for which the concentration of HA varied to simulate different
degrees of mineralization. The study demonstrated feasibility
of the approach and a promising monitoring tool for bone
healing. Last, tissue phantoms have also been used for the opti-
mization of SORS setups, such as in the case of a mice skull
which was wrapped in porcine tissue and filled with agarose gel
and a polytetrafluoroethylene (PTFE) sheet inside.’” The
measurements were analyzed to assess the optimum spatial off-
set for the detection of the PTFE inclusion within the skull.

Breast cancer studies

Raman spectroscopy has been extensively applied to breast
cancer diagnostics as an analytical tool. Its application has
been reinforced by the presence of breast calcifications, small
calcium deposits in human breast which can be benign or
related to cancer. Their chemical composition varies and can
be either calcium oxalate (type I) or calcium phosphate (type
II), mainly hydroxyapatite.>® Due to their high clinical signifi-
cance, detection of calcifications has given rise to the employ-
ment of breast tissue phantoms in Raman spectroscopy, with
calcification-like inclusions of a high Raman cross-section
compound (hydroxyapatite, #rans-stilbene, etc) to represent a
malignant element in the phantom matrix.

In transmission Raman measurements conducted by Kerssens
et al,* the phantom inclusions consisted of various concentra-
tions of either calcium oxalate or calcium phosphate (standing
for type I and type II calcifications, respectively) contained in
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Figure 6. (A) The side view of a fingernail tissue phantom with capillaries. Red lines show upper and lower layer (75 capillaries per layer) of the designed
capillary system. (B) Magnified image of the tissue phantom (three holes after red ink testing). (C) Raman spectrum of the tissue phantom basic material

(epoxy resin).8!

quartz cuvettes which were in turn buried in porcine tissue. In a
tollow-up study, the selection of the optimum excitation wave-
length for the optimization of the setup was achieved through
TRS measurements on animal phantoms with inclusions of
higher Raman cross-section, such as #rans-stilbene.>® The animal
tissue chosen in such studies was porcine shoulder tissue, due to
its composition of mixed fat and protein, similar to that of
human breast.*300-62 In further deep Raman studies, researchers
employed liquid tissue phantoms of Intralipid solution and India
ink, adjusting their optical properties to match those of the cal-
cification-rich tissues of breast and prostate.!%#263 The origin of
the Raman signal of the calcification-like inclusion within the
phantom volume was studied as a function of the phantom opti-
cal properties in a transmission mode, with the aim to inform
tuture design of Raman probes for cancer diagnosis.

Phantoms of chicken and human breast tissue with calcifica-
tion-material inclusions were employed in different modes of
RS, such as spatially offset Raman spectroscopy®* and picosec-
ond Kerr-gated,® respectively, in order to assess the feasibility of
calcification detection within the tissue. It is worth mentioning
recent efforts that have been made with liquid and solid phan-
toms using combined sample differential transmittance (ie, dif-
ferential attenuation of Raman photons at different wavelengths
due to optical properties) and deep Raman spectroscopy, toward
the non-invasive prediction of the depth of inclusions represent-
ing cancer lesions within turbid matrices.6667

Skin studies

Various skin optical phantoms have been employed for calibra-
tion of Raman spectroscopic systems for potential skin cancer
detection. Liu et al fabricated an agarose two-layer phantom

with scattering similar to dermis and epidermis, introducing
polystyrene microspheres in the matrix. Each phantom layer
contained either urea or potassium formate as a Raman scatterer.
The Raman signal ratio of the two was assessed to evaluate the
performance of a snapshot depth sensitive Raman system. The
system was evaluated on the basis of its ability to acquire signals
from different depths of tissue phantoms, as well as ex vivo ani-
mal and in vivo human (fingernail) tissue.®® Multimodality skin
tissue phantoms have also been employed in studies to demon-
strate the effectiveness of combined system approaches, such as
in the case of a photo-acoustic Raman probe.®” The multi-layer
agarose phantom employed in the study, contained Intralipid
and nigrosin dye to simulate skin tissue with a malignant tumor,
represented by a #rans-stilbene inclusion. All of the studies have
yielded positive results on potential depth localization of skin
tumors and assessment of cancer margins, paving the way for
future skin cancer diagnostics.

In the field of skin diagnostics, phantoms have been used
for system calibration to correct Raman signal in terms of
both optical properties (spectral distorting from elastic scat-
tering) and sample depth. For the correction of in-depth
Raman signals in confocal Raman spectroscopy, Roig et al fab-
ricated polydimethylsiloxane (PDMS) scattering skin phan-
toms of known optical properties with’® and without
absorption.”? In the latter and more realistic approach, the
measurements allowed for signal correction on skin phantoms
consisting of multiple layers, each one of them representing a
different skin layer (dermis, epidermis, stratum corneum) with
distinct optical properties. Other studies including resonance
Raman measurements on silicone skin phantoms combined
with Monte Carlo simulations’ have suggested correction
functions for the Raman signal of carotenoids (a main
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contributor in skin absorption) in skin, without a priori
knowledge of the tissue optical properties.”3

Blood studies

The non-invasive measurement of blood glucose has become
a subject of continuous research in the field of bioanalytics.
Tissue phantoms have significantly supported the research
development toward that direction. Research groups under
M. Feld, R. Dasari, and later I. Barman have employed liq-
uid tissue phantoms of different optical properties and vary-
ing glucose concentration in Raman measurements.
Importantly, their research was focused on correcting the
acquired glucose Raman signal in terms of contribution due
to skin optical properties, which were in turn simulated
through the tissue phantoms. More specifically, Dingari
et al”* used tissue phantoms to establish that varying optical
properties heavily affect the prediction accuracy of blood
glucose detection in sample-to-sample variability. In a fol-
low-up study, the researchers employed phantoms with dif-
ferent glucose concentrations to initially calibrate and then
demonstrate that Turbidity-Corrected Raman Spectroscopy
(TCRS) combined with least-squares analysis” or Support
Vector Machines (SVM)7° is able to recover useful spectral
information by correcting the signal for intensity and shape
distortions due to optical properties’effects. Previous studies
by the same research group, utilizing intrinsic Raman spec-
troscopy, also focused on correcting turbidity-induced vari-
ations (ie, spectral variations caused by absorption and
scattering), however with the prerequisite of already known
diffuse scattering coefficient in the employed phantoms.”’
Datasets from the same study were later used in the appli-
cation of wavelength selection for linear partial least
squares (PLS) and nonlinear calibration support vector
regression (SVR), with the latter to exhibit the best predic-
tive accuracy for transcutaneous blood glucose detection.”
Addressing the spectral variations due to photo-bleaching
in blood measurements where autofluorescence is usually
encountered, Barman et al”® have employed shifted sub-
tracted Raman spectroscopy combined with partial least
squares to increase the prediction accuracy of glucose detec-
tion in liquid phantoms, where the fluorescence has been
previously induced with indocyanine green.

In a different study, Chaiken et al have used gelatin phantoms
containing bovine erythrocytes and hemoglobin as a fluores-
cence agent, highlighting that interpatient blood qualities such
as hematocrit and microcirculation may introduce higher vari-
ability in Raman measurements compared with glucose levels.
The Raman spectrometer was calibrated using the employed
phantoms for non-invasive iz vivo measurements of blood glu-
cose in a human fingertip.89 Also for calibration reasons, epoxy
resin solid phantoms have been fabricated using TiO, and red
ink as a scatterer and an absorber, respectively.8! The research-
ers of the study achieved to design phantoms exhibiting not

only optical properties similar to those of human fingernail, but
also simulating the underlying skin tissue with several different
layers including glass capillaries filled with red ink (blood)
(Figure 6).

In the category of blood equivalent tissue phantoms, it is
worth mentioning the case of washed red blood cells suspended
in saline instead of plasma®? and matched in optical properties
to human blood.? Rather than assess or optimize an instru-
ment performance, those phantoms serve to eliminate inter-
patient variability during measurements, as plasma carries most
of the blood chemical variability.

SERS applications

SERS is a modified Raman technique where the sample is
being absorbed onto a nano-colloidal metallic surface (typically
silver or gold).®* Due to the surface plasmon resonance of the
metallic nanostructures, Raman signals of specific molecules
can be amplified, leading to increased detection sensitivity of
the analyte.

Numerous studies have included the simplest type of liquid
tissue phantoms, in order to determine the depth of detection
of the nanoparticles (NPs) for different Raman imaging sys-
tems. The approach consisted of Raman measurements from a
capillary or Tygon tube with NPs immersed in varying depth of
a scattering agent (ie, Intralipid).8>-¢7

Hydrogel tissue phantoms made of Matrigel, polyvinyl alco-
hol (PVA), and agarose also play a significant part in SERS
measurements for biomedical applications. Matrigel tumor
phantoms stained with nanoparticles have been employed to
demonstrate feasibility of imaging on a rat esophagus with a
Raman endoscope.®® Moran et al used PVA phantoms to study
the effect of NPs aggregation on the SERS signal intensity.
The NPs Raman signal has been shown to increase with NPs
aggregation.®” It is worth mentioning here that although not
commonly used, PVA gels are able to match in optical proper-
ties soft tissues, by undergoing freezing and thawing cycles.”

Among hydrogel phantoms, the agarose-based are the most
commonly employed ones in several SERS studies, for example
in assessing the repeatability and stability of a SERS sensor
array for pH measurements.”! In the field of non-invasive blood
glucose monitoring, researchers have used them to demonstrate
proof-of-concept SERS measurements using an Ag-coated
microneedle.”>% The agarose skin-mimicking phantoms were
enhanced with Intralipid and nigrosin to mimic human skin.
The approach was later employed in combination with reso-
nance enhancement, to detect malaria in blood.?* Chenet al®
have composed an excellent review on the applications of SERS
through skin. Other SERS applications include employment of
tumor phantoms (breast cancer cells in agarose medium) for the
development of a plasmonic nanoprobe utilized for in vivo pho-
tothermal therapy in tumors.”Agarose tissue phantoms have
been used for NP-assisted cancer tissue scanning (e, surgical
margins), more specifically to assess the NP detection
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threshold,”” the depth of penetration,®® and their photothermal
effect.” To better simulate the optical properties of the tissue,
scattering (Liposyn) and/or absorbing (India ink) agents were
added in the phantoms of the last two studies.

The combination of SERS and SORS (SESORS) has
quickly led to the most clinically relevant applications, as it
allows for non-invasive and highly sensitive probing of nano-
particle-conjugated biomolecules in different sampling depths.
Both tissue and animal phantoms have been employed in
SESORS measurements, especially in studies focused on brain
tumor detection. Gel phantoms made of an agarose matrix
with optical properties equivalent to brain tissue and infused
with NPs were contained in a skull to demonstrate feasibility of
the SESORS approach in brain cancer.!90-103

On their end, animal tissue phantoms in SERS studies
have served as models for the evaluation of the maximum pen-
etration depth in tissues through which a distinct signal from
the SERS-active NPs could be obtained. In those studies, one
must consider the multiple parameters affecting the assessment
of penetration depth using nanoparticles, such as concentration
and degree of conjugation achieved. With a combination of
SERS and deep Raman spectroscopy (SORS and transmis-
sion),104195 researchers have used NPs to probe a localized
inclusion (ie, cancer lesion) in animal tissues and evaluate the
NP maximum penetration depth. A recent application of com-
bined SERS, SORS and transmission Raman in porcine tissue,
has yielded high accuracy not only in terms of NPs’ signal
detection but also of their depth prediction.’% Other applica-
tions of combined SERS and deep Raman spectroscopy in por-
cine tissue phantoms include multiplexed imaging,'%7 combined
Raman tomography,'® and drug detection.’® Stone et al'1
have specifically combined transmission RS with SERS to
improve the detection limit of resonance (SERRS) active nan-
oparticles in animal tissue, leading toward the prospect of small
tumor identification. Nicolson et al’” used plasmon resonance
active nanoparticles, leading to the first in vivo application of
SESORRS (Surface-Enhanced Spatially Offset Resonance
Raman Spectroscopy) for the detection of brain tumor in rats
after the SORS signal has been optimized in equivalent aga-
rose tissue phantoms.

Last, it is worth mentioning a multimodal approach of com-
bined photoacoustic and Raman imaging, where Shi et al'11112
employed a special case of phantoms to evaluate SERS imag-
ing for the detection of breast cancer cells tagged with NPs.
The cells targetted with nanoparticles were suspended in rat
blood flowing within an acrylic capillary tube, achieving in that
way a more realistic blood microvasculature imaging (Table 1).

Closing Remarks

There is a large number of optical tissue phantoms covering
a wide range of shapes, geometries, and optical properties.
Due to their flexibility in design, time-efficiency and low-
cost fabrication, optical tissue phantoms are now a standard
part of instrumentation for studies translating into a clinical

environment. However, even if their geometry mimics the
tissue of interest accurately, the phantoms are only able to
simulate the absorption and scattering of the tissue on a large
scale. Their composition and lack of heterogeneity do not
allow for accurate representation of the complicated optical
properties arising from cellular and subcellular features
within the tissue. For that reason, although tissue phantoms
are an indispensable part of research development and vali-
dation, ex vivo tissue has also been introduced in their place.

Advances on tissue engineering and 3D printing hold great
promise for further development of tissue phantom technology.
The rapidly evolving field of 3D printing can support increas-
ing refinement of the phantom composition, contributing to a
more realistic structure. Although 3D phantoms in Raman
Spectroscopy are not very common, an excellent review of their
qualities and limitations in other imaging techniques has been
composed by Filippou and Tsoumpas.!#!

Together with ex vivo tissue, tissue engineering can become
an established alternative to the standard tissue phantoms,
serving the needs of current technology and applications. One
of these challenges consists of the employment of multiple
approaches within the same study. Optical and spectroscopic
techniques are constantly combined with standard clinical
imaging (magnetic resonance imaging, X-rays, optical coher-
ence tomography) to further advance biomedical research. As
part of this development, the efficiency in cost and time is
pushing toward the fabrication of multimodality phantoms.
Although this is a desirable concept, it is also highly challeng-
ing as different techniques require different properties inte-
grated into the phantoms.

Further research is required to take full advantage of tissue
phantoms as a useful tool not only for the better understanding
of biological systems, but also for the more efficient develop-
ment of diagnostic and therapeutic approaches.
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