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Introduction
Raman spectroscopy (RS) is a group of techniques based 
around the analysis of inelastic (Raman scattered) light 
resulting from the interaction between light and matter. 
Raman scattered light provides information on the molecu-
lar bond vibrations, which can be exploited for the acquisi-
tion of sample-specific molecular fingerprints. Due to its 
non-invasive nature, Raman spectroscopy has been employed 
in different modes to address various biomedical issues over 
the last few decades. Some of them include cancer screen-
ing,1 pathogen identification,2,3 body fluid analysis,4 transfu-
sion blood assessment,5 disease diagnosis,6-8 drug analysis,9 
or even as a process analytical tool for cell therapies.10

The continuous need for tissue-like samples in the stand-
ardization and development of spectroscopic and other opti-
cal applications combined with the limited availability of 
human tissue due to ethics reasons, has led to the adoption of 
tissue-mimicking phantoms or tissue models. The optical tis-
sue phantoms are synthetic models mimicking not only 
human tissue properties, but also light propagation and inter-
actions through it. This presents a significant quality for spec-
troscopic techniques, which have recruited tissue phantoms 
over time for (a) feasibility and reproducibility testing, (b) 
optimization, and (c)calibration reasons.

Tissue phantoms are essentially diffuse matrices of various 
composition, geometry, and optical properties. They exist in 
many different forms but are generally divided into those of 
solid, hydrogel, and liquid state. Their common feature is that 
absorption, scattering, and other optical properties can be con-
trollably modeled during fabrication. A different category of tis-
sue phantoms is the ex vivo animal tissue, which is often used in 
spectroscopy studies for a more realistic approach. Although ani-
mal phantoms cannot be easily controlled in terms of optical 

properties, they provide an inherent heterogeneity in tissue com-
position which is very similar to the human one.

The flexibility and properties of tissue phantoms have ren-
dered them an important part of technology development and 
translation process. Over the past few decades, tissue phantoms 
have been extensively used for ex vivo measurements preceding 
the implementation of any optical technique in clinical set-
tings.11 In this review, we attempt to outline most of the tissue 
phantoms employed for biomedical applications in Raman 
spectroscopy, focusing on three different aspects: (a) most com-
monly used tissue phantom types, (b) phantom design, and (c) 
biomedical applications in the field of Raman spectroscopy 
involving optical tissue phantoms. We hope that this review 
will inform researchers on the current applications of synthetic 
and animal tissue phantoms, facilitating their choice in future 
research.

Types of Phantoms
The most commonly used phantoms are liquid tissue phan-
toms, solid silicone or polymer phantoms, gelatin/ agarose 
phantoms, and animal phantoms (Figure 1). As the different 
types of phantoms have been extensively described in com-
prehensive reviews before,12-14 they are only briefly mentioned 
below.

Liquid tissue phantoms are the easiest and most flexible in 
fabrication, as they can be easily controlled and managed in 
terms of volume and consistency. Because of the latter, the 
optical properties of liquid phantoms can be adjusted just by 
changing the relative proportions of absorbing and scattering 
agents in the phantom solution. The liquid phantoms are com-
monly made of mixing a commercially available lipid emulsion 
(Intralipid, Liposyn) and added absorber (eg, ink) in a con-
tainer. The container material may vary depending on the 
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application and the possibility of light reaching the container 
walls. The liquid nature of the phantoms allows for significant 
flexibility in sample measurements, such as incorporation of 
Raman scattering or fluorescence features, even after the fabri-
cation process has been completed. Another major advantage 
of liquid phantoms over the solid ones is the uncomplicated 
and rapid synthetic procedure.

On the other hand, solid phantoms can be time-consuming 
and not flexible in fabrication, as their optical properties can-
not easily change by adding or removing components to the 
matrix. Solid phantom samples have been made using bulk 
matrices of different degrees of transparency, such as polymers, 
silicone, and wax. Although polymer-based phantoms have 
been reported to be sometimes instable in size during polym-
erization,16 they are generally considered to be preserved better 
and for a longer period of time compared to animal tissue or 
liquid tissue phantoms. A special category of semi-solid tissue 
phantoms are the hydrogel-based ones, including agarose and 
gelatin matrices. Both phantom types have been extensively 
used for imaging12 and assessed for biocompatibility.17 Since 
hydrogel phantoms contain water as their main component, 
evaporation of the solvent can take place, changing the dimen-
sions and optical properties of the phantom within a short 
period of time. As such phantoms are also prone to bacterial 
growth, preservatives may be used for lifetime extension.

Animal phantoms are the most realistic choice as they accu-
rately simulate the heterogeneity, mechanical properties, and 
consistency of the human tissue. Ex vivo animal tissue is com-
monly used in Raman spectroscopy not only for their intrinsic 
scattering and absorbing properties but also for their morphol-
ogy and chemical composition. In combination with their 

morphological complexity and presence of autofluorescence 
induced by chromophores which are also found in human tis-
sue, ex vivo animal tissue can serve as a highly accurate model 
for light propagation.18 Despite their benefits, animal tissue 
phantoms are difficult to be controlled in terms of sample com-
position for reproducible measurements as their optical prop-
erties cannot be adjusted precisely. In addition, reduced tissue 
absorption is expected in the excised animal tissues, due to 
decrease in blood volume during removal. However, animal 
phantoms are useful as an intermediate stage prior to human or 
in vivo animal studies, as they allow researchers to investigate 
healthy and diseased tissues in ways that would be inaccessible 
in a human patient due to ethics.

Phantom Design
Optical properties

While photons propagate through tissues, they are being scat-
tered or absorbed by the tissue molecules. During scattering, 
which is more commonly taking place at interfaces of tissue 
components with different refractive indices, light photons 
interact with matter and change their direction, with (inelastic 
scattering) or without (elastic or diffuse scattering) losing 
energy. The more scattering the medium is, the more the pho-
tons will deviate from the original forward direction (Figure 2). 
In the case of absorption, the photons will be absorbed only 
when the energy of the photon matches the energy gap between 
the initial and the final energy states of the atom or molecule. 
How efficiently the photon will travel through the tissue, 
depends on the fraction of light which will be absorbed or scat-
tered by it, which is described principally by the scattering and 
absorption coefficients. In biological tissues, absorption and 

Figure 1.  Examples of simple tissue phantoms: (A) liquid tissue phantom, (B) solid tissue phantoms of a human wrist and rat leg,14 (C) gelatin phantom 

(reproduced with permission),15 and (D) animal tissue phantom. (A and D are images from the authors’ unpublished work).

Figure 2.  Transmission of light through an absorbing (A) and diffusely scattering (B) medium.19
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scattering are commonly taking place in the same sample with 
the effect of absorption to be much stronger than one would 
expect as a result of the extra optical path length.

The scattering coefficient (μs) depends on the probability of 
the medium per unit length to redirect the incident photons 
into new directions and therefore prevent the forward on-axis 
transmission of light. The average distance that a photon trav-
els between scattering events is called mean free path length. 
Similarly, the absorption coefficient (μα) describes the proba-
bility of the medium per unit length to absorb the photons.20 
Because in biological tissues the light is not scattered in all 
possible directions but is mainly forward directed (anisotropic 
scattering),21,22 it is convenient to define a mean scattering 
angle which is described by the value of anisotropy (g).23 To be 
more precise in the description of scattering in biological tis-
sues, scattering coefficient and anisotropy are combined into 
the expression of reduced scattering coefficient (μ's) which is 
defined as

µ µ′ = −( )s s  g1 	 (1)

The optical properties described above (μα , μs, μ's and g) 
are characteristic of tissue and vary for different types of 
human tissue. To appropriately simulate visible or infrared 
light propagation in a certain tissue, it is necessary to repro-
duce its optical properties at the measuring wavelength. By 
replicating optical properties, we simulate co-dependent 
parameters such as the concentration of various chromo-
phores inside the tissue (absorption coefficient), and the form, 
size and concentration of the scattering components in the 
tissue (scattering coefficient).24

Commonly used scatterers for the fabrication of tissue 
phantoms include fat emulsions such as Intralipid and Liposyn, 
milk, TiO2, latex, and polystyrene microspheres. Absorbing 
media include different types of inks (India ink, black ink, red 

ink), dyes (blue dye, naphthol green dye, nigrosin, indocyanine 
green), and biological absorbers (hemoglobin, β-carotene, mel-
anin). The desirable optical properties in the phantom volume 
can be achieved by mixing the correct proportions of scattering 
and absorbing agent.

Below we present typical concentrations of scatterer and 
absorber media, commonly used in tissue phantom fabrication, 
in correlation with the optical properties of characteristic 
human tissues (Figure 3). The reduced scattering and absorp-
tion coefficients are based on experimental data of healthy 
human tissue at 830 nm for different skin layers,25 brain,26,27 
breast,28 cranial bone,29 liver,30 muscle,31 stomach wall mucosa,32 
colon,33 prostate,34 skull,26 and whole blood.35 Optical proper-
ties of the scattering and absorbing media included in the plot 
were also derived from the literature for nigrosin,36 TiO2,37 
milk,38 Liposyn,39 hemoglobin,40 indocyanine green (ICG),39 
Intralipid,41 and India ink.42 The exact values used in the figure 
can be found in Supplementary Material (S1).

Geometry and chemical composition

Even if a phantom exhibits optical properties equivalent to a 
certain tissue, the morphology of the phantom is a significant 
feature to match the tissue in terms of the anatomical shape. 
For cases where feasibility evaluation of a spectroscopic tech-
nique is required, the macroscopic geometry of the sample 
should be ideally reproduced in the tissue phantom.

Another prerequisite for the phantoms to fully simulate the 
respective tissue is to match the chemical properties. This is 
especially important in Raman spectroscopy because of the 
sensitivity of the technique to tissue chemistry on a molecular 
level. The chemical composition of a tissue is particularly chal-
lenging to reproduce in a phantom. This has led to the intro-
duction of ex vivo animal tissue, or animal phantoms.

Figure 3.  Reduced scattering and absorption coefficients for typical concentrations of scattering and absorbing agents commonly used in tissue phantom 

fabrication, in comparison with optical properties of different types of healthy human tissues at 830 nm.
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Liquid and solid tissue phantoms both lack realistic com-
plexity that can be otherwise found in mammalian tissue. To 
further improve the realistic complexity of such phantoms, 
multiple layers of identical or different optical parameters and 
Raman-scattering features have been introduced to the bulk 
matrix. An example of the latter is well-represented by mineral 
inclusions, commonly used to enhance the biological impor-
tance of phantoms simulating rich-calcification tissues (eg, 
breast). Inclusions of hydroxyapatite (HAP), a type of apatite 
synthesized calcification powder, are often added inside the 
phantom to represent pathological calcifications.43 Other 
strong scattering materials, such as calcium carbonate, trans-
stilbene or polymers, can also be used, especially when there is 
a need of multiple inclusions with different scattering 

and distribution within the simulated tissue. Liquid tissue 
phantoms allow for easy addition or removal of inclusion in the 
sample volume. In contrary, robust phantoms cannot easily 
incorporate inclusion features following fabrication, but allow 
for the presence of a more realistic surrounding tissue such as 
in the case of animal phantoms.

Tissue Phantoms in Biomedical Applications
Optical tissue phantoms have a wide and diverse range of bio-
medical applications in the field of Raman spectroscopy (Table 1), 
and especially deep RS and Raman fiber probe measurements, 
where the studies mainly focus around lesion detection in can-
cer and bone disease diagnosis, or glucose sensing in blood. 
Numerous applications of tissue phantoms can be also found in 

Figure 4.  (A) Photograph of a tissue phantom with a mineral “bone” inclusion (HAP) embedded in the centrifuge material (Cytop) and placed in the fiber 

holder of a Raman tomographic imaging setup. (B) Raman signal acquired with the collection fibers, for different HAP concentrations of the “bone” 

phantom inside its plastic centrifuge tube.
Source: Adapted with permission from Demers et al48 © The Optical Society.

Figure 5.  (A) Rat tissue phantom reconstructed from a rat leg model. (B) Rat tissue phantom reconstructed as in (A) but with hemoglobin and Intralipid 

omitted to make the bone layer visible. (C) Rat tissue phantom transcutaneous Raman spectrum of the bone layer showing major Raman bands (average 

signal recovered from 47 individual collection fibers).47
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the field of surface-enhanced Raman spectroscopy (SERS), 
where the signal of the molecule of interest can be significantly 
enhanced using nanoparticles. This review outlines most of the 
aforementioned applications, with an emphasis on the types of 
phantoms employed in each case.

Bone studies

Optical phantoms of osteochondral tissues are regularly used 
to simulate Raman measurements on either bone or soft tissue. 
Such phantoms are employed for the study of bone diseases or 
system optimization and characterization. In these studies, by 
probing the bone below soft tissue, Raman spectroscopy can 
provide useful information on (a) bone demineralization rele-
vant to osteoporosis or other metabolic bone diseases, and (b) 
bone changes induced by rheumatoid arthritis or monitoring of 
bone graft osseointegration.

Raman tomography is a modality providing Raman signal 
combined with spatial and distribution information of the 
sample. The setup arrangements either consist of multiple exci-
tation and collection fibers surrounding the sample, or by 
acquiring signal of a rotating sample in a transmission mode. 
Tissue phantoms have been employed in both modalities to 
assist the recovery of Raman signals from subsurface bone tis-
sue. Schulmerich et al acquired computed tomographic (CT) 
data from skin and bone animal tissue. The CT data were then 
calibrated against scattering phantoms of agarose matrix with a 
Teflon sphere inclusion, in order to reconstruct a canine limb 
through diffuse Raman tomography.44,45 Apart from calibra-
tion reasons, bone tissue phantoms have also been employed 
for optimization and system development in Raman tomogra-
phy. In a fiber optic coupled Raman system for measurements 
on musculoskeletal tissues, gelatin tissue phantoms with a min-
eral inclusion have been used for the optimization of the posi-
tion of excitation and collection fibers.46,47 Esmonde-White 
et  al46 have measured phantoms of human lower and upper 
extremities with a variety of fiber optic probe configurations for 
specific anatomical sampling locations. It was shown that 
although the transcutaneous Raman signal of the bone could 
be recovered from 1 to 3 cm of soft tissue, the signal signifi-
cantly depends on the phantom and therefore the anatomical 
location geometry. A follow-up study confirmed the feasibility 
of transcutaneous bone Raman measurements using Raman 
tomographic imaging, by testing tissue phantoms with mineral 
inclusions in the range of physiological HAP concentration in 
bone (Figure 4).48 The system response was assessed through 
the contrast between the mineral and background (surround-
ing tissue) signal, whereas a multichannel detection version of 
the technique demonstrated multifold sensitivity and highly 
accurate position recovery of the inclusion.49

A different simulation of osteochondral interfaces has been 
achieved with scattering gelatin-based phantoms consisted of 
HAP and chondroitin sulfate to mimic bone and cartilage, 
respectively. Measurements on tissue phantoms of different 

optical properties which were conducted using fiber-optic 
Raman spectroscopy,50 indicated that osteoarthritis parameters, 
such as optical scattering and thickness of cartilage, signifi-
cantly affect photon propagation in the tissue and the subse-
quent bone signal recovery.

In other Raman fiber optic studies, rat tissue phantoms have 
acted as the intermediate stage for assessing the quality of 
implanted grafts.51-53 The gelatin-based phantoms were con-
structed in line with CT scans and in identical morphology to 
a rat leg (Figure 5). The phantoms incorporated scattering 
(Intralipid), absorption (Hemoglobin), and fluorescence 
(Hemoglobin and Hydroxyapatite) properties, which allowed 
calibration of the system’s response (position of the fibers) for 
the assessment of bone quality during graft osseointegration.47

Deep Raman spectroscopy, an emerging field of RS mainly 
consisting of spatially offset RS (SORS) and transmission RS 
(TRS), has utilized tissue phantoms to demonstrate feasibility 
of acquiring Raman signals from different sampling depths. 
The technology is based on decoupling the excitation from the 
collection area and has been extensively applied in the biomed-
ical field.54,55 In the case of applications related to bone, SORS 
has been employed to non-invasively assess the mineralization 
of bone underneath skin, in tissue engineering scaffolds 
implanted in a sheep bone defect. Dooley et  al56 conducted 
measurements on 3D printed composite scaffolds with poly-
caprolactone (PCL) and hydroxyapatite (HA) microparticles, 
for which the concentration of HA varied to simulate different 
degrees of mineralization. The study demonstrated feasibility 
of the approach and a promising monitoring tool for bone 
healing. Last, tissue phantoms have also been used for the opti-
mization of SORS setups, such as in the case of a mice skull 
which was wrapped in porcine tissue and filled with agarose gel 
and a polytetrafluoroethylene (PTFE) sheet inside.57 The 
measurements were analyzed to assess the optimum spatial off-
set for the detection of the PTFE inclusion within the skull.

Breast cancer studies

Raman spectroscopy has been extensively applied to breast 
cancer diagnostics as an analytical tool. Its application has 
been reinforced by the presence of breast calcifications, small 
calcium deposits in human breast which can be benign or 
related to cancer. Their chemical composition varies and can 
be either calcium oxalate (type I) or calcium phosphate (type 
II), mainly hydroxyapatite.58 Due to their high clinical signifi-
cance, detection of calcifications has given rise to the employ-
ment of breast tissue phantoms in Raman spectroscopy, with 
calcification-like inclusions of a high Raman cross-section 
compound (hydroxyapatite, trans-stilbene, etc) to represent a 
malignant element in the phantom matrix.

In transmission Raman measurements conducted by Kerssens 
et al,43 the phantom inclusions consisted of various concentra-
tions of either calcium oxalate or calcium phosphate (standing 
for type I and type II calcifications, respectively) contained in 
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quartz cuvettes which were in turn buried in porcine tissue. In a 
follow-up study, the selection of the optimum excitation wave-
length for the optimization of the setup was achieved through 
TRS measurements on animal phantoms with inclusions of 
higher Raman cross-section, such as trans-stilbene.59 The animal 
tissue chosen in such studies was porcine shoulder tissue, due to 
its composition of mixed fat and protein, similar to that of 
human breast.43,60-62 In further deep Raman studies, researchers 
employed liquid tissue phantoms of Intralipid solution and India 
ink, adjusting their optical properties to match those of the cal-
cification-rich tissues of breast and prostate.19,42,63 The origin of 
the Raman signal of the calcification-like inclusion within the 
phantom volume was studied as a function of the phantom opti-
cal properties in a transmission mode, with the aim to inform 
future design of Raman probes for cancer diagnosis.

Phantoms of chicken and human breast tissue with calcifica-
tion-material inclusions were employed in different modes of 
RS, such as spatially offset Raman spectroscopy64 and picosec-
ond Kerr-gated,65 respectively, in order to assess the feasibility of 
calcification detection within the tissue. It is worth mentioning 
recent efforts that have been made with liquid and solid phan-
toms using combined sample differential transmittance (ie, dif-
ferential attenuation of Raman photons at different wavelengths 
due to optical properties) and deep Raman spectroscopy, toward 
the non-invasive prediction of the depth of inclusions represent-
ing cancer lesions within turbid matrices.66,67

Skin studies

Various skin optical phantoms have been employed for calibra-
tion of Raman spectroscopic systems for potential skin cancer 
detection. Liu et  al fabricated an agarose two-layer phantom 

with scattering similar to dermis and epidermis, introducing 
polystyrene microspheres in the matrix. Each phantom layer 
contained either urea or potassium formate as a Raman scatterer. 
The Raman signal ratio of the two was assessed to evaluate the 
performance of a snapshot depth sensitive Raman system. The 
system was evaluated on the basis of its ability to acquire signals 
from different depths of tissue phantoms, as well as ex vivo ani-
mal and in vivo human (fingernail) tissue.68 Multimodality skin 
tissue phantoms have also been employed in studies to demon-
strate the effectiveness of combined system approaches, such as 
in the case of a photo-acoustic Raman probe.69 The multi-layer 
agarose phantom employed in the study, contained Intralipid 
and nigrosin dye to simulate skin tissue with a malignant tumor, 
represented by a trans-stilbene inclusion. All of the studies have 
yielded positive results on potential depth localization of skin 
tumors and assessment of cancer margins, paving the way for 
future skin cancer diagnostics.

In the field of skin diagnostics, phantoms have been used 
for system calibration to correct Raman signal in terms of 
both optical properties (spectral distorting from elastic scat-
tering) and sample depth. For the correction of in-depth 
Raman signals in confocal Raman spectroscopy, Roig et al fab-
ricated polydimethylsiloxane (PDMS) scattering skin phan-
toms of known optical properties with70 and without 
absorption.71 In the latter and more realistic approach, the 
measurements allowed for signal correction on skin phantoms 
consisting of multiple layers, each one of them representing a 
different skin layer (dermis, epidermis, stratum corneum) with 
distinct optical properties. Other studies including resonance 
Raman measurements on silicone skin phantoms combined 
with Monte Carlo simulations72 have suggested correction 
functions for the Raman signal of carotenoids (a main  

Figure 6.  (A) The side view of a fingernail tissue phantom with capillaries. Red lines show upper and lower layer (75 capillaries per layer) of the designed 

capillary system. (B) Magnified image of the tissue phantom (three holes after red ink testing). (C) Raman spectrum of the tissue phantom basic material 

(epoxy resin).81
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contributor in skin absorption) in skin, without a priori 
knowledge of the tissue optical properties.73

Blood studies

The non-invasive measurement of blood glucose has become 
a subject of continuous research in the field of bioanalytics. 
Tissue phantoms have significantly supported the research 
development toward that direction. Research groups under 
M. Feld, R. Dasari, and later I. Barman have employed liq-
uid tissue phantoms of different optical properties and vary-
ing glucose concentration in Raman measurements. 
Importantly, their research was focused on correcting the 
acquired glucose Raman signal in terms of contribution due 
to skin optical properties, which were in turn simulated 
through the tissue phantoms. More specifically, Dingari 
et al74 used tissue phantoms to establish that varying optical 
properties heavily affect the prediction accuracy of blood 
glucose detection in sample-to-sample variability. In a fol-
low-up study, the researchers employed phantoms with dif-
ferent glucose concentrations to initially calibrate and then 
demonstrate that Turbidity-Corrected Raman Spectroscopy 
(TCRS) combined with least-squares analysis75 or Support 
Vector Machines (SVM)76 is able to recover useful spectral 
information by correcting the signal for intensity and shape 
distortions due to optical properties’ effects. Previous studies 
by the same research group, utilizing intrinsic Raman spec-
troscopy, also focused on correcting turbidity-induced vari-
ations (ie, spectral variations caused by absorption and 
scattering), however with the prerequisite of already known 
diffuse scattering coefficient in the employed phantoms.77 
Datasets from the same study were later used in the appli-
cation of wavelength selection for linear partial least 
squares (PLS) and nonlinear calibration support vector 
regression (SVR), with the latter to exhibit the best predic-
tive accuracy for transcutaneous blood glucose detection.78 
Addressing the spectral variations due to photo-bleaching 
in blood measurements where autofluorescence is usually 
encountered, Barman et  al79 have employed shifted sub-
tracted Raman spectroscopy combined with partial least 
squares to increase the prediction accuracy of glucose detec-
tion in liquid phantoms, where the fluorescence has been 
previously induced with indocyanine green.
In a different study, Chaiken et al have used gelatin phantoms 
containing bovine erythrocytes and hemoglobin as a fluores-
cence agent, highlighting that interpatient blood qualities such 
as hematocrit and microcirculation may introduce higher vari-
ability in Raman measurements compared with glucose levels. 
The Raman spectrometer was calibrated using the employed 
phantoms for non-invasive in vivo measurements of blood glu-
cose in a human fingertip.80 Also for calibration reasons, epoxy 
resin solid phantoms have been fabricated using TiO2 and red 
ink as a scatterer and an absorber, respectively.81 The research-
ers of the study achieved to design phantoms exhibiting not 

only optical properties similar to those of human fingernail, but 
also simulating the underlying skin tissue with several different 
layers including glass capillaries filled with red ink (blood) 
(Figure 6).

In the category of blood equivalent tissue phantoms, it is 
worth mentioning the case of washed red blood cells suspended 
in saline instead of plasma82 and matched in optical properties 
to human blood.83 Rather than assess or optimize an instru-
ment performance, those phantoms serve to eliminate inter-
patient variability during measurements, as plasma carries most 
of the blood chemical variability.

SERS applications

SERS is a modified Raman technique where the sample is 
being absorbed onto a nano-colloidal metallic surface (typically 
silver or gold).84 Due to the surface plasmon resonance of the 
metallic nanostructures, Raman signals of specific molecules 
can be amplified, leading to increased detection sensitivity of 
the analyte.

Numerous studies have included the simplest type of liquid 
tissue phantoms, in order to determine the depth of detection 
of the nanoparticles (NPs) for different Raman imaging sys-
tems. The approach consisted of Raman measurements from a 
capillary or Tygon tube with NPs immersed in varying depth of 
a scattering agent (ie, Intralipid).85-87

Hydrogel tissue phantoms made of Matrigel, polyvinyl alco-
hol (PVA), and agarose also play a significant part in SERS 
measurements for biomedical applications. Matrigel tumor 
phantoms stained with nanoparticles have been employed to 
demonstrate feasibility of imaging on a rat esophagus with a 
Raman endoscope.88 Moran et al used PVA phantoms to study 
the effect of NPs aggregation on the SERS signal intensity. 
The NPs Raman signal has been shown to increase with NPs 
aggregation.89 It is worth mentioning here that although not 
commonly used, PVA gels are able to match in optical proper-
ties soft tissues, by undergoing freezing and thawing cycles.90

Among hydrogel phantoms, the agarose-based are the most 
commonly employed ones in several SERS studies, for example 
in assessing the repeatability and stability of a SERS sensor 
array for pH measurements.91 In the field of non-invasive blood 
glucose monitoring, researchers have used them to demonstrate 
proof-of-concept SERS measurements using an Ag-coated 
microneedle.92,93 The agarose skin-mimicking phantoms were 
enhanced with Intralipid and nigrosin to mimic human skin. 
The approach was later employed in combination with reso-
nance enhancement, to detect malaria in blood.94 Chenet al95 
have composed an excellent review on the applications of SERS 
through skin. Other SERS applications include employment of 
tumor phantoms (breast cancer cells in agarose medium) for the 
development of a plasmonic nanoprobe utilized for in vivo pho-
tothermal therapy in tumors.96Agarose tissue phantoms have 
been used for NP-assisted cancer tissue scanning (ie, surgical 
margins), more specifically to assess the NP detection 
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threshold,97 the depth of penetration,98 and their photothermal 
effect.99 To better simulate the optical properties of the tissue, 
scattering (Liposyn) and/or absorbing (India ink) agents were 
added in the phantoms of the last two studies.

The combination of SERS and SORS (SESORS) has 
quickly led to the most clinically relevant applications, as it 
allows for non-invasive and highly sensitive probing of nano-
particle-conjugated biomolecules in different sampling depths. 
Both tissue and animal phantoms have been employed in 
SESORS measurements, especially in studies focused on brain 
tumor detection. Gel phantoms made of an agarose matrix 
with optical properties equivalent to brain tissue and infused 
with NPs were contained in a skull to demonstrate feasibility of 
the SESORS approach in brain cancer.100-103

On their end, animal tissue phantoms in SERS studies 
have served as models for the evaluation of the maximum pen-
etration depth in tissues through which a distinct signal from 
the SERS-active NPs could be obtained. In those studies, one 
must consider the multiple parameters affecting the assessment 
of penetration depth using nanoparticles, such as concentration 
and degree of conjugation achieved. With a combination of 
SERS and deep Raman spectroscopy (SORS and transmis-
sion),104,105 researchers have used NPs to probe a localized 
inclusion (ie, cancer lesion) in animal tissues and evaluate the 
NP maximum penetration depth. A recent application of com-
bined SERS, SORS and transmission Raman in porcine tissue, 
has yielded high accuracy not only in terms of NPs’ signal 
detection but also of their depth prediction.106 Other applica-
tions of combined SERS and deep Raman spectroscopy in por-
cine tissue phantoms include multiplexed imaging,107 combined 
Raman tomography,108 and drug detection.109 Stone et  al110 
have specifically combined transmission RS with SERS to 
improve the detection limit of resonance (SERRS) active nan-
oparticles in animal tissue, leading toward the prospect of small 
tumor identification. Nicolson et al57 used plasmon resonance 
active nanoparticles, leading to the first in vivo application of 
SESORRS (Surface-Enhanced Spatially Offset Resonance 
Raman Spectroscopy) for the detection of brain tumor in rats 
after the SORS signal has been optimized in equivalent aga-
rose tissue phantoms.

Last, it is worth mentioning a multimodal approach of com-
bined photoacoustic and Raman imaging, where Shi et al111,112 
employed a special case of phantoms to evaluate SERS imag-
ing for the detection of breast cancer cells tagged with NPs. 
The cells targetted with nanoparticles were suspended in rat 
blood flowing within an acrylic capillary tube, achieving in that 
way a more realistic blood microvasculature imaging (Table 1).

Closing Remarks
There is a large number of optical tissue phantoms covering 
a wide range of shapes, geometries, and optical properties. 
Due to their flexibility in design, time-efficiency and low-
cost fabrication, optical tissue phantoms are now a standard 
part of instrumentation for studies translating into a clinical 

environment. However, even if their geometry mimics the 
tissue of interest accurately, the phantoms are only able to 
simulate the absorption and scattering of the tissue on a large 
scale. Their composition and lack of heterogeneity do not 
allow for accurate representation of the complicated optical 
properties arising from cellular and subcellular features 
within the tissue. For that reason, although tissue phantoms 
are an indispensable part of research development and vali-
dation, ex vivo tissue has also been introduced in their place.

Advances on tissue engineering and 3D printing hold great 
promise for further development of tissue phantom technology. 
The rapidly evolving field of 3D printing can support increas-
ing refinement of the phantom composition, contributing to a 
more realistic structure. Although 3D phantoms in Raman 
Spectroscopy are not very common, an excellent review of their 
qualities and limitations in other imaging techniques has been 
composed by Filippou and Tsoumpas.141

Together with ex vivo tissue, tissue engineering can become 
an established alternative to the standard tissue phantoms, 
serving the needs of current technology and applications. One 
of these challenges consists of the employment of multiple 
approaches within the same study. Optical and spectroscopic 
techniques are constantly combined with standard clinical 
imaging (magnetic resonance imaging, X-rays, optical coher-
ence tomography) to further advance biomedical research. As 
part of this development, the efficiency in cost and time is 
pushing toward the fabrication of multimodality phantoms. 
Although this is a desirable concept, it is also highly challeng-
ing as different techniques require different properties inte-
grated into the phantoms.

Further research is required to take full advantage of tissue 
phantoms as a useful tool not only for the better understanding 
of biological systems, but also for the more efficient develop-
ment of diagnostic and therapeutic approaches.
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