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We study single-field inflationary models with steep steplike features in the potential that lead to the
temporary violation of the slow-roll conditions during the evolution of the inflaton. These features enhance
the power spectrum of the curvature perturbations by several orders of magnitude at certain scales and also
produce prominent oscillatory patterns. We study analytically and numerically the inflationary dynamics.
We describe quantitatively the size of the enhancement, as well as the profile of the oscillations, which are
shaped by the number and position of the features in the potential. The induced tensor power spectrum
inherits the distinctive oscillatory profile of the curvature spectrum and is potentially detectable by near-
future space interferometers. The enhancement of the power spectrum by steplike features, though
significant, may be insufficient to trigger the production of a sizable number of primordial black holes if
radiation dominates the energy density of the early Universe. However, it can result in sufficient black hole
production if the Universe is dominated by nonrelativistic matter. For the latter scenario, we find that
deviations from the standard monochromatic profile of the mass spectrum of primordial black holes are
possible because of the multiple-peak structure of the curvature power spectrum.
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I. INTRODUCTION

A. Oscillations in the power spectrum

Inflationary models that predict deviations from scale
invariance at small scales have been attracting a lot of
attention in recent years. During the early evolution of the
Universe, a strong enhancement of the spectrum of pri-
mordial scalar perturbations can trigger the gravitational
collapse and the formation of primordial black holes
(PBHs), which may survive until today in significant
numbers in order to be detectable [1–4]. This possibility
has been studied in great detail during the past years. (For
reviews with extensive lists of references, see [5–8].) In
addition, a potentially observable stochastic background of
gravitational waves (GWs) is generated through the cou-
pling of scalar and tensor modes at second order [9–18].
The induced tensors are suppressed by the small value of
the scalar perturbations at the cosmic microwave back-
ground (CMB) scales [19], but may be sizable if the
primordial density perturbations are enhanced at small
scales. In this way, the relic GW stochastic background
may provide a direct probe of the very early cosmic history.
The detection prospects of induced GWs open a new

window to probe the inflationary dynamics at small scales,
for which CMB observables lack sensitivity.
A primordial scalar spectrum with a strong enhancement

can be realized in various setups, such as through
inflationary potentials that contain a near-inflection point
[20–44], multifield inflation [45–57], modified gravity
[58–63], curvaton models [64–67], sound speed modula-
tion and parametric resonance [68–73]. It can also be
realized when the inflationary potential features a steplike
change [74–78], a framework that was revisited recently in
[79]. It is very interesting that the enhancement profiles
produced by these inflationary models may be distinguish-
able. Different inflationary realizations yield power spectra
with a wide or narrow peak, oscillations or a multipeak
structure.
In this work we focus on power spectra with oscillations

around the peak. The oscillatory pattern is distinctive and
possibly detectable, indicating a sharp feature in the infla-
tionary dynamics. It can be caused by the reentry of
k-modes in the horizon, a change in the sound speed
[80], the backreaction of the entropy modes on the
adiabatic modes in multifield inflation [55,81–83], or by
a step in the inflaton potential [74–79,84–90]. The last
example is the minimal realization of a sharp feature that
involves single-field inflation dynamics and a canonical
kinetic term. Motivated by the original proposal [74],
where the effects of singular points in the inflationary
potential were studied, we study here smooth variations of
the basic setup, focusing on model-independent features.
We compute analytically and numerically the evolution of
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the curvature perturbations and find a strong enhancement
of the scalar spectrum. In addition, we observe a burst of
oscillations, generated solely by steplike changes in the
inflaton potential.
As we show in the following section, a sharp drop in the

potential of the inflaton field detunes the relative phase
between the real and imaginary parts of the curvature
perturbation, so that oscillations in the amplitude of the
spectrum appear, while no reentry of modes takes place.
The characteristic period of the oscillations depends on the
position of the feature, while interference patterns are also
apparent. We demonstrate that, even though the strong
features in the underlying inflaton evolution may not be
simple and the range of generated spectra extensive, an
analytical understanding of their form is feasible. This is
achieved by approximating the time-dependent inflaton
background through a series of “pulses” that affect the
evolution of the fluctuations. A similar approach has been
followed in Refs. [91–93] in order to study inflation that is
realized through a series of bursts of cosmic acceleration,
separated by intervals of decelerated expansion. Our setup
can be viewed as a reduced version of the so-called
“rollercoaster cosmology” [92].
The amplitude of the peak of the spectrum of curvature

perturbations PRðkÞ is determined by the characteristics of
the features in the inflaton potential, so that significant PBH
production can be generated. It is exciting that the shape
characteristics of the peak of the curvature spectrum can also
be imprinted on the spectrum of induced GWs [55,81–83].
Specific realizations of this possibility involve nongeodesic
motion during multifield inflation, or resonance effects.
However, the link between strong features in the inflaton
evolution and strong oscillations in the curvature and
GW spectra is generic, as has been discussed in the above
references.
In general, thePRðkÞ characteristics are not clearly visible

in the mass spectrum of the fractional PBH abundance fPBH,
which appears predominantly monochromatic, mostly sen-
sitive to the amplitude of the peak. Even though a universal
behavior also appears in the GW spectrum [94], especially
for smooth scalar spectra, the tensor perturbations are much
more informative [17,95–97] and can display more clearly
features originating in the scalar spectrum. In this way, the
detection of stochastic GWs is a portal to the primordial
spectrum of scalar perturbations at small scales, which can
also be used to test the PBH dark matter scenario.Moreover,
it can provide details of the possible strong features in the
inflationary dynamics.
The induced GWs may be detected in the near future by

the current and planned detectors. The LIGO collaboration
has already produced upper limits in such stochastic
backgrounds [98]. The searches will be further extended
by a network of operating and designed gravitational wave
detectors that will probe a vast range of different frequency
bands. Pulsar time array GW experiments [99] have a

sensitivity to the nano-Hz frequency band, space-based
interferometers like LISA [100], Taiji [101], Tianqin [102],
and Decigo [103,104] are mostly sensitive to milli-Hz and
deci-Hz frequency bands, and the LIGO/Virgo and Einstein
telescope [105] ground-based interferometers are sensitive
to larger frequencies.

B. The steps in the inflaton potential

In the following section we shall discuss in detail the
oscillatory patterns in the spectra of curvature perturbations
and induced GWs that arise from steep steps in the inflaton
potential. The steps connect regions in which the potential
varies smoothly and the slow-roll conditions are satisfied.
The basic pattern corresponds to the vacuum energy having
one or more transition points at which it jumps from one
constant value to another [79]. One can speculate that these
points may correspond to values of the inflaton field at
which certain modes, whose quantum fluctuations contrib-
ute to the vacuum energy, decouple very quickly.
Decoupling effects become visible when the effective
potential is regularized in a mass-sensitive scheme. Also,
the dependence of the potential on an energy scale, or a
coarse-graining length, can be analyzed through the
Wilsonian approach to the renormalization group, see for
example Refs. [106,107] for a particular implementation.
The resulting renormalization-group equation for the
potential can capture the decoupling behavior. However,
our fundamental lack of understanding of the nature of
vacuum energy or the cosmological constant does not
permit a quantitative calculation of these effects.
Some intuition on this issue can be obtained by con-

sidering the role of underlying symmetries. A specific
framework, which we shall use as the basis for the
potentials that we shall consider, is provided by the models
of α-attractors in supergravity [108,109]. A toy model that
demonstrates the role of symmetries is described by the
Lagrangian [110]

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
∂μχ∂μχ þ 1

12
χ2RðgÞ − 1

2
∂μϕ∂μϕ −

1

12
ϕ2RðgÞ

−
1

36
F2ðϕ=χÞðχ2 − ϕ2Þ2

�
; ð1:1Þ

which is invariant under the conformal transformation

gμν → e−2σðxÞgμν; ϕ → eσðxÞϕ; χ → eσðxÞχ: ð1:2Þ

For constant Fðϕ=χÞ, there is a global SOð1; 1Þ symmetry
that keeps χ2 − ϕ2 constant. The field χ does not have any
physical degrees of freedom and can be eliminated through
the gauge-fixing condition χ2 − ϕ2 ¼ 6. (All dimensionful
quantities are expressed in units of MPl.) We parametrize
the fields as χ ¼ ffiffiffi

6
p

coshðφ= ffiffiffi
6

p Þ, ϕ ¼ ffiffiffi
6

p
sinhðφ= ffiffiffi

6
p Þ

[110]. The Lagrangian becomes
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L ¼ ffiffiffiffiffiffi
−g

p �
1

2
RðgÞ − 1

2
∂μφ∂μφ − F2

�
tanh

φffiffiffi
6

p
��

: ð1:3Þ

A constant function FðxÞ, which preserves the SOð1; 1Þ
symmetry, results in a cosmological constant in this
formulation. The value of the cosmological constant is
not constrained by the symmetry and is arbitrary.
We can introduce aminimal deformation of the symmetry

by assuming that FðxÞ takes two different values over two
continuous ranges of x, with a rapid transition in between. A
stronger deformation that has been used extensively in the
literature assumes thatFðxÞ has a polynomial form.We shall
employ a combination of the above choices by assuming that
FðxÞ has the schematic form

FðxÞ ¼ xn þ
X
i

AiΘðx − xiÞ; ð1:4Þ

allowing for more than one transition points. In order to
avoid unphysical features in the evolution of the inflaton,
each step function is replaced by a continuous function with
a sharp transition at xi. A more general framework is
provided by the α-attractors [108–110]. The Lagrangian
includes an additional free parameter α and takes the form

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
RðgÞ − 1

2
∂μφ∂μφ − F2

�
tanh

φffiffiffiffiffiffi
6α

p
��

: ð1:5Þ

The potentials that result from our assumption for the
function FðxÞ with positive Ai are generalizations of the
potential of the Starobinsky model [111], with the addition
of one or more steep steps. Allowing for negative values of
Ai makes it possible to include inflection points in the
potential as well. As our analysis focuses on the phenom-
enological consequences of general features in the potential,
we consider parameters Ai that can take values over the
whole real axis. Another important feature of the potential in
Eq. (1.5) is the sharpness of the transition between ranges of
constant vacuum energy. This transition is modeled by a Θ-
function in Eq. (1.4), but it is smooth in practice. Its
steepness affects the oscillatory patterns appearing in the
spectra. Because of our lack of understanding of the essence
of the cosmological constant, we refrain from explicit model
building, and treat the steepness as a free parameter.We only
point out that the framework of α-attractors results in the
dependence of the potential on tanhðφ= ffiffiffiffiffiffi

6α
p Þ, with α a free

parameter. This allows, in principle, for potentials with
transitions of arbitrary steepness.

C. Plan of the paper

The plan of the paper is as follows: In the next section we
present an analytical discussion of the oscillatory patterns
that can appear in the spectrum of curvature perturbations
when the inflaton potential contains steplike features.
We first establish our notation and identify the relevant

parameters for the analysis of oscillations. We next use a
simple toy model, neglecting the expansion of the back-
ground, in order to demonstrate how the detuning of the
relative phase between the real and imaginary parts of the
perturbation generates an oscillatory pattern in its ampli-
tude. We then present an analytical study of the oscillatory
form of the curvature power spectra that may result from
strong features in the inflaton potential. This is possible if
the effect on the fluctuations is modeled by a series of
positive or negative pulses that correspond to the deviations
from the slow-roll regime. In Sec. III we study explicit
inflationary realizations with steplike features in the frame-
work of α-attractors, paying particular attention to the
consistency with the CMB constraints. For these infla-
tionary models we examine the production of PBHs and
their mass distribution, as well as the spectrum of the
induced GWs.We elaborate on the relations and similarities
between the patterns appearing in the curvature and tensor
power spectra. Section IV contains our conclusions. All
dimensionful quantities are given in units of MPl through-
out the paper, unless the units are explicitly stated.

II. ANALYTICAL CALCULATION OF THE
SPECTRUM OF CURVATURE PERTURBATIONS

A. General considerations

In this section we discuss an approximate analytical
treatment of the spectrum of curvature perturbations in
cases that the slow-roll approximation is strongly violated.
We assume that the inflaton potential displays the standard
plateau that can lead to an almost scale-invariant spectrum.
In addition, it contains a strong feature within a finite range
of field values, which can lead to the violation of the slow-
roll conditions or even cause inflation to cease momentarily.
In order to be as model independent as possible, we do not
focus on specific potentials with these properties.
We consider the most general scalar metric perturbation

around the Friedmann-Robertson-Walker (FRW) back-
ground [112],

ds2 ¼ a2ðτÞfð1þ 2ϕÞdτ2 − 2B;idxidτ

− ðð1 − 2ψÞδij þ 2E;ijÞdxidxjg; ð2:1Þ
with B;i ¼ ∂iB, E;ij ¼ ∂i∂jE. The inflaton field can be
split into a background and a perturbation: φðτÞ þ δφðτ; xÞ.
A gauge-invariant field perturbation can be defined as
v ¼ aðδφþ ðφ0=HÞψÞ, satisfying the Mukhanov-Sasaki
equation [113,114],

v00 −∇2v −
z00

z
v ¼ 0; ð2:2Þ

with z ¼ aφ0=H. The primes and the Hubble parameter
refer to derivatives with respect to conformal time. The
gauge-invariant comoving curvature perturbation R¼−v=z
satisfies
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R00
k þ 2

z0

z
R0
k þ k2Rk ¼ 0 ð2:3Þ

in Fourier space.
We shall use the number of e-foldings N as the

independent variable for the evolution of the perturbations.
The Hamilton-Jacobi slow-roll parameters are defined
through the relations

H2 ¼ VðφÞ
3M2

Pl −
1
2
φ2
;N

ð2:4Þ

εH ¼ −
d lnH
dN

¼ φ2
;N

2M2
Pl

ð2:5Þ

ηH ¼ εH −
1

2

d ln εH
dN

¼ φ2
;N

2M2
Pl

−
φ;NN

φ;N
; ð2:6Þ

where H ¼ e−NH is the Hubble parameter defined through
cosmic time, and subscripts denote derivatives with
respect to N. The parameter z is defined as z ¼ eNφ;N .
The effective equation of state for the background is
w ¼ −1þ 2εH=3. The equation for the curvature pertur-
bation takes the form

Rk;NN þ fðNÞRk;N þ k2

e2NH2
Rk ¼ 0; ð2:7Þ

with the quantity

fðNÞ ¼ 3þ 2φ;NN

φ;N
−

φ2
;N

2M2
Pl

¼ 3þ εH − 2ηH ð2:8Þ

playing a crucial role in determining the qualitative
behavior of the solutions. In the slow-roll regime it acts
as a generalized friction term. However, if ηH becomes
positive and large it can lead to a dramatic enhancement of
the perturbations.
In the approximation that the slow-roll parameters are

neglected andH is assumed to remain constant, the solution
of Eq. (2.7) can be expressed in terms of the Bessel
functions J�3=2 as

RkðN;Cp; Cm; 3Þ ¼ Ae−
3
2
N

�
CpJ3=2

�
e−N

k
H

�

þ CmJ−3=2

�
e−N

k
H

��
; ð2:9Þ

where we take A to be real without loss of generality. For
the values Cp ¼ 1, Cm ¼ i the two Bessel functions
combine into the Hankel function of the first kind

Hð1Þ
3=2. The curvature perturbation is RkðN; 1; i; 3Þ ∝

ðe−ikτ= ffiffiffi
k

p Þð1 − i=ðkτÞÞ=aðτÞ, where the conformal time
is Hτ ¼ −e−N ¼ −1=a. For τ → −∞ this is the standard

expression for the Bunch-Davies vacuum in the slow-roll
regime, which is taken as the initial condition for the
evolution of the fluctuations. For τ → 0− the curvature
perturbation approaches a constant value ∝ k−3=2 as the
mode with wave number k moves out of the horizon and
freezes. The power spectrum of curvature perturbations
Δ2

R ¼ ðk3=2π2ÞjRkj2 is scale invariant. It is important to
notice that the value of the curvature perturbation at late
times, or N → ∞, comes from the second term in Eq. (2.9),
as the first one vanishes. In this sense, it is the absolute
value of Cm that determines the power spectrum.
The above picture is modified when the function fðNÞ of

Eq. (2.8) deviates from a constant value equal to 3. For
small values of εH, ηH the deviations from scale invariance
can be computed analytically through the standard
slow-roll analysis. However, our interest lies with strong
modifications of εH, ηH that result in the enhancement of
the spectrum by several orders of magnitude.
The typical forms of the effective-friction function fðNÞ

that we would like to analyze are depicted in Fig. 1.
These examples result from an inflaton potential used in
Ref. [79],

VðφÞ ¼ V0

�
1þ 1

2
Cð1þ tanhðcφÞÞ þ Bφ

�
; ð2:10Þ

for specific choices of its parameters. The function fðNÞ
remains close to 3, apart from a range of e-foldings in
which it deviates strongly from this value. Similar features
can be obtained with other types of potentials in single- or
multifield inflation, such as potentials with inflection
points, or multiple inflationary stages. The pattern can
be repeated several times. When fðNÞ becomes negative it
induces a strong enhancement of the spectrum. The
modifications to the spectrum appear for wave numbers
of density perturbations deep in the nonlinear regime today.
In order to obtain an analytical solution, we model fðNÞ

through a sequence of square pulses, each with constant
fðNÞ ¼ κi ≠ 3. At early and late times we assume that the
inflaton is in a slow-roll regime, with negligible slow-roll
parameters, so that fðNÞ ¼ 3 and the curvature perturba-
tion is given by Eq. (2.9). We approximate the Hubble
parameter H as almost constant. This is a good approxi-
mation, as our focus is on modifications of the spectrum by
several orders of magnitude. In comparison, the change in
the Hubble parameter for an inflection point in the potential
is less than 1%, while for a step in the potential it is of order
10%. We use an arbitrary normalization for the number of
e-foldings by absorbing a factor of expðN0Þ in k, where N0

corresponds to the actual number of e-foldings since the
beginning of inflation until the moment in time that we
denote by N ¼ 0. In practice this means that the physical
value of the wave number is expðN0Þk.
Our starting point is the solution (2.9), which defines the

initial condition for N → −∞. For Cp ¼ 1, Cm ¼ i, this
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expression corresponds to the Bunch-Davies vacuum. We
neglect slow-roll corrections and approximate the evolution
through Eq. (2.9) until the value of N at which the first
nontrivial pulse appears in fðNÞ. In the following sub-
section we analyze the modification of the curvature
perturbation induced by this and the following pulses,
until the system returns to a slow-roll regime. For N → ∞
the solution becomes constant. We are interested in the
relative increase of the asymptotic value of jCmj in
comparison to the value jCmj ¼ 1 corresponding to a
scale-invariant spectrum. In this sense, the value of the
k-independent parameter A in Eq. (2.9) is not of interest to
us. This parameter would determine the amplitude of the
spectrum in the CMB region, and needs to be adjusted to a
phenomenologically correct value.
An important point concerns the form of fðNÞ. Negative

values of this function result only from ηH taking large
positive values, as can be seen through Eqs. (2.5), (2.6), and
(2.8). In general, large deviations from 3 can result from the
term 2φ;NN=φ;N being the dominant one in Eq. (2.8).
The integral of fðNÞ − 3 over N, from an early to a late
slow-roll regime separated by nontrivial evolution, is

Z
Nl

Ne

dNðfðNÞ − 3Þ ¼
Z

Nl

Ne

dNðεH − 2ηHÞ

¼ 2 log
ðφ;NÞl
ðφ;NÞe

þ log
Hl

He

¼ log
ðdH=dNÞl
ðdH=dNÞe

; ð2:11Þ

where we have used the definitions (2.5) and (2.6). This
quantity is approximately zero for inflaton potentials with a
strong feature localized within a region supporting slow-
roll inflation and with similar values of dH=dN before and
after the feature. In this work we neglect the slow-roll
corrections and analyze only the very large enhancement
resulting from such a strong feature, by imposing the
constraint that positive and negative pulses have integrated
areas that cancel.

B. Toy-model analysis

Several features that appear in the spectra that we study
in the following sections can be understood in a much
simpler context. We are interested in the effect of a pulse on
the evolution of a mode with a free-wave initial condition.
It is instructive to ignore the background expansion and
consider the toy-model equation

Rk;tt þ κRk;t þ k2Rk ¼ 0: ð2:12Þ

The solutions are oscillatory with an amplitude that gets
suppressed or enhanced, depending on the sign of the
friction parameter κ. It is straightforward to derive the
solution for a friction term that vanishes at all times apart
from the interval 0 < t < tp, by requiring the continuity of
the solution and its first derivative at t ¼ 0 and tp.
For an early-time solution RkðtÞ ¼ e−ikt, the evolution is

depicted in Fig. 2. We observe the suppression of the
amplitude for positive κ and the enhancement for negative
κ. However, the most striking feature is the appearance
of oscillations in the amplitude. Their origin lies in the

FIG. 1. The inflaton potential VðφÞ of Eq. (2.10), the evolution of the inflaton φ (dashed line) and its derivative φ;N (solid line), and the
function fðNÞ defined in Eq. (2.8), for two choices of the parameters of the potential: First row: C ¼ −0.3, c ¼ 100, B ¼ −0.03; second
row: C ¼ 0.00058, c ¼ 100, B ¼ −0.03.
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modification by the pulse of the relative phase between the
real and imaginary parts. For sufficiently large jκj the
relative phase in the late stage of the evolution almost
vanishes (as in the plot), so that the amplitude approaches
zero at certain instances. In the cosmological context, the
oscillatory form of the evolution as a function of time can
be transferred to the spectrum of perturbations. At late
times, each mode k exits the horizon and eventually freezes.
This can occur at any point of the oscillatory cycle,
depending on the value of k. As a result, the asymptotic
values of the perturbations depend strongly on the freezing
time, and the spectrum displays oscillations as a function
of k.
It is known that it is possible to obtain an oscillatory

pattern in the spectrum if inflation stops for a certain time
interval, so that modes that had exited the horizon reenter
and start oscillating again until their next exit. Our toy
example implies a more general pattern: Any feature during
the evolution of the perturbations that detunes the relative
phase between the real and imaginary parts of the solution
results in an oscillatory spectrum, even if inflation is not
halted.
Another interesting property of the late-time evolution is

displayed in Fig. 3: The relative suppression of the
amplitude of a mode for a given positive friction parameter

κ is larger for higher wave number k. This is counterin-
tuitive at first sight, as one would expect the last term of
Eq. (2.12) to become more dominant for larger k and limit
the suppression induced by the second term. However, the
opposite happens. For small k, the strong friction tends to
freeze the evolution during the pulse, so that the real and
imaginary parts resume their oscillations after the pulse
with amplitudes comparable to the initial ones. As a general
rule of thumb, for a duration of the pulse of order 1, a strong
suppression of the solution occurs for k≳ κ.

C. Analytical expressions for pulses

We turn next to the analysis of Eq. (2.7). For constant
fðNÞ ¼ κ the solution involves a linear combination of the
Bessel functions J�κ=2 and has the form

RkðN;Cp;Cm; κÞ ¼ Ae−
1
2
κN

�
CpJκ=2

�
e−N

k
H

�

þ CmJ−κ=2

�
e−N

k
H

��
: ð2:13Þ

Let us suppose that the coefficients of the solution Cpi
, Cmi

are known for a range of e-foldings for which κ takes a
specific value κi. If this range is followed by a transition at

FIG. 2. The real part (dashed curve), imaginary part (dot-dashed curve) and amplitude (solid curve) of the solution of Eq. (2.12) with
k ¼ 2, for a pulse in the interval 0 ≤ t ≤ 0.5. We also display the pulse, with a rescaled maximum κ=5. Left plot: κ ¼ 5;
right plot: κ ¼ −5.

FIG. 3. The real part (dashed curve), imaginary part (dot-dashed curve) and amplitude (solid curve) of the solution of Eq. (2.12) for a
pulse with κ ¼ 10 in the interval 0 ≤ t ≤ 0.5. We also display the pulse, with a rescaled maximum κ=10. Left plot: k ¼ 10; right plot:
k ¼ 3, in arbitrary units.
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N ¼ Nfi to a second range in which κ takes a different
value κf, we would like to compute the corresponding
values of the constants Cpf

, Cmf
, see Fig. 4. This can be

achieved by requiring the continuity of the solution and its
first derivative at N ¼ Nfi. A similar analysis has been
performed in Refs. [115,116], using conformal time as the
independent variable. We aim here at providing a more
transparent picture of the oscillatory patterns in the
spectrum, by identifying the characteristic frequencies.

Moreover, in the subsection we provide an analytical
treatment that goes beyond the modeling of fðNÞ through
square pulses.
The new coefficients are given through the relation

� Cpf

Cmf

�
¼ MðNfi; κi; κf; kÞ

�
Cpi

Cmi

�
; ð2:14Þ

where the matrix MðNfi; κi; κf; kÞ has components

M11 ¼ C

�
J−κf=2

�
e−Nfi

k
H

�
J−1þκi=2

�
e−Nfi

k
H

�
þ J1−κf=2

�
e−Nfi

k
H

�
Jκi=2

�
e−Nfi

k
H

��

M12 ¼ C
�
−J−κf=2

�
e−Nfi

k
H

�
J1−κi=2

�
e−Nfi

k
H

�
þ J1−κf=2

�
e−Nfi

k
H

�
J−κi=2

�
e−Nfi

k
H

��

M21 ¼ C

�
−Jκf=2

�
e−Nfi

k
H

�
J−1þκi=2

�
e−Nfi

k
H

�
þ J−1þκf=2

�
e−Nfi

k
H

�
Jκi=2

�
e−Nfi

k
H

��

M22 ¼ C

�
Jκf=2

�
e−Nfi

k
H

�
J1−κi=2

�
e−Nfi

k
H

�
þ J−1þκf=2

�
e−Nfi

k
H

�
J−κi=2

�
e−Nfi

k
H

��
; ð2:15Þ

with

C ¼ π

2
e
1
2
Nfið−2þκf−κiÞ k

H
csc

�
πκf
2

�
: ð2:16Þ

The matrix has the property MðNfi; κm; κf; kÞ·
MðNfi; κi; κm; kÞ ¼ MðNfi; κi; κf; kÞ. This implies that
we can select the value κ ¼ 3 as a reference point for all
transitions between different values of κ.
The next step is to define a matrix corresponding

to a pulse of height κ above the value corresponding
to the scale-invariant case. This matrix can be defined as

MpulseðN1;N2;κ;kÞ¼MðN2;κ;3;kÞ ·MðN1;3;κ;kÞ: ð2:17Þ
As we explained earlier, the increase of the power spectrum
relative to the scale invariant one is given by the value of

jCmj2 after a mode of given k has evolved past the strong
features in the background. A product of several Mpulse

matrices can reproduce the final values of the coefficients
ðCp; CmÞ of the Bessel functions J�3=2 after the fluctua-
tions have evolved from an initial configuration corres-
ponding to ðCp; CmÞ ¼ ð1; iÞ through a period of strong
features in the function fðNÞ. Clearly, it is possible to
reconstruct any smooth function fðNÞ in terms of short
intervals of N during which the function takes constant
values. Multiplying the corresponding Mpulse matrices
would provide a solution to the problem of the evolution
of perturbations. However, such an approach is not very
efficient for a numerical solution. We are mainly interested
in obtaining intuitive analytical expressions for forms of
fðNÞ such as those depicted in Figs. 1 and 4, for which a
product of a small number of Mpulse matrices suffices.

FIG. 4. An illustration of the approximate form of the function fðNÞ that we assume for the analytical study. Left panel: a double-pulse
model, with a positive-friction pulse followed by a negative-friction one. Right panel: the double-pulse form assumed in the three
examples resulting in the spectra of Figs. 6–8.
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Simple analytical expressions can be obtained in the
limits of large and small k, using the corresponding
expansions of the Bessel functions. For a large real argu-
ment we have

JaðzÞ¼
ffiffiffiffiffi
2

πz

r �
cos

�
z−

aπ
2
−
π

4

�
−
4a2−1

8z
sin

�
z−

aπ
2
−
π

4

�

þOðz−2Þ
�
: ð2:18Þ

Using this expression we find for large k

Mð∞Þ
pulseðN1;N2;κ;kÞ¼e−

1
2
ðN2−N1Þðκ−3Þ

��
1 0

0 1

�

þ1

8
ðκ−3ÞH

k

�
S11 S12
S21 S22

��
; ð2:19Þ

where

S11 ¼ 2eN1 sin

�
2e−N1

k
H

�
− 2eN2 sin

�
2e−N2

k
H

�
;

S12 ¼ −eN1

�
1þ κ þ 2 cos

�
2e−N1

k
H

��
þ eN2

�
1þ κ þ 2 cos

�
2e−N2

k
H

��
;

S21 ¼ eN1

�
1þ κ − 2 cos

�
2e−N1

k
H

��
− eN2

�
1þ κ − 2 cos

�
2e−N2

k
H

��
;

S22 ¼ −2eN1 sin

�
2e−N1

k
H

�
þ 2eN2 sin

�
2e−N2

k
H

�
: ð2:20Þ

Keeping the leading contribution, we find that the
power spectrum is scale invariant at late times (or
N → ∞) for k → ∞, but has a value multiplied by the
factor

½δΔð∞Þ
R �2 ¼ jCmj2 ¼ e−ðN2−N1Þðκ−3Þ; ð2:21Þ

relative to its scale-invariant value for modes that have
sufficiently small k, so that they exit the horizon and
decouple very early with Cm ¼ i, without being affected by
the features in fðNÞ. The exponent in the above expression
is simply the area of the pulse exceeding the value 3. For
κ > 3 the spectrum is suppressed, while for κ < 3 it is
enhanced. By breaking a general function fðNÞ in infini-
tesimal pulses, it is easy to see that the enhancement is
equal to the integral of fðNÞ − 3 over N. The corrections
subleading in H=k introduce oscillatory patterns in the

spectrum. The characteristic periods can be deduced from
Eq. (2.20). The spectrum is expected to vanish at intervals
δk=H ¼ eN1π and δk=H ¼ eN2π. Moreover, whenN1 ≃ N2

we expect interference patterns.
Analytical expressions for k → 0 are more difficult

to obtain because the (1,2)-component of the matrix
Mpulse scales as 1=k in this limit. As a result, the effect
of several pulses, which involves the product of several
such matrices, is not described by a simple analytical
expression. However, the components (2,1) and (2,2),
which are relevant for the spectrum, are simpler. The
(2,1)-component becomes nonzero only at order ðk=HÞ3,
while the (2,2)-component is equal to 1þOððk=HÞ2Þ. So,
up to order ðk=HÞ2, the (2,2)-component is sufficient for
the calculation of the spectrum. We give the result for the
sequence of two pulses:

Mð0Þ
pulseðN1; N2; N3; κ1; κ2; kÞj2;2 ≡ ½MðN3; κ2; 3; kÞ ·MðN2; κ1; κ2; kÞ ·MðN1; 3; κ1; kÞ�2;2

¼ 1þ 1

6

�
k
H

�
2

×

�
κ1 − 3

κ1ðκ1 − 2Þ ð−2ðκ1 − 3ÞeN1ðκ1−2Þ−N2κ1 þ 3ðκ1 − 2Þe−2N1 − κ1e−2N2Þ

−
2ðκ1 − 3Þðκ2 − 3Þ

κ2ðκ1 − 2Þ ðeN3κ2 − eN2κ2Þðe−2N2−N3κ2 − eN1ðκ1−2Þ−N2κ1−N3κ2Þ

þ κ2 − 3

κ2ðκ2 − 2Þ ð−2ðκ2 − 3ÞeN2ðκ2−2Þ−N3κ2 þ 3ðκ2 − 2Þe−2N2 − κ2e−2N3Þ
�
: ð2:22Þ
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For κ2 ¼ 3 the second pulse is eliminated and only the first
term in the bracket survives, while for κ1 ¼ 3 the first pulse
is eliminated and the last term survives. For κ1, κ2 ≠ 3 there
is a mixing term, which indicates that the effects of the
various pulses are not simply additive, even within this
approximation.
The oscillatory behavior of the solutions can be observed

in the components of the matrixMpulse defined in Eq. (2.17).
In Fig. 5 we depict the (2,2)-component of this matrix (solid
lines) for N1 ¼ 0, N2 ¼ 0.5. This component gives the
leading contribution to the power spectrum. The left plot
corresponds to a negative-friction pulse with κ ¼ −5 that
causes the enhancement of the spectrum. The right plot is
obtained for positive friction κ ¼ 10 that leads to suppres-
sion. The asymptotic expansions of this component for large
k=H (dashed curve), given by Eq. (2.19), and small k=H
(dot-dashed curve), given by Eq. (2.22), are also plotted.
Oscillatory behavior is observed, associated with inter-
ference patterns from two almost equal frequencies corre-
sponding to δk ¼ eN1π and δk ¼ eN2π. It is interesting that
the oscillatory frequencies are correctly reproduced by the
asymptotic expansion even for small k=H. Another feature
that can be observed is the strong decrease of Mpulse for
k=H ≳ κ=2 for positive κ, in agreement with the discussion
at the end of the previous subsection.

D. The integral of f ðNÞ
The form of fðNÞ that we assume in our discussion

should result from the time evolution of the parameters εH
and ηH. We saw at the end of Sec. II A that the integral of
this function over N is constrained by Eq. (2.11). In this
subsection we discuss the type of field evolution, as given
by the function φ;N , which is consistent with our approxi-
mate treatment.
The Mukhanov-Sasaki equation (2.2) implies that the

Wronskian of each Fourier mode of its solution

W½vk� ¼ −iðvkv�0k − v�kv
0
kÞ ð2:23Þ

remains constant during the evolution. Here a prime
denotes a derivative with respect to conformal time

τ ¼ −e−N=H. The solution of Eq. (2.2) plays the role of
the mode function in the canonical quantization of the field
v. For the Bunch-Davies vacuum, the initial condition at
early times, when k2 ≫ z00=z, is chosen such that the mode
function has the standard form in Minkowski spacetime.
Selecting positive-energy solutions fixes the sign of the
Wronskian to be positive, while the appropriate normali-
zation results in W½vk� ¼ 1. This choice is automatically
preserved at later times if vk is a solution of Eq. (2.2). This
can be seen by multiplying Eq. (2.2) by v�k and subtracting
the conjugate of the same equation multiplied by vk.
We have based our analysis on the curvature perturbation

Rk, related to vk through Rk ¼ −vk=z, with z ¼ eNφ;N . The
consistency of our approximation of describing fðNÞ
through a sequence of pulses implies a specific form of
φ;N during the evolution through the strong features in the
potential. We can deduce this form by considering the
Wronskian of Rk:

W½Rk� ¼ −iðRkR�0
k − R�

kR
0
kÞ ¼

W½vk�
z2

¼ 1

z2
: ð2:24Þ

The solution (2.13) gives

W½Rk� ∝ iðCpC�
m − CmC�

pÞ expðð1 − κÞNÞ: ð2:25Þ

Consistency with Eq. (2.24) requires that φ;N ∝
expððκ − 3ÞN=2Þ. The inflaton “velocity” must grow fast
with N for κ > 3, and decay for κ < 3. This is the behavior
observed in Fig. 1. We have already mentioned that any
function fðNÞ can be reconstructed as a sequence of very
short pulses of variable height κ. For small N the change of
φ;N , starting from some initial value at N ¼ 0, is linear in N
with a slope proportional to κ. Thus, by breaking fðNÞ into
many pulses one can obtain the required evolution of φ;N

as a function ofN. In this sense our analysis is very general.
For consistency, of course, the deduced evolution must
result from an appropriate inflaton potential.
Our main aim is to obtain an intuitive understanding of

the form of the spectrum by focusing on the gross proper-
ties of fðNÞ. Let us consider a feature in the evolution
resulting from two successive pulses with heights κ1 and κ2,

FIG. 5. The (2,2)-component of the matrix Mpulse defined in Eq. (2.17) (solid curve), along with the approximations for large k=H
(dashed curve) and small k=H (dot-dashed curve). Left plot: N1 ¼ 0, N2 ¼ 0.5, κ ¼ −5; right plot: N1 ¼ 0, N2 ¼ 0.5, κ ¼ 10.
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between early and late slow-roll regimes with κ ¼ 3. The
solution after the feature is traversed is given by Eq. (2.9)
with

�
Cp

Cm

�
¼ MðN3; κ2; 3; kÞ ·MðN2; κ1; κ2; kÞ

·MðN1; 3; κ1; kÞ
�
1

i

�
; ð2:26Þ

where the matrixM is given by Eq. (2.15). Before the pulse
we have iðCpC�

m − CmC�
pÞ=2 ¼ 1, while after the pulse one

finds

i
2
ðCpC�

m − CmC�
pÞ ¼ e−ðn2−n1Þðκ1−3Þ−ðn3−n2Þðκ2−3Þ: ð2:27Þ

The exponent is exactly (minus) the integral of fðNÞ − 3.
By comparing the WronskianW½Rk� at late and early times
(before and after the pulse), it becomes clear the quantity
(2.27) is equal to the ratio ðφ2

;NÞe=ðφ2
;NÞl, with both

quantities being constant. In this way we reproduce the
result of Eq. (2.11), under our assumption that Hl=He ≃ 1.
Let us summarize the basic points: According to our

assumptions, the system is in a slow-roll regime during an
early and a late period, with values of the Hubble parameter
that we have approximated as equal. We can assume that
the values of φ;N are also approximately equal during these
periods. These assumptions isolate the effect of the strong
feature in the intermediate part of the evolution from the
properties in the slow-roll regimes. During the intermediate
part the inflaton velocity φ;N changes fast, by growing or
decaying depending on the sign of fðNÞ − 3, as observed in
Fig. 1. The integral of fðNÞ − 3 over N must vanish for φ;N

to have equal values at early and late times. For realistic
situations one must take into account the breaking of scale
invariance in the slow-roll regimes as well. However, these
are included in the standard slow-roll analysis and are not
of interest to us here.
Finally, it can be checked through the asymptotic form of

the Bessel functions that for both k → 0 and k → ∞, and
for a vanishing integral of fðNÞ − 3, we have ðCp; CmÞ ¼
ð1; iÞ at all times during the evolution. This indicates that
the low- and high-k modes are not affected by the presence
of the feature. As a result the scale-invariant form of the
spectrum is modified only for a finite range of wave
numbers k.

E. The form of the spectrum

In this subsection we consider three examples of spectra
that display the features we discussed in the previous
subsection. The range of possible spectra is large, as we
do not focus on a particular underlying model, but simply
consider various forms of the function fðNÞ defined in
Eq. (2.8). We assume that the integral of fðNÞ − 3 over N

vanishes, so that the spectrum is scale invariant with the
same amplitude for very low and very high wave numbers k.
We focus only on the relative enhancement of the spectrum
at intermediate scales as a result of the presence of strong
features in the underlying inflaton evolution. As the absolute
scale of the spectrum is not of interest for our discussion, we
set A ¼ 1 in Eq. (2.9). We discuss next three particular
examples of the form of the friction function fðNÞ.
In our first example (Example 1) the spectrum results

from a function fðNÞ of the qualitative form depicted in the
first line of Fig. 1 and displayed explicitly in Fig. 4. The
feature consists of a positive-friction pulse with κ1 ¼ 80 in
the interval between N1 ¼ 0 and N2 ¼ 0.2, followed by a
negative-friction pulse with κ2 ¼ −3 in the interval
between N2 ¼ 0.2 and N3 ¼ 2.77. The value of the
spectrum for a given value of k=H is equal to jCmj2, where
ðCp; CmÞ is given by Eq. (2.26). The result is depicted by
the middle curve of the top plot in Fig. 6, in the k-range
k=H ¼ 10−2–103 that corresponds to N ≃ −4.6 up to 6.9.
In the same figure we also display the spectra that would
result from a single pulse. These are computed from the
expression

�
Cp

Cm

�
¼ MðN2; κ1; 3; kÞ ·MðN1; 3; κ1; kÞ

�
1

i

�
; ð2:28Þ

for the positive-friction pulse (lower curve in Fig. 6), and

�
Cp

Cm

�
¼ MðN3; κ2; 3; kÞ ·MðN2; 3; κ2; kÞ

�
1

i

�
; ð2:29Þ

for the negative-friction pulse (upper curve in Fig. 6). As
we discussed in the previous subsection, the fact that the
integral of the function fðNÞ − 3 overN does not vanish for
these cases means that the quantity φ2

;N changes across the
pulse by a factor equal to the exponential of this integral.
The two slow-roll regimes are quite distinct in this case and
the effect of the pulse is not clear. We display the spectra
because they provide intuition on the features appearing in
the two-pulse spectrum, for which the integral of fðNÞ − 3
vanishes. Details for the latter are presented in the next two
plots of Fig. 6, for two successive k=H ranges on a linear
horizonal axis. Notice the huge difference in the scale of the
vertical axis in the two plots.
Several features of the spectra are apparent in these plots:
1. The two-pulse spectrum has a first minimum at a

value of k=H well approximated by the positive root
of the polynomial of Eq. (2.22).

2. The subsequent strong increase of the spectrum
results from the effect of the negative-friction
pulse. The spectrum reaches a maximal value
comparable to that of the negative-friction single-
pulse spectrum. A rough estimate can be obtained
from the asymptotic value of the single-pulse spec-
trum, which is expððN3 − N2Þð3 − κ2ÞÞ ¼ Oð107Þ.
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3. The envelope of the positive-friction single-pulse
spectrum (lower curve) displays a sharp drop to
almost zero at a characteristic value of k=H. As we
discussed earlier, we expect that the positive friction
will affect most strongly the high-k modes. A more
quantitative estimate can be made by observing that
the matrix M of Eq. (2.15) involves the Bessel
functions J�κ1=2 and J∓1�κ1=2. For large κ1 these
functions have a zero at a value of their argument
roughly equal to κ1=2. The relevant argument in our
case is e−N̄k=H, with N̄ ≃ ðN1 þ N2Þ=2. Thus, we
expect the spectrum to approach zero at k=H≃
eN̄κ1=2 ≃ 44, consistently with what is observed.

4. For k=H → ∞, all three spectra become asymptoti-
cally constant, with values given by the exponential
of the integral of fðNÞ − 3 over N. For the middle
spectrum, we have fine-tuned this integral to zero, so
that the spectrum returns to the value 1 to which we
have normalized the spectrum for k → 0.

5. Apart from the main features that we described
above, which are consistent with the general expect-
ations [117], the spectra display oscillations with
characteristic scales. As we discussed in the previous
subsection, the asymptotic expansions of Eq. (2.20)
indicate that the spectrum should oscillate with
periods δk=H ≃ eN1π ¼ 3.1, δk=H ≃ eN2π ¼ 3.8
and δk=H ≃ eN3π ¼ 50. These characteristic modes,
as well as interference patterns between them, are
visible in the bottom plots of Fig. 6.

The most important conclusion that can be drawn from this
example is that strong features in the background evolution
can induce a spectrum of fluctuations which displays, apart
from an enhancement by several orders of magnitude,
strong oscillatory patterns. This is clearly visible in the
bottom left plot of Fig. 6.
We turn next to our second example (Example 2). The

oscillatory features in the spectrum are less pronounced for
different forms of the pulses. Reducing the height of the

FIG. 6. Middle curve: spectrum resulting from a double pulse with N1 ¼ 0, N2 ¼ 0.2, N3 ¼ 2.77, κ1 ¼ 80, κ2 ¼ −3 (Example 1).
Upper curve: spectrum resulting from a negative-friction single pulse with κ2 ¼ −3 between N2 ¼ 0.2, N3 ¼ 2.77. Lower curve:
spectrum resulting from a positive-friction single pulse with κ1 ¼ 80 between N1 ¼ 0, N2 ¼ 0.2.
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positive-friction pulse leads to a suppression of the
spectrum at smaller values of k=H. As a result the
oscillatory patterns may be confined within the high-k part
of the spectrum, which does not get enhanced. This is
visible in Fig. 7, where we plot the spectrum in the k-range,
k=H ¼ 10−2–103 or from N ≃ −4.6 up to 6.9. The spec-
trum results from a positive-friction pulse with κ1 ¼ 15 in
the interval between N1 ¼ 0 and N2 ¼ 1, followed by a
negative-friction pulse with κ2 ¼ −3 in the interval
between N2 ¼ 1 and N3 ¼ 3. The drop of the spectrum
arising from only the positive-friction pulse is expected to
appear at k=H ≃ eN̄κ1=2 ≃ 12, where N̄ ≃ ðN1 þ N2Þ=2.
Indeed, the small-k region displays a large enhancement,
but the oscillations appear only at large values of k=H, at
which the spectrum is suppressed. The bottom left plot of
Fig. 7 shows that the enhanced part of the spectrum
is smooth in this case. The expected oscillatory modes
with periods δk=H ≃ eN1π ¼ 3.1, δk=H ≃ eN2π ¼ 8.5 and

δk=H ≃ eN3π ¼ 63, as well as interference patterns
between them, are visible in the bottom right plot of Fig. 7.
Our third example (Example 3) demonstrates that spectra

with a different structure can result from different forms of
the function fðNÞ. More specifically, the positive- and
negative-friction pulses may occur in the reverse order
compared to the one we assumed up until now. This is
possible if the inflaton encounters a region of the potential
with almost vanishing slope, as displayed in the second line
of plots in Fig. 1. The reduction of the field velocity results
in a period of positive values for the parameter η. When the
inflaton moves beyond this region its velocity grows again,
with η taking negative values. In Fig. 8 we plot the resulting
spectra in the range k=H ¼ 10−2–103 (N ≃ −4.6 up to 6.9)
considering an effective friction function fðNÞ composed
of a negative-friction pulse with κ1 ¼ −3 in the interval
between N1 ¼ 0 and N2 ¼ 1.95, followed by a strong
positive-friction pulse with κ2 ¼ 120 in the interval

FIG. 7. Middle curve: spectrum resulting from a double pulse with N1 ¼ 0, N2 ¼ 1, N3 ¼ 3, κ1 ¼ 15, κ2 ¼ −3 (Example 2). Upper
curve: spectrum resulting from a negative-friction single pulse with κ2 ¼ −3 between N2 ¼ 1, N3 ¼ 3. Lower curve: spectrum resulting
from a positive-friction single pulse with κ1 ¼ 15 between N1 ¼ 0, N2 ¼ 1.
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between N2 ¼ 1.95 and N3 ¼ 2.05. The reduction of the
spectrum is expected at a scale k=H ≃ eN̄κ2=2 ≃ 440,
where N̄ ≃ ðN2 þ N3Þ=2. The oscillatory patterns have
characteristic periods δk=H ≃ eN1π ¼ 3.1, δk=H ≃ eN2π ¼
22.1 and δk=H ≃ eN3π ¼ 24.4. All these features, as well
as strong interference patterns arising from the proximity of
two characteristic periods, are visible in Fig. 8.

F. Analytical expressions for general f ðNÞ
In this subsection we derive analytical expressions for

the curvature spectrum resulting from an arbitrary friction
function fðNÞ. We start by rewriting Eq. (2.7) as

Rk;NN þ 3Rk;N þ k2

e2NH2
Rk ¼ ð3 − fðNÞÞRk;N: ð2:30Þ

We would like to compute the Green’s function GðNÞ for
the operator in the lhs. This function satisfies the equation

Gk;NNðN;nÞþ3Gk;NðN;nÞþ k2

e2NH2
GkðN;nÞ¼δðN−nÞ:

ð2:31Þ

The solution of Eq. (2.30) is

RkðNÞ¼ R̄kðN;1;i;3Þþ
Z

∞

−∞
GkðN;nÞð3−fðnÞÞRk;nðnÞdn;

ð2:32Þ

with

R̄kðN;1;i;3Þ¼−
ffiffiffi
2

π

r �
H
k

�
3=2

�
iþe−N

k
H

�
exp

�
ie−N

k
H

�

ð2:33Þ

FIG. 8. Middle curve: spectrum resulting from a double pulse with N1 ¼ 0, N2 ¼ 1.95, N3 ¼ 2.05, κ1 ¼ −3, κ2 ¼ 120 (Example 3).
Upper curve: spectrum resulting from a negative-friction single pulse with N1 ¼ 0, N2 ¼ 1.95, κ1 ¼ −3. Lower curve: spectrum
resulting from a positive-friction single pulse with κ2 ¼ 120 between N2 ¼ 1.95, N3 ¼ 2.05.
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the solution of the homogeneous equation, corresponding
to fðNÞ ¼ 3.
The evolution is classical, so we must use the retarded

Green’s function, which satisfiesGk>ðN; nÞ ¼ 0 for n > N.
For n < N the Green’s function is

Gk<ðN; nÞ ¼ e−
3
2
N

�
AðnÞJ3=2

�
e−N

k
H

�

þ BðnÞJ−3=2
�
e−N

k
H

��
: ð2:34Þ

The total Green’s function is continuous at N ¼ n. Its first
derivative has a discontinuity, obtained by integrating
Eq. (2.31) around N ¼ n. This gives ∂Gk<ðN; nÞ=
∂NjN¼n ¼ 1. Imposing these constraints results in

AðnÞ ¼ −
ffiffiffi
π

2

r
e3n

�
k
H

�
−3=2

�
cos

�
e−n

k
H

�

þ e−n
k
H
sin

�
e−n

k
H

��
ð2:35Þ

BðnÞ ¼
ffiffiffi
π

2

r
e3n

�
k
H

�
−3=2

�
e−n

k
H
cos

�
e−n

k
H

�

− sin

�
e−n

k
H

��
: ð2:36Þ

Despite its simple form, it is difficult to find solutions of
Eq. (2.32). However, the equation becomes simpler for
N → ∞, which is the limit of interest for the late-time
spectrum. From Eq. (2.34) we obtain

Gk<ðN; nÞ → −
ffiffiffi
2

π

r �
H
k

�
3=2

BðnÞ ð2:37Þ

in this limit. Equation (2.32) now becomes

Rkð∞Þ ¼ R̄kð∞; 1; i; 3Þ −
ffiffiffi
2

π

r �
H
k

�
3=2

×
Z

∞

−∞
ð3 − fðnÞÞBðnÞRk;nðnÞdn; ð2:38Þ

with

R̄kð∞; 1; i; 3Þ ¼ −i
ffiffiffi
2

π

r �
H
k

�
3=2

: ð2:39Þ

Even though an analytical solution of this equation is not
available, some conclusions about its form can be drawn
when the function fðNÞ displays strong features. The
clearest example is a feature that can be approximated
through a δ-function centered at N1. The integration over n
results in an expression that includes sinðe−N1k=HÞ and
cosðe−N1k=HÞ, producing oscillatory patterns. A similar
conclusion can be reached if fðNÞ involves sharp steplike
features approximated through Θ-functions, as we dis-
cussed in the previous subsection. These patterns are
expected to become less prominent when the features in
fðNÞ become smoother.
An approximate expression, which can be considered as

the first step in an iterative solution of the above equation,
can be obtained if we replace the full solution RkðnÞ in
the integral with the solution for fðnÞ ¼ 3, given by
R̄kðn; 1; i; 3Þ. We have

R̄k;nðn; 1; i; 3Þ ¼
ffiffiffi
2

π

r �
k
H

�
1=2

e−2n
�
i cos

�
e−n

k
H

�

− sin

�
e−n

k
H

��
: ð2:40Þ

Combining the above expressions, we obtain

Rkð∞Þ¼ R̄kð∞;1;i;3Þ
�
1− i

H
k

Z
∞

−∞
ð3−fðnÞÞen

�
e−n

k
H
cos

�
e−n

k
H

�
−sin

�
e−n

k
H

���
icos

�
e−n

k
H

�
−sin

�
e−n

k
H

��
dn

�
:

ð2:41Þ

This result is expected to be valid only for cases without a
large enhancement of the spectrum. However, it is a
compact expression that can be used in order to deduce
the expected oscillatory patterns for a general form of fðNÞ.
In Fig. 9 we examine the validity of Eq. (2.41) for fðNÞ

with sharp and smooth features. In the left plot of the first
line we depict the sharp and smoothed version (blue and red
lines, respectively) of a friction function with moderate
deviations from 3. In the right plot we depict the corre-
sponding exact spectra (blue and red lines, respectively), as

well as the ones computed through the approximate
expression of Eq. (2.41) (black and orange lines, respec-
tively). It is apparent that this expression captures with
very good accuracy the complicated oscillatory patterns:
the blue and black lines, as well as the red and orange lines,
are in very good agreement. Small deviations from the
exact solutions are observed when the amplitude becomes
large. In the second line we repeat the calculation for a
function fðNÞwith very strong features that result in a large
enhancement of the spectrum. The limitations of Eq. (2.41)
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in capturing the magnitude of the enhancement become
apparent. The agreement between black-blue lines and red-
orange lines is good only for large values of k=H, for which
the deviations from the scale-invariant spectrum are small
[but still of O(1)]. Clearly, higher orders in the iterative
solution of Eq. (2.38) are needed in order to capture the
strong enhancement of the spectrum at small values
of k=H.
Despite the limited range of validity of Eq. (2.41), it is

interesting that the predicted oscillatory pattern appears in
good agreement with the exact result in all cases. This
indicates that the characteristic frequencies are determined
by the convolution of the friction function fðnÞ with the
functions sinðe−nk=HÞ and cosðe−nk=HÞ in Eq. (2.38),
even if RkðnÞ deviates strongly from the unperturbed
solution R̄kðn; 1; i; 3Þ of Eq. (2.33). In this respect,
Eq. (2.41) provides the means for estimating the frequen-
cies that appear in the power spectra for a general form of
the friction function fðNÞ.
We also note that, as we saw in the previous subsection,

the maximal enhancement of the spectrum for a single
pulse can be estimated through the exponential of the
integral of 3 − fðNÞ over the range that this function is
positive. For patterns involving several pulses, the enhance-
ment depends on their relative position [79]. However, the
above estimate can be used as a (rough) guide for the

maximal enhancement of the spectrum for the optimal
position of the pulses.

III. PRIMORDIAL BLACK HOLES AND INDUCED
GRAVITATIONAL WAVES

A. Specific inflationary models

Based on the discussion of Sec. I B that motivated the
use of the framework of α-attractors, we assume the
following form for the function F:

FðxÞ ¼ F0

�
xþ

Xn
i¼1

ci tanhðdðx − xiÞÞ
�
: ð3:1Þ

The corresponding inflationary potential for the field φ in
the Einstein frame

VðφÞ ¼ F2

�
tanh

φffiffiffi
6

p
�

ð3:2Þ

features n steplike transitions. (All dimensionful quantities
are given in units of MPl.) Such a potential can lead to an
enhancement of the power spectrum of scalar perturbations
[79] at particular scales, which can be sufficiently large to
trigger PBH formation and induce detectable GWs. In
addition, the shape of the scalar power spectrum around its

FIG. 9. Curvature power spectra for various forms of the friction function fðNÞ (blue and red curves), compared to predictions by
Eq. (2.41) (black and orange curves).
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peak is characterized by an oscillatory pattern that can be
inherited by the tensor power spectrum. We will discuss
these notable phenomenological implications of potentials
with steps in the next subsections.
The enhancement induced by a step has an upper

bound corresponding roughly to a multiplicative factor
expð−ΔNðκ − 3ÞÞ, see Eq. (2.21). Here ΔN is the interval
during which the value κ of the effective-friction term (2.8)
is smaller than the value κ ¼ 3 that results in a scale-
invariant spectrum. Negative values of κ are realized when
the background inflaton “decelerates” on the lower plateau,
after a sharp transition through a step in the potential.
During this stage, which lasts a few e-foldings, we have
φ;NN ≃ −3φ;N and κ ≃ −3. As a result, a single step
generally enhances the scalar power spectrum by roughly
2 or 3 orders of magnitude. However, it is possible that the
potential includes several steplike features. In Fig. 10 we
plot a set of specific examples of inflationary potentials
with steps, described by Eq. (3.2). These potentials yield 50
to 60 e-foldings after the crossing of the CMB scale
(k ¼ 0.05 Mpc−1) and a spectral index value ns ¼ 0.969,
within the 68% C.L. range of Planck [118]. The parameters
of these models are ci ¼ 7 × 10−3. We consider from one
(n ¼ 1) up to five steps (n ¼ 5) in Eq. (3.2), placed at
φ1 ¼ 5.7, φ2 ¼ 5.55, φ3 ¼ 5.4, φ4 ¼ 5.25, φ5 ¼ 5.1,
respectively. The value of F0 is adjusted each time in
order to be consistent with the measured amplitude of the
spectrum at the CMB scale. For the initial value of the
inflaton field we choose φCMB ¼ 6.33, so as to obtain
appropriate values for the spectral index ns and the number
of e-foldings N. The choice of the value of the parameter d
is not crucial, as long as it is taken sufficiently large for the
transition through the steps to occur quickly, but contin-
uously. Typical values are of order 103–105.
We also examine the inflationary dynamics of models

that feature both a step and a near-inflection point. The
production of PBHs and induced GWs due to the presence
of a near-inflection point in the framework of α-attractors
has been studied in [34,37,97]. Such models result in a

significant enhancement of the scalar power spectrum,
while the presence of a steplike feature adds a prominent
oscillatory pattern around the peak value. In Fig. 11
we plot an example of such a potential, within the α-
attractor framework, with parameters c1 ¼ 8.70 × 10−2,
c2 ¼ −2.77 × 10−4. The step is placed at φ1 ¼ 5.4 and a
shallow nearly inflection point exists at φ2 ¼ 4.8. The
spectral index value for this model is ns ¼ 0.968, within the
68% C.L. region of Planck [118]. The number of e-foldings
after the crossing of the CMB scale is N ¼ 51 for an initial
field value φCMB ¼ 6.17. In Figs. 10 and 11 we also plot
the function fðNÞ that determines key characteristics of
the scalar power spectrum, such as the amplitude and the
oscillatory pattern, as discussed in Sec. II.
In the following subsections we examine the cosmo-

logical implications for PBH formation and GW production
arising from the amplification of the scalar spectrum by the
steplike features in the potential (3.2). Remarkably, models
of this type yield striking predictions for the induced GWs
that render them testable by the forthcoming GW detection
experiments.

B. Primordial black holes

Inflationary potentials with steps enhance the amplitude
of the primordial density perturbations at particular scales
and might lead to gravitational collapse and PBH produc-
tion. We review briefly observational bounds on the PBH
abundance, relevant for our analysis.
In the largest part of the mass spectrum there are

stringent upper bounds on ΩPBH=ΩDM arising from obser-
vational constraints, see Fig. 12 for monochromatic PBH
spectra. Light PBHs are constrained by the extragalactic
gamma ray background (EGB); black holes of mass above
1017 g are subject to constraints from gravitational lensing
of stars by Subaru (HSC), Ogle (O), EROS (E) and
MACHO (M), microlensing of supernova (SN) and other
experiments. The CMB anisotropies measured by Planck
(PA) constrain the PBHs with masses above 1033 g. In the

V( )

1 step

4 steps

24 26 28 30 32 34
N0

5

10

15

20

25

30
f(N)

FIG. 10. Left panel: the inflationary potentials described by Eq. (3.2), arbitrary placed on the φ axis in order to make the steplike
structure visible. Right panel: the function fðNÞ of Eq. (2.8) in terms of the number of e-foldings for inflationary potentials with one and
four steps.
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large-mass region there are also constraints from accretion
limits in x-ray and radio observations and x-ray binaries
(XB), and dynamical limits from disruption of wide
binaries (WB) and survival of star clusters in Eridanus II
(Er). Advanced LIGO/Virgo searches for compact binary
systems with component masses in the range 0.2–1M⊙ find
no GW events. For a detailed discussion and references on
the PBH constraints we refer the reader to [119].
The maximal value of the PBH abundance can be

achieved in the mass range MPBH ∼ 10−15–10−10 M⊙. In
this work we focus on this mass window that can be
tested by near-future GW experiments, such as LISA.

Nonetheless, the parameters of the same inflationary model
with steplike features can be adjusted in order to generate
PBHs in other mass windows, such as theOð10Þ solar mass
window that is relevant for the LIGO/Virgo observed events.
The theoretical framework for the PBH formation that

we shall follow next is based on the traditional Press-
Schechter formalism [120]. Large density perturbations can
create overdense regions that may collapse to form black
holes after the horizon reentry. We examine separately the
two most interesting cosmological scenarios for the very
early Universe: the radiation (RD) and matter domination
(MD) scenarios.

FIG. 11. Left panel: the inflationary potential with one step and an inflection point as a function of φ in Planck units. The model gives
ns ¼ 0.968 for an initial field value ϕCMB ¼ 6.17MPl. The inflection point at ϕinflec ¼ 4.8MPl is clearly visible through the
magnification of the potential in the box. Right panel: the effective-friction function fðNÞ during the part of the evolution in which it
deviates from the standard value fðNÞ ≃ 3.

FIG. 12. The red curve depicts the abundance of PBHs produced by an inflationary model with a step and an inflection point during the
RD era. The blue curve depicts the abundance of PBHs produced by an inflationary model with three steps during the MD era. The
dashed curve is the PBH abundance produced during the MD era for the double-pulse model (termed Example 3) of Fig. 8, in which a
negative-friction pulse is followed by a positive-friction pulse.
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1. Radiation-dominated era

For a Gaussian distribution function of the primordial
density perturbations and for spherically symmetric
regions, the mass fraction of PBHs at formation is

βðMÞ ¼
Z
δc

dδ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2ðkÞ
p e

− δ2

2σ2ðkÞ ≃
1

2
erfc

�
δcffiffiffi
2

p
σðkÞ

�

≃
1ffiffiffiffiffiffi
2π

p σðkÞ
δc

e
− δ2c
2σ2ðkÞ: ð3:3Þ

The parameter δc is the threshold density perturbation and
erfcðxÞ is the complementary error function. For δ > δc
density perturbations overcome internal pressure and col-
lapse. The β parameter can be regarded as the probability
that the density contrast is larger than δc. The PBH
abundance is exponentially sensitive to the threshold δc.
Different values for δc are quoted in the literature, see
e.g., [4,121–127], so that its precise value seems to be
rather uncertain. In the comoving gauge, Ref. [125] finds
δc ¼ 0.41 for w ¼ 1=3. Numerical simulations demonstrate
that there is no unique value for the threshold, because it
depends on the density profile.
In the comoving gauge, assuming a nearly scale-

invariant curvature power spectrum for a few e-folds
around horizon crossing, the curvature perturbation R
can be related to the density perturbation δ as δðk; tÞ ¼
2ð1þ wÞ=ð5þ 3wÞðk=aHÞ2Rðk; tÞ. The variance of the
density perturbations σðkÞ, smoothed on a scale k in the
radiation-dominated era, is given by [128]

σ2ðkÞ ¼
�
4

9

�
2
Z

dq
q
W2ðqk−1Þðqk−1Þ4Δ2

RðqÞ; ð3:4Þ

where Δ2
RðqÞ is the power spectrum of the curvature

perturbations, usually calculated numerically. Here WðzÞ
represents the Fourier transform of the Gaussian window
function. In order to estimate the mass spectrum of
the PBHs, the horizon scale at the time of reentry
of the perturbation mode k has to be related to the mass
of formed PBHs. During the radiation era, the wave number
scales as k ∝ g1=2� g−2=3s S2=3a−1 and the Hubble horizon as
H ∝ g1=2� g−2=3s S2=3a−2, where S denotes the entropy, and
g�, gs count the total number of the effectively massless
degrees of freedom for the energy and entropy densities
respectively. Assuming conservation of the entropy
between the reentry moment and the epoch of radiation-
matter equality, the relation between the PBH mass M and
the comoving wave number k is given by

MðkÞ ¼ γρ
4πHðkÞ−3

3

				
k¼aH

≃ 2.4 × 10−16 M⊙

�
γ

0.2

�

×

�
g�ðTÞ
106.75

�
−1
6

�
k

1014 Mpc−1

�
−2
; ð3:5Þ

where we took the effective degrees of freedom g� and gs
approximately equal. The factor γ gives the fraction of the
horizon mass MH that collapses to form PBHs. Its value
depends on the details of the gravitational collapse and an
analytical estimation [4] gives γ ¼ 0.2. The present ratio of
the abundance of PBHs with mass M over the total dark
matter (DM) abundance, fPBHðMÞ≡ΩPBHðMÞ=ΩDM, can
be expressed as

fPBHðMÞ≡ΩPBH

ΩDM
¼
�

βðMÞ
3.3×10−14

��
ΩDMh2

0.12

�−1

×

�
γ

0.2

�3
2

�
g�

106.75

�
−1
4

�
M

10−12M⊙

�
−1=2

: ð3:6Þ

The abundance of PBHs produced during RD can be
significant if the scalar spectrum is amplified by roughly 7
orders of magnitude. In our single field models, described
by the α-attractors potential (3.2), such an enhancement is
achieved if the potential involves several steps or a step and
an inflection point. In Fig. 12 we plot the PBH fractional
abundance for a potential with a step and inflection point,
for the parameter values listed in Sec. III A. The scalar
power spectrum of this model is depicted in Fig. 14. For the
estimation of the PBH abundance we assumed a threshold
value δc ¼ 0.45 [124]. We see that, although the scalar
power spectrum is characterized by an oscillatory pattern
around the peak of the PBH abundance, it is predominantly
monochromatic. However, the induced GW spectrum is
much more informative, as we will discuss in the following.

2. Matter-dominated era

PBHs might also form in the matter-dominated era
(MD). In the absence of pressure, even minute perturba-
tions will evolve and deviations from spherical configura-
tions play an essential role. References [129–131]
examined the PBH production in a matter-dominated
universe and considered the nonspherical effects during
gravitational collapse. The PBH production rate β tends to
be proportional to the fifth power of the variance σ [131]:

βðσÞ ¼ 0.056σ5: ð3:7Þ

This expression has been derived with semianalytical
calculations and applies to 0.005≲ σ ≲ 0.2, whereas for
σ ≲ 0.005 the PBH production rate is modified if there is
significant angular momentum in the collapsing region
[132]. The PBH fractional abundance is

fPBH ≃ 1.3 × 109γβ
Trh

GeV
; ð3:8Þ

with Trh is the reheating temperature.
There are two very interesting implications of PBH

production during the MD era. First, the PBH abundance is
found to be larger compared to RD for a given amplitude of
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the curvature power spectrum. Inflationary potentials with
steps, which enhance the curvature power spectrum by 4 or
5 orders of magnitude, can have an observational effect by
generating a significant cosmological PBH abundance.
Second, the PBH production during the MD era yields a
PBH mass spectrum that is not predominantly monochro-
matic. It has a distribution over a few orders of the PBH
mass values, which might reveal a nontrivial shape for the
underlying power spectrum of the primordial density
perturbations. Although the specific inflationary models
that we examine here do not have a very strong effect on the
PBH mass spectrum, inflationary models with steps can in
principle produce mild modulations in the distribution
of PBHs. The blue curve in Fig. 12 depicts the PBH
abundance produced by an inflationary potential given by
Eq. (3.2) with three steps, for amplitude Δ2

R ∼ 10−4 and
Trh ∼ 103 GeV. In the same figure, the dashed curve
depicts the PBH abundance produced by the double-pulse
model of Fig. 8 for Δ2

R ∼ 10−3 and Trh ∼ 1 GeV. The
spectrum is sufficiently wide and oscillating in order to
have an observational impact on the PBHmass distribution.

C. Induced gravitational waves

Primordial density perturbations that seed PBHs also
produce stochastic GWs through the mode-mode coupling
of the density perturbations beyond the linear order in the
perturbative expansion. The GW production takes place
mainly at the time when the perturbations reenter the
Hubble horizon. If density perturbations enter during the
RD era, the stochastic spectrum of second order GWs can
be computed following cosmological perturbation theory
[9–18]. The same density perturbations will also produce
PBHs with abundance proportional to β given by Eq. (3.3).
On the other hand, if perturbations enter deep in an early
MD era, a different analysis has to be followed in order to
find the GW energy density spectrum [133,134]. The
corresponding PBH abundance will now be proportional
to β given by Eq. (3.7). In the following we will consider
GW production only during the RD era, leaving the study
of the early MD era scenario for future work. We will also
assume that curvature perturbations are described by
Gaussian statistics.1

The spectrum of the induced GWs is sourced and shaped
by the curvature perturbations. In Sec. II we found that
inflationary potentials with steps generate a distinct oscil-
latory profile for the curvature power spectrum. We expect
that this profile is transmitted to GWs. In the following
subsections we will further elaborate on the modulations of
the amplitude in the GW energy density spectrum, which
will be found to display a multiple peak structure. We will
show in particular that the amplitude and the frequency of
the peaks in the GW spectrum are determined by the

position and the number of the steps in the inflaton
potential. The GW spectrum inherits the pattern character-
istics of the curvature power spectrum and, hence, serves as
a portal to the inflationary dynamics.
Different GW experiments are sensitive to different

frequency bands. Curvature power spectra with a prominent
peak at the horizon mass range 10−15–10−10 M⊙ generate
induced GWs at the frequency band 1–10−4 Hz, and can be
tested by space-based interferometers like LISA [100],
scheduled to operate in the following decade.

1. The formalism of induced GWs

GWs are described by the tensor perturbation hij in the
FRW spacetime

ds2¼a2ðτÞ
�
−ð1þ2ϕÞdτ2þ

�
ð1−2ψÞδijþ

1

2
hij

�
dxidxj

�
;

ð3:9Þ

where ϕ and ψ are scalar perturbations and vector pertur-
bations are neglected. In the absence of anisotropic stress,
which is a good approximation for our purposes, we have
ϕ ¼ ψ . The Fourier components of the tensor modes are

hijðτ;xÞ ¼
X
λ

Z
d3k

ð2πÞ3=2 hλðτ;kÞe
ðλÞ
ij ðkÞeikx; ð3:10Þ

where eðλÞij , with λ ¼ þ;×, are polarization tensors.
Through the definition of the dimensionless power
spectrum

hhλðτ;kÞhλðτ;k0Þi ¼ δλλ0δ
3ðkþ k0Þ 2π

2

k3
Phðτ; kÞ ð3:11Þ

we have

ρGWðτ; kÞ ¼
M2

Pl

8

k2

a2
Phðτ; kÞ: ð3:12Þ

The evolution of hij is obtained by expanding the Einstein
equations. At second order in scalar perturbations, the
equation of motion for the Fourier components of the tensor
perturbations is

h00λ þ 2Hh0λ þ k2hλ ¼ 4Sλðτ;kÞ; ð3:13Þ

where Sλðτ;kÞ is a source that consists of products of scalar
perturbations:

1Non-Gaussian statistics may also generate modulations in the
GW energy density spectrum [135].

SPECTRUM OSCILLATIONS FROM FEATURES IN THE … PHYS. REV. D 104, 103510 (2021)

103510-19



Sλðτ;kÞ¼
Z

d3k

ð2πÞ3=2e
ijðkÞqiqj

�
2ϕqϕk−q

þ 4

3ð1þwÞðH
−1ϕqþϕqÞðH−1ϕk−qþϕk−qÞ

�
:

ð3:14Þ

The evolution of ϕk is given in terms of the scalar
transfer function. For radiation domination, we have
ϕkðτÞ ¼ ϕðxÞΦk, with

ϕðxÞ ¼ 9

x2

�
sinðx= ffiffiffi

3
p Þ

x=
ffiffiffi
3

p − cosðx=
ffiffiffi
3

p
Þ
�
; ð3:15Þ

where x ¼ kτ, andΦk is the primordial value, related to the
curvature perturbation as

hΦkΦk0 i ¼ δ3ðkþ k0Þ 2π
2

k3

�
3þ 3w
5þ 3w

�
2

Δ2
Rðτ; kÞ: ð3:16Þ

The solution of Eq. (3.13) reads

hλðτ;kÞ ¼
1

aðτÞ
Z

τ

0

Gkðτ; τ̄Þaðτ̄ÞSλðτ̄;kÞdτ̄; ð3:17Þ

where Gkðτ; τ̄Þ is the Green function for Eq. (3.13). The
power spectrum of induced GWs is expressed in a compact
form as a double integral involving the power spectrum of
the curvature perturbations [136],

Phðτ; kÞ ¼
Z

∞

0

dt
Z

1

−1
dsT ðs; t; τ; kÞΔ2

R

�
tþ sþ 1

2
k

�

× Δ2
R

�
t − sþ 1

2
k

�
: ð3:18Þ

The overline denotes the oscillation average. The t and s
variables are defined as t ¼ uþ v − 1, s ¼ u − v, where
v ¼ q=k, u ¼ jk − qj=k. The integral kernel T is given by
the expression

lim
x→∞

x2T ðs; t; xÞ ¼ 2

�
tð2þ tÞðs2 − 1Þ

ð1 − sþ tÞð1þ sþ tÞ
�

2 288ð−5þ s2 þ tð2þ tÞÞ2
ð1 − sþ tÞ6ð1þ sþ tÞ6

×

�
π2

4
ð−5þ s2 þ tð2þ tÞÞ2Θðt − ð

ffiffiffi
3

p
− 1Þ

þ
�
−ðt − sþ 1Þðtþ sþ 1Þ þ 1

2
ð−5þ s2 þ tð2þ tÞÞ log

				−2þ tð2þ tÞ
3 − s2

				
�

2
�
; ð3:19Þ

where Θ is the Heaviside step function. The fraction of the
GWenergy density per logarithmic wave number interval is

ΩGWðτ;kÞ¼
1

ρtotðτÞ
dρGWðτ;kÞ

d lnk
¼ 1

24

�
k

aðτÞHðτÞ
�

2

Phðτ;kÞ:

ð3:20Þ

At a certain time tc the production of induced GWs ceases,
while their propagation becomes free. In a RD background
the energy density parameter ΩGW remains constant. Its
value at the current time t0 is given by Eq. (3.20) times the
current radiation density parameter, Ωγ;0h2 ¼ 4.2 × 10−5,
modulo changes in the number of the relativistic degrees of
freedom g� in the radiation fluid:

ΩGWðt0;fÞh2¼0.39×

�
g�

106.75

�
−1=3

Ωγ;0h2×ΩGWðtc;fÞ:

ð3:21Þ
The total energy density parameter of induced GWs is
obtained by integrating the GW energy density spectrum
over the entire frequency interval.

D. Oscillations in the power spectrum of the induced
GWs from potentials with steps

We start the discussion of the pattern of induced GWs
produced in inflationary models with sharp features by
looking at the spectrum characteristics of analytically
calculable models, such as those depicted in Figs. 6–8. In
Sec. II we performed a semianalytic calculation of the
curvature power spectrum bymodeling the function fðNÞ of
Eq. (2.8), which captures the dynamics of the inflaton field
beyond the slow-roll regime, through a sequence of square
pulses. The amplitude of the produced curvature power
spectrum is enhanced by the factor jCmj2 of Eq. (2.21), while
it also displays oscillatory patterns with characteristic
periods δk=H ∼ eNπ in k-space, where N is the number
of e-foldings at which the function fðNÞ varies strongly.
[See the discussion below Eq. (2.21).] Roughly the same
characteristic frequency is observed in the GW spectra. In
Fig. 13 the GW spectra for the three examples studied in
Sec. II E are plotted. We also plot a harmonic function
ΩGWmaxð2þ sinðαGWk − θÞÞ=3 that highlights the periodic
change of the GW amplitude around the peak through
a fit of the k-space period δkGW ∼ 2π=αGW. We find
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αGW ¼ Oð1Þ=H, corresponding to the smallest period of the
oscillations in the curvature spectrum δk=H ∼Oð1Þπ. It
must be noted that larger periods of size δk=H ¼ Oð10Þπ
appearing inΔ2

R can also be discerned in the modulations of
the amplitude of the GW spectrum at the corresponding
scales. However, they are less visible as they extend to
regions in k-space far from the peak.
The short-period modulations of order π imply that the

peaks in the curvature spectrum are narrow. In Fig. 13 a log-
normal distribution with a certain width σN < 1 is plotted
together with Δ2

R. It elucidates the prominent two-peak
structure induced in the GW spectrum [17,95,96], which
appears when the main peak of the curvature spectrum is
sufficiently narrow. In our first example, for a square pulse
starting at N ¼ 0, corresponding to a smallest period of
oscillations δk=H ≃ π, the peak of Δ2

R is found at a wave

number kp=H ≃ 4.5, comparable to π. The k-range of the
fitting log-normal distribution is determined by requiring
that δk ∼ kpðeσN − 1Þ, which implies that σN < 1. As a
result, and in agreement with the analysis of Ref. [95], the
GW spectrum is found to feature a major, relatively sharp
peak at ð2= ffiffiffi

3
p Þkp=H. Additionally, in the low-k side there

is a relatively flat local maximum, at a wave number near
kp=e. This characteristic two-peak structure is evident in
all three examples we studied. In the second example in
particular, in which Δ2

R is dominated by a single peak
because the smallness of the positive pulse confines the
oscillatory patterns within the high-k part of the spectrum,
the two-peak structure is practically the only observable
feature.
Let us now turn to the inflationary models with steplike

features described by Eq. (3.2). In these models, the

FIG. 13. Left: the scalar power spectrum produced by a double square pulse, normalized to the CMBmeasured amplitude. The dashed
line is a log-normal power spectrum with width σN. Right: the induced GW spectrum, along with a fitting harmonic function. Each row,
from top to bottom, corresponds to the pulse producing the spectrum of each of Figs. 6–8, respectively.
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FIG. 14. Left panels: the curvature power spectra produced by inflationary models with potential given by Eq. (3.2) and depicted in
Fig. 10, for parameter values given in the text. Right panels: the generated GW density parameter produced by each inflationary model.
A zoom-in plot of the peak region has been included in each panel. Note that the last row of panels corresponds to an inflationary model
that features both a step and an inflection point, depicted in Fig. 11.
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effective-friction function fðNÞ of Eq. (2.8), depicted in
Fig. 10, has a 2n-pulse structure for n steps, with each
positive pulse followed by a negative one. In the semi-
analytically calculable models that we studied before, the
power spectrum was normalized such that the step features
started at N ¼ 0. We observed an enhancement by a factor
jCmj2, together with oscillations of period δk=H ∼ eNπ. In
the inflationary models of Eq. (3.2) we find numerically
similar patterns. The curvature spectrum Δ2

R is to a good
approximation enhanced by jCmj2, with a main peak at a
wave number kp characteristic of the step position in terms
of the number of e-foldingsN, which are now counted from
the exit of the CMB scale. Oscillations are also produced
with an approximate period δk ∼ kp.
In Fig. 14 we plot four curvature power spectra together

with the GW density spectra that they induce. For the three-
step model, the curvature spectrum displays strong mod-
ulations and one can read off an oscillatory pattern with
period δk ≃ 2.5 × 1011 Mpc−1. The spectrum Δ2

R has three
prominent peaks at comparable wave numbers kp1, kp2, kp3.
Each peak is well described by a narrow log-normal
distribution in the k-range with width σN < 1. The combi-
nation of these three peaks induces a characteristic five-
peak structure in the GW spectrum [137], along with the
rather flat local maximum at lower k, as can be seen
in the first row of panels in Fig. 14. The first sharp peak in
the GW spectrum is located at the value kGW;1 ¼ 2kp1=

ffiffiffi
3

p
,

the second at kGW;2 ¼ ðkp1 þ kp2Þ=
ffiffiffi
3

p
, the third at kGW;3 ¼

2kp2=
ffiffiffi
3

p
, the fourth at kGW;4 ¼ ðkp2 þ kp3Þ=

ffiffiffi
3

p
and the

fifth at kGW;5 ¼ 2kp3=
ffiffiffi
3

p
. The rather flat local maximum at

lower k is located near kp2=e, where kp2 is the wave number
of the highest peak. These values can be seen in Fig. 14 in
the frequency spectrum and in Hz units through the
conversion f ¼ k=ð2πÞ, where Mpc−1 ≃ 0.97 × 10−14 Hz.
Similar conclusions can be drawn for the next two infla-
tionary models that feature four and five steps, respectively.
For the inflationary model that features both an inflection

point and a step, the resulting spectra are quite different
compared to the previously discussed models that involve
only steps. The inflection point is responsible for the strong
enhancement of the curvature power spectrum and its
relatively wide peak. Indeed, the envelope function that
outlines the peak can be fitted by a log-normal distribution
with width σN ≃ 0.4. Hence the characteristic two-peak
structure in the GW spectrum [95] is not very prominent
here. The steplike feature has a minor contribution to the
enhancement of the curvature spectrum, but it is the source
of the oscillatory pattern around the peak with the char-
acteristic period δk ≃ 7 × 10−11 Mpc−1. These oscillations
are also transferred to the GW spectrum. As before, the GW
oscillatory pattern is well described by a harmonic function
and reflects the pattern in the curvature spectrum.
It is important to emphasize that, even though it is not

clearly visible in the log-plot, the oscillations near the peak

are substantial: TheΩGW spectrum displays variations in its
amplitude that are 25% of its maximal value or larger. Such
modulations in the amplitude are likely to be detectable by
the near-future space interferometers.

IV. CONCLUSIONS

In this paper we studied single-field inflationary models
with sharp, steplike features in the potential. The evolution
of the inflaton through such features leads to the violation
of the slow-roll conditions, and in some cases even to the
temporary interruption of inflation. The striking conse-
quences of the transition through a generic steplike feature
are the enhancement of the power spectrum of the curvature
perturbations at certain scales by several orders of magni-
tude and the production of distinctive oscillatory patterns.
We studied analytically and numerically the inflationary
dynamics and we derived the expressions that describe
quantitatively the size of the enhancement, as well as the
profile of the oscillations. It is interesting that these features
impact the power spectrum in a distinctive and predictive
way that reflects their properties: the amplification and the
oscillatory pattern are shaped by the position, number and
steepness of the features.
Our analysis has revealed the origin of the oscillations.

They are generated through the detuning of the phase
difference between the real and imaginary parts of the
curvature perturbation, which evolves according to the
Mukahnov-Sasaki equation (2.2). When the inflaton moves
through a step in the potential, the background evolution
deviates strongly from the standard slow roll for a small
number of e-foldings, in a way that the real and imaginary
parts of the solution are detuned. The detuning results in
time-dependent oscillations of the amplitude. When the
perturbations asymptotically freeze at superhorizon scales,
an oscillatory pattern is induced on the wave number
dependence of the power spectrum. A detailed discussion
of this point can be found in Ref. [79] and Secs. II B, II C,
and II F. It must be emphasized that oscillations in the
spectrum are not a generic consequence of any feature in
the potential that violates slow roll. In contrast to a steep
step, an inflection point in general induces an enhanced, but
smooth, power spectrum.
From the model-building perspective, a steep step can

appear if the inflationary potential includes plateaus with
different energy densities. A nearly constant potential
energy density can be associated with underlying sym-
metries that are preserved in the plateau [110]. A defor-
mation of the symmetry results in energy splitting, so that a
transition between different energy levels can be induced.
Such a behavior can be captured by the framework of the
inflationary models characterized as α-attractors [108,109].
A strong motivation for analyzing such models is that the

induced tensor power spectrum inherits the oscillating
profile of the primordial curvature spectrum. The combined
pattern of an enhanced spectrum together with strong
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oscillations is potentially detectable by near future space
interferometers. Through the detection of the GW spec-
trum, one can aim at inferring at least some basic feature of
the inflationary potential, such as whether steplike tran-
sitions are present. Motivated by this possibility, we
examined in detail, numerically and analytically, the scalar
and the induced tensor spectra and we identified correla-
tions between them. The main characteristic property of
both spectra, related to the transition through a step, is a
series of peaks. Through a more refined analysis of the
spectrum, one can look for more detailed information, such
as the number of the steps, their position and exact shape,
and whether there is, in addition to a step, an inflection
point. We explored this possibility by studying several
analytical examples, as well as inflationary models in the
α-attractor framework, always imposing consistency with
the constraints for the spectral index ns and the amplitude of
the scalar spectrum arising from the CMB measurements.
The detection of GWs from inflationary models with

sharp features may be accompanied by the presence of
PBHs as a significant fraction of dark matter. The enhance-
ment of the power spectrum due to the presence of steplike
features, though considerable, may be inefficient to trigger
the production of a sizable number of PBHs if radiation
dominates the energy density of the early Universe.
However, it can be sufficient to induce gravitational
collapse processes and PBH production if the universe

energy density is dominated by nonrelativistic matter. We
examined the profile of the PBH mass spectrum produced
either in a radiation or an early matter-dominated universe,
looking for deviations from the common monochromatic
profile. For the latter scenario we found that this is possible
because of the multiple-peak structure of the curvature
power spectrum.
It is important to note that the oscillations near the peak

of the GW spectrum have a scale comparable to that of its
maximal value. Such modulations in the amplitude are
likely to be detectable by the near future space inter-
ferometers, such as LISA. This demonstrates that induced
GWs can be used as a powerful tool for probing the
inflationary potential. The detection of oscillatory patterns
in the amplitude of the GW spectrum will be a strong
indication for sharp features in the potential of single-field
inflation.
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