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Abstract: We present a necessary and sufficient condition for a maximal curve, defined over the algebraic
closure of a finite field, to be realised as an HKG-cover. We use an approach via pole numbers in a rational
point of the curve. For this class of curves, we compute their Weierstrass semigroup as well as the jumps of
their higher ramification filtrations at this point, the unique ramification point of the cover.
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1 Introduction
Let X be a projective nonsingular algebraic curve of genus g ≥ 2 and denote by F its function field. Maximal
curves are the curves that attain the Hasse–Weil bound |X(𝔽q2 )| ≤ q2 + 1 + 2gq for their number of rational
points over the finite field 𝔽q2 where q is a p-power. The interest in such curves with many rational points
was renewed after Goppa’s construction of codes with good parameters from such curves, see [16], andmany
interesting applications in coding theory and cryptography arise from them. For a survey article see [8]; some
other sources are [6; 38; 17; 11; 2; 13] as well as the books [33; 18]. Some open problems concerning maximal
curves are their classification and the structure of their Weierstrass semigroups at rational points; the latter
is also closely connected to the construction of good Algebraic Geometry (AG) codes, see [19; 3].

For curves X defined over𝔽q, we can also consider the Frobenius linear seriesF of Xwhich plays a central
role, especially in applications tomaximal curves; see [18], [37, Sections 3 & 4] and [35]. The degree ofF arises
as a certain value of the product of theℤ-irreducible factors of the characteristic polynomial of the Frobenius
endomorphism, acting on the Jacobian of X. Formaximal curves,F has the formF = |(q+1)P|where P is any
𝔽q2 -rational point, see [18, Section 10.2]. For themany arithmetic interpretations of this, the reader is referred
to [18, Section 9.8] and [37]. Any information on the Frobenius linear series provides insight into the problem
of the classification of maximal curves, see for example [4].

Here, we are interested in maximal curves (X, G), where G ⊆ Aut(X) is a p-group with p > 3, viewed
over an algebraic closure of their field of definition �̄�q2 , that can be realized as Harbater–Katz–Gabber or
HKG-covers, i.e. as p-group Galois covers X → X/G ≃ ℙ1 with only one fully and wildly ramified point P.
These covers are important because of the Katz–Gabber compactification of Galois actions on complete local
rings, while they also provide examples of curves with the most automorphisms, see Section 2.1. We discover
that among the maximal curves (X, G), the ones that occur as HKG-covers with Galois group G are those with a
certain pole number at their Weierstrass semigroup at their unique wildly ramified point (Theorem 2).
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Moreover, for such curves we know

∙ a lower bound for the order of G, see [15, Theorem 1.1],
∙ the jumps for the higher ramification filtrations at P, see [21, Theorem 14],
∙ the Weierstrass semigroup at P, see Corollary 3 and Lemma 4 here, and
∙ that the unique ramification point of the cover is a Weierstrass point, see Corollary 3.

2 Zero p-rank curves
2.1 Where the most automorphisms occur. Let us focus on the case of curves X with zero p-rank. More
precisely, in this case every p-subgroup G of the automorphism group Aut(X) of our curve X can be real-
ized as the stabilizer of a unique place, see for example [18, paragraph 11.13]. Thus we can suppose that
G = G0(P) = G1(P) for some P ∈ X. This means that the Galois cover

π : X → X/G1(P) (1)

iswildly ramified at the uniquepoint P. The casewhere X/G1(P) is rational naturally leads toHKG-covers. This
is also the case where the most automorphisms occur: if not, it is well known that |G1(P)| is upper bounded
by the genus of the curve, see [18, Theorem 11.78 (i)]. A useful criterion for the cover (1) to be an HKG-cover
is |G1(P)| to be a pole number at the point P, see [21, Corollary 18]. On the other hand, it is well known that
every curve X that admits an HKG-cover has zero p-rank; we summarize [21, Theorem 40]:

Theorem 1. The following conditions are equivalent:

(1) the curve X has zero p-rank and |G| is a pole number at the unique point P ∈ X that G stabilizes;
(2) the cover X → X/G is an HKG-cover.

The above theorem is valid for any curve X defined over any algebraically closed field of positive charac-
teristic p > 3. For the study of the automorphism group in the case where X has zero 2-rank, see [14]. Well
known examples of HKG-covers with many automorphisms are the curves equipped with big actions: recall
that a curve X together with a subgroup G of the automorphism group of X is called a big action if G is a
p-group and |G|g >

2p
p−1 . All big actions have the following property, see [25]: if (X, G) is a big action, then there

is a unique point P of X such that G1(P) = G, the group G2(P) is not trivial and strictly contained in G1(P)
and the quotient X/G2(P) is isomorphic to ℙ1. The reader should keep in mind that the jumps of the higher
ramification filtrations (see [31] for an introduction) for HKG-covers affect the structure of the Weierstrass
semigroup at P; for a big action the latter is given in [21, Corollary 39].

2.2 Over finite fields. One class of zero p-rank curves are themaximal curves. All known families ofmaximal
curves with |G1(P)| a pole number can be also described as HKG-covers. We show in Theorem 2 that this
condition for the maximal curves viewed over �̄�q2 is equivalent to q ≤ |G1(P)|. Note that this last condition
is true for all the “generic" families of maximal curves that we know: the Hermitian curve, the (generalized)
Giulietti–Korchmáros curve (see [13], [9] and [17]), the Garcia–Stichtenoth curve [10]; while for all maximal
curves is true that q, q + 1 ∈ H(P) for a 𝔽q2 -rational point P. Finally, when mr = q + 1 then the linear series
|mrP| that naturally arises from [23, Proposition 2.3] is called the Frobenius linear series and it is an invariant
of the curve at a rational point, see [18] and Remark 6.

Although these curves are naturally defined over𝔽q2 , herewe view themover some algebraic closure �̄�q2 .
For an abelianG1(P),maximal curves and curveswithmany automorphisms are connected via the theory

of global ray class fields, see [24] and [1], and through the identification of “many rational points”with “many
automorphisms”, see [26].

Here, we compute explicitly theWeierstrass semigroupsH(P) formaximal curves satisfying the condition
q ≤ |G1(P)|. Our motivation are the many connections of these semigroups with the construction of good AG
(Algebraic Geometric) codes, see [19]. These numerical semigroups have a special structure: all their minimal
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generators but the last one are divisible by the characteristic of the field. Moreover, they are all symmetric by
[21, Corollary 43], and in some cases telescopic, see Lemma 4, with their minimal generators explicitly given
by Corollary 3; for some basic facts about telescopic numerical semigroups see [19, Section 5.4] or [28]. The
symmetry is expressed in the semigroup in the following way: m ∈ H if and only if 2g − 1 − m ̸∈ H. It is a
direct consequence of the symmetry of H(P) that P is a Weierstrass point with respect to the canonical linear
series, see Corollary 2. For some interesting geometric properties concerning the symmetric class of numerical
semigroups, the reader can look at [28, p. 142] and the references there.

Maximal curves and curves equippedwith abig actionhave zero p-rank, see for example [12, Corollary 2.5]
and [25, first lines of the proof of Proposition 2.5]. Thus for such a curve X, given a p-subgroup G of Aut(X),
whenever X → X/G is an HKG-cover, see Theorem 1, the lower ramification jumps of G are given by [21,
Theorem 13]. All big actions are HKG-covers by [21, Corollary 39], while for maximal curves we give in next
section a simple necessary and sufficient condition for this to happen.

2.3 Main result. Let X amaximal curve over𝔽q2 and fix a p-subgroup G ofAut(X). We now see an equivalent
form of Theorem 1 for a maximal X together with G, viewed over �̄�q2 , to admit an HKG-cover in terms of the
Weierstrass semigroup at the unique point P that is stabilized by G.

Theorem 2. Let X be a maximal curve defined over �̄�q2 , where q is a p-power and G ⊆ Aut(X). Let P ∈ X the
unique point stabilized by G1 := G1(P) ⊆ G0(P) = G. Then the cover π : X → X/G1(P) is an HKG cover if and
only if q ≤ |G1|.

Proof. For the forward direction, by Theorem 1 it is enough to show that |G1| is a pole number at P iff q ≤ |G1|.
Indeed, by [18, Proposition 10.6 (XII)] q is a pole number for every point P. Thus if q ≤ |G1(P)| then q divides
|G1(P)| and |G1(P)| is a pole number.

For the opposite direction note that q = ps for some s and that this s is the rank of nilpotency of the
Cartier operator, see [12] (for basic definitions concerning the Cartier operator the reader can also look at [36,
Section 2] or at the introductory section of [29]). This means that if |G1(P)| is a pole number then it cannot
be less that q, as a consequence of the minimality of the rank of nilpotency of the Cartier operator. Indeed,
according to [29, Proposition 2.3 and Section 4 pp. 90–91], [34, Corollary 2.7] the rank of the Cartier operator
is the smallest s such that ps ∈ H(P); if we had |G1(P)| < ps and |G1(P)| was a pole number, then |G1(P)|
divides ps and thus the rank would be strictly less than s, which is a contradiction. 2

With the notation used in [21] we can now compute explicitly the Weierstrass semigroup at the ramifica-
tion point of the above class of maximal HKG-covers. Denote by 0 = m0 ≤ m1 ≤ ⋅ ⋅ ⋅ ≤ mn all pole numbers
at P in increasing sequence (we consider the natural partial ordering of the semigroup: a is smaller than
b if b = a + c for some element c in the semigroup) up to mn, the first pole number at P not divisible by
the characteristic. Recall that for HKG-covers of Equation (1), the minimal generators of H(P) are of the form
m̄i := mci+1 = phi λi, where all but the last one of the m̄j’s are divisible by p, the ci are the representa-
tion jumps, i.e. ker ρci < ker ρci+1, the λi with (λi , p) = 1 are the lower ramification jumps of G1; moreover,
phi := | ker ρci+1| for 1 ≤ i ≤ n − 1 and ph0 = |G1(P)|. Each of the generators m̄i above can also viewed as the
image of the minimal generator λi of H(Qi+1) prime to the characteristic, where Qi = Fi ∩ P for 1 ≤ i ≤ n, that
lies below P by the multiplication by | ker ρci+1|, i.e. the push forward map (see [21, Lemma 16]) induced by
Equation (1)

π∗i+1 : H(Qi+1)
×| ker ρci+1|→ H(P)

applied at all the n intermediate fixed subfields of the Galois tower of the representation filtration Fi := Fker ρci
of G; see [21, Lemma 24]. It is known that the above fixed fields of the representaion filtration concide with
the fixed fields of the ramification filtration of G; see [21, Theorem 14, (2)].

Corollary 3. If X → X/G1(P) is an HKG-cover and X is a maximal curve, defined over �̄�q2 , then the minimal
generators of H(P) are given by

(1) H(P) = ⟨m̄j , |G1(P)| : 1 ≤ j ≤ n⟩ℤ+ when λ1 ̸= 1, equivalently when q = |G1|, and by
(2) H(P) = ⟨m̄j : 1 ≤ j ≤ n⟩ℤ+ with m̄1 = |G2| and m̄n−1 = q, when λ1 = 1, equivalently when q < |G1|.
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Moreover, the unique minimal generator m̄n of H(P) not divisible by p equals q +1whenever the maximal curve
is not �̄�q2 -isomorphic with the curve yq + y = xm where m divides q + 1. In every case, H(P) is a symmetric
numerical semigroup and such a P is a Weierstrass point with respect to the canonical linear series.

Proof. The proofs for the structure of H(P) in both cases come from [21, Proposition 34 and Corollary 32],
coupled with the fact that |G1(P)| is a minimal generator only when q = |G1(P)|, by Theorem 2. Note that
m̄n, the first pole number at P not divisible by p, is q + 1 with one exception up to an �̄�q2 isomorphism; this
happens since in any other case q+1 is a generator of theWeierstrass semigroup at P, see [6, Theorem 2.3] and
keep in mind that for maximal curves q + 1 is always a pole number at a rational point. Finally the symmetry
of theWeierstrass semigroup comes directly from [21, Corollary 43], which implies that the ramification point
isWeierstrass point: recall that for a symmetric numerical semigroup H the conductor κ of the semigroup (i.e.
the maximum gap plus one) equals 2g.

Observe that if 2g − 1 ̸∈ H(P) then the conductor of the semigroup is κ(H(P)) = 2g. Indeed, since our
function field is not hyperellipticwehavemi ≥ 2i+1 for i = 1, . . . , g−2 andmg−1 ≥ 2g−2by [37, Lemma 1.25].
This means that there are two cases for mg−1, namely either mg−1 = 2g − 2 or mg−1 = 2g − 1.

LetK be the canonical linear series and G the gap sequence of the Weierstrass semigroup. Observe that
at a generic point P of a K-classical curve X, we have mi(P) = g + i for i ≥ 1. In that case the gaps G(P) and
the generic order sequence E(P) are classical and they are equal to

G(P) = {1, . . . , g} = {εK0 + 1, . . . , ε
K
g−1 + 1}.

In what follows assume that mg−1 = 2g − 2 at the point P of the curve, i.e. H(P) is a symmetric Weierstrass
semigroup. Then at least one of the following conditions must be satisfied: (1) the curve is not K-classical,
(2) P is a Weierstrass point. A closer analysis indicates that if mg−1 = 2g − 2, then the second condition, i.e.
P should be a Weierstrass point, is always true. Indeed:
Case a. The curve X is not K-classical and P is ordinary, i.e. {1, . . . , g} ̸= G(P) = {εK0 + 1, . . . , ε

K
g−1 + 1} =

{ji(P)K + 1 | 0 ≤ i ≤ g − 1}. Thus we have εKg−1 = 2g − 2 = j
K
g−1(P); but this case cannot occur, see [37,

Lemma 2.31], [7, p. 235, Section 3].
Case b. The point P is a Weierstrass point with respect toK and X is aK-classical curve. In this case G(P) =
{jKi (P)+1 | 0 ≤ i ≤ g−1} ̸= {ε

K
i +1 | 0 ≤ i ≤ g−1} = {1, . . . , g}, where j

K
g−1(P) = 2g−2but ε

K
g−1 = g−1 ̸= j

K
g−1(P).

Case c. The point P is a Weierstrass point with respect toK and the curve X is notK-classical. That is g − 1 <
εKg−1 < j

K
g−1(P). 2

Surprisingly enough, the situation where λ1 = 1 or when λ1 ̸= 1 and |G1| is among the two first minimal
generators characterizes the Weierstrass semigroup in another way:

Lemma 4. When λ1 ̸= 1 and ph0 = |G1(P)| is the first or the second generator or when λ1 = 1, then H(P) is a
telescopic numerical semigroup.

Recall the notation: phi = | ker ρci+1| and ph0 = |G1(P)| for 1 ≤ i ≤ n, while the λi, the prime to p parts of
the minimal generators of H(P), are the ramification jumps of G1; see [21, Definition 11, Theorems 13 and 14].

Note that every telescopic numerical semigroup is symmetric but not vice versa.

Proof. First suppose that ph0 equals the first generator. Set d−1 = 0 and di = gcd(ph0 , m̄1, . . . , m̄i). Then
di = phi since gcd(λi , p) = 1. Recall than H(P) = H(Qn+1) = ⟨ph0 , m̄1, . . . , m̄n⟩ℤ+ . Then

H(Qi+1) = ⟨
ph0
di

, m̄1
di

, . . . , m̄i
di
⟩
ℤ+ for 0 ≤ i ≤ n.

Then H(Qn+1) is telescopic if m̄i
di ∈ H(Qi) for 1 ≤ i ≤ n. Recall that for λi, the generator of H(Qi+1) prime to the

characteristic, we have m̄i
di = λi ∈ H(Qi) for 1 ≤ i ≤ n by [21, Lemma 16]. Thus H(Qn+1) is telescopic.

If λ1 = 1 then the elements m̄1, . . . , m̄n generate the whole Weierstrass semigroup, since the same argu-
ment can be used on the HKG-cover F → FG2(P).

Note that we arrive at the same conclusions whenever ph0 is the second generator of H(P), that is when

λ1 < |G1(P)/ker ρc2 | and |G1(P)/ker ρc3 | < λ2 or mc1+1 < |G1(P)| < mc2+1.
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The reader should be cautioned here about the greatest common divisors di = gcd(m̄1, ph0 , . . . , m̄i): one has
d−1 = 0, d0 = m̄1, di = phi for 1 ≤ i ≤ n.

In the cases where ph0 is equal to or greater than the third generator, H(P) is no more telescopic: Sup-
pose that ph0 is the i0th generator with 3 ≤ i0 < n; then the picture for the greatest common divisors
di = gcd(m̄1, . . . , m̄i0−1, ph0 , m̄i0 , . . . , m̄i) is the following: d−1 = 0, d0 = m̄1, d1 = ph2 ,. . . , di0−2 = phi0−1 ,
di0−1 = phi0−1 , and di = phi for i0 ≤ i ≤ n. Now note that

⟨
m̄1
di0−1

, . . . ,
m̄i0−1
di0−1

, ph0
di0−1
⟩
ℤ+ ∋ ph0

phi0−1 ∉ Si0−1 = ⟨ m̄1
di0−2

, . . . ,
m̄i0−1
di0−2
⟩
ℤ+ ,

since everyℤ+ linear combination of ph0/phi0−1 on the right hand side would lead to aℤ+ linear combination
of ph0 on H(P), which contradicts our hypothesis that ph0 is a minimal generator. 2

Note that all the involved semigroups H(Qi) with 1 ≤ i ≤ n + 1 are telescopic.

Examples 5. It is now clear that in order to recognize a Weierstrass semigroup as telescopic it is necessary
to determine the ordering of the generator |G1(P)| among all the generators of H(P). Some examples of HKG-
covers with a telescopic H(P) are:

∙ cyclic pn HKG-covers; we know that pn = ph0 = |G1(P)| is the first generator at P whenever p < λ1, see
[20, Lemma 26, Remark 27 and Example 28].
∙ big actions, since λ1 = 1 by their definition, see [26].
∙ the GK curve in [13], since q = |G1| is the second minimal generator; see [21, Example 23] and use
Lemma 4.
∙ generally, all the maximal curves X defined over �̄�q2 with G ∈ Aut(X) and q < |G1(P)|; use Corollary 3.

Another nice property of the telescopicWeierstrass semigroups is that polenumbers canbewritten in aunique
way, see [19, Lemma 5.34].

Remark 6. The only minimal Weierstrass generator m̄n at P prime to the characteristic is called the degree of
the Frobenius linear series of the curve; it turns out that for maximal HKG-curves the linear series generated
by this minimal generator at P coincides with the Frobenius linear series F at P. The latter is an invariant of
the curve at a rational point. It is interesting that in our case the orders of the Frobenius linear series at P are
m̄n −mj with 0 ≤ j ≤ n, and among these differences lie also the jumps of the ramification filtration; this was
first observed in [23], while later in [21] we found exactly the indices j∗ where the actual jumps occur. Note
also that the projective map arising from the linear series |m̄nP| is an embedding, see [18, Theorem 10.7].
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