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ABSTRACT 

The aim of the present research is to present a numerical model for the 

simulation of wave hydrodynamics coupled with sediment transport 

and bed morphodynamics. The model is based on the formulation of 

three-dimensional (3D), large-eddy simulations with emphasis on the 

development of a morphological module under wave forcing. The 

numerical model has been effectively validated against numerical 

studies and laboratory measurements involving wave motion, sediment 

transport and morphodynamical evolution. Wave propagation and 

breaking are examined over an idealized beach with fixed bed of 

constant slope 1/15, as well as the corresponding suspended sediment 

transport. Moreover, the sediment transport mechanisms and the 

resulting morphological evolution of rippled beds were also examined 

under oscillatory flow conditions generated by non-breaking waves, 

with numerical results of ripple creation and growth presented. 

KEY WORDS: Sediment transport; wave propagation; ripples; 

Navier-Stokes; immersed boundary; morphology evolution.  

INTRODUCTION 

The primary coastal process that causes shoreline erosion is the creation 

of strong bed shear stresses in the surf zone, which induce sediment 

motion and currents (cross-shore and long-shore) that carry the 

sediment offshore. This process continues until scouring phenomena 

take place and wave energy dissipation is in equilibrium with the 

eroded bed. A significant number of numerical models have been 

developed in recent years to simulate coastal processes. Dally & Dean 

(1984) were among the first to attempt the numerical modeling of 

coastal sediment transport, developing a mathematical model for 

coastline evolution. Depending on the wave and sediment 

characteristics, their model had the ability to generate both normal and 

storm-type beach profiles. Large-Eddy Simulation (LES) results 

combined with sediment transport over prototypical long-wave ripples, 

were presented by Zedler & Street, (2006). The authors concluded that 

the flow over such longer ripples is quite similar to the flow over vortex 

ripples. Marieu et al. (2008) developed a two-dimensional Reynolds-

Averaged Navier-Stokes numerical model to simulate the development 

and morphological evolution of ripples, examining phenomena of 

ripple creation, development, merging, and annihilation. They also 

investigated the effect of the initial bed geometry on the morphological 

evolution, deducing that under the same flow characteristics the bed 

reaches the same equilibrium state regardless of the initial one. Kraft et 

al. (2011) simulated numerically the free-surface turbulent flow in a 

channel as well as the sediment transport over a rippled bed, using LES. 

In addition, they studied the morphological evolution of the rippled bed 

using the Level-Set method, and they used three different pickup 

relations for the sediment erosion. More recently, Jacobsen & Fredsøe 

(2014) analyzed the hydrodynamics of wave breaking combined with 

sediment transport over a fixed bottom of constant slope. They 

presented an empirical relationship for the phase lag between the 

breakpoint and the initiation of the setup, mentioning also that this 

phase lag determines the maximum values of the undertow and the bed 

shear stress. Leftheriotis & Dimas (2017) presented LES results of a 

three dimensional (3D) oscillatory turbulent flow, sediment transport 

and morphodynamics for the creation and development of ripples on a 

sandy bottom. It was shown that this model had the ability to capture 

ripple development, resulting in ripple lengths which were in agreement 

with those predicted by empirical equations. They concluded that under 

the same hydrodynamic forcing, the equilibrium state of the bed is the 

same, regardless of the initial bed form. Dimas & Leftheriotis (2019) 

conducted a parametric analysis for oscillatory flow and sediment 

transport over a fixed sandy bottom with ripples using the LES and 3D 

Immersed Boundary (IB) method. They found that the relative 

contribution of bed load versus suspended load on the total sediment 

load depends on both the mobility parameter and the non-dimensional 

sediment grain diameter. Finally, in their simulations the prediction of 

the vortex suspension parameter, P, was better than the phase-lag 

parameter, Pr, in distinguishing between bed and suspended load 

dominance. Dimas and Koutrouveli (2019) presented numerical results 

for wave propagation and spilling breaking over beach profiles of 

varying slopes using the IB and the Level-Set method with the bed 

profile and the free surface being immersed in a Cartesian grid. They 

found that the breaking depth and the wave height decreased as the 

beach slope increased or the surf-similarity parameter decreased. The 

generation of vorticity at the level of the free surface was mainly 

attributed to advection and secondarily to gravity. 
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Coastal processes like wave propagation and breaking, or flows over 

rough beds, are characterized by high turbulent motions with strong 

complexity due to their 3D, time-dependent, and nonlinear character 

(Argyropoulos and Markatos, 2015). Accurate numerical modelling of 

turbulence is quite demanding in terms of computational time and 

especially for cases of moderate to high Reynolds numbers. 

The present research work is focused on the development of an 

advanced 3D hydrodynamic-morphological model, capable of utilizing 

High Performance Computing (HPC), to interpret at physical scale the 

wave hydrodynamics, sediment transport and morphodynamics that 

intertwine in coastal processes. For the flow equations, a fractional 

time-step scheme was used for the temporal discretization, while finite 

differences on a Cartesian grid were used for the spatial discretization. 

In the case of wave propagation, the evolution of the free surface was 

based on the Level-Set method (Sethian and Smereka 2003). The IB 

method was implemented for the imposition of fluid and sediment 

boundary conditions on the bed surfaces. The morphological evolution 

of the bed form was obtained by the numerical solution of the 

conservation of sediment mass equation, also known as the Exner 

equation. The numerical results are presented in two parts. In the first 

part, results of morphological evolution of sand ripples and sediment 

fluxes are presented in a relatively limited computational domain under 

oscillatory flow conditions due to non-breaking waves. In the second 

part, coupled results of wave propagation and breaking are presented in 

a larger computational domain of an ideal fixed coast of constant slope 

tanβ = 1/15. The initial versions of the numerical model were first 

presented in Dimas & Leftheriotis (2019) for sediment transport over 

rippled beds and in Dimas & Koutrouveli (2019) for wave generation 

and breaking over fixed beaches of varying slopes. 

FORMULATION 

Hydrodynamics 

Large eddy simulation (LES) is most commonly used for the numerical 

simulation of turbulent flows. In the LES approach, the flow structures 

are separated into the large and the small eddies. The small eddies are 

parametrized with the use of a subgrid scale (SGS) model, while the 

large eddies are explicitly solved. The governing flow equations are the 

continuity and the Navier-Stokes equations, which are presented below 

non-dimensionalized using the velocity amplitude Uo and the orbital 

motion amplitude ao 
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In the above equations, xi are the three Cartesian coordinates (x, y, z), ui 

are the velocity components in the three directions (u, v, w), t is the 

time, p is the dynamic pressure and τij are the SGS stresses. The SGS 

term has been modeled using the eddy-viscosity model, presented in 

Smagorinsky (1963). Re is the Reynolds number based on the orbital 

motion amplitude and fi is a source term for the enforcement of non-slip 

boundary conditions on the immersed bed surface. The specific term is 

associated with the implementation of the IB method. 

In the case of wave propagation, the combined water and air flow was 

modelled as one-fluid flow governed by the 3-D incompressible 

Navier-Stokes equations, appropriate to model flow in porous media 

(Koutrouveli and Dimas, 2020). 

The Navier-Stokes equations were rendered dimensionless using the 

characteristic water depth d0 of the incident waves and the gravitational 

acceleration g, meaning that the corresponding velocities were non-

dimensionalized by (g∙do)
1/2. In the specific modified equations, the

total pressure is considered, meaning the sum of the dynamic and the 

hydrostatic pressure. 

The evolution of the free surface is based on the level-set method, 

following the advection equation, where φ is a signed distance function, 

defined to be equal to 1 at the level of the free surface. 
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The 3D-IB method is implemented for the imposition of fluid flow and 

suspended sediment transport boundary conditions on the bed surface. 

The 3D approach of the IB method has been presented and described in 

detail in Dimas and Chalmoukis (2020). The spatial discretization of all 

equations is performed in a Cartesian grid, an advantage that is afforded 

by the use of the IB method. The temporal discretization for the Navier-

Stokes equations is based on a time splitting projection method. Note 

that in the case of oscillatory flow over a rippled bed, the dynamic 

pressure in Eq. (2) is written as the sum p = P + δP of the dynamic 

pressure P of the external oscillatory flow and the dynamic pressure 

correction δP due to the presence of the rippled bed surface. The 

dynamic pressure correction is computed by the numerical solution of a 

Poisson equation, and is subsequently used to obtain the final velocity 

field at each time step and simultaneously satisfy the continuity 

equation. Respectively, in the numerical simulations of wave 

propagation over a beach of constant slope, the final velocity field is 

computed after solving the Poisson equation for the total pressure. 

Sediment Transport 

In the present study, sediment transport comprises both bed load and 

suspended sediment. The bed load transport rate was computed using 

the semi-empirical formula in Engelund and Fredsøe (1976). 
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In the above equation, qb is the bed load transport rate, μd is the 

dynamic friction coefficient, θ is the Shields parameter and θco is the 

corresponding critical Shields parameter, which is the criterion for 

incipient sediment motion, computed according to Van Rijn (1984). 

The evolution of sediment in suspension was modeled using a 

dimensionless advection-diffusion equation for the volumetric 

concentration, c, of the suspended sediment 
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where Ws is the sediment settling velocity, χj is the SGS turbulent flux 

of sediment, σ is the Schmidt number, and fc is a source term associated 

with the implementation of the IB method for the enforcement of the 

appropriate sediment concentration boundary condition on the bed 

surface. The SGS turbulent flux of sediment was modeled according to 
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where vsgs is the non-dimensional SGS eddy-viscosity and σt is the 

turbulent Schmidt number. In the present approach, both Schmidt 

numbers in Eqs (5) and (6) were considered to be equal to 1 following 

Zedler and Street (2001). 

The evolution of the mobile bed surface is obtained by the numerical 

solution of the sediment mass conservation equation, i.e., the Exner 

equation, expressed as 
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In the above expression, h is the bed level, n = 0.4 is the bed sediment 

porosity and qxi is the total sediment flux in the horizontal directions x1 

and x2 respectively, which comprises both bed load, qb, and suspended 

load, qs, transport rates. 
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The equation of the morphologic evolution is discretized in time using 

a 3rd order Adams-Bashforth scheme, applied in both horizontal 

directions. The spatial gradients are discretized using a 2nd order central 

difference scheme. An avalanche module is also included in the 

algorithm in order to avoid development of nonphysical slopes. 

It must be stressed that, in the present paper, the morphologic evolution 

was applied only for the simulations of oscillatory flow over mobile 

rippled bed, while in the simulations of wave propagation and breaking 

over a beach of constant slope, the bed was considered to be fixed. 

SIMULATION SET-UP 

Oscillatory flow over mobile bed 

The initial computational domain for the morphological simulations of 

oscillatory flow over ripples is presented in Fig. 1. The domain is 

mostly flat, with just a small perturbation in the center, in the shape of a 

3D Gaussian hump. In order to imitate a natural coastal environment, 

periodic boundary conditions were used in both horizontal directions so 

that the development of ripples is not subjected to space limitations. 

The vertical dimension of the computational domain was chosen equal 

to 5 times the orbital motion amplitude so that the development of the 

boundary layer over the ripples is not suppressed by the upper 

boundary of the domain. The grid spacing in the horizontal directions, 

Δx1/αo and Δx2/αo, is uniform and equal to 0.02, thus, the grid 

discretization consists of 150 computational nodes. In the vertical 

direction the grid spacing, Δx3/αo, is varying, with finer resolution near 

the bottom boundary (=0.005), thus, the grid discretization consists of 

300 computational nodes. The computational time-step for the flow 

simulations was selected to satisfy both the Courant-Friedrichs-Lewy 

(CFL) and the Viscous Stability Limit criteria, while the computational 

time-step for the morphological equations was numerically restricted by 

the morphological CFL condition. 

The following approximation for near-bed, wave-induced, oscillatory 

flow was used: 

      cos 2 cos 2 2oU t U t B t       (9) 

In Eq. (9), U is the streamwise dimensional velocity of the external 

flow, ω = 2π/T is the angular wave frequency, T is the wave period, and 

B is the wave skewness factor. In the present results, the oscillatory 

flow is driven by a uniform pressure gradient at Reynolds number equal 

to 23,000 with skewness factor B = 0.176. 

Fig. 1 Schematic of the initial computational domain and the grid 

(shown every 5th node) used in the morphological simulations of 

oscillatory flow over ripples. 

Wave propagation over a beach of constant slope 

In the case of wave propagation over an ideal coast of slope tanβ=1/15, 

the computational domain is presented in Fig. 2. The length of the 

computational domain Lx is equal to seven wavelengths. The grid 

spacing is uniform in all directions. In the horizontal directions it is 

equal to Δx1/do = Δx2/do = 0.1, while in the vertical direction it is equal 

to Δx3/do = 0.03. The incident waves are generated at the left boundary 

of the computational domain by mimicking the action of a piston-type 

wavemaker. The waves are initially propagating over an horizontal bed 

(Fig. 2), so that the waves are fully developed at the time they reach the 

beginning of the beach. In order to avoid wave reflections from the left 

boundary of the domain, the method proposed in Jacobsen et al. (2012) 

was followed for the implementation of a relaxation zone just after the 

wavemaker. The height of the air layer was selected equal to 3do, so 

that the upper boundary does not affect the fluid flow field. 

Fig. 2 Schematic of the computational domain and the grid (shown 

every 5th node) used in the numerical simulations of wave propagation 

over a constant slope beach. 

Parallel implementation 

Numerical simulations of coastal flows at high Reynolds numbers are 

quite demanding it terms of time and computer power consumption. 

Thus, the use of supercomputers is nowadays mandatory in order to 
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obtain numerical results in reasonable computational time. In particular, 

Computational Fluid Dynamics (CFD) algorithms include very fine 

computational meshes and large numbers of double-precision floating-

point operations, which favors the exploitation of modern 

supercomputing technologies. Due to the extreme computational cost of 

the present numerical simulations, HPC was used in the specific 

project. In the morphological simulations of oscillatory flow over 

ripples, the numerical code has been fully parallelized using a shared 

memory programming approach (OpenMP). In the case of wave 

propagation over a beach of constant slope, which is quite more 

demanding, the algorithm utilizes a distributed memory approach using 

the MPI protocol, with quite promising results in terms of speedup and 

acceleration, as presented in Oyarzun et al, 2020. The parallel 

efficiency of the MPI approach seems to have yet room for 

improvement, and has the potential to take advantage of modern 

supercomputing capabilities. 

RESULTS AND DISCUSSION 

The numerical model has been effectively validated by comparison of 

flow, sediment transport and free-surface elevation results to 

experimental and numerical data in the literature. Specifically, such 

validation comparisons of both laminar and turbulent oscillatory flow, 

as well as corresponding results of suspended sediment transport have 

been presented in Dimas and Leftheriotis (2019) for the OpenMP 

version of the code. The MPI version of the code has been effectively 

validated for turbulent oscillatory flow in Oyarzun et al. (2020). 

Finally, validation results of free-surface flow cases for the serial 

version of the code have been presented in Dimas and Koutrouveli 

(2019) for wave propagation and breaking over a beach of constant 

slope tanβ = 1/35. 

Morphological evolution of ripples 

First, numerical results of the morphological evolution of the bed under 

hydrodynamic and sediment forcing are presented. All cases 

correspond to oscillatory flow conditions under the effect of non-

breaking waves in the coastal zone. In the specific approach, the shape 

of the bed form is allowed to change. Every N time steps of coupled 

flow and suspended sediment simulation, the bed morphology is 

updated by means of the total sediment transport rate. The value of N is 

restricted by the CFL condition for the equation of the morphological 

evolution.  

Fig. 3 illustrates an example of ripple creation and propagation from an 

initially flat bed with a small perturbation in the middle of the 

computational domain (Fig. 3a) under oscillatory flow conditions. 

Nielsen (1981) proposed empirical equations to calculate the ripple 

length, Lr, and the ripple height, hr, as a function of the mobility 

parameter, which is defined as: 
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where S is the specific gravity of the sediment and Dg is the sediment 

grain diameter. The value of the mobility parameter in the specific 

simulation is chosen equal to ψ = 50, which corresponds to ripples of 

length Lr = 0.9ao according to the equations proposed by Nielsen 

(1981). Thus, the length of the computational domain in both horizontal 

directions was set equal to 3.0ao, in order to capture the development of 

three consecutive ripples lengths in the streamwise direction (x1-axis), 

after equilibrium is reached. It must be stated that the specific value of 

the streamwise domain length was the smaller one that resulted in the 

formation of three consequent ripples (after trial and error).  

Fig. 3. Ripple creation from a flat bed with an initial perturbation in the 

middle of the domain. The equilibrium state is reached after 150 wave 

periods. 

The value of ao/Dg was chosen equal to 500, which is in the range 50-

1500 that corresponds to orbital vortex ripples according to Clifton and 

Dingler (1984). The value of the sediment specific gravity, S = 2.65, 

corresponds to quartz sand. In the numerical results, the corresponding 

dimensional values for the flow and sediment parameters are Uo = 0.35 

2126



m/s, ao = 0.076 m, T = 1.357 s, and Dg = 0.151 mm. 

After the first 20 wave periods (Fig. 3b), the initial hump has grown in 

height and has expanded in the spanwise direction (x2-axis). The initial 

growth and propagation of the hump is quite rapid, so at that time, the 

entire computational domain is fully covered with small ripples. At 50 

wave periods (Fig. 3c), the geometry of the bed comprises four 

consecutive ripples lengths, which is close to the predicted final 

geometry. Then, the morphological evolution seems to decelerate, 

which is in agreement with the experimental findings in Myrow et al. 

(2018) who mentioned that the migration rate of ripples is reduced as 

they grow in size. During the next 50 wave periods, the 2 ripples in the 

center of the domain are merging into one ripple (Fig. 3d) until the bed 

finally converges to its equilibrium geometry after 150 wave periods 

(Fig. 3e). The equilibrium geometry comprises three consequent ripples 

with lengths of Lr = 1ao and heights of hr = 0.144ao which are in 

accordance with the equations proposed by Nielsen (1981). After that 

time, the ripples remain stagnant for the next 300 wave periods. 

In Fig. 4, the ripple profile (phase- and spanwise-averaged) is presented 

at maximum onshore and offshore free-stream velocity for the ripple in 

the middle of Fig. 3e. It is quite interesting that the ripple crest does not 

remain still, but it is leaning towards the flow direction during each half 

wave period. Consequently, stronger and more coherent vortices are 

produced at flow reversal due to flow separation, than in a similar case 

of fixed rippled bottom. Noteworthy is the fact that the ripple crest is a 

little higher at maximum offshore free-stream velocity, due to the 

external flow skewness. Note that in Fig. 4 the axes are not on the same 

scale for clarity. 

Fig. 4. Phase- and spanwise-averaged ripple profile at maximum 

onshore and offshore free-stream velocity.  

For the bed load, the phase- and spanwise-averaged qb along x1 axis is 

presented in Fig. 5(a) at maximum onshore (5T/16) and offshore 

(12T/16) free-stream velocity. At the specific phases the bed load 

transport is active mostly in the vicinity of the ripple crests. This is 

attributed to the generation of coherent vortices at the lee side of the 

ripple during each half-cycle which leads to flow separation. 

The phase- and spanwise-averaged distribution of qs along x1 axis is 

presented in Fig. 5(b), also at maximum onshore and offshore free-

stream velocity. The suspended load transport is active practically over 

the whole length of the ripples, with maximum positive and negative 

values at the ripple crests, also due to flow separation. 

In the specific case with ψ = 50 and ao/Dg = 500, the magnitude of bed 

qb is comparable to the magnitude of qs, but the sediment transport is 

mostly suspended load dominated. 

Fig. 5. Phase- and spanwise-averaged bed load (a) and suspended load 

(b) distribution over three consequent ripple lengths at maximum

onshore and offshore free-stream velocity.

Wave propagation over a beach of constant slope 

Moreover, numerical results of wave propagation and breaking over a 

beach of constant slope tanβ = 1/15 are presented. The computational 

domain of the specific simulations has been presented in Fig. 2. The 

Reynolds number based on the water depth at the wavemaker is equal 

to Red = 900,000. The characteristics of the incident waves correspond 

to experimental scale dimensional values of H = 0.06 m for the incident 

wave height and Ts = 0.92 s for the wave period. The water depth at the 

wavemaker in dimensional units is equal to d = 0.30 m. 

The envelope of the free-surface elevation η during one wave period is 

presented in Fig. 6, after simulation of 10 wave periods. Wave breaking 

takes place at x1
/d0 ≈ 10, where x1 = 0 corresponds to the beginning of

the beach slope. After that point, the wave height dissipation is 

observed in the surf zone. 

Fig. 6. Envelope of the free surface elevation of waves breaking over a 

beach of constant slope tanβ = 1/15 (x1 = 0 is at the beginning of the 

beach slope). 
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A typical snapshot of the instantaneous velocity and vorticity fields in 

the breaking zone at T/16 after breaking is presented in Fig. 7. The 

level-set method is used for the identification of the interface between 

fluid and air phase. Positive vorticity (clockwise) is generated in the 

fluid phase while negative vorticity (counterclockwise) is generated in 

the air above the breaking face. Similar findings were observed in 

Dimas and Koutrouveli (2019) for wave propagation and spilling 

breaking over beaches of constant slope and Larson-type beaches, with 

tanβ = 1/15 and 1/35. After x1/d0 = 19 (Fig. 7), the waves are broken 

and the undertow is strong, which according to Jacobsen & Fredsøe 

(2014) leads to large offshore directed suspended flux over a wave 

period. On the contrary, large orbital velocities are observed at the 

point of breaking. According to Jacobsen & Fredsøe (2014), these 

velocities, combined with the small strength of the undertow, lead to 

large onshore directed suspended flux. 

Vorticity generation due to wave propagation and breaking is also 

presented in three-dimensional form in Fig. 8. Maximum values of 

vorticity are visible at the level of the free-surface, especially in the 

regions close to the wave crests. The bed level is illustrated as a black 

face in the computational domain, while the interface between fluid and 

air phase is displayed as a continuous isosurface. 

Fig. 7. Snapshot of velocity vectors (every 5 grid points in x1 axis) and 

vorticity contours in the breaking zone at T/16 after breaking. Breaking 

occurs at x1/d0 ≈ 18. 

Fig. 8. Vorticity generation due to wave propagation and breaking 

above a beach of constant slope. 

The instantaneous distribution of the suspended sediment concentration 

is presented in Fig. 9 in the surf zone. The free-surface elevation is 

illustrated with a straight black line, while the bed level of the beach of 

constant slope is shown with a dotted black line. It is observed that 

sediment in suspension has been lifted along the entire length of the 

surf zone, and at an elevation level of about 0.2∙d0. The maximum 

values of the suspended sediment are located in the breaking zone, due 

to the higher values of bed shear stress. It must be noted that in Fig. 9 

the axes are not on the same scale for clarity. 

Fig. 9. Contours of suspended sediment concentration in the surf zone. 

Breaking occurs at x1/d0 ≈ 18. 

As already mentioned, in the present numerical simulations of wave 

propagation and breaking, the bed evolution was not examined as it is 

still quite demanding in terms of computational resources. This is 

mostly to the very long characteristic time scale of bed morphology in 

comparison to the wave period. As a result, the required computational 

time becomes unreasonably high. A hybrid approach is required, and 

we pursue, in order to speed-up the computation by taking advantage of 

the fact that the bed evolution is “slow” in comparison to the “fast” 

wave hydrodynamics. 

CONCLUSIONS 

An in-house numerical model has been presented for the numerical 

simulation of wave propagation, coupled with sediment transport 

evolution and the corresponding bed morphodynamics. The sediment 

transport mechanisms of oscillatory flow above a rippled bed have been 

examined, with numerical results of ripple creation and growth 

presented at Re = 2.3104, for values of ψ = 50 and ao/Dg = 500. It is

concluded that the ripples end up to equilibrium geometry comprising 

ripples with lengths and heights with dimensions in accordance with the 

equations proposed by Nielsen (1981). Sediment loads at maximum 

onshore and offshore free-stream velocity phases are active mostly 

close to the ripple crests due to flow separation. The flow for the 

specific values of ψ and ao/Dg is slightly suspended load dominated. 

Moreover, indicative numerical results of wave propagation and 

breaking are examined over an ideal coast of slope 1/15, accompanied 

by suspended sediment transport evolution. The numerical model has 

been fully parallelized using OpenMP in the case of morphological 

simulation of oscillatory flow over ripples, while in the case of wave 

propagation the algorithm employs a distributed memory approach 

using the MPI protocol. 
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