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Abstract. In this paper we present a graph-based framework that, utilizing relations between groups of System-calls, detects
whether an unknown software sample is malicious or benign, and classifies a malicious software to one of a set of known
malware families. In our approach we propose a novel graph representation of dependency graphs by capturing their structural
evolution over time constructing sequential graph instances, the so-called Temporal Graphs. The partitions of the temporal evo-
lution of a graph defined by specific time-slots, results to different types of graphs representations based upon the information
we capture across the capturing of its evolution. The proposed graph-based framework utilizes the proposed types of temporal
graphs computing similarity metrics over various graph characteristics in order to conduct the malware detection and classifi-
cation procedures. Finally, we evaluate the detection rates and the classification ability of our proposed graph-based framework
conducting a series of experiments over a set of known malware samples pre-classified into malware families.
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1. Introduction

Malware or malicious software is a software type intended to cause harm to end point computers,
systems or networks [54]. In this work we design and propose a graph based model that develops an
algorithmic technique for malware detection and classification. Our method is applied on unknown soft-
ware samples in order to detect whether they are malicious or not, and further classify them to one of
a set of known malware families (i.e., set of malicious malware samples with similar functionality), as
they have been developed by various antivirus software vendors.

1.1. Protection against mutated malware

On the contrary part of our scientific field, malware authors, have developed and deployed various
techniques in order to avoid the traditional byte-level signature based detection methods. Since such
detection methods appear to be significantly fragile against even the least mutation of the initial subject
(i.e., ancestor malware sample), they mutate their software products (malware) creating structurally dif-
ferent but functionally similar copies of them. Except from the mutation methods that leverage one, or
more, levels of encryption, there also exist more advanced mutation methods. Some of the most appli-
cable malware mutations are the oligomorphism which is achieved through obfuscation techniques, the
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polymorphism [48] where the code is modified through encryption techniques and the metamorphism,
in which multiple structurally different copies of a malware sample are generated.

Hence, while the main functionality of a malware sample remains immutable during its mutations,
malware samples can be merged into groups of malware samples with common functionality, the so
called malware families. So, in this work we developed an algorithmic technique that not only detects
if a program is malicious or not, but additionally, given a malicious software it can decide the malware
family that it belongs to.

Since malicious software poses a major threat, several protection approaches have been proposed
and implemented in order to eliminate such threats. The main corpus of the defence line is mainly
developed over three axes, namely malware analysis, malware detection and malware classification.
Malware analysis [54] is the process of determining the purpose and the functionality or, abstractly, the
behaviour of a given malicious code. The term malware detection referrers to the process of determining
whether a given program P is malicious or benign according to an a priori knowledge [35]. Finally, the
term malware classification refers to the process of determining the malware family to which a particular
malware sample, let M belongs to, in order to provide the ability to generalize detection signatures from
sample level to family level.

1.2. Contribution

In our approach, we leverage the use of System-call Dependency Graphs (ScDG) to represent the
software samples in order to distinguish if they are malicious or not and further classify them to a
malware family. More precisely, in order to make the detection and classification procedures more re-
silient to known malware mutation techniques, we construct a directed edge-weighted graph, which we
call Group Relation Graph – GrG [45], that is a generalized graph structure resulting from ScDG after
grouping disjoint subsets of its vertices. Throughout these processes, over specific time intervals, we
preserve instances of GrGs creating hence temporal graphs that depict their structural evolution over
time. Given a ScDG graph that represents a known malware sample and a ScDG graph that represent an
test sample, we utilize these instances (i.e., temporal graphs) representing the evolution of their corre-
sponding GrG, produced both on each ScDG, in order to perform graph similarity towards the processes
of malware detection and classification.

In this work, we propose, develop and present an integrated graph-based framework for distinguish-
ing graph representations referencing malicious software samples and further classifying them in sets of
known malware families. Firstly, we discuss our proposed graph abstractions that are based on the ScDG
graphs representing the relations between system-call groups (i.e., GrG), and present another graph rep-
resentation that describes the temporal evolution on the structure of the GrG graphs. In our approach we
distinguish two types of temporal graphs according to the registration of the structural modifications and
compute the graph similarity between such temporal graphs utilizing specific characteristics of graphs
Finally, we present the potentials of our approach, by evaluating the detection and classification rates
exhibited by our framework against malicious samples.

1.3. Related work

Detection: Ding et al. [10] propose an algorithm to extract the common behaviour graph, which is
used to represent the behavioral features of a malware family, and they suggest a graph matching algo-
rithm which is based on the maximum weight sub-graph in order to detect malicious code. Based on
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executable files static analysis, A.V. Kozachok and V.I. Kozachok [28], experimentally investigate the
evaluation of the developed detection mechanism efficiency on the basis of neural networks and deci-
sion tree composition. In addition, Hashemi et al. [19] present a malware detection method based on
the OpCodes within an executable file, which generates a graph of operational codes (OpCode) within
an executable file and embeds this graph to eigenspace using “Power Iteration” method. Hashemi and
Hamzeh [20], recently presented a method which convert executable files into digital images and ex-
tract visual features of the executable files and they use machine learning methods to detect malware.
Wüchner et al. [60] present a novel malware detection approach based on metrics over quantitative data
flow graphs and their approach is able to detect new malware. The same authors [59], focused on the
incremental construction of aggregated quantitative data-flow graphs, suggest another novel behavioural
malware detection approach based on a generic system-wide quantitative data-flow model. Recently,
John et al. [25] propose a novel Android malware detection mechanism using Graph Convolutional Nets
which uses centrality measures of the graph as input features, modelling the system calls as graphs.

Classification: In malware classification, there have been proposed other non graph-based malware
classification models. A scalable automated approach for malware classification using pattern recogni-
tion algorithms and statistical methods, is presented by Islam et al. in [23], utilizing the combination
of static features extracted by function length and printable strings. Nataraj et al. [42] classify malware
samples using image processing techniques. Visualizing as gray-scale images the malware binaries, they
utilize the fact that,for many malware families, the images belonging to the same family appear very
similar in layout and texture. In [43] Nataraj et al. utilize a static analysis technique called binary texture
analysis in order to classify malicious binary samples into malware families. Makandar and Patrot [34]
focus on detection and classification of the Trojan viruses using image processing techniques. In their
proposed algorithm Gabor wavelet is used for key of feature extraction method and their experimental
results are analysed compared with two classifications such as KNN and SVM. In [21], Hassen and
Chan investigate a linear time function call graph (FCG) vector representation based on function clus-
tering that has significant performance gains in addition to improved classification accuracy. They also
show how this representation can enable using graph features together with other non-graph features.
In addition, a graph matching algorithm that is based on the maximum weight subgraph is used to de-
tect malicious code. In [40], Mukesh et al. propose a machine learning based architecture to distinguish
existing and recently developing malware by utilizing network and transport layer traffic features. In
[41], Narra et al. apply cluster analysis to the problem of classifying unknown malware. They also score
samples from malware families that were not used for training or generating the clusters, and classify
these new samples based on the existing clusters in order to determine how well new malware families
can be classified using cluster results based on a set of previously-known malware families. Following
up on the same approach, Xiao et al. [62] propose a graph repartition algorithm by transforming API
call graphs into fragment behaviours based on the dynamic execution traces of program. Their proposed
algorithm relies on the N-order sub-graph (NSG) for constructing the appropriate fragment behaviour.
Furthermore, Eskandari et al. [13] introduced a new signature type, called ERES (Extended Regular
Expression Signature), which generates a more specific signature leading to a more accurate detection
and combines token extraction with sequence alignment, accelerated the signature extraction process.
In [36], Ming et al. propose normalized basic block memorization to speed up semantics-based binary
difference and introduce an union-find set structure that records semantically equivalent basic blocks.
Recently, in the context of the malware detection problem, Basole et al. [4] conduct experiments based
on byte n-gram features to quantify the relationship between the generality of the training dataset and the
accuracy of the corresponding machine learning models. In [16], Ghanaei et al. introduced a supervised
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learning method, which classifies new malware variants into their related malware families based on an
effective statistical approach to identify, and render critical malicious patterns into malware families.

1.4. Road map

In Section 2 we present the prerequisite theoretical background in order for the graph-based techniques
for detection and classification to be developed. Next, in Section 3 we demonstrate the key components
of our model, in Section 4 we discuss extensively the main principles and design aspects over the devel-
opment of our detection and classification scheme concerning the two processes, where in Section 5 we
measure the detection and classification potentials of our integrated framework against malicious sam-
ples. Finally, in Section 6, we set our further research landmarks concerning the processes of malware
detection and classification.

2. Conceptual framework

In this section we discuss the semantics behind the processes of malware analysis, detection and
classification. We discuss the principles of the utilization of behaviour-based approaches towards the
deployment of resilient detection and classification techniques. Firstly we present the major process
preceding the development of detection and classification methods, that is malware analysis, and next
we depict the state-of-the art behavioural approaches applied on malware detection and classification.

2.1. Analysing susceptible samples

The traditional signature-based malware detection, despite its fast real-time protection, is still not re-
silient against malware mutations. Robust detection techniques prerequisite the procedure of malware
analysis, during which, the analyst collects all the required information, in order to be effective and ef-
ficient. The effectiveness of signature scanning, relying on pattern matching fails to detect new malware
strains or mutated variants of existing ones [8]. The procedure of malware analysis is consisted by the
collection of valuable information concerning either static artifacts or generally behavioural patterns,
that could characterize the maliciousness, or not, of a sample, being categorized to two main categories
namely static analysis and dynamic analysis, respectively [6,53,57].

Static malware analysis of software is performed over the programming artifacts and structural char-
acteristics of a software sample [9], without the need of its execution. The information obtained during
static malware analysis may refer to opcode sequences, control flow graphs, etc. and can be used at will
for malware detection [8]. However, since the sample does not need to be executed can be surpasses
by easily foiled by obfuscation and packing techniques hence its scalability consists one of its assets
[31,53].

On the other hand, Dynamic Malware Analysis refers mostly to the extraction of behavioural features
exhibited during the execution of a malicious software sample, mainly captured and depicted through
API-calls sequences and the system-calls dependencies [8]. The scalability of dynamic malware analysis
may be reduced due to the demand of real time execution [53]. Moreover, despite that obfuscation tech-
niques can easily be defeated through dynamic analysis the time needed for analysis is disproportionate
to the rate of birth of mutated malware samples [31].

A specific type of dynamic analysis, called dynamic taint analysis or DTA (stands for dynamic taint
analysis) traces data flows in programs or systems during execution time. Briefly speaking, taint analysis
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distinguishes three elements namely taint sources, taint sinks, and propagation rules. Data flows are
taint variables introduced by taint sources (i.e., the output parameters of system calls) and propagated
according to the propagation rules to taint sinks (i.e., the input parameters of system calls) [3].

2.2. Detecting malicious behaviors

As we mentioned previously, malicious software samples are intended to compromise the privacy,
the confidentiality or the integrity of a system, of data or any other cyber-source constituting hence an
intrusion. To this end, Intrusion Detection Systems, or, for short IDS, are deployed in order to monitor
the execution of applications, the traffic of networks or whole systems, aiming on spotting malicious
activity patterns [2]. The system supervision through an IDS can be performed through the application
of malware detection techniques, that reference file comparisons against signatures of malicious software
[12], behaviour monitoring of malicious patterns and system supervision [2].

However, the increasing birth-rate of new or mutated malware samples has raised the need for ef-
ficient and elaborated malware detection techniques that can effectively detect new malware strains
in reasonable amounts of time. The detection approaches are strongly connected to the features set
provided through the previous stage of malware analysis, and are distinguished to static and dynamic
features, respectively. Static features may include, statistical analysis on n-grams or opcodes, proper-
ties of control flow graphs, while dynamic features are obtained the execution time of a program and
concern its general behaviour (i.e., interaction with the host-environment – O.S.), access events or any
other interconnection patterns [18]. Malware detection approaches are divided into two main categories,
namely signature-based malware detection and behaviour-based malware detection [1,5,8,22,55]. Next
we briefly discuss these two methods and present some of the approaches deployed in each one.

Signature-based malware detection is the dominant technique deployed by antivirus software prod-
ucts due to its time efficacy that provides real-time protection against malicious threats [9]. A byte-level
signature is a sequence (i.e., pattern) of bytes used to identify each newly discovered malware, using
a scanning scheme of exact correlation and a repository of signatures in order to detect malicious soft-
ware samples [8]. A signature may represent a byte-code sequence, a binary assembly instruction, an
imported Dynamic Link Library (DLL), or function and system calls. [1,5]. However, signature-based
detection techniques can easily be evaded through code obfuscation techniques (e.g., polymorphic mal-
ware samples)that even the least modification on the code sequence would lead to a completely different
byte-sequence [8].

On the other hand, behaviour-based malware detection [24] mainly focuses on capturing the inter-
action (in terms of interconnection, relations or dependencies between system-elements i.e., system-
calls or API calls) between the executed software and the system (i.e., Operating System) [3,5,50,52].
Behaviour-based detection systems as expected require the execution of the software sample in order
to extract dynamically (i.e., through dynamic taint analysis) the exhibited behaviours. In order for these
dynamic systems to perform the mining of the specified behaviours they utilize software and hardware
virtualization technologies, alongside with imitation conditions [55], providing the test sample with an
environment as close to reality in order to evade the sandbox-detection mechanisms deployed occasion-
ally by malicious software samples, and letting them exhibit their intentions. Despite the fact that such
techniques deploy quite elaborate algorithms on their implementations, the incident that malware fami-
lies tend to evolve in order to avoid detection [1], results to the need of the development of more elastic
and mutation resilient techniques like the one we propose in this work.
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2.3. Classifying malware samples

Malware authors, in order to avoid traditional detection methods, produce new (mostly mutated) mal-
ware samples rapidly, utilizing existing ones in order for the new strains to preserve the functionality
inherited from their ancestors. As referred in [5] mutated malware samples are generated from exist-
ing ones utilizing automated techniques [63] or integrated tools, generating new samples from libraries
and code parts from code exchange networks. The term malware classification has been confused several
times with malware detection. Distinguishing these procedures, malware detection is a binary classifica-
tion, where a set of unknown samples is classified against a collection of malicious and benign samples,
while malware classification refers to the indexing of an already detected malware sample belongs to
a particular family or type [17] of similar samples. As described in [27], malicious software samples
that belong to the same malware family tend to exhibit similar behavioural and structural profiles, and
hence malware classification augments the analysis of new, or mutated, malicious samples where their
signatures have not been constructed yet [46].

Another field of malware analysis applied in malware classification is malware phylogeny [38], which
aims on inferring evolutionary relationships between instances of families. The major profit from cre-
ating a phylogeny model is the fact that newly developed elaborated detection systems that deploying
such techniques can detect that a sample that has not been previously seen can be related to a malware
family, when analysed along an evolution path [32]. Throughout this process the main target is to reveal
similarities and relations among a set of specific malware samples coexist and are exhibited by all the
members of the set (i.e., malware family) [58], distinguishing its type or family. Such approaches can
be utilized to identify evolution trends in over a set of malware samples [5], constituting hence valuable
tool for more generalized signatures or, in general, more elaborated detection-techniques. The models
applied on phylogeny, using mostly phylogenetic networks, model evolutionary relations among mal-
ware families, describing temporal ordering among samples, defining ancestor-descendent relations, as
also relationships between families, augmenting hence malware classification and unveiling evolutionary
trends [33].

3. Analysing the evolution of temporal graphs

In this section, we discuss the properties of our initial graph representation i.e., the System-call De-
pendency Graph (i.e., ScDG) and the proposed structural components of our model, namely, the Group
Relation Graph (i.e., GrG) and its corresponding graphs that depict its structural evolution through time
(i.e., the temporal graphs). Given such graph representations, we present the construction of the key com-
ponents of our proposed detection and classification model, i.e., their corresponding derivative graphs
that depict the temporal evolution of a GrG graph.

3.1. Graph representation

The system-calls invoked during the execution of a program can be traced through taint analysis, and
hereafter the behaviour of a program can be represented with a directed acyclic graph (dag), the so called
System-call Dependency Graph see, Fig. 1(a). The vertex set of a ScDG is consisted by all the system-
calls invoked during the execution of a program and its edge set represents the communication between
system-calls as described in [3,39,44]. Recalling that the suspicious sample needs to be executed in a
contained environment (i.e., a virtual machine), where during its execution time, dynamic taint analysis
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Fig. 1. (a) the system-call dependency graph of a program; (b) the corresponding group relation graph of a program.

is performed in order to capture system-call traces, next we illustrate a simple example that includes the
system-call traces obtained, constructing the ScDG of a program. In Fig. 1(a), it is easy to see that the
vertex set of this graph is consisted from the system-calls invoked during the execution of the sample
and its edge set is consisted by their in between data-flow dependencies, constructing a directed acyclic
graph (DAG).

Moreover, as described in [39,44] given a graph representation of malware-behaviour such a ScDG,
let G, a more abstract graph representation of a program’s behaviour can be constructed based on the
fact that system-calls of similar functionality can be classified into the same group [45]. The produced
graph representation is a directed weighted graph called Group Relation Graph, that we denote as G∗;
see, Fig. 1(b). The whole procedure for constructing the GrG graph from a given ScDG for a program
is described in details in [44,45]. Hence, having the grouping of system-calls and a system-call depen-
dency graph ScDG G, the corresponding GrG graph G∗ is a directed edge-weighted graph on n vertices
v1, v2, . . . , vn constructed as follows:

(i) for every pair {vi, vj } ∈ V (G∗), a directed edge (vi, vj ) is added in E(Ĝ) if the two system-calls
communicating with each other, let (Sp, Sq), is an edge in E(G) and, Sp belongs to the ith system-
call group and Sq belongs to the j th system-call group;

(ii) for each directed edge (vi, vj ) ∈ E(G∗), a weight w(vi, vj ) ∈ � is assigned on it if there are
w(vi, vj ) invocations from a system-call in the ith group to a system-call in the j th group.

which consist the basic component upon which the core graph representation of our model is based.

3.2. Temporal graphs

Throughout the development of our research, we have noticed that, to the best of our knowledge, there
does not exist any approach on the literature that utilizes the temporal evolution of a graph in malware
detection and classification. Similarly to phylogeny that examines the temporal evolution of malware
families, the key component of our proposed detection and classification model, leverage the temporal
evolution of graphs (in our case GrG graphs) in order to depict the structural modifications performed
on the graph and that could distinguish either a malware sample or to a further extent a malware family.

In our model, we define a type of graphs that depict the temporal evolution of our initial graph struc-
tures, namely the Group Relation Temporal Graphs or, for short, GrTG. In order to implement such graph
structures we approach this modeling by creating instances of the initial GrG graphs during their con-
struction. As we mentioned above, GrG graphs are constructed by the sum of the system-calls invoked
interconnecting pairs of system call groups. Hence, since we are given the system-call dependencies in a
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series that depicts the time correlation among (i.e., an edge sequence of the ScDG that shows the system-
call invocations during execution time), such constructions can be obtained by creating an instance of
the produced GrG graphs at specific steps.

Formalizing our previous claim, we can define that for a set of time-partition, let t1, t2, . . . , tn we can
construct n instances of a given GrG graph denoting them by T (G∗) as: T1(G

∗), T2(G
∗), . . . , Tn(G

∗),
that depict the structural evolution of a graph in terms of edges, vertex-degrees and vertex-weights of
the corresponding graphs at specific time slots. Through this approach we can maintain information
about the temporal evolution of the graph thorough its construction procedure,and further leverage such
information in order to perform more elaborated graph similarity techniques.

In our proposed model for the development of temporal graphs we define as quantum the elementary
interaction between two system-calls in the initial ScDG graph, i.e. an edge, while the region repre-
sents a range of time-quantums, i.e., a sequence of system-call invocations, i.e., set of edges, in the initial
ScDG graph, or equivalently a set of group relations in the GrG graph. Hence a region contains a se-
quence of System-calls, or reversely, the overall sequence of System-calls in a graph are partitioned into
equal-sized ranges that contain parts of the overall sequence of system calls. The factor of time actually
does not represent the actual quantum of run-time, but each time-quantum corresponds to the invocation
of one system-call (i.e., a dependency) or, equivalently, a relation between two System-call Groups (i.e.,
an edge of the Group Relation Graph). Hence, the total time-line depicts the slots or time-partitions from
the appearance of the first to the last group relation. Additionally, in our model, we define as regions
the set of time-partition, i.e., t1, t2, . . . , tn, and a region, let ti , contains the structural modifications
performed (i.e., edges added on the corresponding GrG) from the begin to the end of the ith region,
where 1 < i � n, ∀n ∈ D, and D = {∀n ∈ N : |E(G)| mod n = 0}.

3.3. Discrete and cumulative modification temporal graphs

The factor of time actually does not represent the actual quantum of run-time, but each time-quantum
corresponds to the invocation of one system-call (i.e., a dependency) or, equivalently, a relation between
two System-call Groups (i.e., an edge of the Group Relation Graph). Hence, the total time-line depicts
the slots or time-partitions from the appearance of the first to the last group relation. To this point we
should notice that the conceptual substance of Temporal Graphs is to depict the structural evolution of
the GrG graphs through the time. However, the structural modification on the instances of the graph
over the time can be described either as addition of edges over the exact previous graph instance, or as
successive additions of edges performed on all the previous graph instances.

Through this aspect, we can transform a given ScDG into a temporal graph, by registering the mod-
ifications performed on the corresponding GrG over is evolution during time, taking into account the
sequence (i.e., chronological order) the system-calls were invoked during the execution of the pro-
gram. Next, we discuss the construction of the corresponding Temporal Graphs according to the two
approaches.

In the first approach of our proposed scheme, the construction of the Temporal Graph, that represents
the evolution of GrG graphs during time, constructs the induced sub-graph of GrG, respectively, includ-
ing only the edges that where added on a specific region, constructing the Temporal Graph GrT G,
of the graph GrG, denoting it with T̂ (G∗). So, let the region ti we construct the ith instance of the
graph GrG, denoting it as T̂i(G

∗), containing only the edges added during this particular region. In
Fig. 2, we depict the discrete structural modification (i.e., temporal evolution) a GrG graphs over the
construction of their corresponding Temporal Graph T̂ (G∗) during n regions.
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Fig. 2. The temporal evolution of a GrG graph G∗ represented by its discrete modification temporal graph T̂ (G∗) over n
regions: (a) T̂1(G

∗), (b) T̂2(G
∗) and (c) T̂n(G

∗).

Fig. 3. The temporal evolution of a GrG graph G∗ represented by its cumulative modification temporal graph T̃ (G∗) over n
regions: (a) T̃1(G

∗), (b) T̃2(G
∗) and (c) T̃n(G

∗).

In this type of Temporal Graphs, the evolution of the graph is represented as an additive procedure,
since once an edge has been created at a given time, let i, between two system-call groups on the GrG
graph, it will remain permanent on the ancestor Temporal Graphs (i.e., if {u, v} ∈ E(T̂i(G

∗)) → {u, v} ∈
E(T̂1(G

∗)), ∀i < j < n), since it consists a predecessor of the following temporal graphs. In the second
approach of our proposed scheme, the construction of the Temporal Graph, that represents the evolution
of GrG graphs during time, actually extends the graphs GrG during time, by accumulating the edges that
where added on a specific region. So, let the region ti we construct the Cumulative Modification
Temporal Graphs of the graphs GrG, denoting them with T̃ (G∗), containing the number of edges added
from region t1 until region ti . In Fig. 3, we depict the cumulative structural modification (i.e.,
temporal evolution) of a GrG graphs over the construction of its corresponding Temporal Graph T̃ (G∗)
during n regions.

4. System architecture

In this section we present the key components of our detection and classification model, and describe
the key insights that constitute the basis of the corresponding procedures. Discussing the design princi-
ples that rule the deployment of our model’s components, we present an overview of our detection and
classification techniques.
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4.1. Design principles

Malware detection and classification are two interconnected procedures. In malware detection the
main target is to determine whether a given program is malicious or benign according to an a priori
knowledge over what known to be malicious, where malware classification is the following procedure
and its intent is to determine the malware family to which the sample, that has been detected as malicious,
belongs to. It easily follows that, an a priori knowledge of characteristics of known maliciousness has
to be stored in a knowledge database, as also that in order to compare two subjects, a similarity measure
among them is required. Moreover, the proposed theoretical approach specifies the form of the subjects,
where graph-based models interact with similarity metrics that measure specific types of characteristics
that represent evolutionary commonalities between temporal graphs. Next, we present the architectural
considerations, the design principles, the functionality, and the corresponding deployment of the key
components of our proposed detection and classification model.

4.1.1. Knowledge database
The knowledge database is consisted by a set of known malicious samples that have been classified to

malware families according to their functional, structural and mostly behavioural commonalities. More
precisely, various anti-virus vendors have classified these samples to families based on their own heuris-
tic rules concerning shared behavioural patterns and functionally similar execution profiles. Regarding
the detection process, the knowledge database, except the known malicious samples, also includes be-
nign samples in order to measure the false positive rates (i.e., benign samples that have been detected as
malicious) evaluating the detection ability of our model. On the other hand, regarding the classification
process, the benign samples are not needed, as in such procedures a classification model only has to
decide the family in which a sample, already distinguished as malicious, belongs to.

4.1.2. Graph structures
The major target of our approach is to utilize the graphs that depict the temporal evolution of the

produced GrG graphs (i.e., GrTG graphs) in order to measure the graph similarity among test sample and
samples that have been already detected as malicious, leveraging their structural modification that take
place during the execution time of the programs that they represent. In our work we have a theoretically
stable intuition that the factor of time, regarding the structural evolution of a graph is a strong qualitative
characteristic that could definitely distinguish the behaviour of a program and further be utilized to the
development of more elaborated detection and classification techniques over unknown samples.

To this end, we ought to notice that regarding the time quantization procedure, where the time slots
where the graph instances have to be retained, there could be applied several different approaches, that
would affect the application results. In other words, the implementation of our proposed model on a fine-
grained time quantization scheme, would be more precise against a more coarse-grained once, where on
the other hand a trade-off between the precision on temporal structural modifications and the construc-
tion of more distinguishing patterns poses the basis of further tuning issues.

4.1.3. Measuring the similarity between temporal graphs
Next, we discuss the computation of similarity between the temporal graphs of a given test sam-

ple τ , let T (G∗
τ ), and a known malicious sample s, let T (G∗

s ). In our approach, we distinguish three
types of characteristics that depict the similarity between graph objects with respects to the edges, the
weights and the overall structure of the corresponding GrG graphs G∗

τ and G∗
s , as they are evolved over

time. As we show next, the instances (i.e., Temporal Graphs) of the GrG graphs through a series of
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n regions, let t1, t2, . . . , tn, are denoted as T1(G
∗
τ ), T2(G

∗
τ ), . . . , Tn(G

∗
τ ), for the test sample τ , and

T1(G
∗
s ), T2(G

∗
s ), . . . , Tn(G

∗
s ), for the known malicious sample s, respectively.

A. Similarity Metrics
Next, we present the similarity metrics deployment for the measurement of different structural char-

acteristics, i.e., relational, qualitative, and quantitative characteristics, exhibited through graphs.

◦ Measuring Relational Characteristics The relational characteristics refer to the structure of a
given graph regarding its edges. Hence, given two graphs (in our case temporal graphs of a known
and a test sample) we measure the similarity w.r.t. their relational characteristics utilizing the Jac-
card Index applying it over the existence, or not, of the edges in both graphs. Note that, since the
graphs are labelled graphs, we can indicate each edge between any pair of corresponding vertices.
Hence the computation of Jaccard Similarity can be computed by the fraction of the common edges
(intersection of the edges) between the temporal graphs for the test and the known samples and the
total edges (union of the edges) of the two graphs, as follows:

J
(
T

(
G∗

τ

)
, T

(
G∗

s

)) = |E(T (G∗
τ )) ∩ E(T (G∗

s ))|
|E(T (G∗

τ ))| + |E(T (G∗
s ))| − |E(T (G∗

τ )) ∩ E(T (G∗
s ))|

, (1)

where E(T (G∗
τ )) and E(T (G∗

s )) refer to the edge sets of T (G∗
τ ) and T (G∗

s ), respectively.
◦ Measuring Qualitative Characteristics The qualitative characteristics mainly concerning the

structural likeness between two given graphs w.r.t to the importance of the corresponding vertices
regarding both their in/out-degree (i.e., number of directed arcs) and their respective in-/out-weight.
So, given two graphs (in our case temporal graphs of a known and a test sample) we measure the
similarity w.r.t. their quantitative characteristics utilizing the �-Similarity metric as defined in [44]
and deploy it over the temporal graphs of a test and a known sample as follows:

�
(
T

(
G∗

τ

)
, T

(
G∗

s

)) = �

� + δ(T (G∗
τ ), T (G∗

s ))
, (2)

where � is a constant factor, in order for the similarity metric to return values in the range [0, 1], and
δ(·) refers to the Euclidean distance between the corresponding vertices of the two given graphs.
Note that, we can also utilize exclusively either only the in-, or the out-degrees (respectively, the
in-/out-weights) of the given graphs.

◦ Measuring Quantitative Characteristics The quantitative characteristics refer to the weights of a
given graph regarding the relation between the weights of edges that both graphs have in common.
So, given two graphs (in our case temporal graphs of a known and a test sample) we measure
the similarity w.r.t. their quantitative characteristics utilizing the Cosine Similarity applying it over
the weights of corresponding edges formed during the evolution of the GrG graph depicted by its
temporal graph GrTG. Cosine Similarity is measured as follows:

CS
(
T

(
G∗

τ

)
, T

(
G∗

s

)) =
∑n

i=1 w(eτ,i) × w(es,i)√∑n
i=1 w(eτ,i)2

√∑n
i=1 w(es,i)2

, (3)

where w(e) refers to the weight of the edge e = (u, v), and the edge ei indicates the ith edge in
both temporal graphs (i.e., eτ,i and es,i for the GrTG of the test and the GrTG of the known sample,
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respectively) among the corresponding vertices uτ , vτ ∈ V (T (G∗
τ )) and us, vs ∈ V (T (G∗

s )), such
that (uτ , vτ ) ∈ E(T (G∗

τ )) corresponds to the edge (us, vs) ∈ E(T (G∗
s ))

B. Measuring the Similarity between Graph Segments
Next, in order to compute the similarity S between the temporal graphs of a test and a known malicious

sample, let T (G∗
τ ) and T (G∗

s ), over n regions we compute the corresponding similarity between the
corresponding temporal graphs and average the exhibited values over each region, let t1, t2, . . . , tn, as
follows:

S
(
T

(
G∗

τ

)
, T

(
G∗

s

)) =
n∑

t=1

S(Tt(G
∗
τ ), Tt (G

∗
s ))

n
, (4)

where the S(Tt(G
∗
τ ), Tt (G

∗
s )) refers to the similarity between the temporal graphs of the test and the

known sample as they have been formed until the ith region.
Similarly, in order to compute the similarity between the temporal graphs of the test and the known

sample as they have been formed over n regions regarding their relational characteristics, we compute
the Jaccard Similarity as:

J
(
T

(
G∗

τ

)
, T

(
G∗

s

)) =
n∑

t=1

J (Tt (G
∗
τ ), Tt (G

∗
s ))

n
, (5)

On the other hand, w.r.t the computation of similarity regarding the quantitative characteristics exhib-
ited between the temporal graphs of the test and the known sample as they have been formed over n

regions, we compute the Cosine Similarity as:

CS
(
T

(
G∗

τ

)
, T

(
G∗

s

)) =
n∑

t=1

CS(Tt(G
∗
τ ), Tt (G

∗
s ))

n
, (6)

Finally, the computation of the similarity concerning the qualitative characteristics between the tem-
poral graphs of the test and the known sample as they have been formed over n regions, we compute
the �-Similarity metric as follows:

�
(
T

(
G∗

τ

)
, T

(
G∗

s

)) =
n∑

t=1

�(Tt(G
∗
τ ), Tt (G

∗
s ))

n
, (7)

where, the �-Similarity metric is denoted as �−-Similarity when only the out-degree and out-weights
are taken into account, or �+-Similarity, when utilized only the in-degree and in-weight.

To this end, we ought to notice that the similarity measurements mentioned above can be computed uti-
lizing either the discrete modification temporal graphs, or the cumulative modification temporal graphs,
at their basis. Hence, for these cases the general formula for the similarity computation is developed as
follows:

S
(
T̂

(
G∗

τ

)
, T̂

(
G∗

s

)) =
n∑

t=1

S(T̂t (G
∗
τ ), T̂t (G

∗
s ))

n
, or (8a)
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Fig. 4. Architecture of the detection model.

S
(
T̃

(
G∗

τ

)
, T̃

(
G∗

s

)) =
n∑

t=1

S(T̃t (G
∗
τ ), T̃t (G

∗
s ))

n
, (8b)

where, for a given test sample τ and a known malicious sample S, the T̂t (G
∗
τ ) and T̂t (G

∗
s ) denote the

corresponding temporal instances of their G∗ evolved utilizing the discrete modification on the region
t , while the T̃t (G

∗
τ ) and T̃t (G

∗
s ) denote the corresponding temporal instances of their G∗ on the region

t , evolved utilizing the cumulative modification.

4.2. Malware detection

We implement our malware detection model by first performing a transformation to the initial ScDG
graphs G, converting them to GrG graphs G∗, and then we compute for these graphs their corresponding
Temporal Graphs (i.e., in our case the T̂ (G∗) and the T̃ (G∗) graphs, respectively) referencing the discrete
modification and the cumulative modification temporal graphs, respectively) as we described in the
previous section, and then, for any given test sample we follow the same procedure as to conclude with
the computation of a similarity metric in order to measure the similarities between the graphs of two
samples, i.e., a given test sample τ , let T̂ (G∗

τ ), or T̃ (G∗
τ ), and a known malicious sample s, T̂ (G∗

s ),
or T̃ (G∗

s ), with regarding specific types of their characteristics. Next, we describe the main process of
determining if an unknown sample is malicious or benign based on the results of our similarity metrics
when applied on the corresponding Temporal Graph of a test sample and a set of Temporal Graphs that
represent known malicious software samples. In Fig. 4 we depict the total architecture of our proposed
model for detecting malicious software samples.

In the example of Fig. 4 we suppose we are given an unknown test sample τ that we do not know if it is
malicious, and we are asked to decide if τ is malicious or benign. Having a database with the Temporal
Graphs of known malware samples. Once the corresponding Temporal Graphs have been constructed,
we compute the our similarity metrics between the Temporal Graph of τ and each Temporal Graph that
represents a malware sample in our database. So, let M the total number of malware samples in our
database, we result to M values in our measurements on our similarity metrics (one per pair τ − si).
From the S total number of similarity values we select the maximum one, exhibited from a sample, let
si , in order to distinguish the maliciousness of the test sample τ by its maximum similarity resulted
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with si . Obviously, in case we depict the evolution of the graph by their temporal instances constructed
utilizing the discrete modifications, the maximum similarity is computed as follows:

Ŝτ = max
{
S
(
T̂

(
G∗

τ

)
, T̂

(
G∗

s

))
, ∀1 � s � M, s ∈ N

}
, (9)

while, if we depict the evolution of the graph by their temporal instances constructed utilizing the cu-
mulative modifications, the maximum similarity is computed as follows:

S̃τ = max
{
S
(
T̃

(
G∗

τ

)
, T̃

(
G∗

s

))
, ∀1 � s � M, s ∈ N

}
. (10)

Finally, in order to distinguish if the test sample τ is malicious, or not, we compare the corresponding
maximum similarity exhibited between τ and a known malicious sample si , and if it is above a predefined
threshold λ ∈ (0, 1) and λ ∈ R, it indicates that τ is malicious, or benign otherwise as depicted by the
following rule:

τ =
{
malicious, if Ŝτ � λ (respectively, S̃τ � λ)

benign, otherwise
(11)

4.3. Malware classification

Our proposed method is based on application our proposed similarity metrics over the set of known
malware families in order to classify on them an unclassified malware sample, let τ . More precisely,
our method selects the family that is most similar to τ according to the similarity results exhibited by
the measurements performed utilizing the similarity metrics. A malware family is called dominant
family, if it contains as a member the sample that produce the maximum similarity exhibited among
it and the test sample. More precisely, using our proposed similarity metrics, we iterate over all the
members of all the known malware families measuring the similarity between each pair of τ , sij , where
sij is the j th member of the ith malware family (i.e., Fi). Then, for each family we select a member,
let s, that is the most similar to τ , according to maximum similarity exhibited either utilizing the Ŝτ ,
or the S̃τ for discrete or cumulative modification temporal graphs respectively, calling this member
representative sample for this specific family. Finally, among all the representative samples
of all the known malware families, we select to classify the unclassified test sample τ to a malware family
that its representative sample, exhibits the maximum similarity with τ , denoting this family as
dominant family.

In Fig. 5 we show a representation of the procedure for classifying an unknown test sample τ to a
known malware family utilizing the aforementioned methods. More formally, our classification tech-
nique proceeds as follows: given a set of known malware families F1, F2, . . . , FN } and an unclassified
malware sample τ , we measure either Ŝτ , or the S̃τ over all the members of each family, keeping the
maximum result (i.e., representative sample) for each family resulting to N results (i.e., N rep-
resentative samples), one per family. Then, we classify the test sample to the family that exhibited
the maximum value among all results. In other words, we compute the aforementioned similarity metrics
between τ and all the malware families of the data-set, selecting as the dominant family, the one
that has the representative sample that exhibits the maximum value in our similarity measure-
ments.
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Fig. 5. Architecture of the classification model.

4.4. Framework

The deployment model of the proposed components is consisted by the graph structures utilized to
represent the software’s behavioral characteristics (i.e., the Temporal Graphs that represent their tempo-
ral evolution through time), the knowledge base, that is a database storing Temporal Graphs represent-
ing known malware samples, and the similarity metrics developed to capture structural and qualitative
commonalities among such behavioral graphs. Our proposed graph-based malware detection and clas-
sification model is partitioned into two phases. The first phase concerns the detection procedure, where
an unknown sample, let τ , is needed to be detected as malicious or benign. Our model’s implementation
utilizes the Temporal Graphs taken from a database of known malware samples and the Temporal Graph
of test sample τ in order to compute their structural similarities across their temporal evolution. The sec-
ond phase concerns the classification procedure, where an unknown sample, let τ , that has been already
detected as malicious is needed to be classified to one of a set of known malware families. Our mode’s
implementation utilizes the Temporal Graphs taken from a database of known malware samples already
been classified to malware families and the Temporal Graph of test sample τ in order to compute their
structural similarities across their temporal evolution and further classify τ to one malware family from
our data-set. In Fig. 6, we represent an abstract overview of the deployment of our proposed graph-based
model for malware detection and classification.

5. Evaluation

In this section we present the experimental set-up utilized for the evaluation of our proposed graph-
based technique for malware detection and classification utilizing the discrete modification tempo-
ral graphs and the cumulative modification temporal graphs, and discuss the exhibited results for the
two procedures, namely malware detection and malware classification, presenting the potentials of our
framework through a series of experiments over a data-set of malicious and benign samples.
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Fig. 6. The deployment of malware detection and malware classification processes in our model.

5.1. Experimental set-up

Next, we present the methodology followed for the evaluation of our framework on detecting and
classifying malicious samples, the data-set of the known and the test samples, the methodology we
followed in order partition the data-set to train and test set and the structure of a series of evaluation
experiments, and finally the experimental design regarding the utilization of different similarity metrics
over the two distinct types of temporal graphs.

5.1.1. Data-set
In order to evaluate the first phase of our proposed framework against malicious samples, regarding its

detection potentials we utilized a data-set of 2631 malicious samples, and a particularly for the evaluation
of the false-positive rates of the detection procedure a set of 35 benign samples that cover a wide range
of commodity software types (i.e., commodity software types including editors, office suites, media
players, browsers, standardized procedures, etc.). To this end, we ought to notice that the diversity of the
benign sample data-set covers a wide range of commodity software samples, compensating the number
of malicious samples, regarding that in the benign ones there exist actually one sample of each kind,
or in other words singleton (i.e., one member per family) benign families. For the second phase of our
proposed framework regarding its ability to index the detected samples to known malware families, we
utilized the grouping of the 2631 malicious samples into 48 distinct malware families including from 5
to 317 samples pre-classified into them through heuristic rules as described in [3]. Next, in Table 1 we
list the set of the 48 malware families along with their sizes (i.e., number of members).

Our proposed framework operates on graph representations of software samples (malicious or benign),
the so called System-call Dependency Graphs obtained through dynamic taint analysis over their execu-
tion in a contained environment. These graphs (i.e., ScDG graphs) containing System-call dependencies
among the invoked System-calls are transformed to their corresponding GrG graphs by either adding an
edge between the corresponding groups of the pairs of each invoked System-calls (if this edge does not
already exist) or by increasing by one unit the weight of this edge (if this edge already exists). Hence
the ScDG graphs that constitute our initial data-set, and thus the train/test sets utilized for the evaluation
of our approach, are then transformed to their corresponding Group Relation Graphs, (i.e., GrG graphs)
following the procedure described in Section 3.1. To this point it is quite important to refer that the initial
data-set that contains the ScDG graphs from malicious sample pre-indexed into malware families and the
set of benign samples, is constructed by behavioural graphs that their vertex-sets contain 	V (G)
 = 494
System-calls, while their corresponding edge sets may contain 	E(G)
 = 244.036 System-call invoca-
tions. Whoever, transforming the initial data-set of ScDG graphs into their corresponding GrG graphs,
it results to the creation of behavioural graphs that their vertex-sets contain 	V (G∗)
 = 30 System-
calls, while their corresponding edge sets may contain 	E(G∗)
 = 900 System-call Group Relation.
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Table 1

The set of the 48 malware families F1, F2, . . . , F48 provided by Babic et al., along with their sizes (i.e., number of members),
as used in [3]

Family Name Size Family Name Size Family Name Size
ABU, Banload 16 DNSCGR, DNSCGR 22 OLG, Mmorpg 19
Agent, Agent 42 Downloader, Agent 13 OLG, OLG 23
Agent, Small 15 Downloader, Delf 22 Parite, Pate 71
Allaple, RAHack 201 Downloader, VB 17 Plemood, Pupil 32
Ardamax, Ardamax 25 Gaobot, Agobot 20 PolyCrypt, Swizzor 43
Bactera, VB 28 Gobot, Gbot 58 Prorat, AVW 40
Banbra, Banker 52 Horst, CMQ 48 Rbot, Sdbot 302
Bancos, Banker 46 Hupigon, ARR 33 SdBot, SdBot 75
Banker, Banker 317 Hupigon, AWQ 219 Small, Downloader 29
Banker, Delf 20 IRCBot, Sdbot 66 Stration, Warezov 19
Banload, Banker 138 LdPinch, LdPinch 16 Swizzor, Obfuscated 27
BDH, Small 5 Lmir, LegMir 23 Viking, HLLP 32
BGM, Delf 17 Mydoom, Mydoom 15 Virut, Virut 115
Bifrose, CEP 35 Nilage, Lineage 24 VS, INService 17
Bobax, Bobic 15 OLG, Delf 11 Zhelatin, ASH 53
DKI, PoisonIvy 15 OLG, LegMir 76 Zlob, Puper 64

Throughout this approach, it is achieved a more abstract and mutation resilient representation of behav-
ioral graphs, retaining not only the valuable information regarding the intentions of the software sample
under consideration depicted by its behaviour, while, on the other hand, reduces the order and the size of
the graph and the corresponding sub-graph areas that have to be examined in order to detect similarities
among known and unknowns samples.

Hence, having defined a number of regions over which a temporal instance of a given GrG is
developed, we construct two types of temporal graphs, either by selecting distinct or accumulating
the modifications performed until the ith region, constructing the Discrete Modification Temporal
Graphs (i.e., DMTG graphs) or the Cumulative Modification Temporal Graphs (i.e., CMTG graphs),
respectively. Following this procedure we can transform the initial data-set of ScDGs into a set of cor-
responding DMTGs, or CMTGs, by registering the modifications performed on the corresponding GrG
over is evolution during time, taking into account the time sequence the system-calls were performed
(i.e., chronological order of system-call invocation) during the execution of the program.

5.1.2. Methodology
In order to evaluate the detection and classification ability of our framework, we perform a five-fold

cross validation procedure, partitioning the data-set into a 80% train-set and a 20% test-set, rotating the
samples over each iteration. These samples refer to the graph objects that are consisted by the types of
temporal graphs, i.e., CMTG and DMTG, that resulted by registering the modification over the evolution
of a GrG graphs according to its corresponding ScDG graph, with respect to both the temporal graph
type and the regions that the GrG graph is partitioned into. The results exhibited over the evaluation
procedure are averaged over the five folds and are extracted over a series of experiments for different
number of regions, different similarity metrics and various values of threshold. In particular, the series
for experiments that regarding the evaluation of the detection potentials of our model concern the 2631
malicious samples in order to be distinguished as malicious or benign, alongside the benign samples
utilized for the measurement of the false-positive rates, while for the evaluation of the classification
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accuracy we utilized the indexing of the malware samples into malware families by their appended
labels in order to measure the correctly classified detected samples.

Regarding the evaluation of our detection ability model is achieved by performing a series of five-fold
cross validation experiments over different similarity metrics that measure the graph-similarity regard-
ing different types of graph characteristics (i.e., relational, quantitative, qualitative) and various number
of regions that the initial GrG graph is partitioned with respect to the underlying methodology for the
depiction of its temporal evolution (i.e., discrete modification temporal graphs, and cumulative modifi-
cation temporal graphs). In each series of experiments we compute the exhibited results averaged over
the five folds, investigating the performance of our model over a specific similarity metric in a range
of regions (i.e., one number of region per five-fold experiment). More precisely, for a given fold
(i.e., 20% train-set) we compare each sample τ of that set, with each sample s of our knowledge base
(i.e., 80% train-set) computing the similarity between them, as presented in Equations (8a), and (8b).
Then, iterating the same procedure computing the similarity between τ and each sample s of the train-
set, regarding the underlying procedure for the evolution of temporal graphs, we compute the maximum
similarity exhibited, according to Equation (9), or Equation (10) regarding the utilization of the discrete
modification and the cumulative modification temporal graphs, respectively. Hence, having the maxi-
mum similarity exhibited among the test sample τ and a sample s, we apply the detection rule presented
in Equation (11), comparing it with a pre-defined threshold value λ in order to distinguish if the test
sample τ is malicious, or benign otherwise.

Then, this procedure is iterated over various values of threshold λ in order to depict the behaviour of
our model across this parameter. The procedure mentioned so far, iterates over a different number of
regions, note that, in our model we experimented with 2n, 1 � n � 8 numbers of regions (i.e.,
2, 4, . . . , 256 regions). Having so far a series of experiments for a range of regions we can repeat
the experiment utilizing a similarity metric that measures the similarity between different characteristics
of the graphs under consideration. Next, we present the achieved results grouped over the two distinct
approaches for the temporal evolution of the GrG graphs, (i.e., utilizing the discrete modification and the
cumulative modification temporal graphs, respectively), then for the deployment of different similarity
metrics (i.e., Jaccard index, Cosine Similarity, and �-Similarity metric) in each group of experiments,
and in each case iterating over the specific range of regions (i.e., 2, 4, . . . , 256), averaging the results
of each case over the five folds.

Similarly,in each case of experiment, except the maximum similarity exhibited between the sample
under consideration, i.e., τ , and each of the known malicious samples, let s, having the labels of each
known malicious sample, let �(Sij ) indicating that this sample is the j th member of the ith malware
family, we list the dominant member of each malware family and selecting the one with the maxi-
mum similarity exhibited between this sample sij and τ we can result to the corresponding dominant
family that is the family (i.e., �(Sij ))in to which τ will be classified. The attestation of a correct clas-
sification is concluded by comparing the family of the most similar sample, let �(sij ), with the actual
family of τ , let �(τ), which is hidden for the evaluation purposes. Then, integrating this classification
procedure as the second phase of our framework, we compute the averaged results over the five folds,
as described, for each case of experiment. To this end, we ought to notice that in our experiments, we
distinguish three different types of classification result evaluation, taking into account the case where
the previously detect as malicious sample τ is classified by our model into a family that is similar to its
actual family (attested by the comparing a relation between �(τ ) and �(Sij )).
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Fig. 7. Execution time (in hours) required from the framework to perform a five-fold experiment for 8 series of regions
deploying both the utilization of DMTG, and CMTG graphs.

5.1.3. System performance
Throughout the evaluation of our framework we performed a five-fold cross validation series of ex-

periments iterating over the 8 different series of regions (i.e., 2, 4, . . . , 256 regions), utilizing four
different similarity metrics, namely the Cosine Similarity, the Jaccard index, the �-Similarity with only
the in-degree/weights and the �-Similarity with only the out-degree/weights, over the two distinct types
of temporal graphs (i.e., DMTG and CMTG, respectively) resulting to a series of 320 experiments. With
each experiment of a file-fold cross validation containing (5 × 2631) 13155 malicious samples and uti-
lizing more than 2.5k as test set for a full series of regions i.e., 2, 4, . . . , 256 regions)over the two
distinct types of temporal graphs the total execution time took on average less 2.5 hours depending in
each case on the similarity metric deployed. As we can see in Fig. 7 our model performs linearly over
the increase of the number of regions while an increase in the time demanded for a full five-fold cross
validation for the two types of temporal graphs is caused exclusively by the similarity metric deployed.

To this end, note that in the corresponding plot the x-axis represents the values the regions a tem-
poral graph is partitioned into, while the y-axis represents the time (in hours) required for a complete
execution of the two phases (i.e., detection and classification) over the five-folds, while the solid color
line represent the corresponding execution time required by the deployment of different similarity met-
rics and the doted line represents the average time required. Through this representation we can observe
that only the application of the �-Similarity metric lies above the average required time since it is the
only similarity that requires to construct an auxiliary data structure for the storage of the demanded
information (i.e., the in- or out-degrees and the in- or out-weights of each vertex of the corresponding
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temporal graphs in order to measure their Euclidean distance on their planar projection. It is notable
to refer that totally our system’s implementation in Java performing the experiments on a commodity
computer with 9th generation Intel i7 with 16 Gb of RAM detecting and classifying almost 2.5k test
samples in almost two and a half hours.

5.2. Evaluating the detection ability

In the next experimental study of our model, we utilize the data-set discussed in previous section in
order to perform a five-fold cross validation utilizing in each case the 80% of the data-set as train-set
and the rest 20% of the data-set as test-set. In the following experiments we distinguish two classes of a
series of experiments performed over different settings. Namely, the first class of experiments contains
the evaluation of our model deploying the discrete modification temporal graphs (DMTG) for the rep-
resentation of the samples, while the second class of experiments contains the evaluation of our model
deploying the cumulative modification temporal graphs (CMTG) for the representation of samples. Ad-
ditionally in each class of experiments we conduct a series of experiments utilizing different similarity
metrics that compare the graph structures based on different characteristics (i.e., the relations, the qual-
itative, and the quantitative characteristics), deploying the Jaccard index, the �-Similarity with in-out
degree and in-out weights (i.e., �+-Similarity, and �−-Similarity), and the Cosine Similarity metrics,
respectively. Moreover, during each series of experiments we compute the corresponding similarity met-
ric between temporal graphs of a particular type (i.e., DMTGs or CMTGs), for various numbers of
regions, i.e., we perform in each case a five-fold cross validation experiment for each given number
of regions from the set 2, 4, . . . , 256. Finally, in the next figures we depict the exhibited results re-
garding the averaging the exhibited True-Positive (TP) (i.e., malicious that are not detected as malicious)
and False-Positive (FP) (i.e., benign that are detected as malicious) rates over the five folds. In the plots
presented in the following figures, the x-axis represents the values of threshold λ, the y-axis represents
the averaged percentages of the malicious samples been detected as malicious (i.e., TP-rate) depicted
in red-line, and the averaged percentages of the benign samples been detected as malicious (i.e., FP-
rate) drawn in green-line. The procedure followed for the detection of software samples as malicious or
benign, compared to known malicious samples,is the one described in Section 4.2, see Fig. 4.

5.2.1. Detecting malicious samples utilizing DMTG
In this class of experiments we evaluate the detection potentials of our model, utilizing the discrete

modification temporal graphs (DMTG) for the representation of software samples under consideration in
order to represent the temporal evolution of its corresponding GrG graph. In the experiments discussed
next, we measure the graph similarity of between any sample form a set of unknown samples against a
set of known malicious sample. Particularly, there are examined four types of similarity measurements
between DMTG graph representations, the one that concerns the measurement of similarity regarding the
relational characteristics of graphs through the utilization of Jaccard Similarity, the next that concerns
the measurement of similarity regarding the quantitative characteristics through the utilization of the
�-Similarity metric, and finally the measurement of similarity regarding the qualitative characteristics
through the utilization of Cosine similarity metric. In each case we perform 8 five-fold cross validation
experiments, one for any number of regions that the DMTG graph is partitioned, examining the result
that represent the detection potentials of our model with respect to the corresponding settings. To this
end we recall that in the next plots the x-axis represents the values of threshold λ, the y-axis represents
the averaged percentages of the TP-rates (red-line) and FP-rates (green-line).
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• Detection using Relational Characteristics of DMTG
In Fig. 8, with purple continuous and dashed lines for TP-rates and FP-rates, repetitively, we cite the
results exhibited by the application of Jaccard Similarity in order to measure the similarity regarding
the relational characteristics appeared in common in the graphs of malicious and benign test samples
against known malicious samples, all represented by their discrete modification temporal graphs
(DMTG). The exhibited difference between TP and FP rates is maximized in the following cases:
2 regions when λ = 0.919 (i.e., FP = 89%, TP = 9%), for 4 regions when λ = 0.88 (i.e.,
FP = 86%, TP = 2%), for 8 regions when λ = 0.8 (i.e., FP = 89%, TP = 0%), for 16
regions when λ = 0.69 (i.e., FP = 85%, TP = 0%), for 32 regions when λ = 0.6 (i.e.,
FP = 80%, TP = 0%), for 64 regions when λ = 0.57 (i.e., FP = 70%, TP = 0%), for 128
regions when λ = 0.5 (i.e., FP = 55%, TP = 0%), and for 256 regions when λ = 0.73 (i.e.,
FP = 44%, TP = 0%). As we can observe through the exhibited results the increase of the number
of regions results to a more sharp decrease in the number of false-positive detections than the
number of true-positive detections. Additionally an interesting observation results from the fact that
as we can see from the plots, the increase on the number of regions makes the FP rates to decay
to nearly zero values from very low values of threshold λ, while on the other hand, the TP rates tend
to be stabilized in lower values across the increase of λ.

• Detection using Qualitative Characteristics of DMTG
In Fig. 8, with orange/green continuous and dashed lines for TP-rates and FP-rates, repetitively,
we present the results exhibited by the application of �-Similarity metric in order to measure the
similarity regarding the qualitative characteristics appeared in common in the graphs of malicious
and benign test samples against known malicious samples, all represented by their discrete mod-
ification temporal graphs (DMTG). Since the GrG graphs are directed weighted graphs, over the
corresponding experiments we distinguished two cases where in order to leverage the valuable
information depicted in the degree and the weight of each vertex, and respectively how they are
evolved during time (i.e., modifications performed during a region, we performed two distinct
experiments, where in the first case we take into account of only the out-degree and the out-weight
on each vertex, defining hence the �−-Similarity, whose detection results are denoted by the orange
lines, while in the second case we take into account of only the in-degree and the in-weight on each
vertex, defining hence the �+-Similarity, whose detection results are denoted by the green lines.
As we can observe through the exhibited results of Fig. 8 the proposed framework regarding the
detection rates performs quite similar concerning the application of either �−-Similarity or �+-
Similarity metric. However, a quite interesting observation results from the fact that despite that the
behavior of the TP rates exhibits an increase through the increase of the number of regions, on the
other hand, the FP rates in the increase over the 16 regions inverts the exhibited curve (i.e., from
nearly concave curve to nearly convex curve) been stabilized even for higher values of λ decreas-
ing with higher rate in higher values of λ. For the case of the application of �−-Similarity metric,
the exhibited difference between TP and FP rates is maximized for 2 regions when λ = 0.906
(i.e., FP = 91%, TP = 9%), for 4 regions when λ0.922 (i.e., FP = 91%, TP = 8%), for 8
regions when λ = 0.952 (i.e., FP = 88%, TP = 8%), for 16 regions when λ = 0.96 (i.e.,
FP = 90%, TP = 11%), for 32 regions when λ = 0.977 (i.e., FP = 86%, TP = 11%), for 64
regions when λ = 0.984 (i.e., FP = 87%, TP = 17%), for 128 regions when λ = 0.989 (i.e.,
FP = 89%, TP = 22%), and for 256 regions when λ = 0.993 (i.e., FP = 91%, TP = 29%).
On the other hand, for the case of �+-Similarity metric, the exhibited difference between TP and
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Fig. 8. From (a) to (h) we depict the detection rates (continuous line) and the corresponding false positive rates (dashed line)
for various regions using the Jaccard similarity (purple color), the �−-similarity (orange color), the �+-similarity (green
color), and the Cosine Similarity (blue color), on DMTG graphs.
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FP rates is maximized for 2 regions when λ = 0.948 (i.e., FP = 82%, TP = 3%), for 4 re-
gions when λ = 0.943 (i.e., FP = 88%, TP = 8%), for 8 regions when λ = 0.964 (i.e.,
FP = 84%, TP = 6%), for 16 regions when λ = 0.966 (i.e., FP = 89%, TP = 11%), for 32
regions when λ = 0.974 (i.e., FP = 90%, TP = 14%), for 64 regions when λ = 0.985 (i.e.,
FP = 87%, TP = 11%), for 128 regions when λ = 0.989 (i.e., FP = 89%, TP = 17%), and
for 256 regions when λ = 0.994 (i.e., FP = 81%, TP = 14%). Comparing the results exhibited
by the two case of application of the �-Similarity, after a detailed study on the exhibited results
we concluded that the �+-Similarity performs better than �−-Similarity for regions in the set
{2, 4, 8, 16}, while for numbers of regions the �−-Similarity metric performs better since the
difference between TP and FP rates is increased.

• Detection using Quantitative Characteristics of DMTG
In Fig. 8, with blue continuous and dashed lines for TP-rates and FP-rates, repetitively, we cite the
results exhibited by the application of Cosine Similarity deployed in order to measure the similarity
regarding the qualitative characteristics appeared in common in the graphs of malicious and be-
nign test samples against known malicious samples, all represented by their discrete modification
temporal graphs (DMTG). The exhibited difference between TP and FP rates is maximized for 2
regions when λ = 0.994 (i.e., FP = 84%, TP = 3%), for 4 regions when λ = 0.981 (i.e.,
FP = 84%, TP = 0%), for 8 regions when λ = 0.962 (i.e., FP = 81%, TP = 0%), for 16
regions when λ = 0.946 (i.e., FP = 74%, TP = 0%), for 32 regions when λ = 0.918 (i.e.,
FP = 69%, TP = 0%), for 64 regions when λ = 0.89 (i.e., FP = 59%, TP = 0%), for 128
regions when λ = 0.85 (i.e., FP = 53%, TP = 0%), and for 256 regions when λ = 0.79 (i.e.,
FP = 47%, TP = 0%). Although, an interesting observation results from the fact that the TP rates
exhibited a slower decay compared to the FP rates increasing the values of threshold λ across the
number of regions. More precisely an interesting fact appears when observing that increasing the
number of regions a more sharp decay is exhibited in the TP rates for lower values of λ, while the
TP rates are decaying somehow later for greater values of λ resulting hence to greater differences
among the TP and FP rates leading further to inspect promising aspects of that approach.

As we can observe from the exhibited results depicted in Fig. 8, the increase of the regions in the
construction of the DMTG yields a more fine grained depiction of the temporal evolution of the corre-
sponding Group Relation Graph (GrG) which lead us to deduct that the mutations in terms of structural
modifications of a graph that represents, e.g., a malicious sample, intensify the structural alteration in
more specific segments (i.e., regions that do capture the system-call invocation performed in particu-
larly in that time interval) of the evolution of the corresponding System-call Dependency Graph (ScDG)
during its execution through taint analysis.

5.2.2. Detecting malicious samples utilizing CMTG
In this class of experiments we evaluate the detection potentials of our model, utilizing the cumulative

modification temporal graphs (CMTG) for the representation of software samples under consideration
in order to represent the temporal evolution of its corresponding GrG graph. The procedure followed for
the conduction of the second class of experiments is the same as the one described in the previous sub-
section. Hence, similarly to the previous class of experiments, there are examined four types of similarity
measurements between CMTG graph representations, concerning the measurement of similarity regard-
ing the relational,the quantitative, and the qualitative characteristics, utilizing the Jaccard Similarity, the
�-Similarity, and the Cosine Similarity metric, respectively. Following the setting of the previous class
of experiments, we perform 8 five-fold cross validation experiments, one for any number of regions
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that the CMTG graph is partitioned, examining the result that represent the detection potentials of our
model with respect to the corresponding settings.

• Detection using Relational Characteristics of CMTG
In Fig. 9, similarly to the procedure followed for the experiments utilizing the CMTG graphs, with
purple continuous and dashed lines for TP-rates and FP-rates, repetitively, we cite the results ex-
hibited by the application of Jaccard index in order to measure the similarity regarding the ex-
hibited relational characteristics between malicious and benign samples against known malicious
samples represented by their cumulative modification temporal graphs (CMTG). The exhibited dif-
ference between TP and FP rates is maximized for 2 regions when λ = 0.961 (i.e., FP = 86%,
TP = 5%), for 4 regions when λ = 0.943 (i.e., FP = 89%, TP = 2%), for 8 regions when
λ = 0.934 (i.e., FP = 89%, TP = 3%), for 16 regions when λ = 0.922 (i.e., FP = 91%,
TP = 3%), for 32 regions when λ = 0.936 (i.e., FP = 88%, TP = 0%), for 64 regions when
λ = 0.922 (i.e., FP = 91%, TP = 3%), for 128 regions when λ = 0.923 (i.e., FP = 91%,
TP = 3%), and for 256 regions when λ = 0.924 (i.e., FP = 40%, TP = 3%). The exhibited
results prove that the FP rates are decreasing by the increase of the regions while the TP rates are
in most of the cases kept in adequately high levels especially in values after λ = 0.9. Additionally
an interesting observation results from the fact that while the TP rates decay when increasing the
number of regions from lower values of λ, the detection ability of our proposed model seems
not to be affected, since comparing the difference between TP and FP rates across the regions it
results that it is increased even for lower values of λ.

• Detection using Qualitative Characteristics of CMTG
In Fig. 9, with orange/green continuous and dashed lines for TP-rates and FP-rates, repetitively, we
present the results exhibited measure the similarity regarding the exhibited qualitative characteris-
tics between malicious and benign samples against known malicious samples represented by their
cumulative modification temporal graphs (DMTG) by the application of �-Similarity metric. As in
the corresponding series of experiments on CMTG graphs, two cases are distinguished, where in
the first case the experiments are conducted utilizing the �-Similarity taking into account how the
vertices of GrG graphs are evolved during time (i.e., accumulating modifications performed dur-
ing a region regarding their the out-degree and out-weight, while in the second case regarding
their the in-degree and in-weight, deploying hence the �−-Similarity and the the �+-Similarity
metrics, respectively. Similarly to the exhibited results of the application of �−-Similarity and �+-
Similarity metrics in DMTG graphs, whose detection results are denoted by the orange and the
green lines, respectively, the application of these similarity metrics in CMTG graphs performs quite
similar concerning the detection ability of the framework by the application of either �−-Similarity
or �+-Similarity metrics. For the case of the application of �−-Similarity metric, the exhibited dif-
ference between TP and FP rates is maximized for 2 regions when λ = 0.917 (i.e., FP = 87%,
TP = 5%), for 4 regions when λ = 0.924 (i.e., FP = 88%, TP = 5%), for 8 regions when
λ = 0.931 (i.e., FP = 88%, TP = 5%), for 16 regions when λ = 0.935 (i.e., FP = 87%,
TP = 5%), for 32 regions when λ = 0.938 (i.e., FP = 87%, TP = 5%), for 64 regions when
λ = 0.941 (i.e., FP = 87%, TP = 5%), for 128 regions when λ = 0.943 (i.e., FP = 86%,
TP = 5%), and for 256 regions when λ = 0.943 (i.e., FP = 86%, TP = 5%). For the case of the
application of �+-Similarity metric, the exhibited difference between TP and FP rates is maximized
for 2 regions when λ = 0.933 (i.e., FP = 85%, TP = 5%), for 4 regions when λ = 0.943
(i.e., FP = 83%, TP = 3%), for 8 regions when λ = 0.943 (i.e., FP = 85%, TP = 3%), for 16
regions when λ = 0.947 (i.e., FP = 84%, TP = 3%), for 32 regions when λ = 0.948 (i.e.,
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Fig. 9. From (a) to (h) we depict the detection rates (continuous line) and the corresponding false positive rates (dashed line)
for various regions using the Jaccard similarity (purple color), the �−-similarity (orange color), the �+-similarity (green
color), and the Cosine Similarity (blue color), on CMTG graphs.
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FP = 85%, TP = 3%), for 64 regions when λ = 0.949 (i.e., FP = 84%, TP = 3%), for 128
regions when λ = 0.949 (i.e., FP = 85%, TP = 3%), and for 256 regions when λ = 0.949
(i.e., FP = 85%, TP = 3%). A notable observation arises from the fact that the behaviour of the
FP rates exhibits a stabilization in low levels for values of λ greater the 90 for the utilization of
�+-Similarity metric, while, for the case of �−-Similarity metric the FP rates are still decaying.

• Detection using Quantitative Characteristics of CMTG
In Fig. 9, with blue continuous and dashed lines for TP-rates and FP-rates, repetitively, we cite
the results exhibited by the application of Cosine Similarity deployed to measure the similarity
regarding the exhibited qualitative characteristics between malicious and benign samples against
known malicious samples represented by their discrete modification temporal graphs (DMTG). As
we can observe through the exhibited results the increase of the number of regions results to a
decrease so in the TP rates as also in the FP rates. The exhibited difference between TP and FP
rates is maximized for 2 regions when λ = 0.996 (i.e., FP = 88%, TP = 3%), for 4 regions
when λ = 0.997 (i.e., FP = 84%, TP = 0%), for 8 regions when λ = 0.996 (i.e., FP = 85%,
TP = 0%), for 16 regions when λ = 0.995 (i.e., FP = 85%, TP = 0%), for 32 regions
when λ = 0.994 (i.e., FP = 86%, TP = 0%), for 64 regions when λ = 0.993 (i.e., FP = 86%,
TP = 0%), for 128 regions when λ = 0.994 (i.e., FP = 85%, TP = 0%), and for 256 regions
when λ = 0.993 (i.e., FP = 86%, TP = 0%). Although, an interesting observation results from
the fact that the TP rates exhibited a slower decay compared to the FP rates increasing the values
of threshold λ across the number of regions. More precisely an interesting fact appears when
observing that increasing the number of regions a more sharp decay is exhibited in the TP rates
for lower values of λ, while the TP rates are decaying somehow later for greater values of λ resulting
hence to greater differences among the TP and FP rates leading further to inspect promising aspects
of that approach.

As we can observe from the exhibited results depicted in Fig. 9, the increase of the regions results to
the computation of similarity among parts of the graph that include their previous modification (CMTG
graphs), which leads to the inference that the average similarity exhibited is on the other hand biased
by differences exhibited in previous regions and are included to all the next segmentations, but on
the other hand however, the achieved detection ability seems to perform better across all the deployed
similarity metrics regardless of the type of graph characteristics under investigation. This observation
leads us to a further inference, that construction of the CMTG performs adequately well against the
mutations of malicious samples across the whole extent of their graphs, capturing system-call invocation
that have been performed in different times due the evolution of the GrG by its corresponding ScDG
graph.

5.3. Evaluating the classification ability

In order to perform the classification procedure, we primarily conducted an investigation over our
data-set, regarding the correlation between the malware families. In particular, an interesting observation
results from the fact that samples that have been pre-classified to malware families with “related” names
tend to have indeed an increased similarity between them. In Fig. 10 we have depicted the relation
between families with at least one common block at their names definitions. In order to perform a
prior evaluation of our model we distinguished three type of classification, namely: Exact, Direct, and
Partial Matching. Next we present the results exhibited through two series of experiments utilizing both
the discrete modification temporal graphs and the cumulative modification temporal graphs in order to
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Fig. 10. Malware families connected by their names.

represent the evolution of a GrG graphs over time, and into a further extent leverage the characteristics
of these type of temporal graphs in malware classification. The procedure followed for the indexing of
software samples that have been previously detected as malicious to known malware families, is the one
described in Section 4.3, see Fig. 5. Each of these classification types refers to how we attest the name
of the family that our model classified our sample, and are define as follows:

◦ Exact Matching The Exact Matching attests both parts of the names between the name of the
family that our system assigned the sample to and the name of the family that exists on the sample’s
hidden family tag, demanding to be fully equivalent at both parts of their names. More precisely,
for a given test sample τ from family Xτ, Yτ , if it has been classified to the family that s belong to,
let Xs, Ys , then the conditional rule ((Xτ ≡ Xs) ∧ (Yτ ≡ Ys)) → T will be valid.

◦ Directed Matching The Directed Matching attests both parts of the names between the name of
the family that our system assigned the sample to and the name of the family that exists on the
sample’s hidden family tag, demanding at least one of the parts of the names to be matched to the
exact position (i.e., first or second part of the test sample’s family name, or even both of them) in
order for a correct classification to be counted. More precisely, for a given test sample τ from family
Xτ, Yτ , if it has been classified to the family that s belong to, let Xs, Ys , then the conditional rule
((Xτ ≡ Xs) ∨ (Yτ ≡ Ys)) → T will be valid.

◦ Partial Matching The Partial Matching attests both parts of the names between the name of the
family that our system assigned the sample to and the name of the family that exists on the sample’s
hidden family tag, demanding at least one of the parts of the names to be matched to any part of
the name of the family of the test sample (i.e., at least one part of the sample’s family name to
be matched to at least one part of the test family name) in order for a correct classification to be
counted. More precisely, for a given test sample τ from family Xτ, Yτ , if it has been classified to
the family that s belong to, let Xs, Ys , then the conditional rule (Xτ ≡ Xs) ∨ (Xτ ≡ Ys) ∨ (Yτ ≡
Ys) ∨ (Yτ ≡ Xs) → T will be valid.

In Table 2, we present an example of our classification evaluation procedure through a simple example
explaining how these classification accuracy metrics work. Let as assume that we have a sample from
family “Bancos, Banker” that has been detected as malware and we classify it into a malware family that
is presented in the first column. So, in columns 2, 3 and 4 we can observe what would be the result (1
for correct or 0 for wrong classification) according to if we demand exact, direct, and partial matching.
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Table 2

Classification example utilizing the exact, the direct, and the partial matching

Indexed in: Exact Direct Partial
Banker, Delf 0 0 1
Banbra, Banker 0 1 1
Banker, Banker 0 1 1
Bancos, Banker 1 1 1

Fig. 11. From (a) to (d) we depict the indexing of detected malware samples to known malware families for various regions
using the Jaccard, the �−, the �+, and the Cosine Similarity metrics on DMTG graphs.

5.3.1. Classifying detected samples utilizing DMTG
In the first series of experiments we utilize the discrete modification temporal graphs to represent

the evolution of a GrG graphs over time, and the deployment of similarity metrics that investigate the
relational, the qualitative, and the quantitative, characteristics, in order to measure the classification
ability of our proposed model. Throughout this series of experiments we investigate the classification
rates exhibited by the our model over different types of correct classifications, (i.e., Exact, Direct, and
Partial Matching) as described above in order to prove the potentials of our model in the indexing of
software samples.

In Fig. 11 we present the classification results exhibited through a series of experiments utilizing the
discrete modification temporal graphs alongside the Jaccard Similarity, the �−-Similarity and the �+-
Similarity metrics, and the Cosine Similarity metric investigating the relational, the qualitative and the
quantitative characteristics respectively, note that the exhibited results are depicted w.r.t. the three types
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of classification defined above. As we can observe from Fig. 11 despite the type of the underlying char-
acteristics of the temporal graph, the Exact Matching type of classification seems to perform moderately
across all the partition sizes of temporal graphs (i.e., regions).

On the other hand, as we can observe from Fig. 11(a) the utilization of relational characteristics per-
forms adequately for the types of Direct and Partial Matching especially for lower values of regions
seems presents a common behaviour on the two types of classification across the regions, exhibiting
adequately high levels for 8–32 regions. The �-Similarity metric, in both of its implementations uti-
lizing either the in/out-degree and in/out-weights, as shown in Fig. 11(b),(c) seems that for the cases of
Direct and Partial Matching perform adequately well across the greater extent of regions, exhibiting
a slight decrease only for numbers of regions over 64. Finally, for the same ranges of regions,
i.e., 8 to 32 the Cosine Similarity seems to perform similarly to Jaccard and �-Similarity, however for
higher numbers of regions the effect of the quantitative characteristics seems that does not contribute
positively in the indexing of malicious samples regarding a more fine-grained and more detailed com-
parison.

5.3.2. Classifying detected samples utilizing CMTG
In the second series of experiments, similarly we utilize the cumulative modification temporal graphs

to represent the evolution of a GrG graphs over time, and the deployment of similarity metrics that
investigate the relational, the qualitative, and the quantitative, characteristics, in order to measure the
classification ability of our proposed model. Correspondingly, our main goal is to investigate the clas-
sification rates exhibited by the our model over different types of correct classifications, (i.e., Exact,
Direct, and Partial Matching) as described above in order to prove the potentials of our model in the
indexing of software samples.

The classification results exhibited through the second series of experiments, utilizing the cumula-
tive modification temporal graphs alongside the Jaccard Similarity, the �− and the �+-Similarity met-
rics, and the Cosine Similarity metric investigating the relational, the qualitative and the quantitative
characteristics respectively, are presented in Fig. 12. The exhibited results concern the three types of
classification, similarly to the previous experiment series for the evaluation of the classification ability
utilizing DMTG graphs. A major insight that results through the observation of Fig. 12, is the fact that
the Exact Matching type of classification seems to perform moderately across all the partition sizes of
temporal graphs (i.e., regions), regardless the underlying characteristics of the temporal graph, as also
mentioned in the previous experiments.

On the other hand, as we can observe from Fig. 12 (a)–(d), an interesting observation comes to light,
when it results that the increase on the number of regions results to an increase of the classification
ability across all the deployed similarity metrics. Additionally, as we can see in Fig. 12 (d) there is exhib-
ited a slightly increased classification ability leading to the deduction that the application of quantitative
characteristics for the computation of similarity between CMTG graphs performs better than the other
characteristics in terms of classification ability.

6. Conclusion

In this work we designed and developed a graph-based framework for malware detection and classi-
fication. The core component of our work are the temporal graphs that depict the structural evolution
of a graph through time. The object we operate on, are the Group Relation Graphs (GrG graphs), that
are constructed after grouping specific disjoint vertices and the corresponding edges by the system-calls
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Fig. 12. From (a) to (d) we depict the indexing of detected malware samples to known malware families for various regions
using the Jaccard, the �−, the �+, and the Cosine Similarity metrics on CMTG graphs.

invoked during the execution time of a software sample. In our approach we distinguish two types of
temporal graphs, namely, the discrete modification temporal graphs and the cumulative modification
temporal graphs. In the first type of temporal graphs, i.e., the discrete modification temporal graphs, the
structural modifications of a GrG graphs through time (i.e., regions) are registered containing only
the specific modification performed in a specific period, while, in the second type of temporal graphs,
i.e., the cumulative modification temporal graphs, the structural modifications of a GrG graphs through
the regions are registered accumulating all the modification performed by the initial state of a GrG
graph until a specific period. Finally, the detection and classification results exhibited over a series of
experiments of our approach provided us with insights about the potentials of our model regarding the
effect of mutation of malicious software in the detection and classification procedures.

6.1. Discussion

Through the evaluation of our model we performed two distinct series of experiments regarding the
utilization of the two types of temporal graphs, namely, the discrete modification temporal graphs and
the cumulative modification temporal graphs, regarding their potentials in detecting and classifying ma-
licious samples. Throughout the experimental study for the evaluation of our proposed framework, we
investigated three types of graph characteristics that could be utilized by the corresponding similarity
metrics in order to measure the similarity between a test and any known malicious sample. Namely,
commonalities exhibited by the relational, the qualitative and the quantitative characteristics between
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temporal graphs are measure by the Jaccard Similarity, the �-Similarity, and the Cosine Similarity, re-
spectively, in order to deduce whether a software sample under consideration is malicious or benign, and
to a further extent to classify it to a family of known malware samples.

The experimental results exhibited over the evaluation of detection and classification ability of our
model utilizing the discrete modification of temporal graphs showed that the performance of our frame-
work on detection and classifying malicious samples performs adequately well. Observing the corre-
sponding results it is figured out that the framework utilizes efficiently the commonalities exhibited over
the various types of graph characteristics where as we can see a further increase on the number of re-
gions results to a more fine grained depiction of the temporal evolution of the corresponding Group
Relation Graph (GrG) that may be affected by the mutation of a sample, making it more vulnerable to
be easily altered, decreasing hence the probability of high similarity when computing it in very specific
part of a graph.

On the other hand, the experimental results exhibited over the evaluation of detection and classifi-
cation ability of our model utilizing the cumulative modification of temporal graphs showed that the
performance of our framework on detection and classifying malicious samples performs in very high
rates exhibiting high detection rates followed by very low false positive rates, alongside with high clas-
sification rates. Throughout the corresponding results it is clear to see that the commonalities over all
the types of graph-characteristics perform equally well regarding the detection and classification poten-
tials exhibited by our proposed framework. The experimental results show in contrast that the number of
regions has less decrease on the detection and classification abilities of our model since the increase
of the regions results to the computation of similarity among parts of the graph that include their
previous modification, biasing by the differences exhibited in previous regions and are included to all
the next segmentations the average similarity exhibited.

As we depict in Fig. 13, there is a straight distinction among the detection results exhibited over
the utilization of discrete modification and the cumulative modification temporal graphs alongside the
underlying graph-characteristics the commonalities of them computed by the corresponding similarity
metrics. In Fig. 13, we present the detection results exhibited over the deducted series of experiments
and evaluate the potentials of each case by measuring the maximum difference presented among the
TP and the FP rates across a number of regions. In the corresponding plot there are presented the
detection results of the Jaccard Similarity, the �−- and �+-Similarity, and Cosine Similarity metrics
when deployed over discrete modification and cumulative modification temporal graphs.

Observing these results it is easy to see that there is a set combinations of similarity metrics and
underlying temporal graphs that over the point of 32 regions the maximization of the difference of
TP and FP rates that depict their performance seems to decrease to very low levels. This fact comes to
attest our initial conjecture that the fine grained and very detailed information that discrete modification
temporal graphs are able to capture is vulnerable to mutations located into smaller segments of the graph
and hence the different types of graph-characteristics are unable to perform as effectively as in case
of smaller regions. The exhibited performance in each case (i.e., detection/classification) exhibits
a slight decrease due to the utilization of temporal graphs as by their construction they are intended
to capture specific information discretely over a sequence of periods. That is, when the partitioning
on the temporal evolution of a graph is performed in a more fine-grained approach, i.e., the more the
regions a graph is partitioned into the smaller is the extent of each graph instance, then the information
that depicts a specific behavioral pattern of a malicious sample may be distributed into more sequential
graph instances (i.e., parts of the graph constructed over each region).
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Fig. 13. Comparison of detection results utilizing different similarity metrics over DMTG and CMTG graphs.

On the other hand, the similarity metrics deployed on top of the cumulative modification temporal
graphs, even for greater numbers of regions seem to perform similarly exhibiting high TP rates with
low FP rates regardless the underlying graph-characteristics utilized for the computation of the similarity
metric, with exceptional case the utilization of relational characteristics through Jaccard Similarity that
in the whole range of regions seems to outperform the �−, �+, and Cosine Similarity metrics.

In order to attest the potentials of the detection ability of our proposed detection model we measure
its effectiveness on detection malicious samples consigning four measurements, namely the precision,
the recall, its accuracy and the F-measure, which their computation is listed below:

Precision = TP

TP + FP
, Recall = TP

TP + FN
,

Accuracy = TP + TN

TP + TN + FP + FN
, F-Measure = 2 × Precision · Recall

Precision + Recall

Throughout our evaluation experiments regarding the detection potentials of our proposed model, for
the case of the utilization of Discrete modification Temporal Graphs (DMTG) to represent the structural
evolution of a Group Relation Graphs (GrG) graph over time, the corresponding four factors that prove
the detection potentials of our model are maximized for the case of the deployment of Jaccard similarity
metric partitioning the graph into 4 regions with λ = 0.72, where the Precision is 97.7%, the Recall is
97.0%, the Accuracy is 95.0%, and F-Measure is 97.3%. On the other hand, or the case of the utilization
of Cumulative modification Temporal Graphs (CMTG) to represent the structural evolution of a GrG
graph over time, the corresponding four factors that prove the detection potentials of our model are
maximized for the case of the deployment of Jaccard similarity metric partitioning the graph into 64 or
256 regions with λ = 0.88 and λ = 0.87, respectively, where the Precision is 97.9%, the Recall is
97.0%, the Accuracy is 95.3%, and F-Measure is 97.5%.
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Table 3

Detection rates (%) exhibited on the factors of precision, recall, accuracy, and F-measure, by relative works

In: Method Precision Recall Accuracy F-Measure
[51] API-Call Mining 93.9 – 94 94
[29] Integrated Feature Set of PE 95.5 94.4 94.9 94.9
[14] Audio Signal Processing 91.5 93.1 92.2 92.2
[45] Group Relation Graph 99.1 94 93.5 96.5
[10] Family Behavior Graph – – 96.4 –
[15] API-Calls Usage Frequency 90.2 – 87.1 86.6
[11] Fuzzy and Fast Fuzzy Pattern Tree 94.3 89.7 96.4 89
[61] Deep Learning of Behavior Graphs 98.6 99.2 – 98.9
[26] API Call Sequence Alignment 95 93.6 94.9 94.3
[49] Structural Specification of PE – RF 95.7 95.4 95.5 95.5
[56] API Call Sequences 92.6 – 90.8 90.6
[30] System-call Dependency Sequences 97.6 – 98.2 98.2
This work Discrete Modification Temporal Graphs 97.7 97 95 97.3
This work Cumulative Modification Temporal Graphs 97.9 97 95.3 97.5

In Table 3 we cite the results from relative approaches concerning the reported measurements on
the detection rates (%) on the exhibited Precision, Recall, Accuracy and F-Measure, where they are
reported. The proposed approach, when compared to the baseline where the GrG graphs are deployed
without the representation of their structural evolution during time [45] it is observable that only in
the Precision measurement the proposed approach exhibits results less than the ones achieved by the
baseline, where in the other three factors, i.e., Recall, Accuracy, and F-Measure, the proposed approach
utilizing either the DMTG or the CMTG outperforms the approach where the Temporal Graphs are not
deployed. Moreover, for the case of the utilization of CMTG for λ = 0.909 and partitioning the graph
into 64 or 256 regions, and for λ = 0.91 and partitioning the graph into 128 regions it is achieved
a 93% TP-rate over a 5% FP-rate, that compared to the baseline (94% TP-rate over a 13% FP-rate)
it exhibits a higher true-negative rate i.e., 95% over an 87% which indeed verifies our initial intuition
for the improvements achieved by the utilization of Temporal graphs. On the other hand, regarding the
Precision measurement, the results exhibited by our work achieves from the highest rates, while for the
Recall measurements the proposed approach still exhibits high results even if in some works there is not
reported the corresponding measurement. Additionally, the Accuracy and the F-Measure achieved by
the proposed approach in both the utilization of DMTG and CMTG exhibits also high rates compared
to the previous approach proving the potentials of our model in distinguishing malicious from benign
samples.

Regarding the comparison of the results exhibited by our proposed method it is observable that the
potentials depicted by the achieved detection rates show that our technique is comparable to the ones
proposed during the latest years, i.e., the utilization of Fuzzy and Fast Fuzzy Pattern Tree [11], API
Call Sequence Alignment [26], API Call Sequences [56], and System-call Dependency Sequences [30],
where our proposed approach exhibits better results against some of them, with the System-call De-
pendency Sequence method proposed in [30] exhibiting the maximum values regarding the Accuracy,
F-Measure, and Precision–Recall measurements.

Similarly, throughout our evaluation experiments regarding the classification potentials of our pro-
posed model, for the case of the utilization of Discrete modification Temporal Graphs (DMTG) to repre-
sent the structural evolution of a Group Relation Graphs (GrG) graph over time we verified the classifica-
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Table 4

Classification accuracy (%) exhibited by relative works

In: Method Accuracy
[50] Discriminative behaviors 88
[22] K-nearest neighbors Function-call Graphs 69.9
[64] One-class SVM APIs, strings and basic blocks 78
[7] Performance monitor, System-calls and System-call sequences 66.8
[37] SVM N-gram feature of the network artifacts 80
[47] Runtime artifacts, IDS signatures, and important API calls 92.5
[45] Group Relation Graphs 83.42
This work Discrete Modification Temporal Graphs 81
This work Cumulative Modification Temporal Graphs 82

tion ability of our model comparing it with the ones achieved by relative approaches. For the case of the
deployment of Cossine similarity metric partitioning the evolution of the GrG graph into 4 regions,
utilizing the Discrete Modification Temporal Graphs our proposed model achieves an 81% classification
accuracy, while for the case where the GrG graph is partitioned into 8 regions and the Cumulative
Modification Temporal Graphs are utilized, the proposed model achieves an 83% classification accuracy.
Respectively, in Table 4 we cite the results from relative approaches concerning the reported measure-
ments on the classification accuracy rates (%). The proposed approach, when compared to the baseline
[45] where the GrG graphs are deployed without the representation of their structural evolution during
time [45] it is observable that it performs similarly to the initial approach where the Temporal Graphs are
not utilized, while on the other hand the proposed approach of the utilization of Temporal Graphs in the
depiction of the structural evolution of the GrG graphs seems to perform adequately well regarding the
results exhibited by other graph-based techniques or API/System-call based approaches, proving thus
the potentials of our proposed model in indexing malicious samples to known malware families.

6.2. Potentials and limitations

Several modeling alternates have been arise during the theoretical construction of our graph-based
proposed model regarding the temporal evolution of behavioral graphs that represent software samples,
regarding their structural modification during time. Our approaches that we discuss briefly next, mostly
concern the representation of the structural modifications on the GrG graphs during time, and how they
could also be represented with other structures that do not cooperate graphs, and consequently deserve
the application of different manipulation methods.

In the first alternate approach, we could denote the structural evolution of a given by plotting by a dis-
crete distribution of the addition of edges over the graph on specific time buckets and create patterns that
could be utilized in order to perform pattern-matching over the plot of any given pair of samples. These
plots should be construct for the temporal evolution of each corresponding edge pair of two given graphs
in order for the patterns to be comparable. On the other hand, in the second approach of our model, we
need to simulate the structural modification of a given graph during time. Similarly to our approach,
rather than constructing several graph instances equal to the number of the defined regions and struc-
turally relevant to the applied method regarding the discrete or cumulative modification approach, we
could also represent these structural modification over the time for each edge of GrG graph. More pre-
cisely, we could define a binary sequence for each edge, where 0 denotes absence and 1 denote addition
of this edge on the overall graph, and the length of the sequence equals the size of the ScDG. Then,
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various alignment algorithms could be adopted in order to retrieve similarity patterns among any pair of
such sequences, that represent corresponding edges on the graphs of the test and the known malicious
samples.

Regarding the limitations of our model, the main issue encountered regarding the implementation
design concerns the spatial complexity of our approach. More precisely, defining a fine-grained or a
coarse-grained quantization of time would affect to a great extent the space required to store the cor-
responding Temporal Graph instances. As easily someone can understand, an implementation of our
proposed model on a fine-grained time quantization scheme, would be more precise against a more
coarse-grained once. Additionally, further tuning issues arise over the trade-off between the precision on
temporal structural modifications and the construction of more distinguishing patterns. However, more
sophisticated approaches, such an implementation that utilizes the maximum length of a binary tree in
order to bound the quantization would lead to a more stable, rational, effective and efficient approach.

6.3. Further research

In the context of extending our work we set our future research aims over the investigation of com-
parison of temporal graphs, and mainly focusing on the regions defined by the discrete modification
temporal graphs (DMTG), regarding the measurement of similarity between regions that are in differ-
ent temporal position. The main aspect of our future research, approached the computation of similarity
between the regions of DMTG graphs, by overcoming the drawback caused by the shift of specific
patterns exhibited in the corresponding Group Relation Graphs due to malware mutations. Our primar-
ily concern is the development of an algorithmic approach in order to manage the computational and
storage complexity that will be caused by the deployment of the extension discussed above. Finally, an
interesting perspective would be to investigate additional types of characteristics exhibited across the
structure of cumulative modification temporal graphs (CMTG) alongside the utilization of other similar-
ity metrics, as also further information investigation the relations between malware families.
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