
Detection and Classification of Malicious Software
based on Regional Matching of Temporal Graphs

Helen–Maria Dounavi
Department of Computer Science & Engineering,

University of Ioannina
Ioannina, Greece

edounavi@cse.uoi.gr

Anna Mpanti
Department of Computer Science & Engineering,

University of Ioannina
Ioannina, Greece
ampanti@cs.uoi.gr

Stavros D. Nikolopoulos
Department of Computer Science & Engineering,

University of Ioannina
Ioannina, Greece
stavros@cs.uoi.gr

Iosif Polenakis
Department of Computer Science & Engineering,

University of Ioannina
Ioannina, Greece
ipolenak@cs.uoi.gr

ABSTRACT
In this paper we present an integrated graph-based framework that
utilizes relations between groups of System-calls, in order to detect
whether an unknown software sample is malicious or benign, and
to a further extent to classify it to a known malware family. A novel
graph-based approach for the representation of software samples
over the depiction of the structural evolution over time, the so-
called Temporal Graphs, is discussed, and a method for measuring
graph similarity among specific Regions of such graphs is proposed,
the so-called Regional Matching. The partitioning of the Temporal
Graphs that depicts their structural evolution over time is defined
by specific time-slots, while the quantitative characteristics that
depict the commonalities appeared over the weights of the vertices
are measured by a similarity metric in order to conduct the malware
detection and classification procedures. Finally, we evaluate the
detection and classification ability of our proposed graph-based
framework performing an experimental study over the achieved
results utilizing a set of known malicious samples that are indexed
into malware families.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation; Malware and its mitigation; Intrusion
detection systems; Information flow control; Software reverse engi-
neering; • Mathematics of computing → Hypergraphs; Graph
algorithms; • Computing methodologies → Cross-validation;
• Theory of computation → Pattern matching; Sorting and
searching; • Information systems→ Similarity measures.
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1 INTRODUCTION
Every day, thousands of newmalware samples are developed bymal-
ware authors based on previous versions that inherit and preserve
their main functionality utilizing mutations engines, or automated
techniques and integrated tools [2] . The method followed over the
gathering of information regarding the characteristics of malware
distinguishes the two main types of malware analysis, namely the
static and the dynamic malware analysis [16, 18] . Static analysis
requires the examination of a given set of code artifacts (if available)
[5] while the dynamic analysis [4] examines the interaction of a
program with its hosting O.S. requiring its execution in a contained
environment.

1.1 Protection against Malicious Software
The defense line against malicious software is based upon two
basic techniques, namely malware detection and malware classi-
fication. The deployed malware detection approaches are based
on the discrimination of either signatures, patterns or other static
characteristics of the samples, or behaviour-based approaches that
mainly focus on the detection of specific interactions (i.e., system-
calls or API calls) that an executed program exposes [5]. Comparing
the two approaches, it is observable that signature-based malware
detection provides real-time protection against malicious threats
but is less resilient against mutations of malicious samples than
behaviour-based malware detection [2, 17] . On the other hand,
malware classification mostly refers to the indexing of malicious
samples into malware families that include malicious samples of
the same functionality [7] , malware classification is an necessary
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prerequisite on the development of generic signatures of malicious
samples that cover a greater range of a malware family and probably
potential mutations of its members [15].

1.2 Related Work
Through the recent literature, in malware detection, an algorithm
for the extraction of common behavior graph alongside a graph
matching algorithm for the computation if maximum weight sub-
graph is proposed by Ding et al. [6] in order to detect malicious code.
Based on metrics over quantitative data flow graphs, Wüchner et
al. developed a malware detection method presented in [20], while
another behavioral malware detection technique is proposed in [19]
based on the incremental construction of aggregated quantitative
data-flow graphs. A novel detection method for android malware
is proposed by John et al. [10] that utilizes graph convolutional
nets based on centrality measures of the graph as input features.
In malware classification, among various proposed models, in [9],
Islam et al. utilize pattern recognition algorithms and statistical
methods from function length and printable strings to develop an
automated technique for malware classification. In [12], Nataraj
et al. visualize malware binaries as gray-scale images and classify
malware samples utilizing image processing techniques. Hassen
and Chan, in [8], utilize function clustering to develop a linear
time function-call graph vector representation combining graph
features with non-graph features using an algorithm that finds the
maximum weight sub-graph.

1.3 Contribution
In this work we design and propose a graph-based framework that
utilizing graph representations of malicious software distinguishes
malicious from benign samples, and further classifies the ones de-
tected as malicious to a knownmalware family. The proposedmodel
utilizes a specific type of graph representations of the structural
evolution of dependency graphs, the so-called Temporal Graphs,
deployed to depict the behavior of malicious samples. The tech-
nique deployed for the detection and the classification of malicious
samples utilizes the partition of dependency graphs into Regions
that depict specific states of their structural evolution over time.
For a given software sample, we focus on the search of similar
Regions in a set of known malicious samples across the whole
extent of their dependency graph representations. Our intuition
is that since the characteristic functionality of a malicious sam-
ple is indicated over a specific sub-graph through its dependency
graph, then, during the mutation procedure, in order for the main
functionality to be retained, this characteristic sub-graph should
also appear throughout the whole extent of the mutated sample.
Performing graph-similarity across such graph Regions, after a
series of experiments, we achieved quite promising detection and
classification results, that reinforce us with valuable information
about the insights of malware mutations.

2 THEORETICAL BACKGROUND
In this Section we present the prerequisite theoretical background
that consists the basis of our proposed model regarding the rep-
resentation of software samples by their dependency graphs and

the methodology we utilize in order to partition these graphs into
Regions that depict their temporal evolution.

2.1 Representation of Malicious Software
The interaction that a software exhibits with its hosting environ-
ment during its execution time can be depicted through the invoked
system-call dependencies captured though dynamic taint analy-
sis, constructing a directed acyclic graph (dag). As described in
[1, 3, 11, 14], the vertex set of the ScDG is consisted by the system-
calls traces invoked during the execution of the software sample,
while the edge set is consisted by the communication (i.e., data-flow
dependencies) among these system-calls. Having the ScDG graph,
letG , constructed for a software sample under consideration, utiliz-
ing the technique proposed in [11, 13] a graph abstraction of ScDG
graph can be constructed by grouping disjoint subsets of its ver-
tices (i.e. system-calls) based on their functionality into system-call
groups. Utilizing these groups as super-vertices, the vertex set of
the so-called Group Relation Graph (GrG), that we denote byG∗, is
constructed, and based upon their inter-communication, an edge
is added among the corresponding vertices of the GrG graph, i.e.,
the System-call Groups, constructing finally its edge set. To this
end we ought to refer that the produced graph resulting from the
directed acyclic graph ScDG is a weighted directed graph, since for
each call from a System-call of a group to a system call of another
System-call group we increment the weight of the corresponding
edge between these groups.

2.2 Structural Evolution of Dependency Graphs
Starting from the beginning of the development of the GrG graph,
utilizing information depicted over the sequence of edges added
primarily to its corresponding ScDG graph, for a given number n of
time-points (in our case, n = 2i ,∀1 ≤ i ≤ 6) we can define specific
Regions in the evolution of the GrG graph. For a set of time-points,
let p1,p2, . . . ,pn we can construct n instances of a given GrG graph
denoting them by T (G∗) as: T1(G∗),T2(G∗), . . . ,Tn (G

∗), that depict
the structural evolution of a graph in terms of edges, vertex-degrees
and vertex-weights of the corresponding GrG graph until specific
time-points. Through this procedure, a series of Temporal Graphs
is constructed, depicting the Regions of the structural evolution of
the GrG through time. Each of the n Temporal Graphs includes the
edges and the weights (i.e., structural modifications) developed in
the GrG graph from the invocation of the first system-call until the
invocation the system-call performed at that time-point. Through-
out this procedure it is easy for our model to capture information
regarding the temporal evolution of the graph through its construc-
tion procedure, w.r.t its structural modification. Then we utilize
the corresponding graph instances created, for the computation of
similarity between specific Regions of the graph. Further, we can
compare different graphs by matching either the corresponding
Regions or by investigating if this Regions exists inside another
greater Region. The depiction of the structural evolution of a GrG
graph, is represented by an aggregation procedure of the system-all
invocation performed from the beginning of the execution of the
program until a specific time-point. Hence, the Region defined from
the start to that time-point, let pi , through this aggregating proce-
dure will also coincide inside all the next Regions starting also from
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Figure 1: Regional matching method over Regions of various range.

the beginning of the execution and ranging until later time-points,
let pi+1,pi+2, . . . ,pn . Through this approach, our proposed model
implements our intuition that if a characteristic sub-graph exists
in an earlier point in the time-line of the evolution of a GrG graph
of a malicious sample, then this characteristic sub-graph should
also exist in a mutated strain independently of its chronological
position (i.e., to the same or in a wider/later Region) in order to
retain its main functionality.

3 SYSTEM ARCHITECTURE
In this section we present the architecture of the framework that
deploys our proposed graph-based model for malicious software de-
tection and classification based on Regional matching of Temporal
Graphs.

3.1 Model Components
For the procedures of malware detection and classification we com-
pare an unknown test sample, let τ , to known malicious ones, let s ,
utilizing their corresponding sequences of their Temporal Graphs,
measuring the similarity among the defined Regions of the corre-
sponding GrG graphs G∗

τ and G∗
s , as they are evolved over time. In

order to measure the similarity of unknown samples and malicious
samples, we consider their correlation regarding the quantitative
characteristics exhibited among their Temporal Graphs, or, in other
words, how similar is the creation of new edges or the increase of
their weights in both graphs across their evolution. Denoting with
T (G∗

τ ), and T (G∗
s ), the Temporal Graphs of a given test sample τ

and a known malicious sample s , respectively, we shall measure the
similarity exhibited between T (G∗

τ ) and T (G∗
s ) w.r.t. their quantita-

tive characteristics utilizing the Cosine Similarity applying it over
the weights of corresponding edges formed during the evolution of
the GrG graph, measured as follows:

S(T (G∗
τ ),T (G

∗
s )) =

n∑
i=1

w(eτ ,i ) ×w(es,i )√
n∑
i=1

w(eτ ,i )2

√
n∑
i=1

w(es,i )2

, (1)

wherew(e) refers to the weight of the edge e = (u,v), and the edge
ei indicates the i-th edge in both Temporal Graphs (i.e., eτ ,i and

es,i for the Temporal Graph of the test and the Temporal Graph of
the known sample, respectively) among the corresponding vertices
uτ ,vτ ∈ V (T (G∗

τ )) and us ,vs ∈ V (T (G∗
s )), such that (uτ ,vτ ) ∈

E(T (G∗
τ )) corresponds to the edge (us ,vs ) ∈ E(T (G∗

s )).
Through the computation of the similarity between a test sample

τ and a known sample s , we compute the similarity deploying our
method to investigate if a characteristic sub-graph is located in a
Region of a sample across the whole extent of the other. In our
approach, we retain a number of graph instances that depict its
structural evolution over time, with each one containing all the
previous structural modification performed. Through the deploy-
ment of similarity measurement, we compute the similarity of each
Region of the test sample, that potentially includes a character-
istic sub-graph, with each Region of the malicious sample. Next,
for each Region, let Ri , of the test sample, we register the maxi-
mum similarity computed with a Region of the malicious sample as
Mt = max{S(Tt (G

∗
τ ),Tk (G

∗
s ))}, 1 ≤ k ≤ n, where Mt is the maxi-

mum similarity exhibited between t th RegionRt and thekth Region
Rk of the malicious sample. Iterating over the next Regions of the
test sample, let Ri ,Ri+1, . . . ,Rn , and the corresponding Regions of a
specific known malicious we perform a comparison method that we
call Regional Matching as we illustrate in Figure 1. To this end, we
ought to notice that the general formula for the similarity computa-
tion between the Temporal Graph of test sample τ (i.e., T (G∗

τ )) and
the Temporal Graph of a known malicious sample s (i.e., T (G∗

s )) is

computed as S(T (G∗
τ ),T (G

∗
s )) =

n∑
i=1

{max{S(Ti (G
∗
τ ),Tj (G

∗
s ))} : j ∈

[1,n]}, averaged by the n Regions, where S(Ti (G∗
τ ),Tj (G

∗
s )) denotes

the similarity between the Ri of G∗
τ with the Rj of G∗

s , while iterat-
ing over all the Regions of G∗

τ ,max{S(Ti (G
∗
τ ),Tj (G

∗
s ))} : j ∈ [1,n]}

denotes the maximum similarity exhibited comparing each Region
of the G∗

τ with each Region of G∗
s . Finally, in order to compute the

maximum similarity exhibited between the test sample and any
known malicious sample we iterate the computations of similarity
between the test sample and all the known malicious samples of
our knowledge base retaining the maximum value exhibited, as
Sτ = max{S(T (G∗

τ ),T (G
∗
s )),∀ 1 ≤ s ≤ M, s ∈ N}, where M

denotes the number of malicious samples in our knowledge base,
recording also its malicious family name.
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(a) 2-Regions Partitioning (b) 4-Regions Partitioning (c) 8-Regions Partitioning

(d) 16-Regions Partitioning (e) 32-Regions Partitioning (f) 64-Regions Partitioning

Figure 2: Detection results for the partitioning of Group relation Graphs into different numbers of Regions using the Cosine
Similarity.

3.2 Malware Detection and Classification
In order to perform the malware detection procedure, we transform
the initial ScDG graphs (i.e.,G) to the corresponding GrG graphs
(i.e.,G∗), defining further the Regions that constitute the final graph
representations that are the Temporal Graphs (i.e., T (G∗)), so for
a given test sample, as also for our knowledge base that contains
malicious samples. An unknown test sample is distinguished as
malicious or benign based on the result of the computation of Co-
sine similarity metric when applied on the corresponding Regions
of the Temporal Graph of the test sample and a set of Temporal
Graphs that represent known malicious software samples, applying
the procedure of Regional Matching across their Regions. Having
computed the maximum similarity exhibited between the software
sample under consideration and a known malicious sample, we
compare this value against a pre-specified threshold value λ, where
if the maximum value of similarity is above the value of λ the test
sample is detected as malicious, or benign otherwise. Having de-
tected a test sample as malicious, in the next phase, the one of
malware classification, our proposed model decides the malware
family in which the test sample should be indexed, based on the
similarity exhibited by the samples belonging to each malware fam-
ily. Based on the computation of Cosine similarity, our proposed
model indexes the sample that has been detected as malicious in
the previous phase selecting the malware family that contains the
most similar sample (according to Cosine similarity) with the test
sample, indexing the test sample into that family.

4 EVALUATION
For the evaluation procedure of our proposed malware detection
and classification model, we utilized the same data-set used in [1]
including 2631 malicious sample pre-classified into 48 malware
families. For the evaluation of the detection procedure, regarding
the detection ability of our model and the corresponding false-
positive rates we took into account a set of 35 benign samples that

cover a wide range of commodity software types. For the evaluation
of the ability of our proposed model to index the test samples that
have been detected as malicious into known malware families, we
utilized the grouping of the 2631malicious samples into 48malware
families by the utilization of heuristic rules as described in [1]. The
evaluation of the procedures of malware detection and classification
was performed implementing the five-file cross validation method,
partitioning the data-set into an 80% train-set and a 20% test-set,
averaging the achieved detection and classification results over the
five folds, iterating the procedure over various partitioning of the
Temporal Graphs into specific numbers of Regions.

4.1 Detection of Malicious Samples
In the plots presented in Figure 2 where is depicted the achieved
detection ability of our model, the x-axis represents the values of
threshold λ, while they-axis represents the corresponding True Pos-
itive rates (TP-Rates) and False Positive rates (FP-Rates) depicting
the percentage of the test samples that have been detected as mali-
cious samples and indeed where malicious (red-color), alongside
the percentage of benign samples that falsely detected as mali-
cious (green-color), respectively. In Figure 2 there are presented the
results achieved by the application of Cosine Similarity for the mea-
surement of the similarity among Temporal Graphs partitioned into
various number of Regions (i.e., 2, 4, 8, 16, 32, and 64) concerning
the common quantitative characteristics appearing between test
malicious and benign samples against known malicious samples
represented also by their Temporal Graphs.

In Figure 2 (a) to (f) we present the achieved TP and FP-Rates
exhibited by our proposed model for the partitioning of the Tem-
poral Graphs into 2, 4, 8, 16, 32, and 64 Regions, respectively. More
precisely, as we can see from the exhibited detection results of Fig-
ure 2 (a) and (b), for the partitioning of the Temporal Graphs into 2
and 4 Regions an adequately promising detection ability by an 90%
TP-Rate and less than 10% FP-Rate is exhibited for the λ = 0.995,
while for a more fine grained partitioning (i.e., partitioning of the
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Figure 3: Classification results for the Exact, the Direct, and the Partial Matching classification types.

Temporal Graphs from 8 to 64 Regions) the detection ability is also
retained on the same adequate levels exhibiting an 92% TP-Rate
followed however by almost 18% FP-Rates. Finally, an interesting
observation results from the fact that as we can observe in Fig-
ure 2 the application of a fine grained partitioning results to a more
immediate decay in the number of FP-Rates for lower values of
threshold λ resulting that this approach provides a better distin-
guishing ability among malicious and benign samples in that range
of λ, (i.e., λ ∈ [0.5, 0.9], whereas the detection rates are retained in
obviously high rates. To this end, investigating the overall behavior
of the detection procedure deployed by our proposed model, we
can observe from Figure 2 that the exhibited TP-Rates appear to
express a slower decay compared to the FP-Rates increasing the
values of threshold λ across the number of Regions. Finally, through
the increase of the number of Regions, the overall detection ability
performs adequately well regardless of the precision of partitioning
of the Temporal Graphs from more coarse grained to fine grained
partitioning.

4.2 Classification of Malicious Samples
Since the 48 malware families that the malicious samples of our
data set are pre-classified into have a label that is combined by
two parts, and observing that malware families that tend to have
common parts in their names also exhibit a similarity between
their included samples, obviously as being classified according to
their in common functionality, we define three different types of
correct classification counting based upon the relation between
the label of the family that the sample under consideration has
been indexed in and its actual family’s label, namely the Exact, the
Direct, and the Partial Matching. More precisely, for a given
test sample from malware family with label Xi ,Yi , if our model
classifies it to a malware family with label X j ,Yj , then the types of
correct classification operate as the Exact Matching, the Direct
Matching, and the Partial Matching that count a correct classifi-
cation result if (X j ≡ Xi )

∧
(Yj ≡ Yi ), if (X j ≡ Xi ) ∨ (Yj ≡ Yi ), and

if (X j ≡ Xi ) ∨ (Yj ≡ Xi ) ∨ (X j ≡ Yi ) ∨ (Yj ≡ Yi ), repetitively, com-
puting in our performed evaluation experiments the three different
values representing the classification ability of our proposed model.

In Figure 3 we present the achieved classification results exhib-
ited by the application of the Regional Matching technique over
various numbers of Regions (i.e., 2, 4, 8, 16, 32, and 64) of Temporal
Graphs utilizing the Cosine similarity, averaged over the five folds.
As we can observe from Figure 3, for the Exact Matching, the
correct classifications are maximized for the partitioning of the
Temporal Graph into 16 Regions achieving a 68% of correct classifi-
cations. For the case of Direct Matching, the correct classifications
are maximized for the partitioning of the Temporal Graph into 4
and 16 Regions achieving an 81% of correct classifications. Finally,
considering the Partial Matching, the correct classifications are
maximized for the partitioning of the Temporal Graph into 4, 8, 16,
32 and 64 Regions achieving in all cases a 83% of correct classifica-
tions, results that are quite promising for the classification ability
of our proposed model considering the commonalities exhibited
among similar malware families.

5 CONCLUSION
In this paper we designed and developed a graph-based framework
for malware detection and classification. We utilized the Temporal
Graphs that depict the structural evolution of the ScDG graphs,
and their corresponding GrG Graphs, over the execution time of
the software sample under consideration. The exhibited detection
and classification results achieved through a series of five-fold
cross validation experiments provided a closer insight over the
performance of our model against malicious samples and providing
us with a feedback regarding the behavior of the proposed detection
and classification techniques against mutated malicious samples.
The promising exhibited results verified our intuitions leading us to
focus to further improvements are oriented over the investigation
of the deployment of other similarity metrics that may take account
other types of graph characteristics of the Temporal graphs.
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