Please fill in the form below. The contact phone number of the presenting author will not be published.
\qquad
Name of Presenter: Paraskevi Zagana
University/Company Name: FORTH/ICE-HT, Patras
Address: Stadiou Street, Platani, Patra 265 04, Greece

Contact Email: voulazagana@yahoo.gr
Contact Phone Number: +306980370599
Title of Abstract In vitro study of doxorubicin encapsulation into arsonoliposomes

- Nano Medicine/Biotechnology

Kelly Velonia, Univ. of Crete, Hellas; Yaowu Hao, Univ. of Texas, Select a Participating Arlington, USA; Teja Guda, \& Rena Bizios, Univ. of Texas, San Symposium/Session: Antonio, USA
Please select desired Symposium/Special Session from the list for your abstract (you can indicate first and second choice if you'd like)

Number of Persons:
 (yourself + number of accompanying persons) 1

For VISA purposes, do you require an
Invitation Letter? \qquad

IN VITRO STUDY OF DOXORUBICIN ENCAPSULATION INTO ARSONOLIPOSOMES

Paraskevi Zagana ${ }^{2 \text { * }}$, Spyridon Mourtas ${ }^{2}$, Anastasia Basta ${ }^{2}$, Sophia G. Antimisiaris ${ }^{1,2}$
${ }^{1}$ Department of Pharmacy, University of Patras, Greece
${ }^{2}$ Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece
*Email: voulazagana@yahoo.gr

Arsonoliposomes, are liposomes that incorporate arsonolipids in their membranes and have been studied previously, in terms of their stability and antitumor activity [1, 2]. They demonstrate significant toxicity towards cancer cells while being less toxic towards normal cells. Doxorubicin (DOX), is a commonly used anti-cancer drug which is currently used in the clinic as in the form of PEG-liposomes.

In this study, we sought to investigate the possibility to encapsulate DOX into arsonoliposomes and arsonoliposomes that are modified with a curcumin derivative (TREG), in order to study at a latter step, if the DOX-arsonoliposome combined system demonstrates additive or even synergist anticancer activity. PEGylated arsonoliposomes and TREG-arsonoliposomes composed of DSPC/Chol/PEG-2000-DSPE/Arsonolipid/TREG (in some cases) were prepared and the loading of DOX was attempted by applying the active loading method protocol. A drug/lipid ratio (D/L) of $1 / 7(\mathrm{w} / \mathrm{w})$ was always used, while the effect of using different temperatures ($40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$) and different time periods of incubation ($15,30,60$ and 90 min), on the DOX encapsulation in arsonoliposomes and TREG-arsonoliposomes, was tested. In all cases, liposomes were purified after the loading process and the \% DOX entrapment efficiency was calculated based on initial/final D/L ratio.

Results show that, the active-loading protocol succeeds to encapsulate high percents of DOX into arsonoliposomes (up to 99\%) and TREG-arsonoliposomes (up to 89\%); Maximum loading was demonstrated when the incubation was carried out at $40^{\circ} \mathrm{C}$, for arsonoliposomes and $60^{\circ} \mathrm{C}$ for TREG-arsonoliposomes. Considering the duration of incubation, in both cases DOX encapsulation was highest after 90 min . DOX-loaded arsonoliposomes and TREG-arsonoliposomes are currently tested for their anticancer activity towards different types of cancer cells, in vitro, and the first results are interesting.

References:

[1] Zagana P, et al. (2009) Arsonoliposome interaction with cells in culture. Effect of pegylation and lipid composition. J Mol Nutr Food Res 53:592-599
[2] Gortzi O, et al. (2002) Arsonoliposomes, a Novel class of arsenic-containing liposomes: effect of palmitoyl-arsonolipid-containing liposomes on the viability of cancer and normal cells in culture. Pharm Res 19:79-86

Acknowledgement

"This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong
Learning 2014-2020» in the context of the project "Innovative Drug and Imaging agent Delivery
Systems [SYSTOFAR]" (MIS 5004447)."

