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Abstract: One of the major aspects affecting the performance of the classification algorithms is the
amount of labeled data which is available during the training phase. It is widely accepted that the
labeling procedure of vast amounts of data is both expensive and time-consuming since it requires the
employment of human expertise. For a wide variety of scientific fields, unlabeled examples are easy to
collect but hard to handle in a useful manner, thus improving the contained information for a subject
dataset. In this context, a variety of learning methods have been studied in the literature aiming to
efficiently utilize the vast amounts of unlabeled data during the learning process. The most common
approaches tackle problems of this kind by individually applying active learning or semi-supervised
learning methods. In this work, a combination of active learning and semi-supervised learning
methods is proposed, under a common self-training scheme, in order to efficiently utilize the available
unlabeled data. The effective and robust metrics of the entropy and the distribution of probabilities of
the unlabeled set, to select the most sufficient unlabeled examples for the augmentation of the initial
labeled set, are used. The superiority of the proposed scheme is validated by comparing it against the
base approaches of supervised, semi-supervised, and active learning in the wide range of fifty-five
benchmark datasets.

Keywords: active learning; semi-supervised learning; self-training; classification; combination of
learning methods

1. Introduction

The most common approach established in machine learning (ML) is supervised learning (SL).
Under the SL schemes, classifiers are trained using purely labeled data. In contrast with the problem
complexity, the performance of such schemes is directly analogous to the amount and the quality of
labeled data which are used at the training phase. In a large variety of scientific domains, such as
object detection [1], speech recognition [2], web page categorization [3], and computer-aided medical
diagnosis [4–6] vast pools of unlabeled data are often available. Though, in most cases labeling data
can be costly and time-consuming, as human effort and expertise are required to annotate the available
data. Many research works [7] exist focusing on techniques with the aim of exploiting the available
unlabeled data especially in favor of classification problems. The most common learning methods
incorporating such techniques are active learning (AL) and semi-supervised learning (SSL) [8]. Both AL
and SSL share an iterative learning nature, making them a perfect fit for constructing more complex
combination learning schemes.
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The primary goal of this paper is to put forward a new AL and SSL combination algorithm in
order to efficiently exploit the plethora of available unlabeled data found in most of the ML datasets
and provide an improved classification framework. The general flow of AL and SSL frameworks is
presented in Figure 1. Both methods utilize an initial pool of labeled and unlabeled examples with
the goal of efficiently augmenting the available knowledge. AL and SSL frameworks, in most cases,
operate under an iterative logic aiming to predict the label in the most appropriate unlabeled examples.
While the former method annotates the unlabeled instances by interactively querying a human expert
based on a variety of querying strategies, the latter attempts to automatically produce the labels of
unlabeled examples by exploiting the previously learned knowledge and a wide range of unlabeled
instances selection criteria. After the successful augmentation of the initial labeled set, a final model is
constructed in both cases with a view to the application on the unknown test cases.Entropy 2019, 21, x FOR PEER REVIEW 3 of 33 
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applications on the NLP field are part of speech tagging, named entity recognition, sentiment analysis 
[11], fraud detection, and spam filtering. Especially, a number of AL [12], SSL, and combinations [13] 
of them have been proposed in the spam filtering domain. In Figure 2, an application on the Spambase 
[14] benchmark dataset briefly presents the accuracy improvement for the proposed scheme as the 
algorithm’s iterations progress. With regard to the base algorithm learner, the support vector 
machines (SVMs) [15] classifier was embedded. For comparison, in the same figure, the 
corresponding SSL part of the algorithm was fed with the same amount of unlabeled data to obtain 
only the semi-supervised accuracy. 

Figure 1. The general frameworks of active learning and semi-supervised learning along with their
shared elements.

As both methods share a lot of key characteristics, a major effort is now needed to combine
the two learning approaches. The main contribution of the proposed algorithm is the employment
of a self-training scheme for the combination of AL and SSL utilizing the fast and effective metrics
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of the entropy and the distribution of the prediction probabilities of the available unlabeled data.
The plethora of experiments carried out, also play a major role in the validation of the proposed
algorithm. The proposed method is examined through a number of different individual base learners,
where the ensemble learning technique is also explored as the aggregated models tend to produce
more accurate predictions and are commonly used in today’s applications [9,10].

Real-world case scenarios where AL and SSL combination methods can be applied include natural
language processing (NLP) problems to which a lot of labeled examples are required to effectively train
a model and also vast amounts of unlabeled data can be mined. Common applications on the NLP field
are part of speech tagging, named entity recognition, sentiment analysis [11], fraud detection, and spam
filtering. Especially, a number of AL [12], SSL, and combinations [13] of them have been proposed in
the spam filtering domain. In Figure 2, an application on the Spambase [14] benchmark dataset briefly
presents the accuracy improvement for the proposed scheme as the algorithm’s iterations progress.
With regard to the base algorithm learner, the support vector machines (SVMs) [15] classifier was
embedded. For comparison, in the same figure, the corresponding SSL part of the algorithm was fed
with the same amount of unlabeled data to obtain only the semi-supervised accuracy.
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Figure 2. Progression of accuracies in relation to the number of iterations executed for the proposed
combination scheme and its semi-supervised counterpart, utilizing support vector machines (SVMs) as
base learner, applied on the Spambase dataset using two different labeled ratios.

The rest of this research work is organized as follows: In Section 2, the related work on similar
classification methods is discussed. Following in Section 3, the proposed method is presented along
with the exact algorithm implemented. An attempt to evaluate the efficacy of the combination scheme
is made in Section 4, where extensive experimentation results can be found. Moreover, in this section,
the average accuracies of the classifiers applied on the combination scheme are also briefly compared.
In Section 5, a modification of the scheme is explored. The research conclusions are conferred in
Section 6, where a number of areas to be explored as future work are mentioned. Finally, a software
implementation of the wrapper algorithm is found in the Appendix A through the accompanying link.

2. Related Work

AL can be considered one of the most promising approaches for improving the performance of
a prediction model in real-world scenarios where large amount of data exists, but their labeling is
costly or infeasible [7]. AL assumes that human experts will be available to provide ground-truth
labels for the unlabeled instances. Therefore, the philosophy of AL is to minimize the number of
queries with the explicit goal to focus the labeling effort in the most profitable or informative instances,
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in other words, to minimize the training cost of the model [16]. Finally, these manually annotated
samples are merged with the training dataset to get the highest classification accuracy. Several query
strategies [7,17] have been proposed to measure the informativeness or the representativeness of the
data. Informativeness-based strategies measure the contribution of an unlabeled instance on the
uncertainty reduction of a statistical model, while representativeness-based strategies measure the
instance contribution on representing the underlying structure of input patterns. The most commonly
used query strategies can be considered certainty-based sampling, query-by-committee, and expected
error reduction. In the first type of strategy, a single model is trained and the human expert (annotator)
is queried to label the least confidence unlabeled instances based on the pre-trained model. The query-
by-committee strategy involves more than one active learner (classification models) to be trained
for the classification task. The unlabeled instances about which these models disagree the most are
selected for human annotation. The third strategy is a decision-theoretic approach aiming to estimate
the potential of the model’s generalization error reduction. In other words, a model is trained and used
to estimate the expected future error of the unlabeled samples. Then, the instances with the minimal
future error (risk) are selected and delivered for manual labeling. The effectiveness of AL and various
query strategies has been shown in typical classification tasks, such as text classification [18], speech
recognition [19], speech emotion classification [20], audio retrieval [21] to name a few.

In contrast to AL, SSL aims to automatically exploit unlabeled data in addition to labeled data to
improve learning performance, without human intervention. In SSL, two basic assumptions about the
data distribution are considered. The first assumes that data are inherently clustered, meaning that
instances belonging to the same cluster have the same label. The other one assumes that data lie on a
manifold, meaning that nearby samples have similar predictions. The idea behind both is that similar
data points should have similar outputs and the unlabeled instances can expose similarities between
these data points. Many different SSL methods have been designed in machine learning, including
mainly transductive support vector machines [22], graph-based methods [23–25], co-training [26],
self-training [1]. In the self-training scheme, the classification model is used to predict the labels of
a portion of the unlabeled instances and, consequently, the most confident ones are added to the
initial training dataset repeatedly until convergence. Rather than just relying on a unique model,
in co-training [26] ensemble method is employed. For each model, separate feature sets (or views) of
the same labeled data are used for training. Then, like self-training, the most confident predictions of
each classifier on the unlabeled data are used to iteratively construct additional labeled training data.
The co-training paradigm relies on three assumptions about the views, i.e., sufficiency, compatibility,
and conditional independence [26]. On the other hand, graph-based methods treat all the samples
(both labeled and unlabeled) as connected vertices (nodes) in a graph, aiming to connect these nodes,
in other words, to weight these node-to-node pairwise edges by similarities between the corresponding
sample pairs. Finally, minimum energy optimization is used to propagate labeling from the labeled to
the unlabeled nodes.

Although AL has led to the reduction of the human labeling burden, without sacrificing the
model’s performance [7], it is still inefficient in some situations, e.g., the acquisition of a large amount
of human annotations is impractical or not feasible at all. Thus, SSL comes in handy by minimizing
the unlabeled data that will be fed to the human annotator. Specifically, human experts are required
to label only those instances with the lowest certainty (as determined by the AL algorithm), while
the remaining instances are automatically labeled by a machine annotator (by the SSL algorithm).
Indeed, several studies have been proposed that combine AL and SSL under the same methodology.
One of the first attempts [27] was in the text classification field, where expectation maximization was
employed along with pool-based active learning. Later, Muslea et al. proposed the combination
of co-testing and co-training showing improved classification accuracy in Web pages and pictures
classification. During co-training, two classifiers are trained separately on two different views, and
only the contention points, i.e., the unlabeled instances in which the classifier disagrees the most, were
selected for human annotation. Finally, expectation maximization co-training (co-EM) was employed to
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automatically label instances that showed a low disagreement between the two classifiers. Other studies
exploited certainty-based AL with self-training aiming to manual labeling with minimum human cost
in spoken language understanding [28], natural language processing [29], sound classification [30],
disease classification [31] and cell segmentation [32]. In another study [33], the authors addressed the
problem of imbalanced training data in object detection. First, a simple object detection model was
trained using a small portion of perfect samples instead of using the entire training dataset, while the
imperfect samples were partitioned into several batches. Then, a batch-mode learning of AL and SSL
combination was employed by integrating the uncertainty and diversity criteria from the concept of
AL and the confidence criterion from that of SSL.

3. Proposed Method

The proposed method constitutes a combination of AL and SSL approaches, in order to leverage
the advantages of both techniques. A mixed self-training method is employed utilizing the entropy
of unlabeled instances, with the aim to identify the most confusing instances in the case of active
round, while in the semi-supervised round the internal learner’s distribution of probabilities for all
possible labels per each instance is exploited as a sorting mechanism for the selection of the most
confident examples.

Uncertainty-based metrics are widely deployed in the AL field as the literature suggests [34],
mainly due to their strong performance in terms of calculation efficiency and effectiveness in the
process of selecting the most confusing instances. On the other hand, in the SSL field research works
exist [8,35] proving the effectiveness of probabilistic iterative schemes. As the nature of these types
of metrics is similar, they can prove to be a robust combination for the construction of schemes such
as the proposed. Moreover, it is also known [36] that the SSL self-training technique further helps to
overpass the lack of exploration problems that occur during the AL entropy-based training process
causing the algorithms to stuck at suboptimal solutions, continuously selecting instances which do not
improve the current classifier.

The proposed algorithm can be characterized as a simple yet very effective wrapper algorithm
that can utilize a wide range of learners, assuming that they can produce probability distributions for
their predictions. A detailed presentation of the algorithm follows in the next paragraphs.

Let D denote the initial training set, consisting of a labeled set of examples L and an unlabeled set
of examples U thus defining a labeled ratio R, as in the following equation:

Labeled Ratio =
size(L)

size(L + U)
(1)

where the size(X) function returns the size of a set of instances.
Initially, a base learner (CLS) is selected and trained on L. Afterwards, a self-training scheme is

employed with the aim to augment the L using the available unlabeled examples of D. The number of
unlabeled examples utilized in each iteration is conservatively selected taking in account the size of
the initial labeled set, using also a control parameter T, setting the percentage of unlabeled examples
related to the size of the initial labeled set. The number of maximum unlabeled instances selected in
each iteration is calculated as follows:

maxUnlabPerIter = T ∗R ∗ size(D) (2)

In each iteration (i), one of the two learning approaches is employed successively. The self-training
loop terminates in a maximum number of iterations MaxIter or in the case of exhaustion of the pool of
unlabeled examples.

Starting with the SSL round, the CLS is applied on the current unlabeled set Ui and a matrix
of predictions Mpr is constructed along with the prediction probability for each unlabeled instance,
resulting in a size(Ui) x (l + 2) dimensions matrix, where l + 2 is the number of features, including the



Entropy 2019, 21, 988 6 of 28

predicted labels and the corresponding prediction probabilities. The SSL round uses machine labeling in
order to balance the expensive human effort and examination process required to label the data. The Mpr

is sorted descendingly utilizing the prediction probabilities while the rest of the maxUnlabPerIter
elements are discarded. The maxUnlabPerIter instances along with their predicted labels are stored
in Mfinal.

Following the method flow, an AL round is deployed in every other iteration. In this round,
the algorithm attempts to construct a matrix containing the entropy estimation of each unlabeled
instance EntrUi. The base learner is applied on Ui and the distribution of probabilities are exported in
matrix DistUi of dimensions size(Ui) x num_classes(D), where the num_classes(X) function returns the
number of classes of a dataset. Having produced DistUi, the calculation of entropy estimation matrix
is performed using the next formula, to compute each one of its elements (j):

Entropy j =

num_classes(D)∑
k=1

−pk ∗ log2 pk (3)

where pk denotes the probability of k class for instance j, already contained in DistUi.
Subsequently, EntrUi is sorted in descending order, as the most confusing examples, with entropy

values near one, should be placed on the top of the matrix. The top maxUnlabPerIter instances
are kept in EntrUi with the rest of them being discarded. Human expertise is utilized to label the
maxUnlabPerIter instances and a matrix containing the human-labeled instances Mfinal is constructed
with the size of maxUnlabPerIter x (l + 1), where l + 1 is the number of features, including the class.

During each iteration, the Mfinal instances are added to the current labeled set Li and removed
from the current unlabeled set Ui. The CLS is re-trained at the start of each self-training iteration in
order to be utilized again. When the termination criteria are met, the algorithm exits the self-training
loop having constructed the augmented labeled set Laugmented (≡Llast iteration). As a final step, the CLS
is trained on the augmented labeled set in order to be applied on the unknown test cases. The exact
implementation of the combination scheme is presented in Algorithm 1.

Algorithm 1: Combination Scheme

1: LOAD the dataset D and construct the labeled set L and the unlabeled set U
2: INITIALIZE the classifier CLS
3: CALCULATE the labeled ratio R = size(L)/size(L+U)
4: DEFINE the maximum number of iterations MaxIter
5: DEFINE the maximum percentage of unlabeled examples to be added in each iteration Tin respect with R
6: SET maxUnlabPerIter = T * R * size(D)
7:
8: SET i = 0
9: WHILE i<MaxIter AND size(Ui)>0: /* where U0= U */
10: Train(CLS) on the current labeled set Li /* where L0=L */
11: IF i modulo 2 == 0:
12: Classify(Ui) using CLS and construct matrix Mpr containing corresponding prediction probabilities

along with the predicted labels
13: SORT Mpr descending according to the prediction probabilities
14: STORE the top maxUnlabPerIter instances of Mpr in a matrix Mfinal

15: /* now containing the most confident instances along with their predictions */
16: ELSE:
17: Calculate the distribution_of_probabilities(Ui) and return a matrix DistUi



Entropy 2019, 21, 988 7 of 28

18: Calculate the entropy(DistUi) for each element and return a matrix EntrUi

19: SORT EntrUi descending according to their entropies
20: Label the top maxUnlabPerIter using human expertise
21: STORE the top maxUnlabPerIter instances along with their labels in a matrix Mfinal

22: /* now containing the most confusing instances along with their true labels */
23: END_IF
24: Augment(Li) by adding Mfinal instances
25: Clean(Ui) by removing Mfinal instances
26: SET i = i + 1
27: END_WHILE
28:
29: Train(CLS) using Laugmented (≡ Llast iteration)
30: LOAD the unknown test cases as Testset

31: Classify(Testset) using CLS to produce the final predictions

4. Experimentation and Results

In order to examine the efficacy of the proposed scheme, an exhaustive experimentation procedure
was followed. At first, fifty-five (55) benchmark datasets were extracted from the UCI repository [14],
related to a wide range of classification problems. To further enhance the variance and complexity
of the classification process, all datasets were partitioned and examined according to the resampling
procedure of k-fold cross-validation [37]. Following the method’s steps, each subject dataset is shuffled
and then divided into k unique data groups. By holding out one of the groups as a test set and utilizing
the rest as a train set, k new datasets are generated. The k parameter was set equal to ten, as it is
commonly selected by the majority of the literature.

The main aim of the experimentation process was to prove the superiority of the combination
scheme against the competing methods of the supervised, semi-supervised and active learning using
always the same amounts of labeled and unlabeled data under the same base learner model. In more
detail, the supervised method is trained only on the initial labeled set while the semi-supervised
rival method utilizes also the initial unlabeled set in the same manner that is also exploited in the
proposed combination scheme. Moreover, as baseline AL opponent the random sampling [7] process
is implemented in a similar way with the rest of the combination self-training procedure, also utilizing
the initial unlabeled set.

For this purpose, all training subsets were further divided into two sets, an initial labeled set and
an initial unlabeled set, using four different labeled ratios R. As the initial datasets contained a hundred
percent of the instance labels, in order to simulate the human expert labeling process, all the original
labels for the constructed unlabeled sets were stored separately in order to be retrieved whenever
the algorithm required to query the human expert. Thus, each original dataset was augmented into
forty derived datasets. In detail, the R values were set to 10%, 20%, 30%, and 40%. As regards the
proposed algorithm’s parameters, the control parameter T was set equal to 10%, while the MaxIter
parameter was empirically selected equal to 10 in order to impose a maximum of 40%, in relation to the
original dataset size, limit (can be calculated using Equation (2) multiplied by the MaxIter parameter
of unlabeled instances for selection and augmentation of the initial labeled set in the case of R = 40%.

As a comparison measure, the average classification accuracy over each R was used. In order to
draw general conclusions for the efficacy of the combination scheme, a wide range of classification
models and meta-techniques were employed, incorporated in each one of the four learning methods.
A brief description for each one of the base learners is presented:

• BagDT: In this model, the bootstrap aggregating (bagging) [38] meta-algorithm was applied
along with the use of the C4.5 decision trees [39] classifier. The bagging technique is often adopted
to reduce the variance and overfitting of a base learner and enhance its accuracy stability. The basic
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idea behind this technique is the generation of multiple training sets by uniformly sampling the
original dataset.

• 5NN: The k-nearest neighbors [40] classifier belongs to the family of lazy learning algorithms.
By examining the k closest instances in a defined feature space, it classifies a given test instance by
plurality voting on the labels of the k instances.

• Logistic: The logistic regression, also commonly referenced as the logit model, is a statistical
model that utilizes the logistic function in order to model binary dependent variables, thus fitting
very well with categorical targets. In problems where the target variable has more than two values,
multinomial logistic regression is applied [41].

• LMT: The logistic model tree [42] classification model combines logistic regression with decision
trees. The main idea behind the classifier is the use of linear regression models as leaves of a
classification tree.

• LogitBoost: This classifier is a boosting model proposed by Friedman et al. [43]. It is based
on the idea that the adaptive boosting [44] method can be thought as a generalized additive model,
thus the cost function of logistic regression can be applied.

• RF: One of the most robust ML learners is the random forests [45] model, which is capable of
tackling regression and classification problems. Its operation is based on the construction of multiple
decision trees using random subsamples of the original feature space. The aggregation of the results
is achieved via majority voting. Due to its inner architecture, it is known to efficiently handle the
overfitting phenomena.

• RotF: The rotation forest model constitutes an ensemble [46] classifier proposed by Rodriguez
and Kuncheva [47]. Following the flow of this algorithm, the initial feature space is divided in random
subspaces. The default feature extraction algorithm applied to create the subspaces is the principal
component analysis (PCA) [48], aiming to increase the diversity amongst the base learners.

• XGBoost: The extreme gradient boosted trees [49] algorithm, is a powerful implementation
of gradient boosted decision trees. Under this boosting [50] scheme, a number of trees are built
sequentially with each time the goal to reduce errors produced from the previous tree, thus each tree
is fitted on the gradient loss of the previous step. The final decision is produced from the weighted
voting of the trees. The XGBoost algorithm is a very scalable algorithm that has shown to perform very
well on large datasets or sparse datasets utilizing parallel and distributed execution methods.

• Voting (RF, RotF, XGBoost): As a last effort to further explore the potential of more complex
classification models in the combination scheme, the construction of an ensemble classifier by majority
voting the results of three of the most robust models: RF, RotF, and XGBoost was put forward.
As regards the extraction of probabilities, the average of the exported probabilities for the three
classifiers was considered as the best option.

The experimental results in terms of classification accuracy for each base learner are organized in
Tables 1–5 and supplementary material Tables S1–S4, categorized according to the four label ratios
(10%, 20%, 30%, 40%) for each learning method. The bold values in the tables indicate the highest
accuracy for the corresponding dataset and the subject labeled ratio.

The superiority of the proposed combination scheme regarding the classification accuracy is
prominent. The following important observations are derived from the accuracy tables:

• The proposed combination method outperforms all other four learning methods in all four labeled
ratios and for all the nine base learners used as control methods, in terms of average accuracy.
This argument is also validated in Figure 3, where the comparisons are visually assembled and
a progressive picture of the performance of the two dominant methods is presented as the R
increases. The SL method was also included as a baseline performance metric.

• It is observed by the accuracy tables that the proposed method steadily produces significantly
more wins on each individual dataset through all the experiments carried out.
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Following the accuracy examination, the Friedman aligned ranks test [51] was conducted.
In Tables 6–14, the results of the statistical tests for each one of the nine base learners divided into the
four labeled ratios used, are presented. These lead to the following assumptions:

• The non-parametric tests assess the null hypothesis that the means of the results of two or more
of the compared methods are the same by calculating the related p-value. This hypothesis can
be rejected for all the nine algorithms and for all labeled ratios as all calculated p-values are
significantly lower than the significance level of a = 0.10.

• Moreover, the Friedman rankings confirm that for all nine base learners and regardless of the
labeled ratio, the proposed combination scheme ranks first ahead of all other learning methods in
coincidence with the accuracy experimental results.
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Since the Friedman test null hypothesis was rejected, the Holm’s [52] post-hoc statistical test was
also applied with an alpha value of 0.10. The aim of the Holm’s test is to detect the specific differences
between the combination scheme and the other learning methods, thus the null hypothesis under
evaluation is that the mean of the results of the proposed method and against each other group is
equal (compared in pairs). The post-hoc results are also presented in the corresponding ranking test
tables for each one of the base learners. By observing the adjusted p-values of the Holm’s tests, it is
concluded that:

• The proposed combination method performs significantly better on 105 of the total 108 compared
method variations for the nine base learners over the four labeled ratios.

• The AL methods for the Logistic, the LMT and the LogitBoost classifiers accept the mean significant
difference test for one label ratio each, 30%, 20%, 40% accordingly. However, the adjusted p-values
show small differences over the alpha of 0.10.

Summarizing the test results, both Friedman Aligned Ranks tests and Holm’s one vs all comparison
tests verify the superior performance of the proposed method over a wide range of scenarios and
algorithm comparisons.

To better observe the individual results regarding the combination schemes and the role of the
base learners incorporated, the average accuracies were plotted in Figure 4. The outcome was as
expected the following: The ensemble voting (RF, RotF, XGBoost) classifier outperforms the rest models
in all labeled ratios. As the first indication of such an outcome, the improved prediction probabilities
derived from the averaging of the three classifier probabilities, on which the combination scheme relies,
it would be a promising starting point for seeking a robust proof to strictly explain the performance
boost. Thus, on the one hand, the most confusing unlabeled instances, through the entropy calculation,
and on the other hand, the most confident unlabeled instances, through the distribution of prediction
probabilities, are detected using the distribution of prediction probabilities. Such behaviors seem to
also emerge in other relevant ensemble wrapper algorithms [53].
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Table 1. Classification accuracies of bagging-decision trees (BagDT) on four different ratios.

R = 10% R = 20% R = 30% R = 40%

Dataset
Method

Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination

anneal 88.866 88.524 93.211 94.660 95.210 95.988 96.770 99.107 96.659 96.547 97.551 98.663 97.773 97.215 98.326 98.885
arrhythmia 58.425 57.981 62.614 63.285 65.063 63.314 68.807 69.691 70.140 70.589 69.483 70.812 70.348 69.498 73.242 73.464
audiology 52.253 50.474 56.166 56.640 61.087 61.482 65.593 68.636 65.138 64.684 73.004 74.308 71.660 70.791 75.178 80.079

autos 45.381 44.286 50.167 48.286 52.119 56.167 61.000 55.619 60.976 58.143 63.405 66.381 65.405 59.048 69.738 72.690
balance-scale 73.103 75.832 74.560 75.996 76.487 75.540 80.476 81.608 81.129 78.571 81.941 81.764 83.372 78.093 83.518 83.372
breast-cancer 69.926 70.628 70.603 69.544 69.963 70.616 70.603 70.961 70.961 70.616 70.591 71.675 71.293 70.616 70.948 74.803

bridges-version1 45.727 45.727 45.727 45.727 53.273 57.909 57.273 56.909 60.000 60.727 60.000 62.455 61.000 61.091 64.909 62.909
bridges-version2 43.000 43.000 43.000 43.000 48.455 51.091 59.818 53.909 60.000 64.000 63.091 62.818 62.091 59.182 63.636 62.000

clevalend 78.215 76.559 75.849 75.559 73.247 74.570 79.204 78.194 79.516 76.839 80.462 81.484 83.151 78.516 80.495 81.806
cmc 48.066 48.329 49.356 49.691 50.302 51.455 54.307 51.260 50.576 52.339 51.527 53.154 53.220 54.100 52.674 53.428

column_2C 76.452 75.806 75.806 80.645 80.323 80.323 80.323 84.516 81.613 80.968 82.258 82.903 82.258 82.258 82.903 83.226
column_3C 79.032 79.032 77.419 77.742 79.355 78.710 79.677 83.226 80.323 80.645 78.065 83.871 79.355 79.032 82.258 82.903
credit-rating 84.783 83.768 85.217 85.362 84.638 84.783 85.217 85.507 85.652 85.507 85.652 86.667 85.072 85.942 86.087 86.232

cylinder-bands 58.333 57.037 57.222 59.444 59.630 60.000 59.259 60.556 58.889 58.704 58.148 59.074 60.556 57.963 58.519 59.259
dermatology 71.089 70.578 82.770 87.447 84.977 83.348 91.036 95.931 91.006 91.029 93.483 95.113 93.461 89.647 92.658 96.742

ecoli 67.282 68.173 76.471 76.194 79.144 76.185 80.936 81.230 80.936 80.963 81.827 83.324 80.348 79.162 83.324 83.316
flags 50.053 48.553 48.526 49.921 51.105 51.079 52.026 52.579 55.658 52.184 51.132 56.763 56.237 52.605 55.289 52.711

german_credit 70.500 69.200 69.300 70.800 70.900 69.200 69.500 71.400 69.500 70.500 74.000 74.000 73.600 71.800 72.500 73.000
glass 50.498 47.684 51.991 53.810 64.524 59.848 57.468 65.952 60.303 60.779 67.727 67.338 69.113 64.372 67.229 69.113

haberman 72.538 71.591 71.559 70.882 72.860 73.204 70.882 73.860 71.871 72.538 72.204 73.194 71.871 71.538 71.839 71.237
heart-statlog 72.963 71.481 74.444 75.185 75.556 77.037 78.148 80.741 77.778 76.667 80.370 84.074 79.630 77.037 82.222 82.963

hepatitis 80.083 81.958 79.375 81.917 78.792 80.083 80.000 81.875 82.542 82.542 79.958 79.417 82.542 80.000 78.000 79.875
horse-colic 78.551 78.544 82.605 84.219 84.775 83.138 82.868 85.308 83.401 82.590 84.219 85.300 83.949 85.030 85.571 85.841

hungarian-heart 81.000 78.632 78.310 82.391 81.023 80.701 78.276 78.966 78.621 78.644 78.977 83.057 76.897 76.885 81.655 79.310
hypothyroid 98.357 98.199 98.808 99.602 99.072 98.887 99.046 99.602 99.099 99.099 99.417 99.549 99.285 99.311 99.443 99.576
ionosphere 75.802 77.802 86.643 84.667 88.040 88.032 88.333 92.317 86.619 86.357 91.183 92.317 90.611 89.746 90.611 92.032

iris 72.667 77.333 84.667 86.667 88.000 89.333 90.667 90.667 93.333 93.333 91.333 92.000 93.333 93.333 93.333 92.667
kr-vs-kp 95.025 95.244 96.340 98.499 97.027 97.310 98.091 99.249 97.998 98.216 98.748 99.343 98.998 98.811 99.218 99.343

labor 66.333 66.333 66.333 66.333 65.667 70.333 70.000 66.333 70.000 73.667 77.000 87.667 77.000 79.000 78.667 79.000
letter 77.955 77.235 81.320 84.490 83.775 82.470 86.570 89.840 86.570 85.770 89.165 92.175 88.335 86.375 90.280 92.620

lymphography 65.476 66.143 68.952 67.619 77.571 72.381 71.571 71.667 72.905 70.857 75.571 79.048 74.286 76.238 77.619 79.667
mushroom 99.163 99.323 99.729 100.000 99.877 99.889 99.914 100.000 99.951 99.902 99.975 100.000 99.963 99.975 99.975 100.000
optdigits 89.021 86.174 90.783 92.829 92.189 90.036 93.043 95.979 92.936 90.587 93.719 95.712 94.288 90.854 94.555 95.498

page-blocks 95.414 95.468 95.980 97.058 96.236 95.926 96.547 97.113 96.620 96.583 97.369 97.241 97.168 97.004 97.150 97.168
pendigits 93.122 92.849 94.796 96.516 95.515 94.860 96.061 97.862 96.179 96.006 96.871 98.335 96.880 96.243 97.362 98.071

pima_diabetes 71.880 73.055 75.135 74.479 75.911 73.970 74.747 73.445 75.270 75.261 73.841 76.307 76.309 76.044 74.498 75.930
postoperative 65.556 65.556 65.556 65.556 67.778 71.111 64.444 66.667 62.222 67.778 66.667 67.778 64.444 67.778 65.556 67.778

primary-tumor 29.474 30.339 35.954 34.795 35.651 34.750 38.610 36.248 38.610 34.198 37.745 37.469 40.401 35.677 41.578 38.930
segment 90.736 90.779 91.472 94.329 93.420 93.117 94.372 97.229 93.853 94.502 95.455 97.359 94.589 94.892 96.017 97.186

sick 97.640 97.587 97.932 98.648 98.038 98.118 98.117 98.754 98.118 98.144 98.223 98.728 98.277 98.144 98.595 98.621
solar-flare 67.914 64.807 68.439 68.164 69.790 68.941 70.081 70.322 70.115 70.538 71.532 71.260 70.336 71.536 71.448 71.905

sonar 59.524 60.976 64.881 60.548 66.833 64.429 68.714 67.881 69.214 70.595 74.048 71.119 70.714 69.214 76.476 75.024
soybean 64.241 61.624 75.980 70.119 79.211 75.835 84.633 86.091 84.486 82.564 87.551 90.635 86.520 84.318 91.355 93.116

spambase 89.937 90.285 90.545 92.827 91.328 91.784 92.349 94.305 92.132 92.827 92.805 94.631 92.741 92.067 93.219 94.610
spect 61.316 61.494 61.864 63.367 68.506 65.344 66.099 66.902 66.717 71.978 73.390 80.342 79.186 74.895 77.025 76.084

sponge 86.250 86.250 86.250 86.250 91.071 92.500 92.500 92.500 92.500 92.500 92.500 92.500 93.750 92.500 92.500 93.750
tae 32.375 34.375 40.417 38.375 38.333 36.958 38.333 41.000 42.958 41.708 40.333 52.250 44.375 42.333 53.583 54.875

tic-tac-toe 70.254 70.985 74.221 76.620 78.189 74.326 80.895 83.091 82.467 76.404 84.864 86.951 84.444 80.684 89.457 91.864
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Table 1. Cont.

R = 10% R = 20% R = 30% R = 40%

Dataset
Method

Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination

vehicle 64.189 62.289 67.150 67.615 66.916 67.134 70.445 69.618 70.221 70.091 73.175 71.161 73.060 70.454 72.108 72.696
vote 94.049 94.952 94.276 95.174 95.412 95.418 94.049 96.321 95.412 95.640 96.327 95.872 95.640 95.645 96.781 96.327

vowel 48.283 49.192 52.424 54.040 60.808 60.707 67.980 70.202 70.707 65.758 74.545 77.172 73.939 68.485 80.303 83.737
waveform 78.020 75.600 79.180 79.700 80.300 77.540 79.160 81.340 79.160 78.380 81.200 81.260 80.700 78.160 80.880 81.740

wine 74.314 78.203 80.425 84.935 88.758 85.425 91.601 93.268 90.458 89.379 93.301 96.078 92.157 91.601 92.712 94.379
wisconsin-breast 91.986 92.418 92.416 95.422 94.559 93.704 94.994 96.422 95.565 94.277 95.565 95.994 94.996 95.277 95.137 96.137

zoo 57.455 57.455 57.455 57.455 75.273 75.273 78.273 85.182 81.273 82.273 86.273 88.273 84.273 86.273 88.273 93.182
Average 71.270 71.158 73.611 74.383 76.216 75.847 77.631 78.817 78.125 77.863 79.614 81.348 79.913 78.623 81.062 81.867

Table 2. Classification accuracies of random forests (RF) on four different ratios.

R = 10% R = 20% R = 30% R = 40%

Dataset
Method

Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination

anneal 83.740 83.965 85.414 87.976 87.418 87.194 90.979 92.203 90.869 90.087 92.985 93.762 92.875 92.427 93.871 94.871
arrhythmia 56.638 56.633 60.406 60.623 59.720 58.841 60.396 64.599 59.285 58.184 63.275 64.821 62.377 59.517 63.937 65.488
audiology 42.490 36.739 53.518 45.652 56.700 54.466 63.794 59.308 61.976 63.241 72.134 68.617 68.123 67.767 73.874 73.379

autos 48.833 49.714 52.119 51.238 56.929 57.452 65.381 66.286 68.286 69.262 70.667 74.595 68.738 69.738 77.976 79.476
balance-scale 78.067 77.588 79.027 80.461 79.519 78.241 79.841 80.161 82.084 79.524 82.087 81.935 82.081 80.806 81.910 81.129
breast-cancer 69.249 70.283 67.131 72.044 67.180 68.559 64.310 68.276 66.773 68.153 67.192 66.441 67.106 69.212 64.754 68.596

bridges-version1 44.636 44.636 44.636 44.636 44.636 38.000 46.545 44.727 46.636 44.545 52.545 45.545 51.545 45.545 52.273 55.000
bridges-version2 41.818 41.818 41.818 41.818 45.545 37.000 49.273 46.455 48.364 40.000 53.182 45.545 53.273 47.545 53.182 52.273

clevalend 76.849 75.172 79.505 78.817 80.161 79.495 83.430 81.108 81.086 79.774 82.806 81.774 82.452 82.108 83.774 81.806
cmc 48.881 48.406 50.102 48.401 49.964 51.322 51.798 50.239 51.525 51.730 50.914 52.544 51.116 52.000 50.908 52.200

column_2C 77.097 76.774 77.419 79.355 80.000 79.677 80.968 81.290 81.935 81.935 83.548 83.871 83.871 81.613 82.581 85.484
column_3C 77.742 79.032 79.677 82.258 82.903 82.258 84.516 82.903 82.581 83.226 81.290 84.839 81.935 82.258 81.290 84.194
credit-rating 82.319 82.464 83.478 85.217 83.768 84.203 84.493 85.797 83.768 84.203 84.928 85.362 84.638 84.348 84.783 86.087

cylinder-bands 59.259 58.519 63.333 64.259 65.185 59.444 67.778 65.741 67.593 60.185 70.185 70.000 67.222 60.000 71.296 70.185
dermatology 78.709 79.797 86.877 92.598 90.961 89.595 94.805 95.616 93.716 93.724 95.090 96.456 95.638 94.264 93.986 96.179

ecoli 74.091 72.906 77.674 78.574 80.339 77.968 84.189 84.777 84.189 80.651 84.225 85.695 83.307 84.216 85.410 86.292
flags 46.447 41.789 44.395 48.421 52.763 38.711 52.711 51.053 54.737 45.921 50.132 52.184 54.289 47.000 57.789 52.132

german_credit 72.900 72.200 73.300 72.700 74.000 73.600 73.900 75.600 73.900 73.700 75.300 75.300 74.900 71.600 74.500 75.400
glass 55.216 53.333 57.987 55.216 66.385 66.840 68.701 68.247 68.723 69.156 71.948 75.714 72.381 67.706 74.762 74.286

haberman 62.043 65.656 66.344 64.258 68.591 69.903 67.269 68.581 66.978 67.634 66.355 69.237 67.022 68.989 66.301 66.677
heart-statlog 74.074 75.185 74.815 77.037 78.519 78.519 78.148 81.111 79.259 78.519 81.481 83.333 80.741 78.889 82.222 81.852

hepatitis 80.667 80.708 80.125 83.792 78.167 79.458 81.250 83.125 82.000 82.542 78.667 84.458 81.917 81.875 78.667 85.125
horse-colic 79.069 79.595 79.857 82.590 84.227 83.664 83.949 84.767 83.686 82.057 84.219 85.578 83.941 85.856 84.767 86.119

hungarian-heart 79.276 79.264 79.989 82.000 83.046 83.046 81.000 82.011 81.345 81.345 80.287 81.000 81.644 81.655 81.299 80.966
hypothyroid 95.733 95.520 96.660 99.258 97.880 97.429 98.569 99.444 98.330 98.039 98.966 99.391 98.993 98.596 98.914 99.364
ionosphere 81.802 80.381 86.929 88.603 90.603 89.746 90.889 92.889 91.460 90.603 92.889 93.460 91.746 91.746 93.175 94.032

iris 83.333 83.333 88.000 90.000 93.333 92.000 96.000 94.667 96.000 95.333 96.000 94.667 95.333 95.333 94.667 95.333
kr-vs-kp 95.776 94.900 96.120 98.623 96.778 96.621 97.497 99.280 97.559 97.465 98.248 99.406 98.154 98.216 98.937 99.312

labor 65.000 65.000 65.000 65.000 73.667 69.667 82.000 80.333 82.000 77.000 84.000 82.667 84.000 73.333 82.667 82.333
letter 84.795 84.210 87.940 90.915 89.845 89.625 92.215 95.300 92.215 91.870 94.050 96.290 93.415 92.955 95.010 96.435

lymphography 68.238 67.571 73.619 75.000 74.190 76.286 77.619 76.238 74.333 76.333 81.667 80.333 79.048 77.619 85.143 85.095
mushroom 99.741 99.766 99.914 100.000 99.963 99.963 100.000 100.000 99.988 99.988 99.975 100.000 100.000 99.988 100.000 100.000
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Table 2. Cont.

R = 10% R = 20% R = 30% R = 40%

Dataset
Method

Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination

optdigits 94.573 94.431 95.765 97.473 96.406 96.050 97.011 98.327 97.135 96.762 97.438 98.327 97.438 96.886 97.865 98.363
page-blocks 95.870 95.797 96.218 97.351 96.492 96.455 96.675 97.497 96.748 96.766 97.004 97.552 96.985 96.912 97.479 97.533

pendigits 97.143 96.980 97.607 98.463 98.008 97.844 98.317 99.236 98.372 98.353 98.772 99.245 98.672 98.435 98.917 99.172
pima_diabetes 74.354 72.404 74.231 74.612 75.656 74.614 75.921 76.304 77.092 76.832 75.930 74.879 75.531 75.138 74.624 76.048
postoperative 68.889 68.889 68.889 68.889 62.222 66.667 62.222 67.778 63.333 64.444 64.444 65.556 60.000 65.556 63.333 63.333

primary-tumor 33.601 34.768 37.424 33.592 37.406 38.592 43.039 40.383 43.039 40.348 42.736 43.913 41.551 40.642 43.627 43.039
segment 93.333 93.463 94.372 96.537 95.281 95.238 95.844 97.965 95.628 95.671 96.970 98.009 96.537 96.364 97.403 98.225

sick 96.527 96.394 96.659 98.595 97.455 97.455 97.773 98.542 97.667 97.534 97.958 98.462 97.905 97.826 98.144 98.436
solar-flare 66.769 65.990 69.098 69.375 70.512 70.059 70.131 70.464 70.073 70.037 69.758 71.550 70.041 69.681 70.513 72.590

sonar 62.024 64.024 67.333 69.643 69.238 69.738 75.929 79.333 74.976 75.976 76.929 81.238 79.786 75.952 82.238 82.690
soybean 67.199 64.429 76.281 75.251 79.066 77.006 85.211 87.990 86.816 84.474 89.744 92.822 88.286 88.572 91.360 93.110

spambase 92.871 92.566 93.088 94.588 93.523 93.305 94.197 95.544 94.305 94.110 94.675 95.675 94.523 94.327 94.936 95.588
spect 69.270 69.825 68.522 69.270 72.395 72.133 71.284 78.837 75.582 71.948 78.159 79.193 80.196 77.765 79.895 77.381

sponge 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 93.750 93.750 92.500 93.750
tae 36.375 37.750 41.750 41.667 39.708 37.042 41.667 43.542 40.375 39.083 49.042 49.625 46.333 45.042 56.333 57.667

tic-tac-toe 76.512 74.942 78.396 83.296 81.735 80.171 84.343 91.544 84.240 81.110 88.515 95.510 89.764 82.156 91.549 96.658
vehicle 65.132 64.311 70.339 69.151 71.761 70.104 70.227 73.167 70.340 70.697 74.115 73.527 71.992 71.169 74.591 73.161

vote 94.503 94.276 94.958 96.327 95.196 94.503 94.947 96.332 95.412 95.180 96.786 96.332 96.559 96.327 97.014 96.781
vowel 34.444 33.737 44.848 42.727 56.566 55.657 71.313 71.111 71.010 69.899 84.545 88.788 80.808 80.000 91.616 96.162

waveform 83.660 82.940 84.340 83.920 84.300 84.140 84.140 84.620 84.140 83.860 84.440 84.840 85.100 83.960 85.220 84.840
wine 86.046 86.601 85.980 94.412 94.379 96.601 95.000 98.301 96.111 96.667 97.222 98.333 98.333 97.222 97.222 98.301

wisconsin-breast 94.414 94.986 95.130 97.280 96.135 95.418 96.420 96.851 96.706 96.565 96.280 96.565 95.994 96.280 96.280 96.422
zoo 75.273 75.273 75.273 75.273 79.273 77.273 79.273 88.182 85.273 79.273 87.273 93.182 88.273 84.273 87.273 92.182

Average 73.015 72.730 75.130 76.137 77.238 76.316 79.047 80.118 79.274 78.255 80.954 81.826 80.694 79.436 81.901 82.701

Table 3. Classification accuracies of rotation forest (RotF) on four different ratios.

R = 10% R = 20% R = 30% R = 40%

Dataset
Method

Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination

anneal 85.185 86.075 86.859 91.080 88.206 91.541 93.211 94.206 93.432 93.543 95.104 96.215 94.878 94.988 96.105 96.880
arrhythmia 59.271 64.377 61.512 66.357 67.937 67.705 67.266 70.130 69.266 68.150 69.053 71.242 68.159 72.353 72.135 71.469
audiology 51.759 51.759 57.589 58.379 65.929 63.775 67.312 70.810 65.949 67.292 72.095 74.783 70.296 70.771 76.482 79.644

autos 47.333 45.405 54.143 52.262 53.595 59.405 66.333 60.857 66.405 68.214 69.690 69.762 68.738 72.643 75.595 72.643
balance-scale 83.669 83.513 85.261 84.470 84.956 85.750 86.892 86.879 87.837 87.046 87.673 88.966 88.490 89.601 89.913 91.027
breast-cancer 64.335 66.096 69.224 67.180 69.286 70.320 69.963 70.345 73.042 72.709 73.067 73.448 69.224 69.594 69.544 72.007

bridges-version1 50.455 50.455 50.455 50.455 56.091 53.182 58.091 51.091 59.273 65.636 60.182 63.818 58.182 64.727 67.727 60.091
bridges-version2 48.455 48.455 48.455 48.455 54.273 51.273 62.909 57.818 54.727 58.273 58.182 61.818 57.091 58.364 64.909 66.818

clevalend 74.172 77.527 76.892 79.462 81.817 79.860 82.161 81.151 81.151 81.806 82.129 82.194 83.462 82.473 82.817 84.441
cmc 49.764 49.968 49.492 49.899 49.492 52.472 51.048 51.661 51.388 53.764 54.780 52.064 52.677 54.035 52.882 53.899

column_2C 80.645 80.645 78.710 82.258 79.032 80.323 83.548 83.226 81.613 80.645 81.613 82.903 82.258 82.581 83.226 84.516
column_3C 80.000 74.839 80.000 82.258 79.032 80.645 81.613 86.452 80.323 80.000 81.613 86.774 83.871 84.839 84.194 83.871
credit-rating 83.478 83.188 84.493 85.072 85.072 85.072 84.638 85.507 85.507 85.797 86.522 86.232 85.072 85.652 87.101 86.957

cylinder-bands 60.000 61.667 63.519 63.889 64.444 63.519 69.815 68.333 70.000 69.259 69.815 75.000 70.556 68.148 76.852 75.185
dermatology 85.008 84.452 92.342 95.901 95.631 94.272 95.368 97.290 94.827 94.264 96.186 98.101 96.742 96.734 97.830 97.553

ecoli 75.303 73.529 75.276 83.307 80.633 79.750 83.913 86.007 83.913 83.351 85.071 86.292 83.601 84.198 85.107 87.460
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Table 3. Cont.

R = 10% R = 20% R = 30% R = 40%

Dataset
Method

Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination

flags 50.132 52.158 50.184 51.579 50.658 51.605 55.289 53.263 58.316 54.789 55.763 57.737 56.316 53.763 57.263 60.026
german_credit 68.500 71.500 70.900 72.300 73.200 73.500 73.200 73.300 73.200 74.100 74.000 73.700 72.900 73.900 74.100 76.000

glass 51.407 54.610 57.511 56.039 63.528 63.528 63.506 70.563 61.710 63.203 67.792 69.675 64.004 64.978 70.519 70.498
haberman 69.258 69.935 71.860 71.527 72.505 73.161 71.559 74.849 72.860 72.516 74.516 73.538 73.849 73.839 70.258 72.860

heart-statlog 76.296 72.593 79.630 77.407 80.000 78.148 79.630 80.370 79.259 80.000 82.222 80.741 79.259 78.889 82.222 80.741
hepatitis 82.542 79.833 80.625 77.917 82.625 80.708 82.500 82.583 82.500 84.500 80.583 82.542 81.167 82.500 80.667 87.042

horse-colic 77.155 77.147 78.544 79.324 82.628 83.431 82.583 83.393 82.853 83.408 80.435 83.964 83.408 84.227 83.979 85.045
hungarian-heart 81.310 82.333 82.667 82.632 83.345 83.368 79.632 80.989 82.034 80.023 81.644 82.345 81.310 82.356 82.011 81.333

hypothyroid 96.873 97.270 97.615 99.496 98.728 98.648 98.728 99.603 98.807 98.304 98.781 99.364 99.073 98.781 99.126 99.417
ionosphere 80.095 82.087 89.468 90.357 89.190 90.881 90.889 94.325 91.468 92.032 91.484 94.603 91.460 92.024 92.897 94.032

iris 85.333 85.333 94.000 88.000 92.667 93.333 94.000 94.667 96.667 95.333 94.667 96.000 97.333 95.333 96.000 96.000
kr-vs-kp 94.932 94.647 96.840 98.499 97.090 96.933 98.154 99.156 97.467 97.245 98.717 99.031 97.248 97.935 98.593 99.343

labor 72.667 72.667 72.667 72.667 73.667 66.333 82.333 80.667 82.333 77.000 78.333 85.667 78.333 78.667 84.333 90.000
letter 81.565 81.565 84.680 88.220 87.230 87.190 89.825 93.270 89.825 89.410 92.015 94.575 91.635 90.890 93.400 95.260

lymphography 69.619 71.714 71.714 73.048 74.905 78.381 74.238 79.000 71.619 78.333 80.333 77.143 82.381 77.619 81.000 83.143
mushroom 99.643 99.643 99.889 100.000 99.914 99.914 99.926 100.000 99.951 99.926 99.951 100.000 99.951 99.938 99.963 100.000
optdigits 92.740 92.544 94.644 95.819 94.911 95.071 95.463 97.189 95.925 95.463 96.495 97.740 96.335 96.139 97.153 97.473

page-blocks 95.980 95.432 96.072 97.296 96.528 96.254 96.766 97.460 96.583 96.711 97.040 97.606 96.930 97.058 97.205 97.552
pendigits 96.889 96.934 97.626 98.699 97.771 97.926 98.535 99.045 98.590 98.399 98.826 99.118 98.754 98.672 98.917 99.118

pima_diabetes 72.011 72.927 74.219 74.352 74.222 76.300 77.218 76.174 76.174 74.614 75.005 76.304 75.138 74.610 75.140 75.781
postoperative 64.444 64.444 64.444 64.444 70.000 66.667 64.444 66.667 70.000 70.000 66.667 68.889 64.444 67.778 66.667 70.000

primary-tumor 32.701 30.945 36.881 38.012 37.415 38.333 41.854 42.709 41.854 40.963 39.528 42.442 43.681 42.478 43.351 42.166
segment 93.463 93.853 94.545 95.411 95.411 94.459 95.887 97.965 96.190 96.104 97.186 97.965 96.494 96.450 97.143 98.139

sick 97.720 97.190 97.905 98.621 98.091 98.038 98.144 98.860 98.224 97.985 98.330 98.913 98.383 98.250 98.701 99.046
solar-flare 66.657 68.468 70.017 71.152 70.766 70.821 70.541 71.115 70.724 70.360 70.817 72.454 70.328 71.674 71.551 73.115

sonar 62.429 64.952 67.286 64.429 67.405 67.286 70.143 75.429 73.548 73.571 79.786 73.071 76.929 79.286 81.333 79.310
soybean 72.594 74.205 81.831 83.282 86.087 85.789 89.156 92.093 88.574 88.568 92.822 93.849 90.774 91.213 93.129 94.286

spambase 91.632 91.828 91.958 93.740 92.806 93.306 93.414 95.088 93.306 93.892 94.088 95.305 93.784 93.697 94.762 95.196
spect 67.219 67.603 68.166 68.137 72.349 72.025 73.351 82.388 74.594 73.515 77.094 74.402 74.827 79.224 77.171 77.828

sponge 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 91.071 92.500 93.750 92.500
tae 33.708 39.042 44.375 43.042 41.750 37.708 46.333 41.000 44.333 48.333 50.333 56.333 47.583 50.250 56.875 56.875

tic-tac-toe 74.637 74.536 76.724 80.484 80.586 81.109 83.813 89.148 84.766 83.409 89.038 94.677 89.878 88.315 93.940 96.453
vehicle 69.979 66.085 71.535 71.625 73.889 71.406 75.892 76.714 73.641 72.580 74.711 77.076 75.416 72.464 75.305 76.134

vote 91.723 91.047 93.108 94.937 95.645 94.271 94.963 95.180 94.244 95.190 95.634 96.327 96.327 94.952 96.559 96.559
vowel 45.152 45.657 56.667 57.980 67.374 62.222 74.646 78.384 77.374 73.636 84.747 88.889 84.141 82.121 91.313 95.253

waveform 81.320 81.820 82.480 82.200 82.180 83.140 82.700 83.340 82.700 83.820 83.160 82.940 83.320 84.080 83.180 83.880
wine 87.680 86.536 87.157 96.078 90.425 92.157 95.556 94.967 93.333 93.856 97.190 96.634 94.412 96.078 96.078 96.634

wisconsin-breast 95.418 95.277 95.994 97.137 96.277 96.422 96.565 96.994 96.849 96.708 96.708 96.851 96.563 96.565 96.708 97.280
zoo 70.455 70.455 70.455 70.455 81.273 78.273 81.364 87.273 83.273 83.273 88.273 93.091 88.273 89.273 89.273 92.182

Average 73.913 74.205 76.356 77.264 78.418 78.171 80.169 81.263 80.306 80.424 81.636 82.975 81.213 81.645 83.163 83.963
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Table 4. Classification accuracies of XGBoost on four different ratios.

R = 10% R = 20% R = 30% R = 40%

Dataset
Method

Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination

anneal 92.759 92.648 95.100 96.994 96.323 96.101 96.881 98.885 96.993 96.881 97.437 98.884 97.438 97.105 97.772 98.884
arrhythmia 55.531 56.420 63.092 61.947 63.285 64.831 65.498 68.155 65.498 68.372 68.174 70.372 67.493 67.053 70.357 72.150
audiology 48.261 45.217 52.668 50.119 57.134 58.024 62.905 61.107 63.360 65.534 68.103 69.032 66.364 67.668 72.964 76.976

autos 46.333 44.857 51.143 50.738 58.952 55.548 65.357 65.310 64.476 64.429 70.643 77.571 72.690 72.167 77.952 78.976
balance-scale 76.792 75.202 77.747 79.813 80.632 80.952 82.396 81.126 82.568 82.401 83.689 83.039 83.039 83.835 84.944 83.041
breast-cancer 65.788 64.704 66.084 67.488 67.167 66.810 66.392 67.857 65.000 67.475 66.392 68.140 66.047 68.842 65.382 71.613

bridges-version1 42.818 42.818 42.818 42.818 44.818 47.636 54.455 49.545 60.909 57.182 54.364 59.000 56.364 54.273 57.000 60.909
bridges-version2 43.545 43.545 43.545 43.545 42.727 43.727 55.273 54.091 60.182 57.273 56.182 58.182 57.182 56.273 58.000 67.909

clevalend 71.172 72.516 75.849 73.796 79.548 80.860 80.785 80.505 79.484 80.473 84.430 80.473 82.796 81.140 82.441 81.785
cmc 49.220 49.488 50.776 50.576 51.253 52.951 53.358 54.312 53.563 54.987 54.442 55.052 53.966 54.848 54.304 54.852

column_2C 76.129 76.452 76.129 80.645 81.613 80.968 80.323 83.548 79.677 80.968 81.613 81.935 85.806 80.000 83.226 83.226
column_3C 79.032 77.419 76.129 78.065 81.290 81.290 80.645 81.613 80.645 80.323 79.355 82.581 80.323 82.903 80.968 84.839
credit-rating 82.174 82.029 83.478 83.478 83.188 84.058 83.913 85.652 84.203 84.928 84.638 86.812 84.783 85.072 86.522 86.522

cylinder-bands 65.926 63.333 70.370 69.444 71.667 71.667 71.852 74.630 75.741 74.815 77.963 78.148 75.000 74.444 79.259 80.000
dermatology 83.889 85.000 89.872 92.342 93.183 92.102 94.820 96.749 94.820 94.002 95.375 96.194 94.827 94.550 95.375 97.020

ecoli 68.146 67.273 70.865 76.203 75.000 75.000 81.836 82.121 81.836 80.339 81.827 84.804 80.321 81.221 82.727 84.528
flags 49.132 48.632 48.579 51.053 48.632 50.711 52.237 54.711 53.237 51.632 53.632 49.000 53.658 50.579 59.737 56.289

german_credit 68.900 68.800 70.100 70.700 72.500 71.500 73.500 73.800 73.500 71.900 72.800 73.900 73.200 73.800 74.100 75.100
glass 46.818 46.364 54.264 55.130 62.121 60.714 64.978 63.117 64.545 65.952 66.342 67.424 67.359 67.338 69.524 72.381

haberman 66.591 67.269 69.290 71.903 69.247 69.570 67.645 68.914 68.290 67.602 67.333 70.280 70.925 69.935 66.656 67.312
heart-statlog 71.852 72.963 74.444 74.074 75.926 74.074 75.556 75.185 75.926 76.296 75.926 80.370 74.815 74.444 80.370 78.519

hepatitis 74.042 73.417 76.000 77.333 74.792 75.333 79.292 77.333 80.542 80.583 77.250 80.000 77.958 78.000 77.208 81.167
horse-colic 75.788 75.556 80.165 79.092 79.617 80.721 81.809 82.875 79.610 80.691 81.239 84.767 80.976 80.698 81.246 85.586

hungarian-heart 80.989 79.644 79.310 81.977 80.667 81.690 79.966 78.563 78.931 78.931 76.862 78.609 79.943 79.230 79.943 80.264
hypothyroid 98.304 98.304 98.436 99.470 98.781 98.754 99.046 99.682 99.046 99.046 99.311 99.682 99.284 99.205 99.523 99.655
ionosphere 80.659 80.659 84.635 84.937 86.643 86.365 88.603 90.333 87.183 85.190 88.611 92.032 91.175 88.317 90.897 92.032

iris 84.667 82.000 86.667 91.333 92.000 91.333 94.667 93.333 94.667 93.333 94.667 95.333 94.667 94.667 96.000 96.000
kr-vs-kp 96.339 96.151 97.059 98.561 97.685 97.434 98.279 99.437 98.310 98.216 98.873 99.500 98.811 98.780 99.062 99.343

labor 65.000 65.000 65.000 65.000 64.667 72.000 73.667 59.333 73.667 78.667 79.000 78.667 79.000 82.667 80.333 82.000
letter 82.325 82.095 84.905 87.820 86.930 86.430 89.330 92.050 89.330 88.795 90.910 93.235 90.585 89.990 91.760 93.425

lymphography 70.238 69.571 74.286 66.952 76.333 75.000 76.286 77.000 77.762 76.333 78.333 82.524 79.667 77.667 83.095 85.190
mushroom 99.729 99.717 99.877 100.000 99.914 99.914 99.914 100.000 99.914 99.963 99.963 100.000 99.951 100.000 99.963 100.000
optdigits 91.299 90.694 93.345 95.071 94.537 94.431 95.196 97.349 95.214 95.107 96.068 97.331 96.050 95.516 96.370 97.331

page-blocks 95.834 95.889 96.199 97.296 96.382 96.437 96.602 97.387 96.583 96.583 97.186 97.223 96.857 96.985 97.241 97.332
pendigits 94.642 94.214 90.897 97.844 96.761 96.543 97.398 98.854 97.380 97.416 97.971 98.890 97.726 97.689 98.308 98.836

pima_diabetes 72.138 70.976 72.143 74.096 74.482 75.784 74.229 75.511 74.626 73.959 73.717 74.098 74.621 74.489 72.931 75.665
postoperative 60.000 60.000 60.000 60.000 58.889 60.000 60.000 67.778 58.889 58.889 61.111 61.111 57.778 57.778 57.778 55.556

primary-tumor 34.777 37.736 40.677 39.519 38.592 40.963 43.619 40.695 43.619 44.795 43.324 46.310 42.754 43.048 44.822 43.057
segment 92.857 91.948 93.680 95.844 94.719 94.156 95.714 98.052 95.671 95.584 96.623 98.398 96.364 96.190 97.619 98.312

sick 97.614 97.640 97.799 98.860 98.171 98.250 98.356 99.046 98.356 98.330 98.356 99.046 98.303 98.250 98.781 99.072
solar-flare 68.911 68.786 70.739 70.238 69.480 69.089 70.392 70.956 70.408 70.345 70.122 72.730 70.513 72.118 72.127 72.945

sonar 58.143 59.071 63.833 62.976 68.714 65.786 71.619 69.619 75.405 71.119 77.333 74.952 74.929 74.857 77.381 80.667
soybean 72.598 72.157 81.249 79.776 85.200 84.327 89.009 90.473 89.450 87.835 90.190 93.847 90.040 90.332 92.971 93.252

spambase 91.480 90.936 92.480 93.827 93.284 92.610 93.284 94.870 93.588 93.306 94.392 95.153 94.371 93.870 94.653 94.957
spect 62.936 63.129 63.478 65.166 66.863 69.601 67.959 70.157 70.467 69.464 73.853 73.722 70.027 72.094 76.070 76.400

sponge 92.500 92.500 92.500 92.500 92.500 92.500 91.071 92.500 93.750 93.750 93.750 92.321 93.750 92.321 93.750 93.571
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Table 4. Cont.

R = 10% R = 20% R = 30% R = 40%

Dataset
Method

Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination

tae 34.417 31.750 37.667 37.083 34.958 39.000 39.083 48.292 41.042 40.333 49.667 42.292 46.333 46.333 57.625 53.000
tic-tac-toe 78.195 78.922 81.427 87.067 88.207 86.851 91.132 95.827 91.757 91.237 95.095 97.705 95.616 94.991 96.346 98.224

vehicle 61.941 63.489 68.331 68.922 67.265 67.034 69.634 72.224 70.339 70.571 73.646 73.637 71.408 70.455 74.933 75.312
vote 95.185 95.185 95.412 96.105 95.640 94.958 95.877 95.640 95.185 95.645 96.094 95.640 95.407 95.412 95.645 95.640

vowel 49.293 50.707 57.273 56.667 63.333 62.323 72.222 74.848 71.818 70.606 78.283 82.525 77.273 75.455 83.939 88.384
waveform 81.780 80.480 82.160 83.160 82.340 82.220 83.160 83.780 83.160 83.440 83.620 84.380 84.280 83.960 84.300 84.580

wine 83.203 83.758 85.980 87.647 92.124 92.092 93.856 94.967 93.268 93.824 94.412 94.412 94.412 93.235 94.935 96.634
wisconsin-breast 93.561 94.275 94.135 96.420 94.418 94.133 95.137 95.994 95.137 94.849 95.280 95.851 95.422 94.708 94.994 95.851

zoo 60.545 60.545 60.545 60.545 79.273 80.273 83.273 84.091 87.273 87.273 90.273 93.091 90.273 89.273 89.273 96.000
Average 72.413 72.179 74.557 75.454 76.734 76.971 78.896 79.632 79.378 79.232 80.474 81.640 80.380 80.110 81.844 83.056

Table 5. Classification accuracies of voting (RF, RotF, XGBoost) on four different ratios.

R = 10% R = 20% R = 30% R = 40%

Dataset
Method

Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination

anneal 90.864 89.634 92.869 94.648 94.207 94.096 96.768 98.658 96.323 96.660 97.552 99.107 97.552 97.663 98.218 98.886
arrhythmia 60.836 58.865 63.734 65.729 67.266 66.169 66.604 68.362 67.715 67.271 70.821 71.705 69.478 67.261 72.575 73.681
audiology 51.759 50.000 58.419 57.036 59.842 62.451 67.273 66.383 66.818 68.123 72.964 73.458 68.577 71.166 76.462 78.241

autos 49.262 45.905 51.667 55.619 59.905 59.357 67.810 65.786 68.357 67.810 74.548 78.095 73.143 73.143 78.452 79.857
balance-scale 80.947 79.355 81.423 83.187 83.034 83.510 85.289 84.002 84.808 84.647 85.123 84.813 86.078 86.400 87.355 87.353
breast-cancer 66.810 68.214 66.798 69.273 67.512 67.894 68.165 72.759 69.187 69.557 67.475 71.342 68.498 68.867 67.118 73.054

bridges-version1 46.545 46.545 46.545 46.545 53.273 49.455 56.273 57.182 62.909 59.909 60.182 65.727 60.182 65.727 65.727 67.545
bridges-version2 47.545 47.545 47.545 47.545 47.545 51.091 59.818 54.455 59.182 61.909 62.091 65.909 61.091 64.818 67.545 63.909

clevalend 72.495 74.828 78.172 79.817 82.183 79.871 81.430 84.140 81.441 81.785 83.774 82.796 83.774 83.441 84.452 82.462
cmc 50.376 50.645 51.187 51.732 51.731 53.292 52.883 52.753 52.475 55.661 53.967 54.238 52.679 55.933 53.422 53.972

column_2C 78.387 78.065 78.710 80.000 80.645 81.290 83.226 85.484 82.258 82.258 83.226 83.548 85.161 83.226 86.129 85.484
column_3C 79.677 78.710 79.032 82.258 81.613 81.290 83.871 86.129 83.548 82.581 82.258 83.871 82.581 83.226 82.258 83.871
credit-rating 83.768 84.493 84.493 85.797 85.072 83.768 85.362 86.232 85.652 85.507 85.942 86.232 86.522 86.232 86.812 87.536

cylinder-bands 67.407 66.852 70.556 70.000 72.222 70.741 75.556 73.333 75.926 70.926 78.148 78.519 76.481 72.963 81.111 82.037
dermatology 86.089 86.622 93.431 95.616 95.901 95.623 96.456 97.020 96.456 97.005 97.568 97.553 96.742 97.275 96.734 97.568

ecoli 74.706 73.779 76.488 80.945 79.135 78.547 83.021 84.822 83.021 81.818 85.704 85.971 84.207 83.030 85.722 87.469
flags 53.211 47.579 53.263 51.053 55.921 52.184 55.316 56.237 59.395 56.289 56.289 57.789 55.237 56.789 60.816 58.921

german_credit 70.900 70.700 71.600 73.900 74.300 74.200 74.800 75.500 74.800 75.400 74.900 74.800 75.700 73.900 75.500 76.300
glass 54.719 55.173 60.390 61.710 66.364 65.909 67.792 69.221 66.840 68.247 71.970 74.762 70.519 70.022 75.173 76.212

haberman 70.591 70.258 67.624 69.925 70.237 70.559 69.280 73.151 70.581 68.946 71.570 71.237 71.269 70.914 70.892 70.570
heart-statlog 72.963 74.074 76.296 77.778 78.889 76.667 77.778 80.741 77.037 77.778 79.630 82.222 79.630 79.259 82.963 81.111

hepatitis 79.250 81.833 76.708 81.875 78.792 80.667 80.000 83.792 81.875 81.875 79.875 82.500 77.958 81.833 80.500 82.542
horse-colic 77.995 78.799 81.802 82.883 81.794 83.956 83.694 84.505 83.138 83.949 82.868 86.396 84.767 84.227 84.234 86.404

hungarian-heart 80.655 80.621 80.977 83.391 82.690 83.345 80.632 81.678 82.000 82.356 78.897 79.966 80.632 80.966 82.333 80.644
hypothyroid 98.013 97.827 98.463 99.709 98.940 98.781 99.099 99.709 99.046 99.125 99.284 99.735 99.231 99.258 99.497 99.655
ionosphere 81.516 80.944 88.063 91.206 90.341 89.778 90.317 93.175 90.325 91.175 92.603 92.603 91.460 92.889 92.889 93.746

iris 82.000 82.667 91.333 92.667 92.667 92.667 94.667 95.333 94.667 94.667 95.333 94.667 94.667 94.667 95.333 95.333
kr-vs-kp 96.402 96.308 97.121 98.686 97.747 97.403 98.279 99.468 98.435 98.310 98.967 99.374 98.842 98.779 99.124 99.437

labor 68.000 68.000 68.000 68.000 75.333 73.667 78.667 74.667 78.667 78.667 80.333 80.667 80.333 79.000 82.667 84.667
letter 85.625 85.410 88.460 91.850 90.355 89.950 92.360 95.315 92.360 91.950 93.955 96.255 93.450 93.225 94.875 96.335
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Table 5. Cont.

R = 10% R = 20% R = 30% R = 40%

Dataset
Method

Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination Supervised Semi-
Supervised

Active
Random

Combination

lymphography 71.000 71.714 75.667 69.714 76.905 80.333 77.667 77.524 76.381 76.286 81.000 81.714 80.381 80.333 83.762 83.667
mushroom 99.729 99.729 99.914 100.000 99.914 99.926 99.926 100.000 99.951 99.926 99.975 100.000 99.963 99.963 99.975 100.000
optdigits 94.217 93.968 95.534 97.384 96.246 96.157 96.922 98.238 97.064 96.779 97.456 98.274 97.171 97.046 97.562 98.025

page-blocks 95.980 96.071 96.346 97.643 96.602 96.620 96.784 97.570 96.857 96.839 97.333 97.424 97.077 97.186 97.479 97.607
pendigits 97.034 97.052 97.498 98.717 98.008 97.999 98.544 99.327 98.408 98.581 98.790 99.300 98.699 98.581 98.999 99.263

pima_diabetes 72.925 74.238 74.231 76.176 75.137 76.049 76.316 75.658 77.093 75.531 75.540 75.911 75.398 74.879 74.626 75.660
postoperative 67.778 67.778 67.778 67.778 64.444 65.556 64.444 68.889 63.333 65.556 63.333 65.556 62.222 64.444 63.333 64.444

primary-tumor 35.365 36.257 37.727 36.533 39.492 40.695 46.586 43.922 46.586 45.089 43.039 45.989 44.840 42.763 45.989 44.831
segment 93.853 93.853 94.935 96.667 95.498 95.844 96.104 98.485 96.277 96.320 97.186 98.485 96.840 96.883 97.835 98.528

sick 97.826 97.720 97.985 98.595 98.197 98.303 98.356 99.072 98.356 98.276 98.409 99.019 98.383 98.409 98.807 99.019
solar-flare 69.171 68.081 70.975 71.101 70.275 70.458 70.643 72.026 70.477 70.524 70.394 72.741 70.805 70.931 70.971 72.838

sonar 62.452 61.452 66.786 66.357 70.190 68.286 74.024 75.500 73.524 74.452 79.262 76.905 78.786 76.881 78.857 81.214
soybean 75.816 74.938 82.711 85.049 85.931 86.228 90.030 92.530 90.471 89.595 92.234 94.290 91.211 92.238 94.150 94.578

spambase 92.349 92.088 93.241 94.370 93.654 93.545 94.045 95.349 94.175 94.088 94.631 95.544 94.479 94.284 94.979 95.327
spect 63.985 64.911 65.652 66.592 73.421 71.902 69.779 72.203 73.337 72.457 77.842 74.455 75.135 76.763 81.068 77.279

sponge 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 92.500 93.750 92.500
tae 35.708 37.750 43.708 41.708 38.958 37.000 41.667 43.583 42.333 41.083 47.667 51.708 51.000 49.000 56.917 56.333

tic-tac-toe 78.502 78.712 80.907 86.634 87.477 86.435 90.919 96.036 90.611 88.732 94.781 98.330 95.198 92.177 97.598 98.641
vehicle 66.203 66.326 71.175 69.273 71.052 70.920 72.944 75.661 72.825 69.864 75.190 73.529 72.469 71.164 76.361 76.480

vote 94.958 94.271 95.180 96.554 95.185 95.418 96.099 96.327 95.872 96.094 96.554 96.099 95.867 96.321 96.099 95.872
vowel 49.697 49.798 60.707 59.091 68.485 65.051 77.980 80.101 77.374 75.960 86.162 91.212 84.949 83.838 92.222 95.758

waveform 83.580 83.320 83.980 84.620 84.180 84.100 84.640 84.880 84.640 84.420 85.400 84.960 85.140 85.100 85.380 85.220
wine 86.569 84.869 85.458 96.667 93.791 95.458 96.111 98.333 96.111 94.967 96.634 97.745 96.667 96.634 96.634 97.745

wisconsin-breast 94.849 94.563 95.422 96.708 95.708 95.275 95.994 96.280 95.849 95.708 95.994 96.280 96.137 95.565 96.280 96.280
zoo 75.273 75.273 75.273 75.273 83.273 82.273 82.273 91.182 87.273 86.273 88.273 95.091 88.273 88.273 89.273 94.273

Average 74.666 74.500 76.772 78.038 78.909 78.737 80.614 81.839 80.962 80.692 82.244 83.435 81.928 81.968 83.742 84.294
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Table 6. Friedman aligned ranking test and Holm’s post hoc test regarding BagDT (a = 0.10).

Labeled Ratio
(R)

Classifier
(BagDT)

Friedman p-Value
(Statistic)

Friedman Ranking Holm’s Post Hoc Test
p-Value Null Hypothesis

10%

Combination
0.00000

(76.02618)

55.83636 - -
Active Random 81.33636 0.03566 rejected

Supervised 148.77273 0.00000 rejected
Semi-supervised 156.05455 0.00000 rejected

20%

Combination
0.00000

(59.02259)

57.93636 - -
Active Random 91.92727 0.00510 rejected

Supervised 141.07273 0.00000 rejected
Semi-supervised 151.06364 0.00000 rejected

30%

Combination
0.00000

(78.32732)

48.57273 - -
Active Random 91.35455 0.00042 rejected

Supervised 148.44545 0.00000 rejected
Semi-supervised 153.62727 0.00000 rejected

40%

Combination
0.00000

(65.36953)

61.73636 - -
Active Random 85.82727 0.04717 rejected

Supervised 129.42727 0.00000 rejected
Semi-supervised 165.00909 0.00000 rejected

Table 7. Friedman aligned ranking test and Holm’s post hoc test regarding RF (a = 0.10).

Labeled Ratio
(R)

Classifier
(Random Forests)

Friedman p-Value
(Statistic)

Friedman Ranking Holm’s Post Hoc Test
p-Value Null Hypothesis

10%

Combination
0.00000

(90.74521)

50.23636 - -
Active Random 80.05455 0.01403 rejected

Supervised 153.30000 0.00000 rejected
Semi-supervised 158.40909 0.00000 rejected

20%

Combination
0.00000

(76.85983)

52.23636 - -
Active Random 88.34545 0.00293 rejected

Supervised 142.39091 0.00000 rejected
Semi-supervised 159.02727 0.00000 rejected

30%

Combination
0.00000

(76.55845)

55.79091 - -
Active Random 83.12727 0.02432 rejected

Supervised 140.62727 0.00000 rejected
Semi-supervised 162.45455 0.00000 rejected

40%

Combination
0.00000

(59.66724)

61.71818 - -
Active Random 90.20000 0.01895 rejected

Supervised 129.20000 0.00000 rejected
Semi-supervised 160.88182 0.00000 rejected

Table 8. Friedman aligned ranking test and Holm’s post hoc test regarding RotF (a = 0.10).

Labeled Ratio
(R)

Classifier
(Rotation Forest)

Friedman p-Value
(Statistic)

Friedman Ranking Holm’s Post Hoc Test
p-Value Null Hypothesis

10%

Combination
0.00000

(86.92304)

53.12727 - -
Active Random 78.83636 0.03417 rejected
Semi-supervised 149.38182 0.00000 rejected

Supervised 160.65455 0.00000 rejected

20%

Combination
0.00000

(68.42331)

53.53636 - -
Active Random 91.30909 0.00186 rejected

Supervised 148.11818 0.00000 rejected
Semi-supervised 149.03636 0.00000 rejected

30%

Combination
0.00000

(61.06200)

54.55455 - -
Active Random 95.74545 0.00069 rejected
Semi-supervised 145.80909 0.00000 rejected

Supervised 145.89091 0.00000 rejected

40%

Combination
0.00000

(71.23507)

56.67273 - -
Active Random 84.93636 0.01989 rejected
Semi-supervised 141.01818 0.00000 rejected

Supervised 159.37273 0.00000 rejected
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Table 9. Friedman aligned ranking test and Holm’s post hoc test regarding extreme gradient boosted
trees (XGBoost) (a = 0.10).

Labeled Ratio
(R)

Classifier
(XGBoost)

Friedman p-Value
(Statistic)

Friedman Ranking Holm’s Post Hoc Test
p-Value Null Hypothesis

10%

Combination
0.00000

(100.32586)

48.66364 - -
Active Random 75.80000 0.02538 rejected

Supervised 153.99091 0.00000 rejected
Semi-supervised 163.54545 0.00000 rejected

20%

Combination
0.00000

(79.07341)

53.10000 - -
Active Random 83.52727 0.01218 rejected
Semi-supervised 149.70000 0.00000 rejected

Supervised 155.67273 0.00000 rejected

30%

Combination
0.00000

(64.21611)

53.01818 - -
Active Random 95.96364 0.00040 rejected

Supervised 144.96364 0.00000 rejected
Semi-supervised 148.05455 0.00000 rejected

40%

Combination
0.00000

(73.61879)

52.05455 - -
Active Random 89.32727 0.00214 rejected

Supervised 147.56364 0.00000 rejected
Semi-supervised 153.05455 0.00000 rejected

Table 10. Friedman aligned ranking test and Holm’s post hoc test regarding voting (RF, RotF, XGBoost)
(a = 0.10).

Labeled Ratio
(R)

Classifier (Voting
(RF,RotF,XGBoost))

Friedman p-Value
(Statistic)

Friedman Ranking Holm’s Post Hoc Test
p-Value Null Hypothesis

10%

Combination
0.00000

(94.26061)

47.87273 - -
Active Random 80.97273 0.00639 rejected

Supervised 155.69091 0.00000 rejected
Semi-supervised 157.46364 0.00000 rejected

20%

Combination
0.00000

(84.82332)

47.57273 - -
Active Random 87.92727 0.00089 rejected

Supervised 151.62727 0.00000 rejected
Semi-supervised 154.87273 0.00000 rejected

30%

Combination
0.00000

(71.00226)

53.01818 - -
Active Random 89.65455 0.00254 rejected

Supervised 145.72727 0.00000 rejected
Semi-supervised 153.60000 0.00000 rejected

40%

Combination
0.00000

(76.77322)

58.08182 - -
Active Random 78.40909 0.09400 rejected
Semi-supervised 150.10909 0.00000 rejected

Supervised 155.40000 0.00000 rejected

Table 11. Friedman aligned ranking test and Holm’s post hoc test regarding k-nearest neighbors (5NN)
(a = 0.10).

Labeled Ratio
(R)

Classifier
(5NN)

Friedman p-Value
(Statistic)

Friedman Ranking Holm’s Post Hoc Test
p-value Null Hypothesis

10%

Combination
0.00000

(71.86930)

58.98182 - -
Active Random 81.24545 0.06662 rejected

Supervised 141.71818 0.00000 rejected
Semi-supervised 160.05455 0.00000 rejected

20%

Combination
0.00000

(73.09232)

56.09091 - -
Active Random 84.64545 0.01865 rejected

Supervised 140.45455 0.00000 rejected
Semi-supervised 160.80909 0.00000 rejected

30%

Combination
0.00000

(62.25286)

57.79091 - -
Active Random 89.60000 0.00878 rejected

Supervised 143.74545 0.00000 rejected
Semi-supervised 150.86364 0.00000 rejected

40%

Combination
0.00000

(74.33081)

57.08182 - -
Active Random 81.72727 0.04231 rejected

Supervised 144.50909 0.00000 rejected
Semi-supervised 158.68182 0.00000 rejected
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Table 12. Friedman aligned ranking test and Holm’s post hoc test regarding logistic (a = 0.10).

Labeled Ratio
(R)

Classifier
(Logistic)

Friedman p-Value
(Statistic)

Friedman Ranking Holm’s Post Hoc Test
p-Value Null Hypothesis

10%

Combination
0.00000

(49.05320)

64.44545 - -
Active Random 90.40000 0.03249 rejected
Semi-supervised 142.15455 0.00000 rejected

Supervised 145.00000 0.00000 rejected

20%

Combination
0.00000

(59.73571)

58.75455 - -
Active Random 90.32727 0.00929 rejected
Semi-supervised 143.43636 0.00000 rejected

Supervised 149.48182 0.00000 rejected

30%

Combination
0.00000

(40.03025)

71.25455 - -
Active Random 89.02727 0.14314 accepted

Supervised 139.65455 0.00000 rejected
Semi-supervised 142.06364 0.00000 rejected

40%

Combination
0.00000

(65.16112)

61.48182 - -
Active Random 81.70909 0.09563 rejected

Supervised 146.31818 0.00000 rejected
Semi-supervised 152.49091 0.00000 rejected

Table 13. Friedman aligned ranking Test and Holm’s post hoc test regarding logistic model tree (LMT)
(a = 0.10).

Labeled Ratio
(R)

Classifier
(LMT)

Friedman p-Value
(Statistic)

Friedman Ranking Holm’s Post Hoc Test
p-Value Null Hypothesis

10%

Combination
0.00000

(74.72391)

55.78182 - -
Active Random 82.53636 0.02751 rejected

Supervised 150.05455 0.00000 rejected
Semi-supervised 153.62727 0.00000 rejected

20%

Combination
0.00000

(76.73213)

59.54545 - -
Active Random 76.80909 0.15495 accepted
Semi-supervised 148.55455 0.00000 rejected

Supervised 157.09091 0.00000 rejected

30%

Combination
0.00000

(50.01495)

56.80000 - -
Active Random 103.50909 0.00012 rejected

Semi-Supervised 139.15455 0.00000 rejected
Supervised 142.53636 0.00000 rejected

40%

Combination
0.00000

(79.76665)

56.98182 - -
Active Random 77.71818 0.08757 rejected

Semi-Supervised 147.13636 0.00000 rejected
Supervised 160.16364 0.00000 rejected

Table 14. Friedman aligned ranking test and Holm’s post hoc test regarding LogitBoost (a = 0.10).

Labeled Ratio
(R)

Classifier
(LogitBoost)

Friedman p-Value
(Statistic)

Friedman Ranking Holm’s Post Hoc Test
p-Value Null Hypothesis

10%

Combination
0.00000

(75.28847)

52.08182 - -
Active Random 87.89091 0.00318 rejected
Semi-supervised 149.69091 0.00000 rejected

Supervised 152.33636 0.00000 rejected

20%

Combination
0.00000

(68.38871)

60.38182 - -
Active Random 80.80909 0.09239 rejected

Supervised 147.73636 0.00000 rejected
Semi-supervised 153.07273 0.00000 rejected

30%

Combination
0.00000

(60.68458)

53.25455 - -
Active Random 99.91818 0.00012 rejected

Supervised 136.14545 0.00000 rejected
Semi-supervised 152.68182 0.00000 rejected

40%

Combination
0.00000

(46.30018)

70.32727 - -
Active Random 86.01818 0.19611 accepted

Supervised 138.06364 0.00000 rejected
Semi-supervised 147.59091 0.00000 rejected
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5. Modification

Pointing towards the improvement of the proposed method, it is obvious by the statistical analysis
and ranking results that a slight increase in the performance of the SSL part could have a significant
impact on the overall efficiency of the combination scheme.

In this direction, careful observation of the execution of the proposed algorithm revealed the
weakness of the SSL prediction probabilities, which, in many cases, leads to the selection of the wrong
instances to be labeled. In order to augment the probabilistic information available for the proposed
method, as regards the SSL part, a lazy classifier (kNN) was integrated into the instance selection
process. Such a development, on the one hand, augments the proposed method with a second view of
the labels for the unlabeled set, and on the other hand, does not significantly increase the computational
overhead as this family of classifiers does not need training. As a second measure to strengthen the SSL
instance selection criteria, the empirical approach of setting a lower limit on the minimum accepted
probability for an unlabeled instance was adopted using the formula:

probaThreshold =
num_classes(D) + 1
2 ∗ num_classes(D)

(4)

whereby utilizing the num_classes(X) function the dependence on the dataset characteristics is lifted.
A more compact representation of the SSL part modifications is given in Algorithm 2, while the abstract
flow chart of the improved combination framework is presented in Figure 5.

Algorithm 2: SSL modification

10: [Execute Algorithm 1 steps (until Alg. 1 line 10)]
11: IF i modulo 2 == 0:
12: SET probaThreshold = [num_classes(D) + 1]/[2 * num_classes(D)]
13: SET the number of nearest neighbors numNeib
14: INITIALIZE the NN classifier on Li using numNeib
15:
16: Classify(Ui) using CLS and construct matrix Mpr containing corresponding prediction probabilities

along with the predicted labels
17: FOR_EACH instance of Mpr:
18: IF cls_predicted_class(instance) != nn_predicted_class(instance)

OR cls_probability(instance) < probaThreshold:
19: DISCARD instance from Mpr

20: END_IF
21: END_FOR_EACH
22: SORT Mpr descending according to the prediction probabilities
23: STORE the top maxUnlabPerIter instances of Mpr in a matrix Mfinal

24: /* now containing the most confident instances along with their predictions */
25: [Continue Algorithm 1 steps (from Alg. 1 line 16 )]

The improved combination scheme was further tested against the most robust AL frameworks
found in the literature. In detail, the query strategies of least confidence (LC), margin sampling (MS)
and entropy sampling (ES) were considered to be compared with the modified proposed scheme.
The major aspects concerning these strategies [7] follow below.

• LC: The objective of this strategy is to identify the least confident unlabeled instances by
examining the probability of the most probable label for each unlabeled instance. The strategy
continues by selecting the instances having the lowest probable labels and presents them to the human
expert to be labeled in order to augment the initial labeled set.
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•MS: As an improvement of the LC strategy, MS attempts to overcome the disadvantageous
selection process of only considering the most probable labels by calculating the differences of the most
probable and the second most probable label for an unlabeled instance. Afterwards, those calculated
differences are sorted and the instances with the lowest differences are selected to be labialized.

• ES: This strategy, part of which is also integrated into the AL counterpart of the proposed
scheme, computes the entropy measure (similar to Equation (3)) for each unlabeled instance using the
distribution of prediction probabilities. The most entropic instances are then selected to be displayed
to the human expert in order to enlarge the original labeled set.Entropy 2019, 21, x FOR PEER REVIEW 7 of 35 
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In Figure 6, ten experiments display the performance comparison in terms of classification
accuracy regarding the three AL methods against the modified combination scheme. The experiments
are categorized by the five base learner models that were integrated into the methods. In each
experiment, a different benchmark dataset was deployed using four different Rs equal to 10%, 20%,
30%, and 40% accordingly.
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ten different benchmark datasets.



Entropy 2019, 21, 988 24 of 28

The experimental results confirm the efficiency of the modified combination scheme against the
AL methods. It can be extracted from the figure that the proposed technique in all ten cases performs
equally or better from its rivals’ accuracies. Moreover, the figure suggests that the three AL methods
produce closely related accuracy results, as in four of the ten test cases, their performance was almost
identical. The previous outcome can be explained by exploring the metrics utilized in these strategies,
which are all derived from the prediction probabilities of the base learners.

Closing this section, in the conducted experiments on real-world benchmark datasets, the proposed
combination scheme was compared with the SL, the SSL, and the AL methods. The experiments show
that the proposed method outperforms the compared methods. Therefore, in the future, it is very
important to conduct more insightful theoretical analyses on the effectiveness of the proposed approach
and explore other appropriate selection criteria for filtering the informative unlabeled instances,
in order to generalize the results with more confidence.

6. Conclusions

In this research work, a new wrapper algorithm was proposed combining the AL and SSL methods
with the aim of efficiently utilizing the available unlabeled data. A plethora of experiments was
conducted for evaluating the efficacy of the proposed algorithm in a wide range of benchmark datasets
against other learning methods using a variety of classifiers as base models. In addition, four different
labeled ratios were investigated. The proposed algorithm prevails over the other learning methods as
statistically confirmed by the Friedman aligned ranks non-parametric tests and the Holm’s post-hoc
tests. To further promote the use of the proposed algorithm, a software package was developed while
more details about this package can be obtained from the link found in the Appendix A.

Regarding the performance boost that was experimentally observed while applying the proposed
combination scheme on the numerous datasets, there is strong evidence that the vigorous AL method
can efficiently improve its performance utilizing SSL schemes such as the self-training technique.
Even in cases were the individual SSL method was not performing dexterously; when integrated in the
AL and SSL proposed wrapper the performance of the overall scheme was significantly improved
compared to the plain AL method. Moreover, in the case that the majority of the instances used in
a learning scheme are automatically labeled, the performance may be unsatisfactory, and in some
cases, it may even be worse than the SL baseline accuracy. For this reason, a fundamental requirement
arises; that of defining a sufficient threshold of human expert intervention on the labeling process
to successfully combine AL and SSL methods. Such a fine-tuning process is criticized as highly
application-specific and challenging to automate. Furthermore, it can be noticed by the results, that on
datasets with very small initial labeled sets, the proposed scheme can be beneficiary as the initially
learned decision boundaries of such datasets can be possibly inaccurate, thus unlabeled instances near
these boundaries could be falsely classified. This is an implication that the AL part of the proposed
scheme could efficiently tackle.

For future work, a number of areas have been identified and are worth exploring as they
seem promising in the direction of improving the classification abilities of the proposed algorithm.
As a major first research area, that is expected to have a high impact on the combination scheme’s
performance in terms of accuracy and execution time would be the investigation of different instance
selection strategies than those that are currently employed. In the AL part of the proposed algorithm,
two common alternatives are the least confidence [54] and the margin sampling [55] algorithms,
which utilize the unlabeled data under a different scope. Moreover, more complex query scenarios
than the plain pool-based sampling used, like query synthesis [56] could also be beneficial. As regards
the semi-supervised part, simple techniques like the integration of weights annotating the instances
assessed as informative by the SSL part of the algorithm could further improve the overall accuracy of
the combination scheme as suggested in [35,57].

Another interesting research area would be that of the extreme outlier detection algorithms.
The incorporation of such algorithms in the proposed algorithm would have an immediate impact
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on the quality of the selected candidate unlabeled instances that are used to augment the labeled
set in each self-training iteration, thus resulting in more robust inner models. A few of the very
well-known techniques that could be directly implemented in the combination scheme are the local
outlier factor [58] for detecting anomalous values based on neighboring data or the isolation forest [59],
which is a tree-based outlier detector.

Other research areas that would bear further improvement to the proposed algorithm include
preprocessing algorithms, for instance, PCA for dimensionality reduction and production of more
informative features or other feature selection techniques such as univariate feature selection [60].
Speaking of the integrated base learners, the introduction of online learners like the Hoeffding adaptive
tree [61] and Pegasos [62] or deep learning architectures based on deep neural networks [63] and
deep ensembles [64] could make the proposed algorithm sufficient for tackling streaming and big
data problems.

Finally, by combining schemes from the fields of active regression learning [65,66] and
semi-supervised regression [53] along with the proposed classification algorithm, a general combination
scheme could be put forward that would be able to handle numeric and categorical targets.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/10/988/s1,
Table S1: Classification accuracies of 5 nearest neighbors (5NN) on four different ratios, Table S2: Classification
accuracies of logistic regression (logistic) on four different ratios, Table S3: Classification accuracies of logistic
model trees (LMT) on four different ratios, Table S4: Classification accuracies of LogitBoost on four different ratios.
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Appendix A

The proposed combination algorithm was implemented as a separate Java package for the
WEKA [67] software tool. The decision to develop the combination scheme as a part of the WEKA
tool was made since it is one of the most well-known tools used in the machine-learning community,
which includes a big number of base learner models. Moreover, it can be easily deployed without
requiring programming experience for the end-user. The package can be downloaded using the
following link: http://ml.upatras.gr/combine-classification/.
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