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Abstract

Approval-based multiwinner voting rules have re-
cently received much attention in the Computa-
tional Social Choice literature. Such rules ag-
gregate approval ballots and determine a winning
committee of alternatives. To assess effectiveness,
we propose to employ new noise models that are
specifically tailored for approval votes and com-
mittees. These models take as input a ground
truth committee and return random approval votes
to be thought of as noisy estimates of the ground
truth. A minimum robustness requirement for an
approval-based multiwinner voting rule is to return
the ground truth when applied to profiles with suffi-
ciently many noisy votes. Our results indicate that
approval-based multiwinner voting can indeed be
robust to reasonable noise. We further refine this
finding by presenting a hierarchy of rules in terms
of how robust to noise they are.

1 Introduction
Voting has received much attention by the AI community re-
cently, mostly due to its suitability for simple and effective
decision making. One popular line of research, that originates
from Arrow [1951], has aimed to characterize voting rules in
terms of the social choice axioms they satisfy. Another ap-
proach views voting rules as estimators. It assumes that there
is an objectively correct choice, a ground truth, and votes are
noisy estimates of it. Then, the main criterion for evaluating
a voting rule is whether it can determine the ground truth as
outcome when applied to noisy votes.

A typical scenario in studies that follow the second ap-
proach employs a hypothetical noise model that uses the
ground truth as input and produces random votes. Then, a
voting rule is applied on profiles of such random votes and
is considered effective if it acts as a maximum likelihood es-
timator [Conitzer and Sandholm, 2005; Young, 1988] or if
it has low sample complexity [Caragiannis et al., 2016]. As
such evaluations are heavily dependent on the specifics of the
noise model, relaxed effectiveness requirements, such as the
accuracy in the limit, sought in broad classes of noise mod-
els [Caragiannis et al., 2016] can be more informative.

We restrict our attention to approval voting, where ballots
are simply sets of alternatives that are approved by the vot-
ers [Laslier and Sanver, 2010]. Furthermore, we consider
multiwinner voting rules [Faliszewski et al., 2017], which
determine committees of alternatives as outcomes [Kilgour,
2010; Aziz et al., 2017]. In particular, we focus on approval-
based counting choice rules (or, simply, ABCC rules), which
were defined recently by Lackner and Skowron [2018]. A fa-
mous rule in this category is known as multiwinner approval
voting (AV). Each alternative gets a point every time it ap-
pears in an approval vote and the outcome consists of a fixed
number of alternatives with the highest scores.

We consider noise models that are particularly tailored for
approval votes and committees. These models use a commit-
tee as ground truth and produce random sets of alternatives
as votes. We construct broad classes of noise models that
share a particular structure, parameterized by distance met-
rics defined over sets of alternatives. In this way, we adapt
to approval-based multiwinner voting the approach of Cara-
giannis et al. [2016] for voting rules over rankings.

Figure 1 illustrates our evaluation framework. The noise
model is depicted at the left. It takes as input the ground
truth committee and its probability distribution over approval
votes which is consistent to a distance metric d. Repeated
executions of the noise model produce a profile of random
approval votes. The ABCC rule (defined using a bivariate
function f ; see Section 2) is then applied on this profile and
returns one or more winning committees. Our requirement
for the ABCC rule is to be accurate in the limit (informally, on
profiles with infinitely many votes, it must return the ground
truth as the unique winning committee), not only for a single
noise model, but for all models that belong to a sufficiently
broad class. The breadth of this class quantifies the robustness
of the ABCC rule to noise.

The details of our framework are presented in Section 2.
Our results indicate that it indeed allows for a classification of
ABCC rules in terms of their robustness to noise. In particu-
lar, we identify (in Section 3) the modal committee rule (MC)
as the ultimately robust ABCC rule: MC is robust against all
kinds of reasonable noise. AV follows in terms of robust-
ness and seems to outperform other known ABCC rules (see
Section 4). In contrast, the well-known approval Chamberlin-
Courant (CC) rule is the least robust. On the other hand, all
ABCC rules are robust if we restrict noise sufficiently (see
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Figure 1: Our evaluation framework.

Section 5). We conclude with a discussion on open problems
in Section 6.

Further related work. Approval-based multiwinner vot-
ing rules have been studied in terms of their computational
complexity [Aziz et al., 2015; Skowron et al., 2016], ax-
iomatic properties [Sánchez-Fernández et al., 2017; Lackner
and Skowron, 2018; Aziz et al., 2017], as well as their ap-
plications [Brill et al., 2017]. In particular, axiomatic work
has focused on two different principles that govern multi-
winner rules: diversity and individual excellence. Lackner
and Skowron [2019] attempt a quantification of how close an
approval-based multiwinner voting rule is to these two prin-
ciples. We remark that the primary focus of the current paper
is on individual excellence.

The robustness of approval voting has been previously
evaluated against noise models, using either the MLE [Pro-
caccia and Shah, 2015] or the sample complexity [Caragian-
nis and Micha, 2017] approach. These papers assume a rank-
ing of the alternatives as ground truth, generate approval votes
that consist of the top alternatives in rankings produced ac-
cording to the noise model of Mallows [1957], and assess
how well approval voting recovers the ground truth ranking.
We believe that our framework is fairer to approval votes,
as recovering an underlying ranking when voters have very
limited power to rank is very demanding. The robustness
of (non-approval) multiwinner voting against noise has been
studied by Procaccia et al. [2012]. Different notions of ro-
bustness in multiwinner voting are considered by Gawron and
Faliszewski [2019] and Bredereck et al. [2017].

2 Preliminaries
Throughout the paper, we denote by A the set of alternatives.
We use m = |A| and denote the committee size by k. The
term committee refers to a set of exactly k alternatives.

Approval-based multiwinner voting. An approval vote is
simply a subset of the alternatives (of any size). An approval-
based multiwinner voting rule takes as input a profile of ap-
proval votes and returns one or more winning committees.

We particularly consider voting rules that belong to the
class of approval-based counting choice rules (or, simply,
ABCC rules), introduced by Lackner and Skowron [2018].
Such a rule is defined by a bivariate function f , with f(x, y)
indicating a non-negative score a committee gets from an ap-
proval vote containing y alternatives, x of which are common
with the committee. f is non-decreasing in its first argument.

Formally, f is defined on the set Xm,k, which consists of all
pairs (x, y) of possible values of |U ∩ S| and |S|, given that
U is k-sized and S can be any subset of the m alternatives of
A. I.e., Xm,k is the set
{(x, y) : y = 0, 1, ...,m, x = max{k + y −m, 0}, ..., y} .
The score of a committee is simply the total score it gets

from all approval votes in a profile. Winning committees are
those that have maximum score. We extensively use “the
ABCC rule f” to refer to the ABCC rule that uses the bi-
variate function f . We denote the score that an ABCC rule f
assigns to the committee U given a profile Π = (Si)i∈[n] of
n votes by scf (U,Π) =

∑n
i=1 f(|U ∩ Si|, |S|). With some

abuse of notation, we use scf (U, Si) to refer to the score U
gets from vote Si. Hence, scf (U,Π) =

∑n
i=1 scf (U, Si).

Well-known ABCC rules include:
• Multiwinner approval voting (AV), which uses the func-

tion fAV(x, y) = x.
• Approval Chamberlin-Courant (CC), which uses the

function fCC(x, y) = min{1, x}. The rule falls within
a more general context considered by Chamberlin and
Courant [1983].
• Proportional approval voting (PAV), which uses the

function fPAV(x, y) =
∑x
i=1 1/i.

These rules belong to the class of rules that originate from
the work of Thiele [1895]. A Thiele rule uses a vector
〈w1, w2, ..., wk〉 of non-negative weights to define f(x, y) =∑x
i=1 wj . Other known Thiele rules include the p-Geometric

rule [Skowron et al., 2016] and Sainte Laguë approval vot-
ing [Lackner and Skowron, 2019].

A well-known non-Thiele rule is the satisfaction approval
voting (SAV) rule that uses fSAV(x, y) = x/y for y > 0 and
f(x, y) = 0 otherwise [Brams and Kilgour, 2014]. Let us
also introduce the modal committee (MC) rule1 which returns
the committee (or committees) that has maximum number of
appearances as approval votes in the profile. MC is also non-
Thiele; it uses f(k, k) = 1 and f(x, y) = 0 otherwise.
Noise models. We employ noise models to generate ap-
proval votes, assuming that the ground truth is a committee.
Denoting the ground truth by U ⊆ A, a noise modelM pro-
duces random approval votes according to a particular distri-
bution that defines the probability PrM[S|U ] to generate the
set S ⊆ A when the ground truth is U .

1We remark that MC is similar in spirit to the modal ranking rule
considered by Caragiannis et al. [2014].



Let us give the following noise model Mp as an exam-
ple. Mp uses a parameter p ∈ (1/2, 1]. Given a ground
truth committee U , Mp generates a random set S ⊆ A by
selecting each alternative of U with probability p and each
alternative in A \ U with probability 1 − p. Intuitively, the
probability that a set will be generated depends on its “dis-
tance” from the ground truth: the higher this distance, the
smaller this probability. To make this formal, we will need
the set difference2 distance metric d∆ : 2A → R≥0 defined
as d∆(X,Y ) = |X \ Y |+ |Y \X|.

Claim 1. For S ⊆ A, PrMp [S|U ] = pm
(

1−p
p

)d∆(U,S)

.

So, the probability PrMp
[S|U ] is decreasing in d∆(U, S).

We will consider general noise models M with PrM[S|U ]
depending on d(U, S), where d is a distance metric defined
over subsets of A.

Definition 1. Let d be a distance metric over sets of alterna-
tives. A noise modelM is called d-monotonic if for any two
sets S1, S2 ⊆ A, it holds PrM[S1|U ] > PrM[S2|U ] if and
only if d(U, S1) < d(U, S2).

Definition 1 implies that PrM[S1|U ] = PrM[S2|U ] when
d(U, S1) = d(U, S2).

Besides the set difference metric used byMp, other well-
known distance metrics3 (see Deza and Deza [2016]) are:

• the normalized set difference or Jaccard metric dJ , de-
fined as dJ(X,Y ) = d∆(X,Y )

|X∪Y | ,

• the maximum difference or Zelinka metric dZ , defined
as dZ(X,Y ) = max{|X \ Y |, |Y \X|}, and

• the normalized maximum difference or Bunke-Shearer
metric dBS , defined as dBS(X,Y ) = dZ(X,Y )

max{|X|,|Y |} .

Evaluating ABCC rules against noise models. We aim to
evaluate the effectiveness of ABCC rules when applied to ran-
dom profiles generated by large classes of noise models. To
this end, we use accuracy in the limit as a measure.

Definition 2 (accuracy in the limit). An ABCC rule f is called
accurate in the limit for a noise modelM if for every ε > 0
there exists nε such that, for every profile with at least nε ap-
proval votes produced byM with ground truth U , f returns
U as the unique winning committee with probability at least
1− ε.

Then, ABCC rules are evaluated in terms of robustness us-
ing the next definition.

Definition 3 (robustness). Let d be a distance metric over sets
of alternatives. An ABCC rule f is monotone robust against
d (or d-monotone robust) if it is accurate in the limit for all
d-monotonic noise models.

2Viewing sets as strings, the distance metric d∆ is equivalent to
the Hamming distance; see [Deza and Deza, 2016].

3Notice that d(X,Y ) for the four specific distance metrics de-
fined here depends only on |X \ Y |, |Y \ X|, |X|, and |Y |. In
a sense, these distance metrics are alternative-independent. Our re-
sults apply to the most general definition of distance, where d(X,Y )
can also depend on the contents of X \ Y , Y \X , X , and Y .

3 MC is a Uniquely Robust ABCC Rule
We begin our technical exposition by identifying the unique
ABCC rule that is monotone robust against all distance met-
rics. Our proofs, in the current and subsequent sections,
make extensive use of the following lemma. The notation
S ∼ M(U) indicates that the random set S is drawn from
the noise modelM with ground truth U .
Lemma 2. LetM be a noise model. An ABCC rule f is

a. accurate in the limit for M if ES∼M(U)[scf (U, S) −
scf (V, S)] > 0 for every two different sets of alterna-
tives U, V ⊆ A with |U | = |V | = k.

b. not accurate in the limit forM if ES∼M(U)[scf (U, S)−
scf (V, S)] < 0 for some pair of sets of alternatives
U, V ⊆ A with |U | = |V | = k.

Due to lack of space, the proof of Lemma 2 is omitted. We
are ready to present our first application of Lemma 2.
Theorem 3. MC is the only ABCC rule that is monotone ro-
bust against any distance metric.

Proof. LetM be a noise model that is d-monotonic for some
distance metric d. Let U, V ⊆ A be any two different k-sized
sets of alternatives. By the definition of MC, we have

ES∼M(U)[scMC(U, S)− scMC(V, S)]

= PrM[U |U ]− PrM[V |U ] > 0.

By Lemma 2a, we obtain that MC is d-monotone robust.
We will now show that MC is the only ABCC rule f that

has this property. Let f be an ABCC rule that is different than
MC. This means that there exist integers x∗ and y∗ with (x∗−
1, y∗), (x∗, y∗) ∈ Xm,k, (x∗, y∗) 6= (k, k), and f(x∗, y∗) >
f(x∗ − 1, y∗). We will construct a distance metric d and a
d-monotonic noise model for which f is not accurate in the
limit.

Rename the alternatives of A as a1, a2, ..., am and let
U = {a1, a2, ..., ak}, V = {a2, ..., ak+1}, and W =
{ak−x∗+2, ..., ay∗+k−x+1}. Notice that, by the definition of
Xm,k, (x∗ − 1, y∗) ∈ Xm,k implies that 1 + max{y∗ + k −
m, 0} ≤ x∗ and, equivalently, y∗ + k − x∗ + 1 ≤ m; hence,
the set W is well-defined. Clearly, x∗ ≥ 1; so sets V and W
share at least one alternative.

We define a distance metric between subsets of A that has
d(X,Y ) = 0 if X = Y , d(X,Y ) ∈ {1, 2}, otherwise, and
in particular d(U, V ) = d(U,W ) = 1 and d(U, S) = 2 for
every S different than U , V , or W .

We are ready to define the d-monotonic noise model M.
For simplicity, we use p0 = PrM[U |U ], p1 = PrM[V |U ] =
PrM[W |U ], and p2 = PrM[S|U ] for every other set S ⊆ A
different thanU , V , orW . For δ > 0 (to be specified shortly),
we set p0 = 1/3, p1 = 1/3− δ, and p2 = 2δ

2m−3 .
We now compute the quantity ES∼M(U)[scf (U, S) −

scf (V, S)]; observe that scf (U,U) = scf (V, V ) = f(k, k),
scf (U, V ) = scf (V,U) = f(k− 1, k), scf (U,W ) = f(x∗−
1, y∗), and f(V,W ) = f(x∗, y∗). We obtain

ES∼M(U)[scf (U, S)− scf (V, S)]

= f(k, k)p0 + f(k − 1, k)p1 + f(x∗ − 1, y∗)p1



+
∑

S 6=U,V,W

f(|U ∩ S|, |S|)p2 − f(k − 1, k)p0

− f(k, k)p1 − f(x∗, y∗)p1−
∑

S 6=U,V,W

f(|V ∩ S|, |S|)p2

≤ (p0 − p1)(f(k, k)− f(k − 1, k))

− p1(f(x∗, y∗)− f(x∗ − 1, y∗))

− p2

∑
S 6=U,V,W

f(|V ∩ S|, |S|)

= δ(f(k, k)− f(k − 1, k))

− (1/3− δ)(f(x∗, y∗)− f(x∗ − 1, y∗))

+
2δ

2m − 3

∑
S 6=U,V,W

f(|V ∩ S|, |S|). (1)

Observe that the RHS of (1) is increasing in δ and approaches
− 1

3 (f(x∗, y∗)−f(x∗−1, y∗)) < 0 as δ approaches 0. Hence,
for a sufficiently small positive δ, we have

ES∼M(U)[scf (U, S)− scf (V, S)] < 0.

By Lemma 2b, f is not accurate in the limit forM.

4 A Characterization for AV
In this section, we identify the class of distance metrics
against which AV is monotone robust. We will need some
additional notation that will be useful in several proofs.

For a distance metric d and a set of alternatives U , let
span(d, U) be the number of different non-zero values the
quantity d(U, ·) can take. We denote these different distance
values by δ1(d, U), δ2(d, U), ..., δspan(d,U)(d, U). We also
use δ0(d, U) = 0. For t = 0, 1, ..., span(d, U) and alterna-
tives a, b ∈ A, we denote by N t

a|b(d, U) the class of sets of
alternatives S that contain alternative a but not alternative b
and satisfy d(U, S) ≤ δt(d, U).

Definition 4 (majority-concentricity). A distance metric d is
called majority-concentric4 if for every k-sized set of alterna-
tives U , it holds N t

a|b(d, U) ≥ N t
b|a(d, U) for every alterna-

tives a ∈ U and b 6∈ U and t = 0, 1, ..., span(d, U).

We are ready to prove our characterization for AV.

Theorem 4. AV is d-monotone robust if and only if the dis-
tance metric d is majority-concentric.

Proof. Let M be a d-monotonic noise model for a major-
ity concentric distance metric d. Let U and V be two dif-
ferent sets with k alternatives each. By Lemma 2a, in or-
der to show that AV is accurate in the limit for M (and,
consequently, d-monotone robust), it suffices to show that
ES∼M(U)[scAV(U, S)− scAV(V, S)] > 0.

We will need some additional notation. For t =
0, 1, ..., span(d, U), we denote by N̄ t(d, U)) the class of sets
of alternatives S that satisfy d(U, S) = δt(d, U). For al-
ternatives a, b ∈ A, we denote N̄ t

a(d, U)) the subclass of

4Majority-concentricity is similar in spirit with a property of dis-
tance metrics over rankings with the same name in [Caragiannis et
al., 2016].

N̄ t(d, U) consisting of sets of alternatives that include a and
by N̄ t

a|b(d, U) the subclass of N̄ t
a(d, U) consisting of sets do

not contain alternative b.
To simplify notation, we set s = span(d, U). Also, we

drop (d, U) (e.g., we use N t
a|b instead of N t

a|b(d, U)) from
notation since it is clear from context. We have

ES∼M(U)[scAV(U, S)]

=
∑
S⊆A

scAV(U, S) · PrM[S|U ] =
∑
S⊆A

|U ∩ S| · PrM[S|U ]

=
∑
a∈U

∑
S⊆A:a∈S

PrM[S|U ] =
∑
a∈U

s∑
t=0

∑
S∈N̄t

a

PrM[S|U ].

(2)

Now, observe that the probability PrM[S|U ] is the same for
all sets S ∈ N̄ t. In the following, we use pt = PrM[S|U ] for
all S ∈ N̄ t, for t = 0, 1, ..., s. Hence, (2) becomes

ES∼M(U)[scAV(U, S)] =
∑
a∈U

s∑
t=0

|N̄ t
a| · pt

Similarly, we have

ES∼M(U)[scAV(V, S)] =
∑
a∈V

s∑
t=0

|N̄ t
a| · pt,

and, by linearity of expectation,

ES∼M(U)[scAV(U, S)− scAV(V, S)]

=
∑

a∈U\V

s∑
t=0

|N̄ t
a| · pt −

∑
a∈V \U

s∑
t=0

|N̄ t
a| · pt. (3)

Let µ be a bijection that maps each alternative of V \ U to a
distinct alternative of U \ V . Then, (3) becomes

ES∼M(U)[scAV(U, S)− scAV(V, S)]

=
∑

a∈U\V

s∑
t=0

|N̄ t
a| · pt −

∑
a∈U\V

s∑
t=0

|N̄ t
µ(a)| · pt

=
∑

a∈U\V

s∑
t=0

(
|N̄ t

a|µ(a)| − |N̄
t
µ(a)|a|

)
· pt

=
∑

a∈U\V

(
|N0

a|µ(a)| − |N
0
µ(a)|a|

)
· p0

+
∑

a∈U\V

s∑
t=1

(
|N t

a|µ(a)| − |N
t−1
a|µ(a)| − |N

t
µ(a)|a|

+|N t−1
µ(a)|a|

)
· pt

=
∑

a∈U\V

s−1∑
t=0

(
|N t

a|µ(a)| − |N
t
µ(a)|a|

)
· (pt − pt+1)

+
(
|Ns

a|µ(a)| − |N
s
µ(a)|a|

)
· ps (4)

≥
∑

a∈U\V

(
|N0

a|µ(a)| − |N
0
µ(a)|a|

)
· (p0 − p1) > 0.



The third equality follows since N̄0
a|µ(a) = N0

a|µ(a),
N̄0
µ(a)|a = N0

µ(a)|a, and N̄ t
a|µ(a) = N t

a|µ(a) \ N
t−1
a|µ(a) and

N̄ t
µ(a)|a = N t

µ(a)|a\N
t−1
µ(a)|a for t = 1, ..., s. The first inequal-

ity follows since d is majority concentric and since pt > pt+1

and, thus, all differences in (4) are non-negative. The last
inequality follows after observing that since |N0

a|µ(a)| = 1

and |N0
µ(a)|a| = 0 for a ∈ U \ V and since p0 > p1. This

completes the “if” part of the proof.
Let us now consider a non-majority concentric distance

metric d that satisfies N t∗

a|b(d, U) < N t∗

b|a(d, U) for the k-
sized set of alternatives U , some alternatives a ∈ U and
b 6∈ U , and some t∗ ∈ {1, 2, ..., span(d, U)}. We show the
“only if” part of the theorem by constructing a noise model
M that satisfies ES∼M(U)[scAV(U, S) − scAV(V, S)]<0 for
V = U \ {a} ∪ {b}.

Again, we use pt = PrM[S|U ] for every set of alternatives
S ∈ N̄ t(d, U), s = span(d, U), and drop (d, U) from no-
tation. We define the model probabilities so that τ = p0 >
p1 > ... > pt∗ = τ − ε and 2ε = pt∗+1 > ... > ps = ε.
Notice that such a noise model exists for any arbitrarily small
ε > 0. Since there are 2m sets of alternatives and τ is the
probability thatM returns the ground truth ranking, it must
be τ > 1/2m. We now apply equality (4). Observe that, since
V = U \ {a} ∪ {b}, µ(a) = b. We obtain

ES∼M(U)[scAV(U, S)− scAV(V, S)]

=

s−1∑
t=0

(
|N t

a|b| − |N
t
b|a|
)
· (pt − pt+1)

+
(
|Ns

a|b| − |N
s
b|a|
)
· ps

=

t∗−1∑
t=0

(
|N t

a|b| − |N
t
b|a|
)
· (pt − pt+1)

+
(
|N t∗

a|b| − |N
t∗

b|a|
)
· (pt∗ − pt∗+1)

+

s−1∑
t=t∗+1

(
|N t

a|b| − |N
t
b|a|
)
· (pt − pt+1)

+
(
|Ns

a|b| − |N
s
b|a|
)
· ps.

Now, observe that for t 6= t∗, it holds |N t
a|b| − |N

t
b|a| ≤ 2m

(the total number of sets of alternatives) and pt − pt+1 ≤ ε.
Also, |N t∗

a|b|−|N
t∗

b|a| ≤ −1 and pt∗−pt∗+1 = τ−3ε. Setting
specifically ε = 1

s8m , we obtain that

ES∼M(U)[scAV(U, S)− scAV(V, S)]

≤ s2mε− (τ − 3ε) ≤ 1

4m
− 1

2m
+

3

s · 8m
,

which is negative for m ≥ 2 since s ≥ 1. The proof of the
“only if” part of the theorem now follows by Lemma 2b.

It is tempting to conjecture that AV and MC are the only
ABCC rules that are monotone robust against all majority
concentric distance metrics. However, this is not true as the
next example, which uses a different ABCC rule, shows.

Example 1. Let A = {a, b, c} and k = 2. Consider the
majority concentric distance metric d and the ABCC rule f
with f(1, 1) = 1, f(2, 2) = 2, and f(x, y) = 0 otherwise. We
will show that f is d-monotone robust against any majority
concentric distance metric d. Without loss of generality, let
us assume that U = {a, b} and V = {a, c}. Observe that
the quantity scf (U, S) − scf (V, S) is equal to 0 when S =
∅, {a}, {b, c}, {a, b, c}, 1 when S = {b}, −1 when S = {c},
2 when S = {a, b}, and −2 when S = {a, c}. Hence, for the
d-monotonic noise modelM, we have ES∼M(U)[scf (U, S)−
scf (V, S)] = 2pab − 2pac + pb − pc, where pab, pac, pb,
and pc are abbreviations for the probabilities PrM[S|U ] for
S = {a, b}, {a, c}, {b}, and {c}, respectively.

In order to have N t
b|c ≥ N t

c|b for t = 0, 1, ..., span(d, U)

as the definition of majority concentricity requires, it must
be either pab > pb, pc ≥ pac or pab > pb, pac ≥ pc. In
the first case, we have ES∼M(U)[scf (U, S) − scf (V, S)] =
(pab − pac) + (pab − pc) + (pb − pac) > 0. In the second
case, we have ES∼M(U)[scf (U, S) − scf (V, S)] = 2(pab −
pac) + (pb− pc) > 0. Accuracy in the limit of the ABCC rule
f for the noise modelM then follows by Lemma 2a.

5 Robustness of Other ABCC Rules
Our results for ABCC rules different than MC and AV involve
two classes of distance metrics. We define the first one here.
Definition 5 (natural distance). A distance metric d is called
natural if for every three sets U , V , and S with |U | = |V |
such that |U ∩S| > |V ∩S|, it holds that d(U, S) ≤ d(V, S).

The next observation follows easily by the definitions.
Claim 5. Any natural distance metric is majority-concentric.

The opposite is not true as the next example illustrates.
Example 2. LetA = {a, b, c} and consider the distance met-
ric with d(X,Y ) = 0 for every pair of sets with X = Y ,
d(X,Y ) = 1 if X ∩ Y = ∅ and X ∪ Y = A, and
d(X,Y ) = 2, otherwise. It can be easily seen that the dis-
tance is majority-concentric; it suffices to observe that, within
distance 1 from any set, each alternative appears in exactly
one set. To see that is not natural, consider U = {a, b},
V = {a, c} and S = {b}. We have |U ∩ S| > |V ∩ S| but
d(U, S) = 2 > 1 = d(V, S).

Lemma 7 below identifies the class of ABCC rules that
are monotone robust against all natural distance metrics. The
condition uses an appropriately defined bijection on sets of
alternatives.
Definition 6. Given two different sets U and V with |U | =
|V |, a (U, V )-bijection µ : 2A → 2A is defined as µ(S) =
{µ′(a) : a ∈ S}, where µ′ : A → A is such that µ′(a) = a
for every alternative a ∈ U ∩ V or a 6∈ U ∪ V , µ′(a) is a
distinct alternative in V \ U for a ∈ U \ V , and µ′(a) is a
distinct alternative in U \ V for a ∈ V \ U .

It is easy to see that a (U, V )-bijection µ has the following
properties.
Claim 6. LetU, V ⊆ Awith |U | = |V | and let µ be a (U, V )-
bijection. For every S ⊆ A, it holds |S| = |µ(S)|, |U ∩ S| =
|V ∩ µ(S)|, and |U ∩ µ(S)| = |V ∩ S|.



Lemma 7. An ABCC rule is d-monotone robust against a
natural distance metric d if for every two different sets of al-
ternatives U, V ⊆ A with |U | = |V | = k there exists a
(U, V )-bijection µ on sets of alternatives and a set S ⊆ A
with scf (U, S) > scf (V, S) and d(U, S) < d(U, µ(S)).

Proof. Let U and V be two different sets with k alternatives
each. Let S+, S−, and S0 be the classes of sets of alternatives
S with |U ∩S| > |V ∩S|, |U ∩S| < |V ∩S|, and |U ∩S| =
|V ∩ S|, respectively. Using this notation, we have

ES∼M(U)[scf (U, S)− scf (V, S)]

=
∑
S⊆A

(scf (U, S)− scf (V, S)) · PrM[S|U ]

=
∑
S∈S+

(scf (U, S)− scf (V, S)) · PrM[S|U ]

+
∑
S∈S0

(scf (U, S)− scf (V, S)) · PrM[S|U ]

+
∑
S∈S−

(scf (U, S)− scf (V, S)) · PrM[S|U ] (5)

We will now transform the third sum in the RHS of (5) to one
running over the sets of S+ like the first sum.

Let µ be a (U, V )-bijection on sets of alternatives; by
Claim 6, µ maps every set of S− to a set of S+ and vice-
versa. Hence, instead of enumerating sets of S−, we could
enumerate sets of S+ and apply the bijection µ on them. The
third sum in the RHS of (5) then becomes∑
S∈S−

(scf (U, S)− scf (V, S)) · PrM[S|U ]

=
∑
S∈S+

(scf (U, µ(S))− scf (V, µ(S))) · PrM[µ(S)|U ]

=
∑
S∈S+

(scf (V, S)− scf (U, S)) · PrM[µ(S)|U ] (6)

The second equality follows since, by Claim 6,
scf (U, µ(S)) = f(|U∩µ(S)|, |µ(S)|) = scf (|V ∩S|, |S|) =
scf (V, S) and, similarly, scf (V, µ(S)) = scf (U, S).

Now observe that scf (U, S) = scf (V, S) when S ∈ S0.
Hence, the second sum in the RHS of (5) is equal to 0. By
combining (5) and (6), we get

ES∼M(U)[scf (U, S)− scf (V, S)]

=
∑
S∈S+

(scf (U, S)− scf (V, S))

·(PrM[S|U ]− PrM[µ(S)|U ]). (7)

Now observe that the RHS of (7) is always non-negative.
This is due to the fact that S ∈ S+ which implies that
scf (U, S) = f(|U ∩ S|, |S|) ≥ f(|V ∩ S|, |S|) = scf (V, S)
since f is non-decreasing in its first argument and d(U, S) ≤
d(U, µ(S)) (and, consequently, PrM[S|U ] ≥ PrM[µ(S)|U ])
since d is natural and, by Claim 6, |U ∩ S| > |V ∩ S| =
|U ∩ µ(S)|. The RHS of (7) is strictly positive if there exists
a set S ∈ S+ that further satisfies d(U, S) < d(U, µ(S)) (and,
consequently, PrM[S|U ] > PrM[µ(S)|U ]) and scf (U, S) >
scf (V, S). The lemma then follows by Lemma 2a.

We now present two applications of Lemma 7.
Theorem 8. An ABCC rule f is monotone robust against any
natural distance metric if and only if f(k, k) > f(k − 1, k).

Notice that most popular ABCC rules from Section 2 sat-
isfy the condition of Theorem 8. CC is an exception. The
omitted proof of Theorem 8 implies that CC is not monotone
robust for the natural distance metric d defined as d(X,Y ) =
0 if X = Y and d(X,Y ) = 1, otherwise.

Our second application of Lemma 7 involves all non-trivial
ABCC rules and an important subclass of natural distances.
Definition 7 (similarity distance). A natural distance metric
d is a similarity distance metric if for every three sets U , V ,
and S with |U | = |V | such that |U ∩ S| > |V ∩ S|, it holds
that d(U, S) < d(V, S).

Theorem 9. Any non-trivial ABCC rule is monotone robust
against any similarity distance metric.

Proof. We apply Lemma 7 assuming a non-trivial ABCC rule
f and a similarity distance metric d. Non-triviality of f im-
plies that for every two different sets U and V with k alterna-
tives each, there is a set S such that scf (U, S) > scf (V, S).
This yields |U ∩ S| > |V ∩ S| = |U ∩ µ(S)|, where
µ is any (U, V )-bijection (see Claim 6), and implies that
d(U, S) < d(U, µ(S)) since d is a similarity distance.

We can easily show that the four distance metrics set dif-
ference, Jaccard, Zelinka, and Bunke-Shearer that we defined
in Section 2 are all similarity distance metrics. Using this
observation and Theorem 9, we obtain the next statement.
Corollary 10. Any non-trivial ABCC rule is monotone ro-
bust against the set difference, Jaccard, Zelinka, and Bunke-
Shearer distance metrics.

6 Epilogue
We believe that our approach complements nicely the ax-
iomatic and quantitative analysis of approval-based multiwin-
ner voting. The current paper leaves many interesting open
problems. Besides identifying ABCC rules that are at least as
robust as AV, applying our framework to non-ABCC rules de-
serves investigation. Beyond assessing the effects of noise in
the limit, studying the sample complexity of approval-based
multiwinner voting is important. This will require the de-
sign of concrete noise models like the Mp model that we
presented in Section 2. In particular, models that simulate
user behaviour in crowdsourcing platforms will be useful
for evaluating approval-based voting in such environments.
Even though the Mp model is very simple, we expect that
implementation issues will emerge for more elaborate noise
models. Similar issues in the implementation of the Mal-
lows [1957] ranking model have triggered much non-trivial
work; see, e.g., [Doignon et al., 2004].
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323–346. Springer, 2014.

[Bredereck et al., 2017] R. Bredereck, P. Faliszewski,
A. Kaczmarczyk, R. Niedermeier, P. Skowron, and
N. Talmon. Robustness among multiwinner voting rules.
In Proceedings of the 10th International Symposium on
Algorithmic Game Theory, (SAGT), pages 80–92, 2017.

[Brill et al., 2017] M. Brill, J.-F. Laslier, and P. Skowron.
Multiwinner approval rules as apportionment methods. In
Proceedings of the 31st AAAI Conference on Artificial In-
telligence, pages 414–420, 2017.

[Caragiannis and Micha, 2017] I. Caragiannis and E. Micha.
Learning a ground truth ranking using noisy approval
votes. In Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 149–155,
2017.

[Caragiannis et al., 2014] I. Caragiannis, A. D. Procaccia,
and N. Shah. Modal ranking: A uniquely robust voting
rule. In Proceedings of the 28th AAAI Conference on Arti-
ficial Intelligence, pages 616–622, 2014.

[Caragiannis et al., 2016] I. Caragiannis, A. D. Procaccia,
and N. Shah. When do noisy votes reveal the truth? ACM
Transactions on Economics and Computation, 4(3):15:1–
15:30, 2016.

[Chamberlin and Courant, 1983] J. R. Chamberlin and P. N.
Courant. Representative deliberations and representative
decisions: Proportional representation and the borda rule.
American Political Science Review, 77(3):718–733, 1983.

[Conitzer and Sandholm, 2005] V. Conitzer and T. Sand-
holm. Common voting rules as maximum likelihood es-
timators. In Proceedings of the 21st Conference on Un-
certainty in Artificial Intelligence (UAI), pages 145–152,
2005.

[Deza and Deza, 2016] M. M. Deza and E. Deza. Encyclo-
pedia of Distances. Springer, 4th edition, 2016.

[Doignon et al., 2004] J.-P. Doignon, A. Pakeč, and M. Re-
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