Thermoresponsive properties of alginate-based graft copolymers

Zacharoula Iatridi, Sofia-Falia Saravanou, Constantinos Tsitsilianis

Department of Chemical Engineering, University of Patras, GR-26504 Patras, Greece

Introduction

Alginate is a natural polysaccharide which contains (1–4)-linked β -D-mannuronic acid (M) and α -L-guluronic acid (G) residues.[1] Due to its properties, such as biocompatibility and gelation, this biomaterial has various applications in biomedical science and engineering.[2] Alginate hydrogels retain a structural similarity to the extracellular matrices in tissues and as a result these gels have promising applications in drug delivery and tissue engineering. The motivation of this work is the design and development of injectable hydrogels that behave as soft gels at room temperature and as strong ones at physiological temperature. For this reason, alginate-based graft copolymers were synthesized, using temperature responsive poly(N-isopropylacrylamide) (PNIPAM) side chains.[3] The enrichment of the PNIPAM chains with the hydrophobic comonomer N-tert-butylacrylamide (NtBAM) led to effective tuning of the sol-gel transition temperature and gel

strengthening. Moreover, the shear- and thermo-responsiveness endowed the gel with injectability properties that render it a good candidate for cell transplantation applications, through injection strategies, which require a weak gel to protect the cells during injection and a stronger gel after injection to immobilize the created scaffold in the targeting position of the host tissue.[4]

Tabla	1. Char	o at a min	ation	oftha	aida	ahai

Table 1: Characteristics of Alginate				
Backbone	Μν (g/mol)	M/G ratio		
Alginate	140000	1.50		

Side chains	Mn (g/mol)	mol composition NIPAM/NtBAM monomer (%mol)		
L-PNIPAM-NH ₂	5500	100/0	32	
H-PNIPAM-NH ₂	15300	100/0	32	
P(NIPAM ₉₀ -co-NtBAM ₁₀)-NH ₂	12700	90/10	26	
P(NIPAM ₈₆ -co-NtBAM ₁₄)-NH ₂	17000	86/14	23	

*The numbers next to the monomers of the side chains denote the %mol composition found from ¹H-NMR

Table 3: Graft copolymers characterization

Graft copolymers	mol composition NIPAM/NtBAM monomer (%mol)	weight composition Alg/side chain (%wt/wt)	mol composition Alg/side chain (%mol)	grafting density (number of side chains/alginate chain)
Alg-g-L-P(NIPAM) ₁₀	100/0	71/29	59/41	10
Alg-g-H-P(NIPAM) ₆	100/0	62/38	48/52	6
Alg-g-P(NIPAM ₉₀ -co-NtBAM ₁₀) ₁₁₈	90/10	8/92	5/95	118
Alg-g-P(NIPAM ₈₆ -co-NtBAM ₁₄) ₄	86/14	69/31	56/44	4

*The numbers next to the monomers of the side chains denote the %mol composition found from ¹H-NMR; the numbers outside the parenthesis of the side chains symbolize the number of side chains per alginate arm

Scheme: Synthetic method for the preparation of alginate-based graft copolymers.

