
Journal of Geographic Information System, 2020, 12, 221-240 
https://www.scirp.org/journal/jgis 

ISSN Online: 2151-1969 
ISSN Print: 2151-1950 

 

DOI: 10.4236/jgis.2020.123014  Jun. 30, 2020 221 Journal of Geographic Information System 
 

 
 
 

Automated Burned Scar Mapping Using 
Sentinel-2 Imagery 

Dimitris Stavrakoudis *, Thomas Katagis, Chara Minakou, Ioannis Z. Gitas 

Laboratory of Forest Management and Remote Sensing, School of Forestry and Natural Environment, Aristotle University of 
Thessaloniki, Thessaloniki, Greece 

 
 
 

Abstract 
The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution 
remotely sensed information with a short revisit cycle, which is ideal for 
mapping burned areas both accurately and timely. However, the high detail 
and volume of information provided actually encumbers the automation of 
the mapping process, at least for the level of automation required to map sys-
tematically wildfires on a national level. This paper proposes a fully auto-
mated methodology for mapping burn scars using Sentinel-2 data. Informa-
tion extracted from a pair of Sentinel-2 images, one pre-fire and one post-fire, 
is jointly used to automatically label a set of training patterns via two empiri-
cal rules. An initial pixel-based classification is derived using this training set 
by means of a Support Vector Machine (SVM) classifier. The latter is subse-
quently smoothed following a multiple spectral-spatial classification (MSSC) 
approach, which increases the mapping accuracy and thematic consistency of 
the final burned area delineation. The proposed methodology was tested on 
six recent wildfire events in Greece, selected to cover representative cases of 
the Greek ecosystems and to present challenges in burned area mapping. The 
lowest classification accuracy achieved was 92%, whereas Matthews correla-
tion coefficient (MCC) was greater or equal to 0.85. 
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1. Introduction 

Wildfires constitute a ubiquitous problem in Mediterranean countries, intro-
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ducing a high risk of direct damage to humans and structures in most of the 
highly populated Mediterranean countries and especially in coastal regions [1]. 
Most wildfires in Europe—over 85% of the total burned area—take place in its 
Mediterranean region, where about 65,000 fires occur every year on average, 
burning approximately half a million hectares of wildland and forest areas [2]. 
The analyses performed by the European Forest Fire Information System 
(EFFIS) indicate an increase in the length of the wildfire season the last 30 years, 
whereas the fire regime is projected to change almost everywhere in Europe the 
next decades [3]. 

Timely and accurate burned area mapping is essential for quantifying the en-
vironmental impact of wildfires, for compiling statistics, and for designing effec-
tive short- to mid-term impact mitigation measures (e.g., prevention of soil ero-
sion or possible impacts of the fire/heavy rainfall combination). To support such 
use cases on a national level, however, the burned area mapping methodology 
should be as automated as possible, requiring minimum—or desirably even 
none—human interaction. 

Satellite imagery has been successfully employed for mapping burned 
areas for several decades, since it offers a more accurate, seasonable, and re-
source-efficient alternative to field surveys [4], whereas it permits various levels 
of automation of the mapping process, especially in view of the great advance-
ments the field of machine learning has seen the last few years. Traditionally, 
moderate- to coarse-resolution satellite sensors have been used for the task, such 
as MODIS (Moderate Resolution Imaging Spectroradiometer) [5] and MERIS 
(MEdium Resolution Imaging Spectrometer) [6]. These sensors offer the advan-
tage of daily (or sub-daily) global coverage and the possibility to identify the date 
of the fire through a fully automated workflow. However, their coarse spatial 
resolution (pixel size of 500 m or greater) provides only a rough estimate of the 
fire perimeter. 

When a detailed mapping of the affected area is required, high-resolution sa-
tellite imagery can be used instead, sacrificing the temporal frequency of sensors 
such as MODIS in favor of increased spatial resolution. Landsat data (having 30 
m spatial resolution) have been predominately used for this purpose [7] [8] [9], 
due to their rich spectral information—especially the shortwave infrared (SWIR) 
bands they include that are important for burned area mapping—and their free 
data provision policy from the United States Geological Survey (USGS) since 
2008 [10]. However, Landsat has a temporal resolution of 16 days, which con-
straints the rapid mapping of wildfires, especially in regions with frequent cloud 
coverage (e.g., mountainous areas). Rapid and detailed mapping can be per-
formed alternatively with commercial very high-resolution satellite imagery [11], 
but this option involves high costs especially if expedited satellite tasking is re-
quested, which limits its applicability to few cases of special significance (e.g., 
when extended damages are involved). 

The Sentinel-2 mission—developed and operated by the European Space 
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Agency (ESA) as part of the Copernicus programme of the European Commis-
sion (EC)—is providing free of charge high-resolution optical imagery since 
2015. Sentinel-2 data are characterized by high spatial resolution (10 - 20 m, de-
pending on the band), rich spectral information (more or less a superset of 
Landsat 7 ETM+ and Landsat 8 OLI bands), and high temporal frequency (5 
days), characteristics which constitute them attractive for setting up an opera-
tion burned area mapping service on a national level. Since the Sentinel-2 data 
are new, though, only few studies have investigated their potential for burned 
area mapping [12] [13] [14] and even fewer have proposed automated workflows 
for automated mapping [15] [16]. 

This study presents a novel methodology for mapping burned areas using 
Sentinel-2 data, aiming at eliminating user interaction and achieving mapping 
accuracy that is acceptable for operational use. The proposed methodology uses 
a pair of Sentinel-2 images, one acquired before the wildfire and one after the 
fire has been extinguished. A number of difference spectral indices are calculated 
and a set of empirical rules is employed in order to classify a portion of the im-
age pixels, those that can be unambiguously characterized as burned or un-
burned. These pixels serve as training patterns and a supervised learning ap-
proach is employed to derive an initial mapping, implemented via the Support 
Vector Machine (SVM) classifier [17]. The latter is subsequently refined using 
the so-called Multiple Spectral-Spatial Classification with Minimum Spanning 
Forest (MSSC-MSF) approach [18], which eliminates the salt-and-pepper phe-
nomenon of the pixel-based classification and increases the accuracy of the final 
burned area map. 

2. Datasets Used 

The proposed methodology uses Sentinel-2 MultiSpectral Instrument (MSI) data. 
We did not consider the bands with spatial resolution of 60 m—which are primar-
ily useful for atmospheric correction—neither the two additional red-edge bands 
(bands 5 and 7), which are primarily used for calculating spectral indices sensi-
tive to vegetation stress. The nominal specifications [19] of the eight bands that 
were ultimately considered in this study are reported in Table 1. 

Six wildfire events in 2016 and 2018 in Greece were considered in this study 
(Table 2 and Figure 1), selected to cover representative cases of the Greek eco-
systems and to present challenges in burned area mapping. More specifically, 
Elata (Figure 1(a)) was a sparsely vegetated environment with many plantations 
of mastic trees (Pistacia lentiscus). In Farakla (Figure 1(b)), the wildfire burned 
a dense pine forest and reached urban areas across the coastline. Saktouria 
(Figure 1(c)) is a typical Cretan environment, with very sparse low vegetation in 
rocky areas, which are typically difficult to differentiate from burned areas. Ze-
meno (Figure 1(d)) is a mountainous area with rough terrain and several agri-
cultural fields within the burn perimeter. Finally, Kallitechnoupoli (Figure 1(e)) 
and Kineta (Figure 1(f)) are the two devastating wildfires of 2018 in Attica,  
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Table 1. Sentinel-2 MSI bands considered and their nominal specifications. 

Band Description 
Spatial Resolution 

(m) 
Central 

wavelength (nm) 
Bandwidth (nm) 

B02 Blue 10 490 65 

B03 Green 10 560 35 

B04 Red 10 665 30 

B06 Red edge 20 740 15 

B08 Near infrared (NIR) 10 842 115 

B8A NIR (narrow) 20 865 20 

B11 SWIR 1 20 1610 90 

B12 SWIR 2 20 2190 180 

 
Table 2. Wildfire events in Greece considered in this study. 

Location Region 
Fire Start 

Date 
Pre-fire 

image date 
Post-fire 

image date 
Sentinel-2 tile 

Elata Chios 23/07/2016 20/07/2016 27/07/2016 T35SMC 

Farakla Euboea 30/07/2016 23/07/2016 02/08/2016 T34SGH 

Saktouria Crete 30/07/2016 27/07/2016 06/08/2016 T35SKU 

Zemeno Corinthia 23/07/2018 13/07/2018 28/07/2018 T34SFH 

Kallitechnoupoli Attica 23/07/2018 05/07/2018 04/08/2018 T34SGH 

Kineta Attica 23/07/2018 13/07/2018 14/08/2018 T34SFH 

 

   
(a)                    (b)                               (c) 

   
(d)                         (e)                                   (f) 

Figure 1. False-color composites (using B12, B08, and B04 in lieu of the view’s red, green, and blue 
channels, respectively) of the post-fire Sentinel-2 images used for each wildfire event: (a) Elata, (b) 
Farakla, (c) Saktouria, (d) Zemeno, (e) Kallitechnoupoli, and (f) Kineta. Non-land areas have been 
masked out. 
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where the fire expanded to populated areas with significant vegetation cover 
(mostly pine trees in-between houses and within house yards). 

We used Level-2A products, i.e., atmospherically corrected Sentinel-2 images 
(bottom-of-atmosphere reflectance values) [20]. The 2018 images were down-
loaded directly as Level-2A products from the Copernicus Open Access Hub 
(https://scihub.copernicus.eu/). For the 2016 images, the Sen2Cor processor 
(http://step.esa.int/main/third-party-plugins-2/sen2cor/) was run locally to de-
rive the Level-2A products. A rectangular subset of the image that includes the 
burned area with a small buffer around was cropped out of each original Senti-
nel-2 tile, as shown in Figure 1. In the current work, this was done manually, 
although we presently explore ways to automate this step as well. The bands re-
ported in Table 1 were subsequently stacked into a single image, considering 
absolute reflectance values in the range [0, 1] (i.e., dividing the Level-2A prod-
uct’s pixel values with 10,000). For this purpose, all 20 m resolution images were 
resampled to 10 m through a nearest neighbor resampling. Moreover, non-land 
areas were masked out using the official NUTS (Nomenclature of Territorial 
Units for Statistics) layer. 

For validation purposes, burned area perimeters derived from the so-called 
Object-based Burned Area Mapping (OBAM) service were used, which was de-
veloped within the context of the Greek National Observatory of Forest Fires 
(NOFFi) [21]. NOFFi-OBAM is a semi-automated methodology that uses a sin-
gle post-fire Sentinel-2 image to derive accurate burned area perimeters, but in-
volves significant user interaction. We should note that although these reference 
mappings were derived from a semi-automated methodology, manual correc-
tions were performed at the end through careful photointerpretation. Therefore, 
the reference dataset is accurate, at least to the level allowed by Sentinel-2’s spa-
tial resolution (which in any case is high enough to support the photointerpreta-
tion process). 

3. Methodology 

Figure 2 depicts the workflow of the proposed methodology. First, spectral in-
dices are calculated from both the pre-fire and post-fire Sentinel-2 images (Lev-
el-2A products, as mentioned previously). The differences (or ratio) of these in-
dices are used to label a portion of the image’s pixels through a set of empirical 
rules, which constitute the training set’s labels. These rules are defined in a way 
such as only pixels that can be characterized unambiguously as burned or un-
burned are labeled, in order to avoid introducing misclassifications into the 
training set as much as possible. An augmented set of features, comprising the 
post-fire image’s bands values (reflectance values) and the difference/ratio spec-
tral indices, is used to perform a preliminary pixel-based classification via the 
SVM classifier. The latter is subsequently refined via the MSSC-MSF methodol-
ogy, out of which the final burned area perimeter is obtained. The rest of this 
section details each step of the proposed methodology. 
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Figure 2. Schematic workflow of the proposed methodology. 

3.1. Spectral Indices 

A number of spectral indices frequently used in burned area mapping studies 
have been calculated, which are reported in Table 3. Most of them employ the 
classical normalized difference formulation of the Normalized Difference Vege-
tation Index (NDVI) [22], but using one or both of the SWIR bands, which are 
sensitive to moisture content and consequently facilitate the discrimination of 
the burned areas. The indices are calculated considering the ground reflectance 
values of the Level-2A products in the range [ ]0,1 , from either the pre-fire im-
age or the post-fire one or both (as described in the following subsections). In 
the following, we use the notation preSI  and postSI  to describe any index SI  
calculated from the pre-fire or the post-fire image, respectively (e.g., preNDVI ). 
Moreover, the empirical rule-based classification (described in the next subsec-
tion) also considers the difference between the pre-fire and post-fire values for 
some of the indices, which is an indication of disturbance resulting from the fire. 
The difference, which is denoted as dSI  for any index SI  (e.g., dNBR ), is 
calculated as pre-fire minus post-fire value, i.e., pre postdSI SI SI= − . 

3.2. Empirical Rule-Based Classification 

The supervised classification approach followed by the proposed methodology 
requires a training set that is labeled automatically. To do so, we defined two  
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Table 3. Spectral indices considered in this study. The Sentinel-2 band names are those reported in Table 1. 

Acronym Name Equation Introduced in 

NDVI Normalized difference vegetation index ( ) ( )B8A B04 B8A B04− +  [22] 

MSAVI2 Modified soil-adjusted vegetation index 2 ( ) ( ) ( ){ }20.5 2 B8A 1 2 B8A 1 8 B8A-B04⋅ ⋅ + − ⋅ + − ⋅  [23] 

CSI Char soil index B8A B12  [24] 

MIRBI Mid-infrared burn index 10 B12 9.8 B11 2⋅ ⋅ +−  [25] 

NBR Normalized burn ratio ( ) ( )B8A B12 B8A B12− +  [26] 

NBR2 Normalized burn ratio 2 ( ) ( )B11 B12 B11 B12− +  [27] 

NDII Normalized difference infrared index ( ) ( )B8A B11 B8A B11− +  [28] 

MNDWI Modified normalized difference water index ( ) ( )B03 B11 B03 B11− +  [29] 

 
empirical rules that employ thresholds on differences or ratios of the pre-fire 
and post-fire spectral indices, following a similar approach with previous studies 
[8] [15]. It is generally impossible to define empirical rules that will classify cor-
rectly all (or almost all) pixels, due to the great variety of ecosystem types (e.g., 
sparsely vegetated areas, dense forests, shrublands, agricultural or pasture areas, 
etc.), illumination conditions, topography, and other factors. Therefore, these 
rules are defined in a way such as only pixels that can be characterized unambi-
guously as burned or unburned are labeled, in order to avoid introducing mis-
classifications into the training set as much as possible. 

To this end, the features used to define the rules and the respective threshold 
values were determined empirically through a trial-and-error procedure on 
many wildfire events in Greece, in a way that only unambiguous burned or un-
burned pixels were labeled, in order to avoid introducing errors within the 
training set. Eventually, a pixel is classified as burned if it satisfies the rule de-
fined by Equations (1)-(2): 

( )
pre

ratio

MNDWI 0.3

B8A 0.3 dMIRBI 1.5 dNDII 0.02AND OR AND

< −

 > < − > 
    (1) 

where 

pre
ratio

post

B8A
B8

B8A
1A = − .                     (2) 

Accordingly, an object is classified as unburned if it satisfies the rule defined 
by Equation (3): 

[ ]preMNDWI 0.25 dNBR 0.015 dNBR2 0.015OR OR> − < − < − .     (3) 

In both cases, the pre-fire MNDWI index is considered for discriminating 
water surfaces and artificial areas (buildings, roads, etc.), whereas the vegetation 
or burned area identification is performed by the remaining part of the corres-
ponding rule. To avoid misclassifications by differences in illumination between 
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the pre-fire and post-fire image acquisitions—possibly in combination with to-
pography—a morphological opening (erosion followed by dilation) operator 
[30] is applied to the resulting rule-based classified image, considering a square 
structuring element with a side of 3 pixels (i.e., the 8-neighborhood). The open-
ing operator effectively removes isolated single-pixel classifications, which exhi-
bit a higher probability of having been misclassified. 

Depending on the area, a larger or smaller proportion of pixels may be classi-
fied by the above procedure. Densely vegetated forest areas or severely burned 
areas are more likely to be labeled. In any case, the labeled pixels are used to 
formulate the training set and the remaining ones are categorized by the super-
vised classifier, as explained in the following. 

3.3. Initial Pixel-Based Classification 

The dataset used for the supervised classification considers 21 features extracted 
from multiple sources (“classification features image” module in Figure 2). 
More specifically, it is formulated considering: 

1) the eight bands of the post-fire Sentinel-2 image reported in Table 1, 
2) the first seven spectral indices of Table 3 calculated from the post-fire im-

age (NDVIpost, MSAVI2post, CSIpost, MIRBIpost, NBRpost, NBR2post, and NDIIpost), 
and 

3) all features considered in the empirical rules of Equations (1)-(3), i.e., 
B8Aratio, dMIRBI, dNDII, dNBR, dNBR2, and MNDWIpre). 

Having defined the feature set and the training set from the previous step, an 
SVM classification model [17] is learned subsequently, in order to classify the 
remaining image pixels. We used a radial basis function (RBF) kernel for the 
SVM formulation. The penalty constant C and the RBF kernel’s parameter γ  
are optimized via a 5-fold cross-validation procedure on all possible combina-
tions for the two parameters, considering an exponentially increasing grid of 
possible values for each parameter. The trained SVM model is subsequently ap-
plied to classify all pixels not labeled by the empirical rules, thus resulting in the 
initial pixel-based classification map. 

3.4. Final Burned Scar Map 

Pixel-based classification are typically severely affected by the salt-and-pepper 
phenomenon. The latter characterizes the phenomenon whereby individual pix-
els or small isolated regions are misclassified, either as unburned within the fire 
perimeter or as burned outside—and in many cases far away for—the fire peri-
meter, with a human observer being able to identify them easily as errors 
through visual inspection. These isolated errors are the result of image artifacts 
(because of illumination angle, topography, specular reflections, etc.) in combi-
nation with the fact that the pixel-based classification does not exploit any spa-
tial information and the phenomenon becomes more prominent with the in-
crease of spatial resolution. To overcome this limitation, the initial pixel-based 
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classification described in the previous subsection is refined via the MSSC-MSF 
approach [18], which can effectively exploit both spatial and spectral informa-
tion. 

Given an input image and a pixel-based classification, MSSC-MSF starts by 
segmenting the image by means of three different image segmentation algo-
rithms (see Figure 2). For this purpose, we used the watershed segmentation 
[31], the Fuzzy C-Means (FCM) clustering [32], and the mean shift segmenta-
tion [33] algorithms. In all cases, the segmentation was performed considering 
only the four 10 m bands of Sentinel-2 (B02, B03, B04, and B08 in Table 1). This 
choice was made in order to a) reduce the overall computation requirements, b) 
exploit the finest spatial resolution provided by Sentinel-2, and c) increase the 
methodology’s generalization capabilities by using a simpler feature set for the 
segmentation process than that used for the pixel-based classification. 

Watershed is a morphological approach to image segmentation that combines 
region growing and edge detection. The method is typically applied to a gradient 
of the original image and segments it into small adjacent but non-overlapping 
regions, where each region is associated with one minimum (i.e., homogeneous 
region) of the gradient image. Similarly to the original approach [18], we used 
the robust color morphological gradient (RCMG) [34] for this purpose. Con-
versely, FCM is a clustering algorithm, but we can derive a segmentation of the 
image by identifying and uniquely labeling the connected components (CCs) on 
the resulting clustering map. Final, mean shift is an efficient feature-space analy-
sis approach that has been successfully used in the past for remotely sensed im-
age segmentation [35] [36], as it balances between the spectral and the spatial 
information provided by the multispectral image. 

For each segmentation, an equivalent classification map is produced fusing 
the segmentation result with the pixel-based classification obtained by SVM. 
More specifically, a majority voting is performed within each segment of the 
image, i.e., all pixels belonging to the segment are assigned to the class exhibiting 
the highest frequency in the classification map within this segment. Ultimately, 
the three independent classification maps are fused to select a set of markers. A 
pixel is labeled as marker if all three independent classification maps agree (i.e., 
belong the same class, in our case, either burned or unburned). Marked pixels 
retain their class, whereas all other are considered as unclassified. Effectively, 
this Multiple Spectral-Spatial Classification (MSSC) approach eliminates the 
salt-and-pepper phenomenon of the base pixel-based classification by exploiting 
the spatial information, which is provided by the segment-wise processing of the 
image. If all three independent classifications agree, it is assumed that the pixel 
has been correctly classified (markers), whereas the remaining pixels are consi-
dered ambiguous. 

Finally, those ambiguous pixels are labeled by growing a Minimum Span-
ning Forest (MSF) rooted from the markers. Each image pixel is considered as 
a vertex of an undirected graph, connected with its eight immediate neighbors 
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through edges. A weight is assigned in each edge, which is proportional to the 
dissimilarity between the two pixels. As a measure of dissimilarity, we used the 
spectral angle mapper (SAM) measure, which is defined by Equation (4): 

( )
2 2

1 1

1SAM ,
B

ib jbb
i j B B

ib jbb b

v v

v v
=

= =

⋅

⋅
= ∑

∑ ∑
v v                 (4) 

where B  is the cardinality of the feature space (i.e., number of bands in the 
image) and { }1, ,i i iBvv …=v  and { }1, ,j j jBvv …=v  are the feature vectors of 
two neighboring pixels. The absolute SAM value is maximized for dissimilar 
feature vectors and minimized for equal ones. As shown in Figure 2, the SAM 
measure is calculated considering the full classification feature space, comprising 
the 21 features described in the previous subsection. In the case that two neigh-
boring pixels are both markers, a zero weight is assigned if they belong to the 
same class and an infinite weight otherwise. 

An additional vertex for each class (here two, burned or unburned) is inserted 
into the graph and connected with all markers belonging to the respective class. 
A root vertex is also inserted, connected with those extra vertices. With this con-
figuration, running a minimum spanning tree algorithm (e.g., Prim's algorithm 
[37]) and then removing the extra vertices induces an MSF over the graph. As-
signing all pixels grown from each marker to its class, ultimately results in labe-
ling all unclassified pixels in the image. Effectively, each marker grows its tree by 
labeling neighboring unlabeled pixels, in a way that the total dissimilarity among 
pixels is minimized. A detailed description of the MSF procedure can be found 
in [18] and [38]. 

Vectorizing the final classification map and keeping only the areas labeled as 
burned, we derive the final burned area perimeter, which can be subsequently 
viewed or analyzed in a GIS environment. 

4. Results 
4.1. Example of the Proposed Algorithm’s Application 

Before reporting the numerical results, we provide here an example of the pro-
posed algorithm’s application in Figure 3, in order to visually explain the vari-
ous steps of the algorithm. We use the case of the Kallitechnoupoli wildfire (see 
Table 2), with Figure 3(a) showing a false-color composite of the post-fire Sen-
tinel-2 image and the reference burned area perimeter superimposed with a 
black line. This was a devasting wildfire that started on July 23, 2018 in Attica, 
Greece and claimed the lives of more than 100 people. It presents several diffi-
culties as a burned area mapping task, because the fire expanded to populated 
areas with significant vegetation cover (mostly pine trees in-between houses and 
within house yards), with some of the residential properties completely de-
stroyed and others partially burned. As such, several regions in the scene are dif-
ficult to be correctly classified by a fully automated algorithm. 

The training set derived from the empirical rules (see Section 3.2) comprises  
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(a)                                    (b)                                      (c) 

   
(d)                                     (e)                                     (f) 

   
(g)                                     (h) 

Figure 3. Example of the proposed algorithm’s steps in the case of the Kallitechnoupoli wildfire: (a) false-color composite (using 
B12, B08, and B04 in lieu of the view’s red, green, and blue channels, respectively) of the Sentinel-2 post-fire image, (b) training 
pixels labeled via the emperical rules, (c) pixel-based SVM classification, (d) watershed classification map, (e) FCM classification 
map, (f) mean shift classification map, (g) markers selected by MSSC, and (h) final classification obtained by MSSC-MSF. 
 

only the unambiguous burned or unburned pixels (Figure 3(b)), which are ei-
ther severely burned vegetated areas or unburned vegetated areas. Ambiguous 
areas such as sparsely vegetated areas, semi-burned areas, or areas in the wild-
land-urban interface are (correctly) not included in the training set. The initial 
pixel-based SVM classification (Figure 3(c); see Section 3.3) exhibits a fairly 
good performance, but with a high salt-and-pepper phenomenon outside the fire 
perimeter, as well as significant omission errors within the fire perimeter. 

The three spectral-spatial classifications (see Section 3.4) result in generally 
different results. Watershed (Figure 3(d)) is more or less a superpixel segmenta-
tion algorithm (i.e., it usually generates very small segments) and, as such, it re-
moves the salt-and-pepper misclassifications, but also exhibits relatively high 
commission error, misclassifying large areas to the north of and outside the fire 
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perimeter as burned. On the other hand, FCM (Figure 3(e)) is a clustering algo-
rithm and, as such, it is closer to the pixel-based SVM result. The mean shift 
classification (Figure 3(f)) is somewhere in-between the previous two, since it 
exploits both spatial and spectral information. 

The markers (Figure 3(g)) are defined as all pixels that the three segmenta-
tion-based classification agree. Closely inspecting Figure 3(a), Figure 3(b), and 
Figure 3(g), we can observe that indeed the hard-to-discriminate regions are left 
unmarked. The MSF algorithm (Figure 3(h)) finally labels the unmarked re-
gions, resulting in the most accurate classification result. Comparing the initial 
(Figure 3(c)) and the final (Figure 3(h)) classifications, it becomes apparent 
that the MSSC-MSF approach improves the thematic consistency of the map-
ping process significantly, which is also reflected in the numerical comparison 
presented in the following. 

4.2. Quantitative Results 

For quantifying accuracy, well-known measures derived from the confusion ma-
trix were calculated, namely, sensitivity, specificity, accuracy, and Matthews 
correlation coefficient (MCC) [39]. Correct classifications in a confusion matrix 
are either true positives (TP) or true negatives (TN), i.e., pixels correctly classi-
fied as burned or unburned, respectively. The errors are described as false posi-
tives (FP; pixels classified as burned but their true label according to the refer-
ence was unburned) and false negatives (FN; pixels classified as unburned but 
their true label according to the reference was burned). Sensitivity is (inversely) 
related to omission errors (burned areas misclassified as unburned) and is de-
fined by Equation (5): 

Sensitivity TP
P

= ,                       (5) 

where P is the total number of pixels labeled as burned in the reference set. Spe-
cificity is related to commission errors (unburned areas misclassified as burned) 
and is defined by Equation (6): 

Specificity TN
N

= ,                       (6) 

where N is the total number of pixels labeled as unburned in the reference set. 
Accuracy is the ratio of correctly classified areas to the area of the reference pe-
rimeter—being the most commonly used measure of classification perfor-
mance—and is defined by Equation (7): 

Accuracy TP TN
P N
+

=
+

.                      (7) 

Finally, MCC takes into consideration both omission and commission errors, 
being a correlation coefficient between the observed and predicted binary classi-
fications and is generally regarded as a balanced measure that can be used even if 
the classes are of very different sizes [40]. It is defined by Equation (8): 
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( ) ( ) ( ) ( )TP FP
TP TN FP FNMCC

TP FN TN FP TN FN
⋅ − ⋅

=
⋅ + ⋅ + ⋅ ++

.       (8) 

Table 4 reports the values of the accuracy measures for both the initial pix-
el-based SVM classification and the final ones for each test case. The proposed 
methodology exhibits higher accuracy values in most of the regions compared to 
the initial pixel-based classification, which is usually attributed to the higher 
sensitivity (fewer omission errors) with similar specificity values. For two cases 
(Zemeno and Kallitechnoupoli), the performance of the proposed method is 
much higher than the base classification, especially in terms of MCC values. In 
purely absolute terms, the proposed method exhibits classification accuracies 
greater or equal to 0.92 and MCC values greater or equal to 0.85. Such a perfor-
mance is perfectly acceptable for operational applications on a national level, 
especially taking into consideration that it is a fully automated process. 

4.3. Visual Comparison 

Complementary to the numerical results reported above, we provide a visual 
comparison between the initial pixel-based SVM classification and the final one 
for all six wildfires of Table 2 in Figures 4-9. This comparison confirms the dif-
ferences and additionally highlights the qualitative superiority of the proposed 
framework. One the one hand, the proposed methodology eliminates the 
salt-and-pepper phenomenon of the initial pixel-based classification outside the 
fire perimeter. Because the latter are usually isolated pixels misclassifications, the 
specificity measure (see Table 4) is not greatly affected negatively. Nevertheless, 
it is significant for the pixel-based classification in many cases, such as the Fa-
rakla (Figure 5), the Kallitechnoupoli (Figure 8), and—most prominently—the  
 
Table 4. Quintative comparison between the initial pixel-based SVM classification and 
the proposed methodology. 

Method Location Sensitivity Specificity Accuracy MCC 

Pixel-based 
SVM 

classification 

Elata 0.89 0.99 0.94 0.89 

Farakla 0.98 0.94 0.96 0.92 

Saktouria 0.88 0.98 0.94 0.87 

Zemeno 0.98 0.85 0.89 0.79 

Kallitechnoupoli 0.89 0.97 0.93 0.86 

Kineta 0.87 0.99 0.93 0.87 

Proposed 
MSSC-MSF 
framework 

Elata 0.90 0.98 0.95 0.89 

Farakla 0.99 0.94 0.97 0.93 

Saktouria 0.87 0.98 0.93 0.86 

Zemeno 0.98 0.90 0.92 0.85 

Kallitechnoupoli 0.95 0.97 0.96 0.91 

Kineta 0.87 0.99 0.93 0.87 
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(a)                                         (b) 

Figure 4. Visual comparison between the classification result obtained by (a) the pix-
el-based SVM classifier and (b) the proposed methodology for the wildfire of Elata, Chios 
(23/07/2016). Red and green colors denote areas classified as burned and unburned, respec-
tively, whereas the black lines depict the reference perimeter. 

 

  
(a)                                        (b) 

Figure 5. Visual comparison between the classification result obtained by (a) the pixel-based 
SVM classifier and (b) the proposed methodology for the wildfire of Farakla, Euboea 
(30/07/2016). Red and green colors denote areas classified as burned and unburned, respec-
tively, whereas the black lines depict the reference perimeter. 

 

 
(a) 
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(b) 

Figure 6. Visual comparison between the classification result obtained by (a) the pix-
el-based SVM classifier and (b) the proposed methodology for the wildfire of Saktouria, 
Crete (30/07/2016). Red and green colors denote areas classified as burned and unburned, 
respectively, whereas the black lines depict the reference perimeter. 

 

  
(a)                                     (b) 

Figure 7. Visual comparison between the classification result obtained by (a) the pix-
el-based SVM classifier and (b) the proposed methodology for the wildfire of Zemeno, 
Corinthia (23/07/2018). Red and green colors denote areas classified as burned and un-
burned, respectively, whereas the black lines depict the reference perimeter. 

 

  
(a)                                      (b) 

Figure 8. Visual comparison between the classification result obtained by (a) the pix-
el-based SVM classifier and (b) the proposed methodology for the wildfire of Kallitech-
noupoli, Attica (23/07/2018). Red and green colors denote areas classified as burned and 
unburned, respectively, whereas the black lines depict the reference perimeter. 
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(a) 

 
(b) 

Figure 9. Visual comparison between the classification result obtained by (a) the pix-
el-based SVM classifier and (b) the proposed methodology for the wildfire of Kineta, At-
tica (23/07/2018). Red and green colors denote areas classified as burned and unburned, 
respectively, whereas the black lines depict the reference perimeter. 

 
Zemeno (Figure 7) wildfires. On the other hand, the pixel-based SVM classifica-
tion seems to systematically underestimate the burned area within the fire peri-
meter, resulting in higher omission error. 

5. Conclusions and Future Work 

This paper presented a novel methodology for mapping burned areas using Sen-
tinel-2 data, without any user interaction. A pair of Sentinel-2 images, a 
pre-fire and a post-fire one, are used for this purpose. Difference and ratio 
spectral indices are calculated from this pair of images and a set of empirical 
rules is employed to automatically label a portion of the image pixels, which 
formulate the training set. The latter is used to train a pixel-based SVM clas-
sifier, which labels all other image pixels. This initial classification is further re-
fined by the MSSC-MSF approach, which increases the mapping accuracy, miti-
gates the salt-and-pepper phenomenon inherent in all pixel-based classifications, 
and significantly increases the quality of the derived map. The results on a set of 
recent large wildfires in Greece showed that the proposed methodology exhibits 
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quantitative and qualitative performance that is satisfactory for operational use 
on a national level, requiring at the same time no user interaction. 

A notable limitation of the proposed methodology is that the empirical rules 
that formulate the training set for the initial pixel-based classification have been 
derived through a trial and error procedure. Although we tried to consider a 
representative—as much as possible—set of past wildfires for this purpose, it is 
undeniable that this approach is suboptimal and requires substantial effort for 
updating the rules as information from new wildfires becomes available. Perhaps 
most importantly, it encumbers the method’s transferability in other ecosystems 
with different characteristics than the Euro-Mediterranean one (i.e., Greek) con-
sidered in this study. Future work will try to address this limitation, by devising 
an automated methodology for updating or creating anew the empirical rules. 
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