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ABSTRACT   

Burned area mapping is essential for quantifying the environmental impact of wildfires, for compiling statistics, and for 

designing effective short- to mid-term impact mitigation measures. The Sentinel-2 satellites are providing an unparalleled 

wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas 

both accurately and timely. However, the high detail and volume of the information provided actually encumbers the 

automation of the mapping process, at least for the level of automation required to map systematically wildfires on a 

national level. This paper presents a preliminary methodology for mapping burned areas using Sentinel-2 data, which aims 

to eliminate user interaction and achieve mapping accuracy that is acceptable for operational use. It follows an object-

based image analysis (OBIA) approach, whereby the initial image is segmented into a set of adjacent and non-overlapping 

small regions (objects). The most unambiguous of them are labeled automatically through a set of empirical rules that 

combine information extracted from both a pre-fire Sentinel-2 image and a post-fire one. The burned area is finally 

delineated following a supervised learning approach, whereby a Support Vector Machine (SVM) is trained using the 

labeled objects and subsequently applied to the whole image considering a set of optimally selected object-level features. 

Preliminary results on a set of recent large wildfires in Greece indicate that the proposed methodology constitutes a solid 

basis for fully automating the burned area mapping process. 

Keywords: Operational burned area mapping, object-based image analysis (OBIA), quick shift segmentation, Sentinel-2, 
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1. INTRODUCTION  

Wildfires constitute an important pressure in forested ecosystems, introducing a high risk of direct damage to humans and 

structures in most of the highly populated Mediterranean countries and especially in coastal regions1. In Europe, about 

65,000 fires occur every year on average, burning approximately half a million hectares of wildland and forest areas; most 

of the burned area—over 85%—is in the European Mediterranean region2. The analyses performed by the European Forest 

Fire Information System (EFFIS) indicate an increase in the length of the wildfire season the last 30 years, whereas the 

fire regime is projected to change almost everywhere in Europe the next decades3. 

Timely and accurate burned area mapping is essential for quantifying the environmental impact of wildfires, for compiling 

statistics, and for designing effective short- to mid-term impact mitigation measures (e.g., prevention of soil erosion or 

possible impacts of the fire/heavy rainfall combination). Satellite imagery has been successfully employed for mapping 

burned areas for several decades, since it offers a more accurate, seasonable, and resource-efficient alternative to field 

surveys4. Traditionally, moderate- to coarse-resolution satellite sensors have been used for the tasks, such as MODIS 

(Moderate Resolution Imaging Spectroradiometer)5 and MERIS (MEdium Resolution Imaging Spectrometer)6. These 

sensors offer the advantage of daily (or sub-daily) global coverage and the possibility to identify the date of the fire through 

a fully automated workflow. However, their coarse spatial resolution (pixel size of 500 m or greater) provides only a rough 

estimate of the burn perimeter. 
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Burned area mappings with the detail required by local forest managers can be produced with high-resolution satellite 

imagery. Landsat data have been predominately used for this purpose7–9, due to their rich spectral information—especially 

the shortwave infrared (SWIR) bands they include that are important for burned area mapping—and their free data 

provision policy from the United States Geological Survey (USGS) since 2008. However, Landsat’s temporal resolution 

of 16 days encumbers the rapid mapping of wildfires, especially in regions with frequent cloud coverage (e.g., mountainous 

areas). Rapid and detailed mapping can be performed alternatively with commercial very high-resolution satellite 

imagery10,11, but this option involves high costs especially if expedited satellite tasking is requested, which limits its 

applicability to few cases of special significance (e.g., when extended damages are involved). 

The Sentinel-2 mission—developed and operated by the European Space Agency (ESA) as part of the Copernicus 

programme of the European Commission (EC)—is providing free of charge high-resolution optical imagery since 2015. 

Sentinel-2 data are characterized by high spatial resolution (10–20 m, depending on the band), rich spectral information 

(more or less a superset of Landsat 7 ETM+ and Landsat 8 OLI bands), and high temporal frequency (5 days), 

characteristics which constitute them attractive for setting up an operation burned area mapping service on a national level. 

Since the Sentinel-2 data are new, though, only few studies have investigated their potential for burned area mapping12–14 

and even fewer have proposed automated workflows for automated mapping15. 

The present study’s objective is to present a preliminary methodology for mapping burned areas using Sentinel-2 data, 

which aims to eliminate user interaction and achieve mapping accuracy that is acceptable for operational use. The proposed 

methodology is based on a previous method, namely, the Object-based Burned Area Mapping (OBAM) service, developed 

within the context of the Greek National Observatory of Forest Fires (NOFFi)16. In brief, NOFFi-OBAM is a semi-

automated methodology that uses a single post-fire Sentinel-2 image, following the object-based image analysis (OBIA) 

approach, that is, the initial image is segmented into a set of adjacent and non-overlapping small regions (objects) and each 

object is classified as a whole into burned or unburned. The classification is performed by means of a supervised classifier 

trained with a small set of training objects, which are automatically selected but need to be labeled by the user manually 

(through photointerpretation). Although the methodology was empirically found to achieve high accuracy and was 

operationally employed to map more than 150 wildfire in Greece from 2016 to 2018, the manual labeling of the training 

object can become time-consuming, especially in sparsely vegetated areas and for large wildfires. Hence, the aim of this 

study is to automate the latter process, exploiting the additional information provided by a pre-fire Sentinel-2 image. 

2. DATASETS 

The proposed methodology uses Sentinel-2 MultiSpectral Instrument (MSI) data. We did not consider the bands with 

spatial resolution of 60 m—which are primarily useful for atmospheric correction—neither the two additional red edge 

bands (bands 5 and 7), which are primarily used for indices sensitive to vegetation stress. The nominal specifications17 of 

the eight bands that were ultimately considered in this study are reported in Table 1. 

Table 1. Sentinel-2 MSI bands considered and their nominal specifications. 

Band Description 
Spatial 

Resolution (m) 

Central 

wavelength (nm) 

Bandwidth 

(nm) 

B02 Blue 10 490 65 

B03 Green 10 560 35 

B04 Red 10 665 30 

B06 Red edge 20 740 15 

B08 Near infrared (NIR) 10 842 115 

B8A NIR narrow 20 865 20 

B11 SWIR 1 20 1610 90 

B12 SWIR 2 20 2190 180 

 

Six wildfire events in 2016 and 2018 in Greece were considered in this study (Table 2 and Figure 1), selected to cover 

representative cases of the Greek ecosystems and to present challenges in burned area mapping. More specifically, Elata 

(Figure 1a) was a sparsely vegetated environment with many plantations of mastic trees (Pistacia lentiscus). In Farakla 

(Figure 1b), the wildfire burned a dense pine forest and reached urban areas across the coastline. Saktouria (Figure 1c) is 

a typical Cretan environment, with very sparse low vegetation in mostly rocky areas, which are typically difficult to 

differentiate from burned areas. Zemeno (Figure 1d) is a mountainous area with rough terrain and several agricultural 



 

 
 

 

fields within the burn perimeter. Finally, Kallitechnoupoli (Figure 1e) and Kineta (Figure 1f) are the two devastating 

wildfires of 2018 in Attica, where the fire expanded to populated areas with significant vegetation cover (mostly pine trees 

in-between houses and within house yards). 

Table 2. Wildfire events in Greece considered in this study. 

Location Region Fire start date 
Pre-fire image 

date 

Post-fire 

image date 
Sentinel-2 tile 

Elata Chios 23/07/2016 20/07/2016 27/07/2016 T35SMC 

Farakla Euboea 30/07/2016 23/07/2016 02/08/2016 T34SGH 

Saktouria Crete 30/07/2016 27/07/2016 06/08/2016 T35SKU 

Zemeno Corinthia 23/07/2018 13/07/2018 28/07/2018 T34SFH 

Kallitechnoupoli Attica 23/07/2018 05/07/2018 04/08/2018 T34SGH 

Kineta Attica 23/07/2018 13/07/2018 14/08/2018 T34SFH 

 

We used Level-2A products, that is, atmospherically corrected Sentinel-2 images (bottom-of-atmosphere reflectance 

values)18. The 2018 images were downloaded directly as Level-2A products from the Copernicus Open Access Hub 

(https://scihub.copernicus.eu/). For the 2016 images, the Sen2Cor processor (http://step.esa.int/main/third-party-plugins-

2/sen2cor/) was run locally to derive the Level-2A products. A rectangular subset of the image that includes the burned 

area with a small buffer around was cropped out of each original Sentinel-2 tile, as shown in Figure 1. In the current work, 

this was done manually, although we presently explore ways to automate this step as well. The bands reported in Table 1 

were subsequently stacked into a single image, considering absolute reflectance values in the range [0,1] (i.e., dividing the 

Level-2A product’s pixel values with 10,000). For this purpose, all 20 m resolution images were resampled to 10 m. 

Moreover, non-land areas were masked out using the official NUTS (Nomenclature of Territorial Units for Statistics) layer. 

For validation purposes, the burn area perimeters derived from the previously mentioned NOFFi-OBAM service were 

used. Although these mappings were derived from a semi-automated methodology based on the post-fire Sentinel-2 

images, manual corrections were performed at the end through careful photointerpretation. Ideally, a proper validation 

framework would require the reference perimeters to have been derived from images of much higher spatial resolution 

than that of Sentinel-2. Lacking such data, though, the aforementioned manually corrected reference set is the most accurate 

reference we could produce, but it is generally accurate in absolute terms considering that Sentinel-2’s resolution is high 

enough to support the photointerpretation process. 

3. METHODOLOGY 

Figure 2 depicts the workflow of the proposed methodology. The post-fire Level-2A image is segmented and the resulting 

objects are used as the new mapping units of the analysis. Spectral indices are calculated from both the pre-fire and the 

post-fire image and their difference (or ratio) is used to label automatically a subset of objects by means of empirical rules, 

thus formulating the training set. These rules are defined in a way such as only objects that can be characterized 

unambiguously as burned or unburned are labeled, in order to avoid introducing misclassifications into the training set as 

much as possible. Object-level features are calculated from various sources (post-fire image bands and spectral indices, as 

well as the differenced spectral indices) and the training set drives the subsequent supervised learning part of the 

methodology. The latter comprises a feature selection process followed by the classification model construction, out of 

which the final burned area mapping is obtained. The rest of this section describes each step in detail. 

3.1. Image segmentation 

An image segmentation algorithm partitions the image into a set of adjacent and non-overlapping small regions (segments 

or objects) considering a homogeneity criterion, although other supplementary criteria such as shape or size can be 

considered. The homogeneity of the segments versus their size is controlled by one or more parameters that determine the 

scale of the segmentation (i.e., how fine or coarse the final segmentation is). Conceptually, the OBIA approach tries to 

derive objects that approximate the natural objects of the scene as perceived by humans19. In the proposed methodology, 

the image segmentation step is applied for a) reducing the computational complexity of the subsequent supervised learning 

steps and b) avoiding the salt-and-pepper phenomenon frequently encountered in pixel-based classifications. After all, the 

concept of well-defined natural objects in forested burned areas is fuzzy even for humans. Therefore, we prefer to segment 



 

 
 

 

the image into small and highly homogeneous objects (called over-segmentation in image processing terminology), in 

order to avoid misclassifying larger regions due to mixed objects. 

In order to achieve the aforementioned goal, we employ a superpixel segmentation algorithm, namely the quick shift 

algorithm20. Quick shift is a kernelized mode-seeking clustering algorithm similar to the well-known mean shift21, but 

considerably faster. Segmentation is performed on the post-fire image and considering only on the 10 m bands (Blue, 

Green, Red, and NIR in Table 1). The scale of the segmentation is controlled by a threshold parameter τ that determines 

the maximum spectral distance allowed for two sample points (pixels in our case) to be merged into a single cluster. 

Moreover, the width σ of the Gaussian kernel must be defined by the user. In order to identify common values of these two 

parameters for all cases, we employ a simple image enhancement processing procedure on the four image bands. 

Specifically, if f
i,1st

 is the 1% percentile of the ith band’s histogram and f
i,99th

 is the equivalent 99% percentile, the image 

is saturated in the range [f
i,1st

, f
i,99th

], linearly scaled to the range [1,255], rounded to the nearest integer, and stored in 8-bit 

format (0 is reserved to represent no-data/masked out areas). This is a typical image enhancement technique used to 

visualize remote sensing images (actually all pseudo-color views of Figure 1 have been produced this way), since the 

remote sensing sensors have a much broader intensity range than typical cameras to avoid saturation over very bright 

objects. The latter are however not important in our case (they are non-burned objects anyway) and can be safely saturated. 

Applying this processing step, we empirically determined that the values τ = 2 and σ = 1 for quick shift’s parameters 

provided satisfactory results (i.e., highly homogeneous small objects) in all cases. Figure 3 provides an example of the 

segmentation scale, considering the case of the Saktouria wildfire (Figure 1c); similarly small objects were produced for 

all test cases. 

The derived objects are then used as the new elementary units for all further processes. The new object-level feature values 

are the average values of all pixels contained in each image object. 

   
                                     (a)                                          (b)                                                                 (c) 

      
                               (d)                                             (e)                                                                       (f) 

Figure 1. False-color composites (using B12, B08, and B04 in lieu of the view’s red, green, and blue channels, respectively) 

of the post-fire Sentinel-2 images used for each wildfire event: (a) Elata, (b) Farakla, (c) Saktouria, (d) Zemeno, 

(e) Kallitechnoupoli, and (f) Kineta. Non-land areas have been masked out. 

3.2. Spectral indices 

Apart from the Sentinel-2 bands (Table 1), a number of spectral indices frequently used in burned area mapping studies 

have been calculated, which are reported in Table 3. Most of them employ the classical normalized difference formulation 

of NDVI, but using one or both of the SWIR bands, which are sensitive to moisture content and consequently facilitate the 

discrimination of the burned areas. The indices are calculated considering the ground reflectance values of the Level-2A 



 

 
 

 

products in the range [0,1], from either the pre-fire image or the post-fire one or both (as described in the following 

subsections). In the following, we use the notation SIpre and SIpost to describe any index SI calculated from the pre-fire or 

the post-fire image, respectively (e.g., NDVIpre). Moreover, the empirical rule-based classification (described in the next 

subsection) also considers the difference between the pre-fire and post-fire values for some of the indices, which is an 

indication of disturbance resulting from the fire. The difference, which is denoted as dSI for any index SI (e.g., dNBR), is 

calculated as pre-fire minus post-fire value, that is, dSI = SIpre – SIpost. 

 

Figure 2. Schematic workflow of the proposed methodology. 

 

Figure 3. Example of quick shift segmentation scale, considering the case of the Saktouria, Crete wildfire (background 

Sentinel-2 pseudo-color uses bands B08, B04, and B03 in lieu of RGB). 

Table 3. Spectral indices considered in this study. Band names are those reported in Table 1. 

Acronym Name Equation Introduced in 

NDVI Normalized difference vegetation index (B8A – B04) / (B8A + B04) Rouse et al.22 

MSAVI2 Modified soil-adjusted vegetation index 2 

0.5∙{2∙B8A+1

        -√(2∙B8A+1)2 - 8∙(B8A-B04)}
 Qi et al.23 

CSI Char soil index B8A / B12 Smith et al.24 

MIRBI Mid-infrared burn index 10∙B12 – 9.8∙B11 + 2 Trigg and Flasse25 

NBR Normalized burn ratio (B8A – B12) / (B8A + B12) Key and Benson26 

NBR2 Normalized burn ratio 2 (B11 – B12) / (B11 + B12) USGS27 

NDII Normalized difference infrared index (B8A – B11) / (B8A + B11) Hardisky28 

MNDWI Modified normalized difference water index (B03 – B11) / (B03 + B11) Xu29 

 

3.3. Empirical rule-based classification 

As mentioned previously, the supervised classification approach followed by the proposed methodology requires a training 

set that is labeled automatically. To do so, we defined two empirical rules that employ thresholds on differences or ratios 

of pre-fire and post-fire indices, following a similar approach with previous studies8,15. The threshold values were 

determined empirically through a trial-and-error procedure on many wildfire events in Greece, in a way that only 



 

 
 

 

unambiguous burned or unburned objects were labeled, in order to avoid introducing errors within the training set. 

Eventually, an object is classified as burned if it satisfies the rule: 

 MNDWIpre < −0.3 AND [(B8Aratio > 0.3 OR dMIRBI < −1.5) AND dNDII > 0.02], (1) 

where 

 B8Aratio = B8Apre / B8Apost – 1. (2) 

Accordingly, an object is classified as unburned if it satisfies the rule: 

 MNDWIpre > −0.25 OR [dNBR < −0.015 OR dNBR2 < −0.015]. (3) 

In both cases, the pre-fire MNDWI index is considered for discriminating water surfaces and artificial areas (buildings, 

roads, etc.), whereas the vegetation or burned area identification is performed by the remaining part of the corresponding 

rule. For each object, the feature value considered for employing the rules is the average value of all pixels within the 

object for the specific feature. Depending on the area, a larger or smaller proportion of objects may be classified by the 

above rules. Densely vegetated forest areas or severely burned areas are more likely to be labeled. In any case, the labeled 

objects are used to formulate the training set and the remaining are categorized by the supervised classifier, as explained 

in the following. 

3.4. Supervised learning and burned area perimeter delineation 

The dataset used for the supervised classification considers 21 potential features extracted from multiple sources. More 

specifically, it is formulated considering: 

1) the eight bands of the post-fire Sentinel-2 image reported in Table 1, 

2) the first seven spectral indices of Table 3 calculated from the post-fire image (NDVIpost, MSAVI2post, CSIpost, 

MIRBIpost, NBRpost, NBR2post, and NDIIpost), and 

3) all features considered in the empirical rules of equations (1)–(3) (B8Aratio, dMIRBI, dNDII, dNBR, dNBR2, and 

MNDWIpre). 

The average value of each feature for all pixels within each object was considered for defining the object-level features. 

The histogram enhancement procedure considered for the segmentation step (Subsection 0) was also applied in this dataset 

as well. Specifically, each feature was saturated in the range defined by the 1% and 99% percentiles of its histogram, then 

linearly scaled to the range [1,255], rounded to the nearest integer, and stored in 8-bit format (0 is reserved to represent 

no-data/masked out areas). 

The number of potential features is relative large, which can have a negative effect in the performance of the supervised 

classifier and increases its computational requirements, especially taking into consideration that in some cases the number 

of automatically labeled objects is large. In order to select the minimum optimal set of features, we employ the supervised 

feature selection method based on the fuzzy complementary criterion (FuzCoC)30. FuzCoC iteratively adds into the selected 

set the feature that provides the maximum additional contribution to the previously selected set of features. The process 

stops when the additional contribution—quantified through an efficient normalized measure—drops below a user-defined 

threshold, which was set to 0.1% in our experiments. With this threshold value, 6.6 features on average were selected in 

our six test cases. 

Having defined the feature set and the training set from the previous step, a Support Vector Machine (SVM) classification 

model31 is learned subsequently, considering a Gaussian kernel. The penalty constant C and the Gaussian kernel’s width σ 

are optimized by a 5-fold cross-validation approach on all possible combinations for the two parameters, considering an 

exponentially increasing grid of possible values for each parameter. The trained SVM model is subsequently applied to 

classify all objects and the final burned area map is derived by keeping only the objects classified as burned and merging 

them into a single object (vector map). 

4. RESULTS 

As mentioned in Section 0, manually corrected fire perimeters from the NOFFi-OBAM service were used as reference 

data. For quantifying accuracy, well-known measures derived from the confusion matrix were calculated, namely, 

sensitivity, specificity, precision, accuracy, and F-measure32. Table 4 reports the accuracy measures values achieved by 



 

 
 

 

the proposed method for the six test cases presented in Section 0. Moreover, Figure 4 presents a visual comparison of the 

reference perimeter and that obtained by the proposed method. 

Overall, the proposed methodology exhibits high accuracy, with almost all individual measure values being higher or much 

higher than 90%. In most cases, the proposed method seems to underestimate the burned area within the fire perimeter, 

which is most notably observed in the case of Kineta (Figure 4f), but also in the cases of Saktouria (Figure 4c) and 

Kallitechnoupoli (Figure 4e). This is also reflected by the somewhat lower sensitivity values for these datasets (Table 4). 

In the cases of Kineta and Kallitechnoupoli, the unburned misclassifications result from residential areas with partially 

burned vegetation, which are characterized by mixed objects and hence no training patterns exist (the empirical rules label 

only unambiguous objects). In the case of Saktouria, the unburned misclassification are the result of the sparsely vegetated 

areas before the burn, which make it difficult to discriminate from burned areas. On the contrary, a slight overestimation 

of the burned area is observed in the case of Zemeno, which is also reflected by the somewhat lower values of specificity 

and precision measures. This is a small proportion of the burned area though, as proved by the high sensitivity and accuracy 

values. 

Table 4. Accuracy measures values obtained by the proposed methodology. 

Area Sensitivity Specificity Precision Accuracy F-measure 

Elata 0.94 0.97 0.96 0.96 0.95 

Farakla 0.99 0.94 0.94 0.96 0.97 

Saktouria 0.89 0.97 0.96 0.93 0.92 

Zemeno 0.98 0.90 0.83 0.93 0.90 

Kallitechnoupoli 0.95 0.95 0.96 0.95 0.95 

Kineta 0.84 0.99 0.99 0.92 0.91 

5. CONCLUSIONS 

This paper presented a preliminary methodology for mapping burned areas using Sentinel-2 data without any user 

interaction. This is achieved by automatically labeling a set of training patterns by means of a set of empirical rules that 

combine information extracted from both a pre-fire Sentinel-2 image and a post-fire one, whereas the rest of the image is 

classified following a supervised learning approach. The results on a set of recent large wildfires in Greece showed that 

the methodology achieves satisfactory performance, considering the fact that it is a fully automated process. Future 

research will focus on (a) refining the set of empirical rules to cover difficult mapping cases (residential areas with high 

vegetation cover, sparsely vegetated areas, etc.), (b) automate the wildfire event identification process, and (c) employ 

semi-supervised learning procedures to enhance the automatic labeling of training objects. 
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                                            (a)                                     (b)                                                         (c) 

 

     
                             (d)                                            (e)                                                                        (f) 

Figure 4. Comparison of the proposed method’s burned area mapping with the reference perimeter for the wildfire event of: 

(a) Elata, (b) Farakla, (c) Saktouria, (d) Zemeno, (e) Kallitechnoupoli, and (f) Kineta. 
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