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Abstract. A general constitutive model for N−phase isotropic, incompressible, rate-independent elasto-plastic 

composite materials at finite strains is developed. The formulation is based on the non-linear homogenization 

variational (or modified secant) method which makes use of a linear comparison composite (LCC) material to 

estimate the effective flow stress of the non-linear composite material. The homogenization approach leads to an 

algebraic optimization problem, which for a two-phase material  2N   is solved analytically, whereas for 

3N   the solution is obtained numerically. The model is validated by periodic three-dimensional unit cell 

calculations comprising a large number of spherical inclusions distributed randomly in a matrix phase. The 

homogenization technique provides accurate estimates not only for the effective flow stress but also for the 

average strains in the constituent phases. These estimates form the basis for the development of an approximate 

analytical model for the elastoplastic behavior of a composite with hardening phases. The predictions of the 

model are in excellent agreement with the results of detailed unit cell finite element calculations of a composite 

with hardening phases for different types of loadings, including uniaxial tension and finite shear. The 

homogenization theory is also used to develop a constitutive model for the mechanical behavior of TRIP 

(TRansformation Induced Plasticity) steels. TRIP steels are essentially composite materials with evolving 

volume fractions of the constituent phases. The calibration of the model is based on uniaxial tension tests on 

TRIP steels. The constitutive model is used for the calculation of “Forming Limit Diagrams” (FLDs) for sheets 

made of TRIP steels; it is found that the TRIP phenomenon increases the strain at which local necking results 

from a gradual localization of the strains at an initial thickness imperfection in the sheet. 

 

 

1 INTRODUCTION 

An analytical and numerical methodology for estimation of the effective response of N-phase isotropic elasto-

plastic metallic composites is developed. Special attention is given to particulate microstructures, i.e., composite 

materials with a distinct matrix phase and an isotropic distribution of spherical particles. The particles are 

assumed to be stiffer than the matrix, which is the case in most metallic materials of interest, such as TRIP steels. 

Such materials, usually contain second-phase particles (e.g., intermetallics, carbon particles) or just second and 

third phase variants (e.g., retained austenite, bainite, martensitic phases). In addition, these phases/particles tend 

to reinforce the yield strength of the composite while they usually have different strength and hardening behavior 

than the host matrix phase. 

In the literature of non-linear homogenization there exists a large number of studies for two-phase composite 

materials. Nonetheless, very few studies exist in the context of three- or N-phase composites. In view of this, the 

present work uses the non-linear variational homogenization method of Ponte Castañeda [1], which makes use of 

a linear comparison composite (LCC) material, to estimate the effective response of a N-phase non-linear 

composite material. Simple analytical expressions are given for the effective yield stress of a two-phase 

composite (see also Ponte Castañeda and deBotton [2]) while a simple semi-analytical expression (requiring the 

solution of a constrained optimization problem for 1N   scalar quantities) is given for the N  phase composite. 

Additional analytical expressions are also provided for the phase concentration tensors and average strains in 

each phase in terms of the aforementioned optimized scalar quantities. 
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2 THE HOMOGENIZATION METHOD 

We consider a composite material made of N isotropic, incompressible viscoplastic phases. The phases are 

distributed randomly and isotropically. The constitutive equations of each phase is of the form: 
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where D  is the deformation rate, σ  the stress tensor, / 3kkp   the hydrostatic stress, p s σ δ  the stress 

deviator, δ  being the second-order identity tensor, 
3

:
2

e  s s  the von Mises equivalent stress, 
0  is a 

reference stress, 
0  a reference strain rate, n  the creep exponent  1 n   , N  is a second order tensor that 

defines the direction of D  and 
2

:
3

  D D  is the equivalent plastic strain rate that defines the magnitude of D . 

The constitutive equation of the isotropic non-linear composite is written in terms of the effective viscoplastic 

stress potential  U σ  so that 
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where σ  and D  are respectively the macroscopic stress and deformation rate in the composite. Αn estimate for 

U  is obtained by using the variational methodology of Ponte Castañeda ([1], [3]): 
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where   is the effective viscosity of the “linear comparison composite” (LCC). One way to estimate   is to use 

the well-known Hashin-Shtrikman relationship for particulate composites [4]. 

An approximation for the deformation rate field in the non-linear composite may be obtained from the 

deformation rate field in the LCC evaluated at the optimal comparison moduli  ˆ r
  defined by the optimization 

problem in (3). In particular, the average deformation rate field in the phases  r
D  may be determined from the 

macroscopic deformation rate D  in terms of a “strain concentration tensor”  r
A  
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       

 

 

 

1

10 0

1
: ,

ˆ ˆ3 2 3 2

sN
r r r r

r s
s

c
a a

   





 
       

D A D D ,   (5) 

 r
c  are the volume fractions of the phases and 0  a reference viscosity. Details of the derivation are given in 

Papadioti et al. [5]. 

2.1 Perfectly Plastic Phases 

We consider the case of perfectly plastic phases 
( )( )rn  . The optimization in (3) as 

( )( )rn   is carried 

out in three steps. In the first step, we consider the optimization over 
( )r

e . All creep exponents are set equal in 

the second step, i.e., we set 
(1) (2) ( )Nn n n n    . In the final third step we consider the limit 

( )rn  . 
Details of the derivation are given in Papadioti et al. [5]. 
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The resulting effective potential  eU   defines the effective flow stress 
0  of the composite: 
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where      1
/

r r
y    and 

 1

0 0/y   . 

Calculation of the effective yield stress 
0  requires the solution of the constrained optimization problem in 

(6) for the values of  r
y , which define in turn the appropriate values of the viscosities  r

 . In the special case of 

a two-phase composite  2N   the solution of the optimization problem can be found analytically as described 

in Section 2.2. The solution of more general cases  3N   is obtained by using the methodology of Kaufman et 

al. [6] and the CONMAX software for the solution of the optimization problem in (6). 

The strain concentration values 
 r

a  defined in (5) can be written in the form 
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where  ˆ r
y  are the optimal values of  r

y  resulting from the optimization in (6). 

2.2 The two-phase perfectly plastic composite – An analytic estimate for the effective flow stress and the 

strain concentration factors 

We consider an isotropic two-phase composite    1 2
( 2, 1)N c c   . Each phase is perfectly plastic with 

flow stress (1)

0  and (2)

0 . The estimate for 
0  depends on the chosen value of the reference viscosity 

0 . 

Results for various choices of 
0  are reported in Papadioti [7]. Here we present in some detail the formulation 

based on a Hashin-Strikman lower bound with 
(1)

0    0   1y  ; this particular choice of 
0  shows the best 

agreement with detailed unit cell finite element calculations.  

For 
(1)

0  , the ratio /H F
 in (6) takes the value 
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The optimum value of  2
ŷ  to be used in (6) is calculated by using the condition 
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together with the constraint (2) 0y  . After some lengthy, but straightforward, calculations we find the resulting 

optimal value  2
ŷ  to be 
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where 
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According to (10), for a given particle concentration (2)c , when the contrast ratio (2) (1)

0 0σ σ/r   is larger than a 

value 
crr , the comparison material for phase 2 is rigid   2ˆ 0y  . 

The corresponding estimate for the effective flow stress resulting from (6) is 
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The strain concentration values 
 r

a  given in (7) can be written in the form 
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and  2
ŷ  is defined in (10). 

3 UNIT CELL FINITE ELEMENT CALCULATIONS AND ASSESSMENT OF THE MODEL 

In this section we present the results of unit cell finite element calculations for a composite material made up 

of a statistically isotropic random distribution of isotropic, linearly-elastic perfectly-plastic spherical inclusions 

embedded in a continuous, isotropic, linearly-elastic perfectly-plastic matrix. The elastic Young modulus used in 

the finite element calculations for all phases is three orders of magnitude higher than the highest yield stress 

involved; this minimizes the effects of elasticity and the results are very close to those of rigid-perfectly-plastic 

materials. 

We study numerically two- and three-phase composites. The matrix is labelled as phase 1 and the reinforcing 

particles are spherical and have higher flow stresses     1

0 0 , 1
i

i   . The periodic unit cell is a cube with 

edge size L and is constructed using the method presented by Segurado and Llorca [8] and extended to 

polydisperse inclusion distributions by Lopez-Pamies et al. [9]. The virtual microstructure contains a dispersion 

of a sufficiently large number of non-overlapping spheres of uniform (monodisperse) or different (polydisperse) 

size. The inclusions are randomly located within the cell and are generated using the Random Sequential 

Adsorption Algorithm (RSA) [10]. 

3.1 The effective yield stress 

We determine numerically the effective yield stress by solving the problem of a unit cell loaded in uniaxial 

tension. Figure 1a shows the variation of the calculated effective flow stress from the unit cell finite element 

calculations with the contrast ratio 
   2 1

0 0/r    for various volume fractions, together with the predictions (6) of 

the homogenization model, based on the Hashin-Shtrikman lower bound   1

0  . For that data shown in Fig. 

1a, the maximum difference between the predictions (6) and the results of the unit cell finite element calculations 

is 3%. It is also interesting to mention that an increase of the flow stress 
 2

0  in the inclusions beyond 

(approximately) two times the flow stress of the matrix   1

02  does not change the effective flow stress of the 

composite for all volume fractions considered here. Figure 1b shows the variation of 
 1

0 0/   of a three-phase 

composite for different values of the volume fraction 
 3

c  as determined from the unit cell finite element 

calculations and the predictions (6) of the homogenization model. The material data are typical for a TRIP steel 

with a ferritic matrix (phase 1) containing retained austenite (phase 2), which transforms gradually to martensite 
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(phase 3) as the TRIP steel deforms plastically.  

 

 
(a)                                                                         (b) 

Figure 1. Variation of normalized effective flow stress 
 1

0 0/   (a) of a two-phase composite for various volume 

fractions (b) of a three-phase composite for different values of the volume fraction 
 3

c . 

3.2 The strain concentration tensors 

The unit cell finite element calculations discussed above were used also to determine the strain concentration 

factors defined in (7). Figure 2a shows the variation of the strain concentration factors 
 r

a  in a two-phase 

composite with the contrast ratio 
   2 1

0 0/r    for 
 2

0.30c   as determined from the unit cell finite element 

calculations and the homogenization theory. An important observation in the context of this figure is that at a 

contrast ratio of 2r  , a sharp transition is observed where the particles start behaving as being rigid, i.e., the 

average strain in the particle is almost zero. This is validated by both the model and the numerical results. A 

similar plot for a three-phase composite is shown in Fig. 2b. The predictions of homogenization theory agree well 

with the results of the unit cell finite element calculations. 

3.3 On the possible dependence of the effective flow stress on 3J  

Suquet and Ponte Castañeda [11],[12] studied the effective mechanical behavior of weakly inhomogeneous 

composites and showed that, for the case of incompressible “power-law” phases, the effective potential of the 

composite may depend, to second order, on the third invariant of the applied strain. 

We carry out detailed unit cell finite element calculations in order to check for a possible dependence of the 

effective yield stress 0  on the third invariant 3J  of the stress deviator s  (   3

3 det 2 / 27 sin 3eJ    s , where 

  is the “Lode angle”). Angle   takes values in the range 30 30   , where, to within a given hydrostatic 

stress, 30    corresponds to uniaxial tension, 0   to pure shear, and 30   to uniaxial compression. 

Figure 3 illustrates the variation of the normalized effective flow stress 
 1

0 0/   as determined from unit cell 

finite element calculations, with Lode angle   for particle volume fractions 
 2

0.10c  , 0.20  and 0.40 . It is 

shown that the effective flow stress of the composite is essentially independent of the third stress invariant 3J  

which is in agreement with earlier results by Idiart [13] in the case of rigid particles. 

4 HARDENING PHASES 

In this section we present an approximate method for the prediction of the incremental elastoplastic behavior 

of macroscopically isotropic composites made of N  isotropic, rate-independent, elastic-plastic hardening phases. 

Let the flow stresses 
( )i

y  of each phase be known functions of the corresponding equivalent plastic strains 
( )ε i  

( 1,2, , )i N  . 

It should be noted that the elastic and plastic response of the homogenized composite are treated 

independently, and combined later to obtain the full elastic-plastic response. The composite is assumed to behave 

as “incrementally perfectly plastic” with a flow stress 
0 , which is updated at every increment. The value of 

0  
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is calculated by the solution of the corresponding optimization problem (6) using the ( )

0

i  values at each 

increment. The solution of the optimization problem (6) defines also the optimal values  ˆ i
y , which determine the 

corresponding strain concentration factors  i
a  in (7) for the increment. Details on the numerical integration of 

constitutive equations are given in Papadioti [7]. 

 

 
(a)                                                                         (b) 

Figure 2. Strain concentration factors 
 r

a  (a) for a two-phase composite and (b) for a three-phase composite. 

 

Figure 3. Variation of effective normalized flow stress 
 1

0 0/   with Lode angle   for particle volume fractions 

of 10, 20 and 40%. The results show almost no dependence on 3J . 

4.1 Unit cell calculations and assessment of the model with hardening phases 

In this section we present the results of unit cell finite element calculations for a composite material made up 

of a statistically isotropic random distribution of isotropic, linearly-elastic hardening-plastic spherical inclusions 

embedded in a continuous, isotropic, linearly-elastic hardening-plastic matrix. All analyses were carried out 

incrementally and accounted for geometry changes due to deformation (finite strain solutions). 

In all cases analyzed, the matrix material is identified as “phase 1” and the flow stress 
( )i

y  of “phase i ” is a 

function of the corresponding equivalent plastic strain 
( )ε i

: 
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where )

0

(i  is the yield stress of phase i , E  is the elastic Young's modulus, and the hardening exponents 
 i  

take values in the region 
 

1
i

   , with the limiting case 
 i    corresponding to perfect plasticity. The 

values (1)

0917E   and 0.3   for Young's modulus E  and Poisson ratio   are used in the calculations. 

In addition, one-element finite element calculations were carried out, in which the element is subjected to the 

same deformation gradient as the unit cell and the corresponding uniform stress state in the element is calculated 

for the homogenized material. In particular, we consider a three-phase composite with 

 
(2) (3)

(1) (2) (3)0 0

(1) (1)

0 0

1.875, 5, 5, 3 2.5
σ

, .



 


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The problems of uniaxial tension and finite shear deformation are solved. Figure 4 shows the deformed unit 

cells for uniaxial tension at 1.20   and finite shear 0.20   and Figure 5 shows the stress-strain curves in 

uniaxial tension and finite shear, for a three-phase composite with composition 
 1

0.60c  , 
 2

0.25c  , and 
 3

0.15c  . The predictions of the homogenization model agree well with the results of the unit cell finite 

element calculations. The model is capable of predicting sufficiently well both the initial yield strength of the 

three-phase composite as well the hardening evolution as a function of the applied strains both in uniaxial tension 

and shear loadings. 

 

  
Figure 4. Deformed configurations of unit cells of the three-phase composite in uniaxial tension and simple shear. 

 

Figure 5 Stress-strain curves of the three-phase composite in uniaxial tension and simple shear. 

5 APPLICATIONS TO TRIP STEELS 

The homogenization techniques for non-linear composites, described in the previous sections, are used to 
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determine the effective properties and overall behavior of TRIP steels. We consider four-phase TRIP steels that 

consist of a ferritic matrix with dispersed bainite and austenite, which transforms gradually into martensite as the 

material deforms plastically. The following labels are used for the constituent phases: (1) for ferrite, (2) for 

bainite, (3) or (a) for austenite and (4) or (m) for martensite. The constitutive equations are developed for the 

case of finite geometry changes.  

An important aspect of the martensitic transformation is the strain softening which occurs due to the strain 

associated with the transformation process. This strain softening is accounted for by introducing in the 

constitutive model an additional deformation rate that is proportional to the rate of increase of the volume 

fraction of martensite. The total deformation rate can be split into elastic, plastic and transformation parts: 

 
e p TRIP  D D D D .     (16) 

 

Details on the constitutive formulation and the numerical integration of the resulting elastoplastic constitutive 

equations are given in Papadioti [7]. The model is then implemented into the ABAQUS. The calibration of the 

model is based on experimental data of uniaxial tension tests on TRIP. The constitutive model is also used to 

calculate “forming limit diagrams” for sheets made of TRIP steels. Calculations are also conducted for a non-

transforming steel for comparison purposes. 

5.1 Forming Limit Diagrams 

In this section, the constitutive model developed for the four-phase TRIP steel is used to calculate “forming 

limit diagrams” for sheets made of TRIP steels. Forming limit diagrams show the maximum deformation to 

which a sheet metal can be subjected before the material fails. In the present work, we concentrate on the 

formation of instabilities in a narrow straight band in metal sheets deformed under plane stress conditions. The 

predictions of the analytical model are compared to experimental data from the same TRIP steel which was used 

for the calibration. For comparison purposes, a separate set of calculations is conducted for a non-transforming 

TRIP steel with same initial values of the volume fractions of the phases. 

We consider a sheet made of TRIP steel that is deformed uniformly on its plane in a way that the in-plane 

principal strain increments increase proportionally. We study the possibility of the formation of an instability in 

the form of a narrow straight band and construct the corresponding ‘‘forming limit diagram’’. 

We follow the approach of Marciniak and Kuzynski [14], known as the ‘‘M–K’’ model, in which the sheet is 

assumed to contain a small initial inhomogeneity and necking results from a gradual localization of the strains at 

the inhomogeneity. The inhomogeneity is in the form of straight narrow band (neck) of reduced thickness 
bH H . Both inside and outside the band a state of uniform plane stress is assumed, and the analysis consists in 

determining the uniform state of deformation inside the band that is consistent kinematically and statically with 

the prescribed uniform state outside the band. Given the initial sheet thickness inside and outside the band and 

the imposed uniform deformation history outside the band, the equations of equilibrium are solved incrementally 

to obtain the deformation history inside the band. Localization is said to occur when the ratio of some scalar 

measure of the amount of incremental straining inside the band to the corresponding value outside the band 

becomes unbounded. 

The initial volume fractions of the four phases in the TRIP steel are assumed to be 
 1

0.50c  ,  2
0.38c  , 

 
0.103

a
c   and  

0.017
m

c  . The curves 
 

, 1, 4
r

y r   that define the variation of the flow stress of the phases 

are (in MPa): 
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   
      

   

   (17) 

 

Figure 6 illustrates forming limit curves obtained for imposed proportional straining ρ for two different values 

of the initial thickness imperfection, namely 0.999bH H   and 0.99bH H   and for the case without 

imperfection i.e. 1bH H  . The three solid curves correspond to the TRIP steel, whereas the dashed curves are 

for the non-transforming steel. As we can see, the TRIP effect increases the necking localization strains. This 

result was also presented by Papatriantafillou et al. [15], who used a rate dependent constitutive model for TRIP 

steels (as opposed to the rate independent model used here). In details, for no imperfection and 0   (plane 
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strain), the critical strain 
11

cr  increases from 0.19228 for the non-transforming steel to 0.21203 for the TRIP 

steel; the corresponding values of 
11

cr  for 0.999bH H   and 0   are 0.17369 for the non-transforming steel 

and 0.19395 for the TRIP steel and for 0.99bH H   and 0   are 0.13775 for the non-transforming steel and 

0.15869 for the TRIP steel. 

The model predictions are also compared to available experimental data. The experimental data refer to the 

same TRIP steel which was used for the calibration of the model. Details on the experiments are given in 

Papatriantafillou et al. [15]. The model predictions fit the experimental data reasonably well. 

 

 

Figure 6 Forming limit curves for two different values of initial thickness inhomogeneities 0.999bH H   and 

0.99bH H  . The solid lines correspond to the TRIP steel, whereas the dashed lines are for a non-transforming 

steel. The dark triangles are experimental data. 
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