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A B S T R A C T

The aim of computer-aided musical orchestration (CAMO) is to find a combination of musical instrument sounds
that perceptually approximates a reference sound when played together. The complexity of timbre perception
and the combinatorial explosion of all possible musical instrument sound combinations make it very challenging
to find even one orchestration for a reference sound. However, finding only one orchestration is seldom enough
given the creative nature of the compositional process. Compositional applications of computer-aided musical
orchestration can greatly benefit from multiple orchestrations with diversity. In this work, we use an artificial
immune system (AIS) called opt-aiNet to search for combinations of musical instrument sounds that minimize
the distance to a reference sound encoded in a fitness function. Opt-aiNet was developed to maximize diversity
in the solution set of multi-modal optimization problems, which results in multiple alternative orchestrations
for the same reference sound that are different among themselves. We compared the diversity and the similarity
of the orchestrations proposed by opt-aiNet (CAMO-AIS) against a standard genetic algorithm (CAMO-GA) and
Orchids, which is considered the state of the art for CAMO, for 13 reference sounds. In general, CAMO-AIS
outperformed CAMO-GA and Orchids for several measures of objective diversity. We performed a listening test
to evaluate and compare the perceptual similarity of the orchestrations by CAMO-AIS and Orchids. CAMO-AIS
generated orchestrations that were perceived to be as similar to the reference sounds as those returned by
Orchids. Therefore, CAMO-AIS has higher diversity of orchestrations than Orchids without loss of perceptual
similarity.

1. Introduction

Orchestration is understood as “the art of blending instrument tim-
bres together” [1]. Initially, orchestration was simply the assignment
of instruments to pre-composed parts of the score, which was dictated
largely by the availability of resources, such as what instruments and
how many of each are available in the orchestra [2,3]. Later on, com-
posers started regarding orchestration as an integral part of the com-
positional process whereby the musical ideas themselves are expressed
[2,4]. Compositional experimentation in orchestration arises from the
increasing tendency to specify instrument combinations to achieve
desired effects, resulting in the contemporary use of timbral combi-
nations [4,5]. Orchestration remains an empirical activity largely due
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to the difficulty to formalize the required knowledge [1,2,6]. Diver-
sity has been identified as an important property that can provide
the composer with multiple alternatives given the highly subjective
nature of musical orchestration combined with the complexity of timbre
perception [7].

The development of computational tools that aid the composer in
exploring the virtually infinite possibilities resulting from the com-
binations of musical instruments gave rise to computer-aided musi-
cal orchestration (CAMO) [4,8–13]. CAMO tools automate the search
for instrument combinations that perceptually approximate a reference
timbre commonly represented by a reference sound [1,6]. The combi-
nations found are generally included in the score and later played by
orchestras in live performances. However, most CAMO tools allow the
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composer to preview the result of the combinations found using musi-
cal instrument sounds from pre-recorded databases, which has been
deemed an appropriate rendition of the timbre of the instrument com-
binations [14].

Early CAMO systems adopted a top-down approach [4,8,9] that
consists of spectral analysis and subtractive spectral matching. These
works usually keep a database of spectral peaks from musical instru-
ments that will be used to match the reference spectrum. The algo-
rithm iteratively subtracts the spectral peaks of the best match from the
reference spectrum aiming to minimize the residual spectral energy in
the least squares sense. The iterative procedure requires little computa-
tional power, but the greedy algorithm restricts the exploration of the
solution space, often resulting in suboptimal solutions because it only
fits the best match per iteration [7].

The concept of timbre lies at the core of musical orchestration
[1,2,6,15,16] largely because instrumental combinations can give rise
to new timbres if the sounds are perceived as blended [5,17]. Yet, the
top-down approach neglects the exploration of timbral combinations
by relying on spectral matching, which does not capture the multi-
dimensional nature of timbre. Carpentier et al. [10–13,18] adopted a
bottom-up approach that relies on timbre similarity and evolutionary
computation to search for instrument combinations that approximate
the reference. They use a genetic algorithm (GA) to search for instru-
ment combinations that optimize a fitness function that encodes timbre
similarity with feature vectors.

The bottom-up approach represents a paradigm shift toward gen-
erative CAMO [11,12,19,20], where the timbre of instrument combina-
tions is compared with the timbre of the reference sound. This approach
requires a model of timbre perception to describe the timbre of isolated
sounds, a method to estimate the timbral result of an instrument combi-
nation, and a measure of timbre similarity to compare the combinations
and the reference. Timbre spaces [5,21–24] yield features that correlate
with dimensions of timbre perception. Models of timbral combination
[2,13,17] estimate these features for combinations of musical instru-
ment sounds. Timbre similarity can be estimated as distances in timbre
spaces [5], which are calculated as weighed distances between feature
vectors [12].

CAMO systems that return only one orchestration seldom meet the
requirements of the highly subjective and creative nature of music com-
position [7]. Often, the composer uses CAMO tools to explore the prob-

lem space and find instrument combinations that would be missed by
the empirical methods found in traditional orchestration manuals [1,6].
The reference sound guides the search toward interesting regions of the
search space and the weights fine-tune the relative importance of per-
ceptual dimensions of timbre similarity encoded in the fitness function
[1,6]. Diversity of orchestrations is important in CAMO [7] to allow
the exploration of different musical ideas. This work focuses on CAMO
algorithms that return multiple orchestrations in parallel as the strategy
to address the intrinsic need for diversity in CAMO.

There are two current CAMO systems that return multiple orches-
trations in parallel, Orchids [12] which uses multi-objective optimiza-
tion (MOO) and our approach [20] called CAMO-AIS, which uses multi-
modal single-objective optimization (SOO). In Orchids, Carpentier et al.
[12] use the well-known multi-objective genetic local search (MOGLS)
optimization algorithm [25] to tackle diversity by approximating the
Pareto frontier. Each point on the theoretical Pareto frontier corre-
sponds to an optimal solution for a specific combination of objec-
tives in the fitness function given by the weight vector. Consequently,
Orchids returns multiple orchestrations that approximate the refer-
ence sound differently because the weights emphasize timbre dimen-
sions differently. Orchids prioritizes the objective similarity of Pareto
optimal orchestrations over the perceptual similarity controlled by the
weights.

In this work, we propose to use CAMO-AIS to optimize a single-
objective fitness function with a multi-modal artificial immune system
(AIS) called opt-aiNet [26]. The single-objective fitness function uses
a fixed set of weights to combine the features, restricting the search
to orchestrations that have the same relative importance of perceptual
dimensions of timbre similarity. The multi-modal ability of opt-aiNet
is illustrated in Fig. 1, where the fitness function is represented by the
surface and the optima are the peaks. Opt-aiNet is capable of return-
ing multiple solutions (i.e., orchestrations) in parallel, represented by
the black dots, that correspond to local optima of the fitness function.
These multiple orchestrations approach the reference similarly because
they correspond to the same combination of weights, yet they are dif-
ferent among themselves because each is a unique instrument combi-
nation. However, the quality of local optima of this single-objective
fitness function is always inferior to the global optimum, which would
be closest to the reference according to the fitness value. Consequently,
CAMO-AIS trades off the objective similarity given by the fitness func-

Fig. 1. Illustration of multi-modal function optimization in CAMO. The figure shows an objective function with multiple optima. The black dots represent mul-
tiple orchestrations returned by CAMO-AIS. Two example orchestrations for the reference sound air horn are given following the convention instrument/playing
technique/note.
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tion for perceptual similarity controlled by the weights. The contri-
bution of this work lies in the diversity of orchestrations returned by
CAMO-AIS resulting from the multi-modal ability of opt-aiNet.

The remainder of this paper is organized as follows. Section 2
reviews the literature of CAMO. Section 3 discusses theoretical aspects
of the diversity strategies used by Orchids and CAMO-AIS. Section
4 presents an overview of our approach to CAMO. Next, Section 5
presents the experiment we performed followed by the evaluation of the
results. The evaluation comprises similarity and diversity using objec-
tive measures and the subjective ratings from a listening test. Then,
Section 6 presents the results, followed by a discussion in Section 7.
Finally, Section 8 presents the conclusions and perspectives.

2. State of the art of computer-aided musical orchestration

Psenicka [8] describes SPORCH (SPectral ORCHestration) as “a pro-
gram designed to analyze a recorded sound and output a list of instru-
ments, pitches, and dynamic levels that when played together create
a sonority whose timbre and quality approximate that of the analyzed
sound.” SPORCH keeps a database of spectral peaks of musical instru-
ment and uses subtractive spectral matching and least squares to return
one orchestration per run. Hummel [9] approximates the spectral enve-
lope of phonemes as a combination of the spectral envelopes of musi-
cal instrument sounds. The method also uses a greedy iterative spec-
tral subtraction procedure. The spectral peaks are not considered when
computing the similarity between reference and candidate sounds, dis-
regarding pitch among other perceptual qualities. Rose and Hetrik [4]
use singular value decomposition (SVD) to perform spectral decompo-
sition and spectral matching. SVD decomposes the reference spectrum
as a weighted sum of the instruments present in the database, where
the weights reflect the match. Besides the drawbacks from the previ-
ous approaches, SVD can be computationally intensive even for rela-
tively small databases. Additionally, SVD sometimes returns combina-
tions that are unplayable such as multiple simultaneous notes on the
same violin, requiring an additional procedure to specify constraints on
the database that reflect the physical constraints of musical instruments
and of the orchestra.

Carpentier et al. [10–13] consider the search for combinations of
musical instrument sounds as a constrained combinatorial optimization
problem. They formulate CAMO as a binary allocation knapsack prob-
lem where the aim is to find a combination of musical instruments that
maximizes the timbral similarity with the reference constrained by the
capacity of the orchestra (i.e., the database). However, the binary allo-
cation knapsack problem cannot be solved in polynomial time because
it was proved to be NP-complete [27]. They explore the vast space of
possible instrument combinations with a genetic algorithm (GA) that
optimizes a fitness function which encodes timbral similarity between
the candidate instrument combinations and the reference sound. They
use MOGLS [25] to return multiple instrument combinations in paral-
lel that are nearly Pareto optimal. Later, Esling et al. [19] added the
ability to perform dynamic orchestrations by representing the temporal
variation of timbral features.

Recently, Antoine et al. [15,28–30] proposed to use supervised clas-
sification to generate orchestrations from semantic descriptors of tim-
bre. Currently, i-Berlioz [30] uses support vector machines (SVM) to
generate instrumental combinations that would match one of the five
supported semantic descriptors of timbre, namely breathiness, bright-
ness, dullness, roughness, and warmth. Antoine et al. have chosen to
use semantic descriptors of timbre to enable the composer to focus on
a more specific sound quality [30] by restricting the number of orches-
trations returned by i-Berlioz. Therefore, i-Berlioz is conceived to mini-
mize the diversity of orchestrations returned under the assumption that
the five semantic terms unequivocally describe the timbre of the result.
However, most research on timbre perception suggests otherwise [5].
In CAMO, this redundancy in the description of timbre translates as
multiple instrument combinations approximating the reference timbral

description (with varying degrees of similarity). This work focuses on
the diversity of orchestrations as aesthetic alternatives for the com-
poser.

In a previous work [20], we adapted an artificial immune system
(AIS) called opt-aiNet [26] to return multiple combinations of musical
instrument sounds whose timbral features approximate those of a ref-
erence sound. The sound database used contained 1439 sounds from
the RWC Musical Instrument Sound Database [31,32] selected from
13 instruments played with 3 dynamics. We compared the results with
multiple runs of a standard GA (CAMO-GA) using 10 reference sounds.

In this work, we compare the diversity of orchestrations returned by
CAMO-AIS against CAMO-GA and Orchids, the state of the art of CAMO
using four different musical instrument sound databases (see Section
4.3). We orchestrated 13 reference sounds with CAMO-GA, CAMO-AIS,
and Orchids under the same conditions (whenever comparable) and
then we compared the diversity of the orchestrations using multiple
objective measures. Finally, we performed a listening test to evaluate
the perceptual similarity of the orchestrations returned by CAMO-AIS
and Orchids.

3. Diversity strategies in computer-aided musical orchestration

Diversity is very important in CAMO given the creative nature of
the compositional process. The composer is rarely interested in a sin-
gle combination (i.e., an orchestration) that optimizes some objective
measure(s) with a reference sound [7]. Instead, the reference sound is
typically used to guide the search towards a region of interest in the
vast space of timbral combinations. Very often, the composer will use
subjective criteria not encoded in the objective measure(s) guiding the
search to choose one or more orchestrations of interest. Therefore, a
CAMO algorithm should be capable of returning several orchestrations
that are all similar to the reference sound yet dissimilar among them-
selves, representing different alternative orchestrations for that refer-
ence sound. In that case, diversity provides the composer with multiple
choices when orchestrating a reference sound, expanding the creative
possibilities of CAMO beyond what the composer initially imagined.
In this work, we are especially interested in comparing the ability of
CAMO-AIS, CAMO-GA, and Orchids to generate diverse orchestrations.

3.1. Multi-objective versus multi-modal single-objective optimization

Carpentier et al. [12] propose to use a multi-objective optimiza-
tion strategy to tackle diversity. The objective similarity with the refer-
ence sound is encoded as multiple independent single-objective distance
measures D (see Section 4.7 for further details) which are combined
with weight vectors ⃖⃗𝛼 as

⃖⃗Ej = ⃖⃖⃗𝛼jDj, with
∑

j
|𝛼j| = 1, (1)

where j is the index of dimensions of the feature space, ⃖⃖⃗𝛼j are the vector
components of ⃖⃗𝛼 with magnitude |𝛼j|. Carpentier et al. [12] use MOGLS
to find efficient solutions [25] that correspond to different combinations
of the weights ⃖⃗𝛼 that maximize diversity along the Pareto front.

We propose to approach the problem as single-objective and use
the multi-modal optimization ability of opt-aiNet to find multiple local
optima that maximize diversity in the feature space. Therefore, in
CAMO-AIS, opt-aiNet minimizes the following distance (fitness) func-
tion

F =
∑

j
|𝛼j|Dj, with

∑
j
|𝛼j| = 1. (2)

3.2. Maintenance of diversity in opt-aiNet

The multi-modal ability of opt-aiNet emerges from the property
of maintenance of diversity, which allows opt-aiNet to return multi-

3



M. Caetano et al. Swarm and Evolutionary Computation 50 (2019) 100484

Fig. 2. Illustration of the different spaces in CAMO. The left-
hand panel shows the search space, the middle panel shows
the feature space, and the right-hand panel shows the objec-
tive space. Each point in the decision space is an instrument
combination (orchestration) that has a corresponding posi-
tion in the feature space. The reference sound can also be
seen in the feature space. The distances D between points in
the feature space and the reference sound are calculated in
the feature space. Weight vectors ⃖⃗𝛼 map points in the feature
space to the objective space.

ple local optima of the fitness function being optimized upon conver-
gence. Fig. 1 shows a multi-modal function with multiple global and
local optima represented by the multiple peaks. Standard optimization
methods commonly only return one solution (i.e., one black dot) cor-
responding to one local optimum of the fitness function. The property
of maintenance of diversity in opt-aiNet translates as multiple solutions
returned in parallel, corresponding to several local optima of the fit-
ness function. Two different measures are involved in the property of
maintenance of diversity in opt-aiNet, namely the fitness function and
the affinity measure. Fitness is a measure of the quality of a candidate
solution and is used to explore promising regions of the search space.
Affinity is a measure of distance between the current solutions and is
used to eliminate candidate solutions with lower fitness that are close
to high fitness solutions.

At each iteration, opt-aiNet uses the immunological principles of
clonal expansion, mutation, and suppression to evolve a population of
candidate solutions in an immune network. Clonal expansion and muta-
tion expand the size of the pool of candidate solutions during the explo-
ration of regions of the search space associated with high fitness. Then,
suppression cuts back down the current population by keeping only the
best solutions in regions within a radius 𝜌. Maintenance of diversity is
achieved by eliminating the antibodies whose affinity is lower than 𝜌

from the network while keeping the ones with the highest fitness. The
result is illustrated in Fig. 1, where only the best individual per peak of
the fitness function is returned.

Similarity with the reference is measured with the fitness function
of eq. (2), while affinity is measured as Euclidean distances between
candidate orchestrations in the feature space (see Section 4.8). Both the
fitness function and the affinity measure use the features described in
Section 4.4, which, in turn, capture perceptual aspects of the sounds.
Consequently, fitness F is inversely proportional to perceptual simi-
larity of orchestrations with the reference sound and affinity is pro-
portional to perceptual dissimilarity between orchestrations. There-
fore, in CAMO-AIS, maintenance of diversity translates as orches-
trations that are all similar to the reference yet different from one
another.

3.3. Diversity in orchids and in CAMO-AIS

Fig. 2 illustrates the different diversity strategies between Orchids
and CAMO-AIS. Fig. 2 shows the search space (also called decision
space in the multi-objective optimization literature), the feature space,
and the objective space. Each point in the search space is an orches-
tration represented as an instrument combination that has a corre-
sponding position in the feature space. The features encode percep-
tual aspects of the sounds and are used in the single-objective dis-
tances D between the orchestrations and the reference sound. Weight
vectors ⃖⃗𝛼 map points in the feature space to points in the objective
space. The same point in the feature space can be mapped to dif-
ferent points in the objective space by different weight vectors ⃖⃗𝛼.
On the other hand, a fixed weight vector ⃖⃗𝛼 always maps points in
the feature space to a straight line in the objective space. Thus ⃖⃗𝛼

can be interpreted as specifying the direction by which a solution
approaches the theoretical optimum at the origin of the objective
space.

The right-hand panel in Fig. 2 shows the Pareto front with non-
dominated solutions (ND) illustrated as “X” and dominated solutions
(D) illustrated as “+”. The locus of the fitness function in the objective
space can also be seen as a straight line containing the global optimum
(G) illustrated as the filled “O” and the local optima (L) illustrated as
the empty “O”. Note that dominated solutions D can coincide with local
optima L and, in turn, non-dominated solutions ND can coincide with
the global optimum G. Thus CAMO-AIS returns solutions L that were
discarded by MOGLS because there is a solution G closer to the refer-
ence in the same direction in the objective space (i.e., specified by the
same |𝛼j|). MOGLS provides a set of efficient solutions that approach
the reference sound in different directions. Perceptually, each solution
returned by MOGLS would be closer to the reference sound according
to different criteria emphasized by the different weight vectors ⃖⃗𝛼. On
the other hand, CAMO-AIS returns solutions that always approach the
reference in the same direction, emphasizing the same perceptual simi-
larities. The trade-off is that the quality of the solutions decreases when
they are local optima L. In this article, we investigate the consequences
of these different approaches to CAMO in terms of similarity and diver-
sity. We aim to show that CAMO-AIS returns orchestrations with higher
diversity than Orchids without loss of perceptual similarity with the
reference.

4. Computer-aided musical orchestration with an artificial
immune system (CAMO-AIS)

4.1. Overview

Fig. 3 shows an overview of CAMO-AIS. The sound database is used
to build a feature database, which consists of acoustic features calcu-
lated for all sounds prior to the search for orchestrations. The same
features are calculated for the reference sound being orchestrated. The
combination functions estimate the features of a sound combination
from the features of the individual sounds. The evaluation function uses
these features to estimate the similarity between combinations of fea-
tures from sounds in the database and those of the reference sound.
The search algorithm opt-aiNet is used to search for combinations that
approximate the reference sound, called orchestrations.

Fig. 3. Overview of CAMO. The figure illustrates the different components of
the CAMO approach adopted.
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Fig. 4. Representation of orchestrations. Part (a) illustrates the orchestration as a combination of sounds that approximates the reference. Part (b) shows the internal
representation of each orchestration in CAMO-AIS.

4.2. Representation

Fig. 4a illustrates an orchestration as a combination of sounds from
the sound database that approximates the reference sound when played
together. Fig. 4b shows the representation used by CAMO-AIS, in which
an orchestration has M players p (m), and each player is allocated a
sound s (n) ∈ S, where n = [1,… ,N] is the index in the database S,
which has N sounds in total. Thus an orchestration is a combination of
sounds c (m, n) = {s1 (n) ,… , sM (n)}, ∀ sm (n) ∈ S. Fig. 4b shows c (m, n)
represented as a list, but the order of players p (m) does not matter for
the orchestration. Each sound sm (n) corresponds to a specific note of a
given instrument played with a dynamic level, and sm (n) = 0 indicates
that player p (m) was allocated no instrument.

4.2.1. Discrete search space
Originally, opt-aiNet [26] was designed to optimize functions of

continuous variables, performing the search in continuous vector
spaces. In our work, the search space is discrete because the repre-
sentation of orchestrations c (m, n) is a vector of discrete indices n of
sounds in the database, as shown in Fig. 4b. Most of the operations of
the continuous version of opt-aiNet work for discrete vectors as well.
The exception is the original mutation operator which used a continu-
ous random variable to add a small perturbation to the vectors being
mutated. Thus we adapted the mutation operator for discrete vectors
using a probability of mutation to determine if the vector will undergo
mutation. The probability of mutation 𝜒 is calculated as

𝜒 = exp(−𝛾 F̂) (3)

where 𝛾 is a constant and F̂ is the normalized fitness value of the com-
bination vector c (m, n) being mutated. For each index n, a uniform ran-
dom variable u (0,1) will determine if the corresponding sound s (n) is
replaced by another sound from S. If u (0,1) < 𝜒 then a new s (n) ∈ S
is chosen from another uniform distribution u (1,N), where n ∈ ℕ and
n ≤ N. Following our previous work [20], we set 𝛾 = 1.2.

4.3. Musical instrument sound databases

This work uses four musical instrument sound databases, namely
Studio Online (SOL),1 Real World Computing (RWC),2 Philharmo-

1 https://www.uvi.net/ircam-solo-instruments.html.
2 https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-i.html.

nia,3 and Iowa.4 All the experiments reported in Sec. 6 used all four
sound databases above for all the orchestrations algorithms, except for
Orchids, which uses SOL by default and it cannot be replaced.

SOL comes bundled with Orchids with a total of 24,320 sounds
from 33 instruments from 5 families, namely brass, keyboards, plucked
strings, strings, and woodwinds. SOL has sounds played with over 550
classical, experimental, and extended articulations and playing tech-
niques as well as 6 dynamics, pianissimo, piano, mezzo piano, mezzo forte,
forte and fortissimo.

RWC music database contains a total of 37,372 sounds from 36
instruments from 5 families, namely brass, keyboard, popular, strings,
and woodwinds. For each instrument, RWC has sounds played with 3
dynamics (pianissimo, mezzo forte, and fortissimo) and different playing
techniques. RWC provides up to 3 variations for each instrument, where
each variation corresponds to a different instrument manufacturer and
a different musician.

Philharmonia has a total of 13,680 sounds from 58 instruments from
5 families, namely brass, percussion, plucked strings, strings, and wood-
winds. Philharmonia has sounds played with 3 dynamics (pianissimo,
mezzo forte, and fortissimo) and a total of 73 extended articulations and
playing techniques.

Iowa has a total of 4,483 sounds from 19 instruments from 3 fam-
ilies, namely brass, strings, and woodwinds. In Iowa, each instrument
sound was played pianissimo, mezzo forte, and fortissimo for all the notes
comprising the entire instrumental range. For stringed instruments, the
total range of sounds was recorded for each string.

4.4. Feature extraction

Traditionally, timbre is considered as the set of attributes whereby a
listener can judge that two sounds are dissimilar using any criteria other
than pitch, loudness, or duration [5]. Therefore, we consider pitch,
loudness, and duration separately from timbre dimensions. The features
used are fundamental frequency f0 (pitch), frequency f and amplitude
a of the contribution spectral peaks A, loudness 𝜆, spectral centroid 𝜇,
and spectral spread 𝜎. The fundamental frequency f0 of all sounds s (n)
in the database is estimated with Swipe [33]. The spectral centroid 𝜇

captures brightness while the spectral spread 𝜎 correlates with the third
dimension of MDS timbre spaces [21–24]. All the features are calcu-
lated over short-term frames (see window size in Table 1) and averaged

3 https://www.philharmonia.co.uk/explore/sound_samples.
4 http://theremin.music.uiowa.edu/MIS.html.
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Table 1
Parameters of the experiment.

Orchestration Algorithms

Parameter CAMO-AIS CAMO-GA Orchids

Maximum Number of Players 5 5 5
Number of Iterations 500 500 500
Initial size of population 50 50 50
Maximum size of population Auto 200 200
Mating pool size – 200 200
Number of Clones 20 – –

Sound Analysis

Parameter CAMO-AIS CAMO-GA Orchids

Window Type Hamming Hamming Hamming
Window Size (ms) 46.4 46.4 60
Hop Size (ms) 23.2 23.2 10
FFT Size 4096 4096 4096
Maximum Number of Partials 25 25 25

across all frames. Orchids uses the same features calculated similarly.

4.4.1. Contribution spectral peaks
The spectral energy that sound s (m) contributes to an orchestration

is determined by the contribution spectral peaks vector ⃖⃗Am (k). In what
follows, only peaks whose spectral energy (amplitude squared) is at
most 35 dB below the maximum level (i.e., 0 dB) are used and all other
peaks are discarded. These peaks are stored as a vector with the pairs
{a (k) , f (k)} for each sound s (m), where k is the index of the peak. The
contribution spectral peaks ⃖⃗Am (k) are the spectral peaks from the candi-
date sound s (m) that are common to the spectral peaks of the reference
sound r. Eq. (4) shows the calculation of ⃖⃗Am (k) as

⃖⃗Am (k) =
{

as (k) if (1 + 𝛿)−1 ≤ fs (k) ∕fr (k) ≤ 1 + 𝛿

0 otherwise
(4)

where as (k) is the amplitude and fs (k) is the frequency of the spectral
peak of the candidate sound, and fr (k) is the frequency of the reference
sound.

Fig. 5 illustrates the computation of spectral peak similarity between
the reference sound and a candidate sound. Spectral peaks are repre-
sented as spikes with amplitude a (k) at frequency f (k). The frequencies
fr (k) of the peaks of the reference sound are used as reference. When-
ever the candidate sound contains a peak in a region 𝛿 around fr (k), the
amplitude a (k) of the peak at frequency fs (k) of the candidate sound
is kept at position k of the contribution spectral peaks vector ⃖⃗Am (k).
Following our previous work [20], we set 𝛿 = 0.025.

4.4.2. Loudness
Loudness 𝜆 is calculated as

𝜆 = 20 log10

(∑
k

a (k)
)
, (5)

where a (k) are the amplitudes at frequencies f (k).

4.4.3. Spectral centroid
The spectral centroid 𝜇 is calculated as

𝜇 =
∑

k
f (k) |a (k) |2∑

k
|a (k) |2 . (6)

4.4.4. Spectral spread
The spectral spread 𝜎 is calculated as

𝜎 =
∑

k
(f (k) − 𝜇)2 |a (k) |2∑

k
|a (k) |2 . (7)

Fig. 5. Contribution spectral peaks ⃖⃗Am (k). The figure shows the representation
of the contribution spectral peaks of a candidate sound.

4.5. Pre-processing

Prior to the search for orchestrations of a given reference sound r,
the entire sound database S is reduced to a subset Sr of sounds that will
be effectively used to orchestrate r. All the sounds whose contribution
spectral peaks vector ⃖⃗Am (k) is all zeros are eliminated because these
do not contribute spectral energy to the orchestration. Similarly, all the
sounds whose f0 is lower than f r

0 are eliminated because these add spec-
tral energy outside of the region of interest and have a negative impact
on the final result. Partials with frequencies higher than all frequencies
in r are disconsidered because these are in the high-frequency range
and typically have negligible spectral energy.

4.6. Combination functions

The sounds s (m, n) in an orchestration c (m, n) should approximate
the reference r when played together. Therefore, the combination func-
tions estimate the values of the spectral features of c (m, n) from the

6
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features of the isolated sounds s (m, n) normalized by the RMS energy
e (m, n) [13]. The combination functions for the spectral centroid 𝜇,
spectral spread 𝜎, and loudness 𝜆 are given respectively by

𝜇c =
∑M

m e (m)𝜇 (m)∑M
m e (m)

, (8)

𝜎c =

√√√√∑M
m e (m)

(
𝜎2 (m) + 𝜇2 (m)

)∑M
m e (m)

− 𝜇2
c , (9)

𝜆c = 20 log10

( M∑
m

1
K

K∑
k

a (m, k)
)
. (10)

The estimation of the contribution spectral peaks of the combination
⃖⃗Ac uses the contribution vectors ⃖⃗As of the sounds s (m, n) in c (m, n) as

⃖⃗Ar =
{

max
k∈K

[
⃖⃗A (m,1)

]
,max

k∈K

[
⃖⃗A (m,2)

]
,… ,max

k∈K

[
⃖⃗A (m,N)

]}
. (11)

Orchids uses the same combination functions [12,13].

4.7. Distance functions

Each distance Dj in eq. (2) measures the difference between the
features from the reference sound r and the candidate orchestration
cq (m, n), where q is the index of the orchestration among all the candi-
dates for r, as follows

D𝜇 =
|𝜇 (

cq
)
− 𝜇 (r) |

𝜇 (r)
, (12)

D𝜎 =
|𝜎 (

cq
)
− 𝜎 (r) |

𝜎 (r)
, (13)

D𝜆 =
|𝜆 (cq

)
− 𝜆 (r) |

𝜆 (r)
. (14)

The distance between the contribution vector of the reference sound
⃖⃗Ar and the contribution vector of the orchestration ⃖⃗Ac is calculated as

D⃖⃗A = 1 − cos
(
⃖⃗Ar , ⃖⃗Ac

)
. (15)

Orchids uses the same distance functions [12,13].
Ultimately, the weights in CAMO-AIS are an aesthetic choice by

the composer to determine the perceptual direction from which all the
orchestrations should approximate the reference. In Orchids, each solu-
tion corresponds to a different set of weights, so the composer implic-
itly chooses a different perceptual direction by selecting an orchestra-
tion among the pool of solutions returned. In CAMO-AIS, the weights
allow the composer to interactively explore the vast space of composi-
tional possibilities and still have multiple orchestrations to choose from.
The weights used in this work are 𝛼⃖⃗A

= 0.6, 𝛼𝜆 = 0.2, 𝛼𝜇 = 0.1, and
𝛼𝜎 = 0.1. These weights were validated in informal experiments with
composers.

4.8. Affinity measure for suppression

Suppression discards candidate orchestrations that have affinity
below a given threshold 𝜌. The affinity between two candidate orches-
trations cq and cu is the Euclidean distance

𝜔 (q, u) =

√√√√√J=4∑
j=1

(
cq (j) − cu (j)

)2
, (16)

where c (1) = f0, c (2) = 𝜆, c (3) = 𝜇, and c (4) = 𝜎 are the dimensions
of the reduced feature space where suppression operates. Following our
previous work [20], the suppression threshold used is 𝜌 = 0.01.

5. Evaluation

The quality of an orchestration depends on how similar it is to the
reference sound [7]. Ideally, all orchestrations found should be as simi-
lar to the reference sound as possible. However, diversity is also impor-
tant. Multiple solutions should be different from one another to repre-
sent alternatives, giving the composer options to choose from. There-
fore, we evaluate the similarity and the diversity of the orchestrations
generated by CAMO-AIS and compare with CAMO-GA and Orchids. We
use objective and perceptual measures in the evaluation. Both CAMO-
GA and CAMO-AIS use the same representation and optimize the fit-
ness function F of eq. (2) with the same weight values and equivalent
parameters, whereas Orchids uses MOGLS to optimize eq. (1). Loss of
diversity in standard GAs commonly results in many individuals con-
verging to the same local optimum, whereas opt-aiNet returns multiple
local optima. First we will compare the diversity of the orchestrations
with several different objective measures. The aim is twofold, to com-
pare the multi-modal ability of opt-aiNet (CAMO-AIS) against the stan-
dard GA (CAMO-GA) when optimizing F and to compare the approaches
behind Orchids (MOO) and CAMO-AIS (multi-modal SOO). Finally, we
will compare the perceptual similarity of the orchestrations by CAMO-
AIS and Orchids.

The experiment consisted in orchestrating R = 13 reference sounds
with CAMO-GA, CAMO-AIS, and Orchids using the subset of the
sound databases Ŝ described in Section 5.2. All reference sounds
were orchestrated using the static mode in Orchids, which corre-
sponds to the description found in Ref. [12]. We selected Q = 8
orchestrations for each reference generated by all methods, result-
ing in a total of 24 orchestrations per reference. CAMO-AIS returns
the orchestrations ordered by fitness value, from lowest F to high-
est (or from closest to the reference to the farthest according to F)
so we simply use the first Q = 8. In Orchids, however, there is no
natural ordering of the solutions because all the solutions returned
correspond to the best solution found for a particular weight vec-
tor ⃖⃗𝛼. The orchestrations proposed by Orchids are ordered according
to their position index in the population, so we simply selected the
first Q = 8. CAMO-GA uses a standard GA with uniform crossover
with 0.7 probability, uniform mutation with 0.2 probability, roulette
wheel selection, and elitism (top 5% individuals). Similarly to CAMO-
AIS, CAMO-GA returns orchestrations ordered by fitness value, so we
retrieve the first Q = 8 orchestrations. Section 5.1 explains the refer-
ence sounds, section 5.2 details the subset Ŝ of the sound databases
used in the experiment, and section 5.3 lists the parameters of the
experiment.

5.1. Static and nearly harmonic reference sounds

All methods are used to generate static orchestrations with nearly
harmonic musical instrument sounds. The term static orchestrations
emphasizes that the features are averaged across the duration of the
sounds so the feature vectors do not contain information about the tem-
poral variation of these features during the course of the sounds. Nearly
harmonic means that the spectrum of the musical instruments used con-
tains partials with frequencies nearly harmonically related. Therefore,
we used both static and nearly harmonic as criteria to select appropriate
reference sounds. We chose sounds that present relatively little tempo-
ral variation and some degree of harmonicity, such as sirens and notes
from instruments not found in the orchestra (e.g., synthesizers).

It is also important to choose reference sounds that are distributed
relatively evenly in the feature space so these do not concentrate around
one particular region and pose different challenges to orchestrate. Fig. 6
illustrates the distribution of the reference sounds in the reduced fea-
ture space (see Section 4.8). To visualize the relative distribution of the
reference sounds, Fig. 6 was obtained with classic MDS [34] analysis of
the feature vectors with dimensions f0, 𝜇, 𝜎, and 𝜆 calculated from the
reference sounds.
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Fig. 6. Reference sounds in MDS representation of feature space.

5.2. Static and nearly harmonic musical instrument sounds

For all musical instrument sound databases used (see Section 4.3),
we selected a subset Ŝ played with non-time-varying articulations such
as ordinario and non-vibrato as the most appropriate to orchestrate static
reference sounds. Appendix A contains tables that show the size of the
subspace Ŝr for each reference, the total number of possible combi-
nations in Ŝr with M players, and the total number of orchestrations
returned by CAMO-AIS per reference sound, which is the number of
local optima found. SOL appears in Table A.3, RWC appears in Table
A.4, Philharmonia appears in Table A.5, and Iowa appears in Table A.6.

5.3. Parameters of the experiment

Table 1 lists the parameters of the experiment for the orchestra-
tion methods CAMO-AIS, CAMO-GA, and Orchids as well as for the
sound analysis [35]. We used the presets in Orchids and in our previ-
ous work [26, 20] for CAMO-AIS. Whenever possible, we use the same
parameter value for CAMO-AIS, CAMO-GA, and Orchids, such as the
number of players M, the maximum number of partials K, and the max-
imum number of iterations because these parameters can potentially
impact the result. M and K directly affect the spectrum of the com-
bination because fewer partials result in lower similarity, while fewer
players would have a detrimental effect as well. The number of iter-
ations must be large enough to guarantee convergence, otherwise the
similarity of the result might also be affected.

5.4. Evaluation of diversity

Given a reference sound and an orchestration method, the evalua-
tion of perceptual diversity requires determining if each orchestration
is perceptually different from the others. Each set of 8 orchestrations
requires 28 pairwise comparisons. A total of 13 reference sounds and 3
methods would require 1092 pairwise evaluations. So we opted for an

objective evaluation of diversity instead.
We can evaluate objective diversity in 2 spaces shown in Fig. 2,

the search space and the feature space. In the search space, diver-
sity translates as unique combinations. In the feature space, the posi-
tions of sounds reflect perceptual relations among them. So diversity in
the feature space can be associated with diversity along the perceptual
dimensions associated with the features used. We use the distribution
of the orchestrations in the feature space to estimate the diversity of the
orchestration set. We propose to use the variance of the positions in the
feature space as measure of objective diversity.

Orchids is the only CAMO algorithm that operates in the objec-
tive space. The calculation of the objective measure of diversity in the
objective space requires the final weights 𝛼 and distances D. However,
Orchids does not allow access to either 𝛼 or D to calculate the diversity
in the objective space. Therefore, it is not possible to calculate diversity
in the objective space for any of the CAMO algorithms tested.

5.4.1. Objective diversity in the search space
The orchestrations are represented in the search space as illustrated

in Fig. 4b. In general, we expect different combinations of sounds to
result in different orchestrations. However, we need to differentiate
between a pair of orchestrations with M − 1 identical sounds and 1
different sound and another pair of orchestrations where all M = 5
sounds are unique. So we propose to measure the difference 𝜖 in the
combinations by simply counting the number of different sounds in
each pair of orchestrations and dividing by the maximum number of
players, written formally as

𝜖 (c1, c2) =
1
M

card (c1 − c2) , (17)

where c1 and c2 are combinations, c1 − c2 is the set difference between
c1 and c2, “card” is the set cardinality operator, and M is the maximum
number of players. The cardinality of a set card (c) is the number of
elements in c and c1 − c2 = {s ∣∈ c1 and s ∉ c2} is the elements s in c1
that are not in c2.

Fig. 7a illustrates the difference between two sets c1 and c2 with a
Venn diagram. Fig. 7a shows that the difference of two sets is a disjoint
set because c1 = (c1 − c2) ∪ (c1 ∩ c2) and c2 = (c2 − c1) ∪ (c1 ∩ c2), so
(c1 − c2) ∩ (c2 − c1) = ∅.

Consequently, the difference operator is not commutative
because c1 − c2 ≠ c2 − c1. Therefore, 𝜖 (c1, c2) = 𝜖 (c2, c1) only when
card (c1) = card (c2) because only then the number of remaining ele-
ments is the same. In other words, 𝜖 (c1, c2) = 𝜖 (c2, c1) only when the
orchestrations c1 and c2 being compared have the same number of play-
ers M. However, the orchestrations typically have between M = 1 and
M = 5 players. Fig. 7b illustrates the measure of diversity for orches-
trations c1, c2, and c3 with different numbers of players. Note that
𝜖 (c1, c2) = 2∕5 but 𝜖 (c2, c1) = 0. Also from Fig. 7b, 𝜖 (c1, c3) = 4∕5 but
𝜖 (c3, c1) = (c1, c2) = 2∕5. This is called raw diversity, as opposed to the
completed diversity shown in Fig. 7c, which replaces missing players with
0 standing for no instrument allocated to player m. Fig. 7c shows that

Fig. 7. Diversity in the search space. (a) Illustrates the difference between two sets c1 and c2. (b) Illustrates the raw diversity measure. (c) Illustrates the completed
diversity measure.
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now 𝜖 (c1, c2) = 𝜖 (c2, c1) = 2∕5 and 𝜖 (c1, c3) = 𝜖 (c3, c1) = 4∕5.
The final measure of diversity for each orchestration cq is

𝜖
(
cq
)
= 1

Q − 1

Q∑
u=1

𝜖
(
cq, cu

)
, (18)

which is simply the mean value of eq. (17) between cq and every other
orchestration Q − 1. Finally, for each reference sound, we have

𝜖 (r) = 1
Q

Q∑
q=1

𝜖
(
cq
)
, (19)

which is the mean of the individual diversity for each orchestration cq.
Different sound (or instrument) combinations do not necessarily

correspond to perceptually different orchestrations. Oftentimes, sounds
considered different are, in fact, a different playing style or articulation
of the same note for the same instrument. The features used capture
dimensions of sound perception such that diversity in the feature space
should be a better indicator of perceptual diversity.

5.4.2. Objective diversity in the feature space
The diversity of the orchestrations in feature space is proportional

to the variance of their distribution in feature space. Thus we measure
diversity in the feature space with an objective measure that captures
the variance of the orchestrations in the same reduced feature space as
the affinity is calculated. We propose to use principal component anal-
ysis (PCA) to indirectly estimate the variance of the orchestrations. The
measure uses how much of the variance is captured by the first principal
component, as shown in Fig. 8. Fig. 8a illustrates the case of maximum
variance where the first principal component explains approximately
50% of the variance whereas Fig. 8b illustrates the case of minimum
variance where the first principal component explains 100% of the vari-
ance. The measure of diversity 𝜀 is given by

𝜀 = J (1 − E)
J − 1

, with E ∈
[1

J
,1
]

and 𝜀 ∈ [0,1] , (20)

where E is the percentage of variation explained by the first principal
component, and J is the number of dimensions of the reduced feature
space. The dimensionality J of the original space imposes a theoretical
limit to the minimum of E given by 1∕J as specified in eq. (20). For
the example in Fig. 8a, the maximum variance explained by the first
principal component is 50% because J = 2. Note that 𝜀 = 0 when
E = 1 and 𝜀 = 1 when E = 1∕J. In other words, minimum diversity
corresponds to PCA explaining 100% of the variation and maximum
diversity corresponds to PCA explaining 100

J % of variation.

5.5. Evaluation of similarity

The fitness values from CAMO-GA and CAMO-AIS can be used as
the objective measure of similarity. However, we cannot compare with
Orchids because the application does not give access to either 𝛼 or D
of the orchestrations returned. Therefore we performed a listening test
to evaluate the perceptual similarity of the orchestrations compared
to the reference sound for CAMO-AIS and Orchids. CAMO-GA was not
included in the listening test because it uses the same fitness function
as CAMO-AIS.

5.5.1. Objective similarity
Objective similarity is measured with the fitness value from eq. (2).

Fitness represents the distance to the reference sound r such that smaller
values of F correspond to orchestration that are closer to the reference.

5.5.2. Perceptual similarity
We designed and conducted an online listening test to evaluate the

perceptual similarity of orchestrations to a number of preselected refer-
ence sounds. In total, 47 listeners (mean age: 33.7, age range: 19–60)
participated in the listening test, all of which reported practicing a
musical instrument, professional experience of audio processing, famil-
iarity with a listening test procedure and listening to the stimuli with
the use of high quality headphones. All participants provided informed
consent, were free to withdraw at any point and were naive about the
purpose of the test. The listening test can be found at http://camo.
inesctec.pt.

Each participant evaluated the similarity of 7 reference sounds
selected at random from the total pool of 13 references. See section
5.1 for a description of the reference sounds. Each page of the test pre-
sented one reference on top followed by the 16 orchestrations, 8 from
CAMO-AIS and 8 from Orchids. The presentation order of both the 7
reference sounds and the 16 orchestrations in each page of the test was
randomized (uniform distribution). In total, each reference was evalu-
ated by at least 19 participants. Participants rated similarity between
sounds using sliders with endpoints labeled very dissimilar and very sim-
ilar respectively that corresponded to a hidden scale ranging between 0
and a 100.

6. Results

Section 6.1 presents the results for diversity, with diversity in the
search space in Section 6.1.1 and diversity in the feature space in
Section 6.1.2. Then, Section 6.2 presents the results for similarity, with

Fig. 8. Variance of distributions. (a) Illustrates maximum variance. (b) Illustrates minimum variance.
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Fig. 9. Raw diversity of sounds for all Q = 8 orchestrations found for each reference sound using the following sound databases: SOL, RWC, Philharmonia, and
Iowa. The labels stand for the following reference sounds: AH (air horn), CH (car horn), C (carnatic), CT (choir tibetan), D (didgeridoo), FS (factory siren), G (glass),
M (minimoog), MS (musical saw), P (purr), SW (scream woman), W (waterphone), WH (windharp).

objective similarity in Section 6.2.1 and perceptual similarity in Section
6.2.2. All the data resulting from the experiment is available at https://
doi.org/10.5281/zenodo.2533264.

6.1. Diversity

6.1.1. Diversity in the search space
Diversity in the search space is estimated with eq. (19) for differ-

ent sounds and different instruments. Fig. 9 compares the raw diver-
sity of sounds and Fig. 10 compares the completed diversity for the
orchestrations returned by CAMO-AIS, CAMO-GA, and Orchids. The
bars represent the average values of 𝜖 (r) and the whiskers are the
standard deviation of 𝜖 (r) around the mean. The mean and standard
deviation are summary statistics used as a visual aid to simplify the
comparison. Similarly, Fig. 11 compares the raw diversity of musical
instruments and Fig. 12 compares the completed diversity of musical
instruments.

Figs. 9 and 10 show that CAMO-AIS presented higher diversity
of sounds than CAMO-GA or Orchids for all reference sounds using
all databases. With SOL, CAMO-GA and Orchids present a similar
diversity.

Figs. 11 and 12 show that CAMO-AIS presented higher diver-
sity of instruments than CAMO-GA or Orchids for all references with
RWC, Philharmonia, and Iowa. With SOL, Orchids has a higher aver-
age diversity for 5 of the 13 references with overlapping standard
deviations.

There is no notable difference between raw and completed diver-
sity for CAMO-AIS or CAMO-GA, revealing that most orchestrations
returned sounds allocated to M = 5 players. However, for Orchids, the
completed diversity tightens the standard deviation around the mean,
which is also raised in some cases. For example, AH, D, FS, and P in
Figs. 9 and 10. The same trend appears in Figs. 11 and 12. A higher
completed diversity for Orchids is indication that several orchestrations
found had fewer sounds (or instruments) than the maximum of M = 5.

Fig. 10. Completed diversity of sounds for all Q = 8 orchestrations found for each reference sound using the following sound databases: SOL, RWC, Philharmonia,
and Iowa. The labels stand for the following reference sounds: AH (air horn), CH (car horn), C (carnatic), CT (choir tibetan), D (didgeridoo), FS (factory siren), G
(glass), M (minimoog), MS (musical saw), P (purr), SW (scream woman), W (waterphone), WH (windharp).
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Fig. 11. Raw diversity of instruments for all Q = 8 orchestrations found for each reference sound using the following sound databases: SOL, RWC, Philharmonia,
and Iowa. The labels stand for the following reference sounds: AH (air horn), CH (car horn), C (carnatic), CT (choir tibetan), D (didgeridoo), FS (factory siren), G
(glass), M (minimoog), MS (musical saw), P (purr), SW (scream woman), W (waterphone), WH (windharp).

Fig. 12. Completed diversity of instruments for all Q = 8 orchestrations found for each reference sound using the following sound databases: SOL, RWC, Philhar-
monia, and Iowa. The labels stand for the following reference sounds: AH (air horn), CH (car horn), C (carnatic), CT (choir tibetan), D (didgeridoo), FS (factory
siren), G (glass), M (minimoog), MS (musical saw), P (purr), SW (scream woman), W (waterphone), WH (windharp).

6.1.2. Diversity in the feature space
Diversity in the feature space is measured with 𝜀 from eq. (20). The

property of maintenance of diversity of opt-aiNet means that CAMO-AIS
returns multiple solutions corresponding to different local optima. The
suppression operation in CAMO-AIS eliminates solutions that are close
together in the feature space (see Section 3.1). CAMO-GA optimizes the
same fitness function as CAMO-AIS with a standard GA. Most individ-
uals tend to the same local optimum when the standard GA converges,
resulting in individuals that are closer together. Finally, the MOGLS
algorithm behind Orchids operates in the objective space, approximat-
ing the Pareto frontier.

Fig. 13 shows a comparison of 𝜀 for the Q = 8 orchestrations
generated by CAMO-AIS, CAMO-GA, and Orchids for all reference
sounds using the sound databases SOL, RWC, Philharmonia, and
Iowa. For SOL, CAMO-AIS resulted in higher 𝜀 than Orchids for most
references, except W (waterphone). However, CAMO-GA resulted in
higher 𝜀 than CAMO-AIS for about half the references with SOL.
Diversity in the feature space was not consistent across databases for
RWC, Philharmonia, or Iowa. CAMO-AIS has higher 𝜀 than CAMO-GA

for most references using Philharmonia, whereas CAMO-GA has higher
𝜀 than CAMO-AIS for most references for Iowa. Neither achieved higher
𝜀 for most references using RWC.

6.2. Similarity

6.2.1. Objective similarity
The fitness value F can be used as measure of objective similarity for

both CAMO-GA and CAMO-AIS. F measures the distance between each
orchestration cq (where q is the index of the orchestration) and the
reference sound r that cq approximates. Therefore, F reflects the prox-
imity of cq to r such that a lower F tells the composer that c1 is closer
to r than c2, for example. The calculation of the measure of objective
similarity for Orchids requires the final weights 𝛼 and the distances D.
However, Orchids does not allow access to either 𝛼 or D. Therefore,
we have performed a listening test to compare the perceptual similarity
between CAMO-AIS and Orchids. Section 6.2.2 presents the results of
the listening test.
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Fig. 13. Diversity in feature space for all Q = 8 orchestrations found for each reference sound using the following sound databases: SOL, RWC, Philharmonia, and
Iowa. The labels stand for the following reference sounds: AH (air horn), CH (car horn), C (carnatic), CT (choir tibetan), D (didgeridoo), FS (factory siren), G (glass),
M (minimoog), MS (musical saw), P (purr), SW (scream woman), W (waterphone), WH (windharp).

Fig. 14 shows the fitness values for all Q = 8 orchestrations
returned by CAMO-AIS (top) and CAMO-GA (bottom) for each refer-
ence sound using the four musical instrument sound databases, namely
SOL, RWC, Philharmonia, and Iowa. These results show that the fitness
values for CAMO-GA and CAMO-AIS have a very similar pattern for
each sound database because both optimize the same fitness function F.
Comparison of the fitness of CAMO-AIS and CAMO-GA in each figure
reveals similar relative values for the same reference sounds indepen-
dently of the CAMO algorithm. For example, the fitness of P (purr) for
CAMO-AIS and CAMO-GA are both around 0.3 using SOL, 0.2 using
RWC and Philharmonia, and 0.5 using Iowa. However, comparison of
the fitness of one CAMO algorithm for the same reference sound across
databases reveals variation. For example, the fitness of P (purr) for
CAMO-AIS varies between 0.2 and 0.5 depending on the database used.
Taken together, these results show that the fitness values depend on the
database used but not on the CAMO algorithm.

6.2.2. Perceptual similarity
CAMO-AIS resulted in more diversity than CAMO-GA and Orchids

in general. So we investigated whether the increased diversity of the
orchestrations affected the perceptual similarity with the reference. The
listening test compared the perceptual similarity of the orchestrations
from CAMO-AIS and Orchids. CAMO-GA was not included in the com-
parison because the listening test would become prohibitively long to
perform, leading the participants to fatigue.

We averaged the similarity ratings of the participants between each
orchestration and the corresponding reference prior to analysis. Then
we calculated the value of Cronbach’s alpha to test the internal con-
sistency of the ratings among participants (i.e., to test whether there
is agreement among participants about the similarities). The value of
Cronbach’s alpha obtained for most references was higher than 0.8,
indicating good agreement. The only exceptions were for references car-
natic, factory siren, and scream woman, for which agreement was weak.

Fig. 14. Fitness values of CAMO-AIS (top panel) and CAMO-GA (bottom panel) for all Q = 8 orchestrations found for each reference sound using the following
sound databases: SOL, RWC, Philharmonia, and Iowa. The labels stand for the following reference sounds: AH (air horn), CH (car horn), C (carnatic), CT (choir
tibetan), D (didgeridoo), FS (factory siren), G (glass), M (minimoog), MS (musical saw), P (purr), SW (scream woman), W (waterphone), WH (windharp).
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Fig. 15. Perceptual similarity of the Orchestrations for each of the 13 reference
sounds for both CAMO-AIS and Orchids.

Fig. 15 presents a comparison of the boxplots of the mean dissimilar-
ities for the orchestrations of the two methods for each of the 13 refer-
ence sounds. Each box is bounded by the 0.25 percentile at the bottom
and 0.75 percentile at the top. The median is indicated by a horizontal
line and the whiskers show the entire range of ratings, except for the
points considered outliers represented by dots. We applied the Shapiro-
Wilk normality test to the mean dissimilarity ratings of all orchestra-
tions for both methods to test if their distributions can be approximated
by a normal (Gaussian) distribution. Several orchestrations from both
methods failed to pass the test (at significance level, p = 0.05). In addi-
tion, a Levene’s test between all 13 pairs of orchestrations showed that
pairs 1, 4, 5 and 13 did not have equal variance (at p = 0.05 level).
Therefore, we employed the non-parametric Wilcoxon signed-rank test,
which does not assume data normality, to examine whether differences
between the medians of the distributions presented in Fig. 15 are statis-
tically significant.

Table 2 presents the results of the Wilcoxon signed-rank test which
indicated that a statistically significant difference between median dis-
similarities appears in 3 out of the 13 reference sounds, highlighted
in bold in Table 2. CAMO-AIS presented a higher overall similarity
(i.e., higher median) compared to Orchids for musical saw and purr,
whereas Orchids presented a higher overall similarity for waterphone.
All the other reference sounds did not feature a significant difference in
overall similarity between CAMO-AIS and Orchids, indicating that both
methods generate orchestrations that were considered as perceptually
similar for these references. Therefore, the results of the listening test

Table 2
Results of the Wilcoxon signed-rank test of the mean dissimilarities between
CAMO-AIS and Orchids for the 13 reference sounds. Bold p values (≤ 0.05)
indicate a statistically significant difference between the mean ranks of the
two groups. The last column shows the actual difference between medians
where a positive number indicates CAMO-AIS > Orchids and vice versa.

Reference T z p value Median difference

air horn 22 0.6 0.57 −1.5
car horn 27 1.3 0.21 6.7
carnatic 10 −1.1 0.26 −2.9
choir tibetan 26 1.1 0.26 9.3
didgeridoo 8.5 −1.3 0.18 −12.1
factory siren 16 −0.3 0.78 −2.0
glass 24 0.8 0.40 7.6
minimoog 20 0.3 0.78 0.2
musical saw 36 2.5 0.01 7.7
purr 36 2.5 0.01 29.4
scream woman 12 −0.8 0.40 −1.6
waterphone 1 −2.4 0.02 −12.8
wind harp 30 1.7 0.09 11.2

show that CAMO-AIS returns orchestrations that are perceived as simi-
lar to the reference as those by Orchids. Taken together, the results of
the diversity and similarity analyses support the conclusion that CAMO-
AIS has higher diversity of orchestrations than Orchids without loss of
perceptual similarity.

7. Discussion

While our analysis demonstrates that CAMO-AIS is capable of gen-
erating multiple orchestrations that are similar to the reference sound
with diversity, it is also important to consider the inherent temporal
aspect of sound perception. We used the average of the feature values
across the duration of the sounds, not taking the temporal variations of
these features into consideration. Therefore, this work was restricted
to static orchestrations, which are not suitable for reference sounds
that present temporal variation. Reference sounds with a high degree
of temporal variation require a fitness function that encodes temporal
variations of the features. Additionally, reference sounds with tempo-
ral variation are expected to pose a greater challenge to orchestrate
using static notes of musical instrument sounds. However, most musi-
cal instruments from an orchestra can be played with temporal varia-
tions, such as glissando or vibrato. Thus it seems natural to use reference
sounds that vary in time and to make future effort to orchestrate refer-
ences with inherent temporal variation.

In particular, the attack time is not included among the features
used to match the references. However, the attack time is the most
salient feature in dissimilarity studies and should be considered when
searching for orchestrations, especially when orchestrating percussive
reference sounds such as a gong. Naturally, orchestrating percussive ref-
erences with percussive musical instrument sounds such as piano notes
of plucked violin strings should give better results and should definitely
be pursued in the future.

The perceptual similarity between the orchestrations and the ref-
erences depends not only on the features used but also on the differ-
ent weights given to each feature. This is probably the major differ-
ence between CAMO-AIS and Orchids in this work. CAMO-AIS uses
a single-objective approach with fixed weights whereas Orchids uses
a multi-objective approach where each solution corresponds to a dif-
ferent set of weights. Combinations with a good match of partials
with the reference are perceived as having similar pitch, especially
when the f0 is close. Thus the fitness function in this work emphasizes
the match of the partials ⃖⃗A more than the other features used. How-
ever, CAMO-AIS generated orchestrations with larger dissimilarities in
pitch than those generated by Orchids in general. Therefore, a differ-
ent similarity measure for ⃖⃗A might improve the perceptual match for
pitch.

The experiments were performed with a fixed set of weights for
CAMO-AIS (and CAMO-GA), so naturally the results and conclusions
are restricted to the experimental conditions of this work. Other com-
binations of weights should be tested and compared to extrapolate
these results. However, the experimental procedure adopted in this
work must be adapted to test other combinations of weights because
of the costly listening test. The same applies for the parameters of the
algorithms. We used default parameter values for both opt-aiNet and
Orchids under the assumption that they are appropriate for the prob-
lem at hand. Once again, a parameter tuning experiment would require
a prohibitively costly listening test to fine-tune the parameters to obtain
maximal perceptual similarity.

In music, timbre is traditionally associated with the musical instru-
ment producing the sound. Combinations of different instruments typ-
ically result in complex timbral blends. In general, Orchids resulted
in orchestrations closer in pitch than CAMO-AIS but with less diver-
sity measured both in the search space (i.e., combinations) and in the
feature space. Most orchestrations returned by Orchids had fewer play-
ers than M = 5 and repeated sounds. In some cases, Orchids returned
groups of orchestrations with the same instruments except for one. Most
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orchestrations for CAMO-AIS allocated instruments to all M = 5 play-
ers, resulting in more complex instrumental combinations, which, in
turn, render more complex timbral blends. Therefore, the perceptual
diversity for CAMO should rely heavily on timbre.

The measure of objective diversity in the search space developed
for this work is based on fundamental concepts of set theory. One of
the consequences is the different values of raw diversity and completed
diversity used in the evaluation. Raw diversity uses the combinations
returned by CAMO-AIS and Orchids directly, while completed diversity
corresponds to filling with 0 the blank spaces left whenever no instru-
ment is allocated to a player. We decided to include both the raw diver-
sity and the completed diversity in the evaluation because these provide
different perspectives for comparison.

Another consequence of the set-theory-based measure of diversity
is the dependence of diversity values on the total number of elements
available rather than their proportions. Use of this measure results in
lower diversity for instruments than sounds, ignoring the intrinsic con-
nection between the two since each instrument is capable of producing
several sounds. A lower diversity value for musical instruments than
for musical instrument sounds simply reflects this property of the mea-
sure. Thus the only reliable comparison is always between methods
with everything else fixed. For example, raw diversity of instruments
for CAMO and Orchids is comparable.

8. Conclusions and future perspectives

Computer-Aided Musical Orchestration (CAMO) methods can help
composers find combinations of musical instrument sounds that approx-
imate a reference sound when played together. Composers usually
have subjective criteria other than only similarity with the refer-
ence when searching for an orchestration [7]. Therefore, CAMO meth-
ods that return multiple orchestrations in parallel provide alterna-
tives for the composer. Diversity of orchestrations is very impor-
tant to provide aesthetic options. In this work, we proposed CAMO-
AIS, which uses a multi-modal artificial immune system (AIS) called
opt-aiNet to search for orchestrations. The characteristic of mainte-
nance of diversity of opt-aiNet resulted in multiple orchestrations that
are considered similar to the reference but that are different among
themselves.

We generated 8 orchestrations for 13 reference sounds with CAMO-
AIS, with CAMO-GA using a standard genetic algorithm (GA), and with
the state-of-the-art system Orchids and compared the results in terms
of diversity and similarity. We used several measures of diversity in the
search space (of the combinations) and in the feature space to evaluate
diversity and we conducted a listening test to evaluate the perceptual
similarity of the orchestrations. CAMO-AIS resulted in higher diversity
in the search space than both CAMO-GA and Orchids for most refer-
ences. CAMO-AIS was more diverse than Orchids in the search space
for most reference sounds tested. The results of the listening test did not
show a statistically significant difference in similarity between CAMO-
AIS and Orchids for most references used. Overall, CAMO-AIS generated
orchestrations that were considered just as perceptually similar to the

references used as those generated by Orchids but with higher diver-
sity. Thus, CAMO-AIS provides more options for the composer without
loss of perceptual similarity. So the diversity from CAMO-AIS does not
sacrifice the similarity with the reference sound.

This work uses the original opt-aiNet in a proof-of-concept imple-
mentation of CAMO-AIS. A natural next step toward future develop-
ments of CAMO-AIS is the application of improved versions of opt-
aiNet [36–38] published recently. These publications feature algorith-
mic improvements over the original opt-aiNet targeting specific opti-
mization domains. Continuous optimization [36] would require adap-
tation to the discrete and combinatorial nature of the representation
adopted in CAMO, thus it seems more appropriate to directly use the
combinatorial optimization version [38]. However, these algorithms
[36,37] were developed for single-objective optimization (SOO) prob-
lems. An interesting alternative would be to approach CAMO as a multi-
objective optimization (MOO) and use the appropriate AIS [38], fol-
lowing the approach used by Orchids. Alternatively, other optimization
algorithms that return multiple local optima such as brain storm opti-
mization [39] or the quantum-inspired immune clonal algorithm [40]
can also result in orchestrations with diversity. Finally, multimodal
deep learning [41] has the potential to tackle the multidimensional
nature of timbre in CAMO. However, the challenge of attaining diver-
sity of orchestrations would be added to the well known difficulty of
interpretability of deep learning.

The application of more sophisticated measures of objective diver-
sity in future work has potential to improve further CAMO-AIS. For
example, the measure of diversity in the search space developed for
this work uses concepts from set theory rather than statistics, as is
the tradition in population biology. A natural source of inspiration
is swarm and evolutionary computation [42–44], especially multi-
objective optimization [45–47], where the concept of diversity has been
extensively studied. An appropriate measure of diversity could be used
in the affinity calculation to maximize diversity of the combinations
directly.

Finally, perceptual diversity lies at the core of CAMO. The percep-
tual evaluation of diversity still poses a challenge due to the combi-
natorial nature of the task. In addition, the assumption that orchestra-
tions that are more similar to the reference sound are aesthetically more
appropriate could also be investigated.
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Appendix A. Additional information about CAMO-AIS

The following tables show the size of the subspace Ŝr for each reference, the total number of possible combinations in Ŝr with M players, and
the total number of orchestrations returned by CAMO-AIS per reference sound, which is the number of local optima found, for the four musical
instrument sound databases used.
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Table A.3
Size of the subspace Ŝr , total number of possible combinations in Ŝr with M = 5
players, and the total number of orchestrations found for each reference sound for SOL.

Reference Subspace Total Combinations Orchestrations

air horn 3871 7.22e+15 106
car horn 2205 4.32e+14 104
carnatic 4056 9.13e+15 10
choir tibetan 2656 1.10e+15 94
didgeridoo 1632 9.59e+13 62
factory siren 662 1.04e+12 23
glass 461 1.70e+11 127
minimoog 3989 8.40e+15 93
musical saw 218 3.92e+09 9
purr 2895 1.69e+15 61
scream woman 211 3.32e+09 23
waterphone 265 1.05e+10 17
wind harp 3475 4.21e+15 105

Table A.4
Size of the subspace Ŝr , total number of possible combinations in Ŝr with M = 5
players, and the total number of orchestrations found for each reference sound for RWC.

Reference Subspace Total Combinations Orchestrations

air horn 9784 7.46e+17 169
car horn 3663 5.48e+15 180
carnatic 9117 5.24e+17 190
choir tibetan 6142 7.27e+16 124
didgeridoo 4812 2.15e+16 167
factory siren 2978 1.95e+15 132
glass 528 3.36e+11 64
minimoog 7597 2.11e+17 167
musical saw 454 1.57e+11 34
purr 6430 9.15e+16 135
scream woman 452 1.54e+11 98
waterphone 1895 2.03e+14 77
wind harp 6809 1.22e+17 167

Table A.5
Size of the subspace Ŝr , total number of possible combinations in Ŝr with M = 5
players, and the total number of orchestrations found for each reference sound for Phil.

Reference Subspace Total Combinations Orchestrations

air horn 3946 7.95e+15 132
car horn 1678 1.10e+14 127
carnatic 5131 2.96e+16 209
choir tibetan 3680 5.61e+15 175
didgeridoo 1806 1.59e+14 99
factory siren 1107 1.37e+13 107
glass 335 3.41e+10 141
minimoog 3740 6.08e+15 145
musical saw 189 1.91e+09 11
purr 5709 5.04e+16 131
scream woman 335 3.41e+10 54
waterphone 640 8.81e+11 25
wind harp 3570 4.82e+15 165
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Table A.6
Size of the subspace Ŝr , total number of possible combinations in Ŝr with M = 5
players, and the total number of orchestrations found for each reference sound for Iowa.

Reference Subspace Total Combinations Orchestrations

air horn 1045 1.03e+13 74
car horn 407 9.08e+10 69
carnatic 1067 1.14e+13 85
choir tibetan 721 1.60e+12 35
didgeridoo 386 6.96e+10 39
factory siren 304 2.09e+10 33
glass 65 8.26e+06 14
minimoog 926 5.61e+12 104
musical saw 50 2.12e+06 7
purr 565 4.71e+11 36
scream woman 64 7.62e+06 7
waterphone 113 1.40e+08 12
wind harp 861 3.90e+12 74
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