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Abstract. This paper presents the extension of the progressive automa-
tion framework for periodic movements, where an operator kinesthet-
ically demonstrates a movement and the robotic manipulator progres-
sively takes the lead until it is able to execute the task autonomously.
The basic frequency of the periodic movement in the operational space
is determined using adaptive frequency oscillators with Fourier approx-
imation. The multi-dimensionality issue of the demonstrated movement
is handled by using a common canonical system and the attractor land-
scape is learned online with periodic Dynamic Movement Primitives.
Based on the robot’s tracking error and the operator’s applied force, we
continuously adjust the adaptation rate of the frequency and the wave-
form learning during the demonstration, as well as the target stiffness
of the robot, while progressive automation is achieved. In this way, we
enable the operator to intervene and demonstrate either small modifi-
cations or entirely new tasks and seamless transition between guided
and autonomous operation of the robot, without distinguishing among
a learning and a reproduction phase. The proposed method is verified
experimentally with an operator demonstrating periodic tasks in the free-
space and in contact with the environment for wiping a surface.

1 Introduction

Progressive automation is a framework introduced by the authors in [3], that
allows an operator to kinesthetically demonstrate repetitive tasks to a robot for
seamless transition of the latter from manual robot guidance to autonomous
operation. In [3] the operator demonstrates a task a few times and a variable
impedance controller gradually increases the stiffness according to the correspon-
dence between consecutive demonstrations so that the robot accurately tracks
the trajectory produced by the motion generation system. Although the tasks
are repetitive, they are encoded by joining discrete movement segments. The
segmentation of the task into discrete movements is practical in several applica-
tions (e.g. pick and place), where the end-points of the segments are associated
with the operator’s input, such as signaling to the robot to open/close a gripper
[10,2]. Although such repetitive movements can be considered periodic, there are
other tasks that involve rhythmic movements and need not be segmented, such
as the wiping of a surface [5] or the gait of humanoid robots [16].
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To encode and determine online the basic frequency and the waveform of a
periodic movement, a two layer system was proposed by Gams et al. [7]. The
basic frequency is assumed to be the lowest frequency of an input signal, that
is appropriate to include one task period. The first layer (Canonical System) of
this method uses a number of nonlinear oscillators that adapt to the different
frequency components of the input signal and the second layer (Output Sys-
tem) is based on periodic Dynamic Movement Primitives (DMP), which have
the ability to encode periodic patterns [9]. By separating the frequency and the
waveform learning, there is an advantage of independent temporal and spatial
adjustment respectively. A modified approach to the first layer for determining
the basic frequency of the input signal, uses a single oscillator with Fourier series
approximation [20]. With Fourier approximation, there is no need to extract the
basic frequency among the oscillators as in [7], which is a considerable benefit.
When the objective of a task is to individually encode multiple degrees of free-
dom (DOF) that have coupled frequencies, the learned frequencies in each DOF
might lead to drift during the reproduction phase because they might not be
equal or exact multiples of each other. Another approach for multiple DOF is
to use a common Canonical System for both learning and reproduction, with a
common frequency. This case usually requires treatments such as logical opera-
tions, rounding of frequencies or addition of the input signals from the different
DOF, which can lead to side-effects like cancelling or doubling of frequencies [7].

For learning a periodic movement that also consists of a transient part [5],
such as the wiping of a surface, the authors in [4] initially segmented the wip-
ing demonstration into the two parts and in the second phase they adapted the
learned periodic DMP to apply a predefined force to the surface. Adaptation
to the learned periodic movement primitives for modifying the trajectory of the
robot was proposed in [8] with respect to the input from the operator (e.g. force
or gestures). With this method the robot’s movement could gradually adapt
to the operator’s coaching after multiple iterations, but under the assumption
that the environment cannot change rapidly. Similarly, the authors in [14] used
a passivity based iterative learning approach to gradually modify the goal of a
periodic DMP with a pre-specified pattern, with respect to external forces due
to changes of the environment. With the same objective, the authors in [13]
proposed an adaptation mechanism to modify the spatial parameters of dynam-
ical systems in periodic and repetitive tasks, but by having predefined motion
patterns. These methods aim either to gradually adapt the learned pattern after
multiple iteration or to modify the parameters of a certain pattern. As a result,
they cannot handle cases in which the operator desires to significantly change the
motion pattern or the frequency. Another characteristic of the aforementioned
literature is the distinction between the learning and the reproduction phase. In
the spirit of progressive automation, a transition between these phases should
occur seamlessly, bidirectionally and without interruption [3]. Although a seam-
less adaptation was proposed for reshaping the task by user interaction in [13],
their method assumes an encoded task prior to adaptation as opposed to ours.
A seamless transition was also proposed in [19], which considered DMP learning
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and adaptive frequency oscillators in a single degree of freedom and gradually
increased the stiffness of the impedance controller based on the input from EMG
sensors attached to the operator. In that way the robot could take over the task
when the predefined level of fatigue was reached. In a related approach [18], the
robot switched unidirectionally from learning to autonomous execution once a
predefined tracking error was reached.

In this paper we propose a method for progressive automation of periodic
movements by kinesthetic guidance, extending our previous work [3] that was
focused on discrete motion segments. The method utilizes adaptive frequency
oscillators and periodic movement primitives for learning the frequency and
waveform during the demonstration. A bidirectional seamless transition between
learning and autonomous operation of the robot is achieved with the use of a role
allocation strategy than can adjust the robot’s stiffness and, therefore, the level
of automation. This level is adjusted based on the operator’s applied force and
the agreement between the motion learned by the robot and the user demon-
stration. The contribution of this work lies in a novel modification method of the
learning rules of the frequency oscillators of [20] and of the movement primitives
[9], which is based on the automation level. The main advantage of this approach
is that it enables autonomous execution of periodic movements through teaching
by demonstration, without distinguishing between a learning and a reproduction
phase. With the proposed method the learned parameters can be adjusted either
for small or for significant task modifications from the operator, even by inter-
vening during the autonomous execution and without requiring external sensors
such as EMG. The effectiveness of the proposed method for fast and seamless
progressive automation is verified experimentally for periodic tasks without and
with contact with the environment, such as wiping of a surface.

2 Progressive automation of periodic movements

This section presents the proposed methodology and is structured as follows.
An overview of the system structure is initially presented Sec. 2.1 describing the
key variables and the method’s sub-components; these are the role allocation
strategy that adjust the automation level of the robot described in Sec. 2.2, the
adaptive frequency oscillators to determine the task frequency given in Sec. 2.3,
the periodic DMP that encode the waveform of the demonstration presented in
Sec. 2.4, and a variable stiffness controller presented in Sec. 2.5.

2.1 System structure

Let p ∈ Rm be the task coordinates of a robotic manipulator under impedance
control, as shown in the block diagram of Fig. 1. At the beginning of the demon-
stration, the target stiffness of the robot is zero in order to allow kinesthetic
guidance. To continuously adjust the role of the robot between kinesthetic guid-
ance and autonomous operation, the target stiffness is adapted according to a
role allocation law, based on the operator’s force Fh and the tracking error of the
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robot. Without the system having any prior knowledge of the task, the desired
trajectory pd ∈ Rm of the robot is learned incrementally during the demonstra-
tion and -simultaneously- is being provided as the reference to the impedance
controller. With this approach we do not distinguish between a learning and re-
production phase. Instead, we propose a gradual increase of the target stiffness
while the reference trajectory pd approximates the demonstrated trajectory p
and the operator does not apply significant forces to the robot. A decrease of the
stiffness can also occur to re-enable kinesthetic guidance and allow modifications
of the learned task though the application of corrective forces to the robot.

The user kinesthetically demonstrates a periodic movement to the robot and
the movement is encoded by periodic DMP with incremental regression learning
in each coordinate. An adaptive frequency oscillator in each coordinate i deter-
mines the basic frequency ωi of the input signal pi. Under the assumption that
a periodic signal is available in all demonstrated degrees of freedom, then the
basic frequency Ω ∈ R of the task can be extracted as the minimum among the
components:

Ω = min{ω1, ..., ωm}. (1)

Synchronization of the produced trajectory pd generated by the m periodic
DMP, is achieved by having a common basic frequency Ω.

The concept of the proposed system involves the operator demonstrating
a periodic task to the robot multiple times until the system has learned the
basic frequency Ω, the phase of the periodic movement Φ ∈ R and the desired
trajectory pd. These estimates are updated continuously aiming to reduce the
tracking error p̃ = p − pd. Within this paper we only consider movement in
the translational coordinates of the end-effector (m ≤ 3), with the orientation
being fixed. While the system learns the demonstrated task, the target stiffness
increases and the robot gradually obtains the leading role, which is determined
by the variable κ ∈

[
0, 1
]
, denoting the automation level. When κ = 0, the robot

can be passively guided kinesthetically with zero stiffness. While 0 < κ < 1,
the role is shared between the human and the robot. When κ = 1, the stiffness
of the robot is maximum and it can autonomously execute the task, so it does
no longer require further adaptation. For that purpose, we use the term (1− κ)
as a weight in the adaptation rules to suspend the adaptation when the robot
has learned the task. The user can intervene at any time while the robot moves
autonomously -causing κ to decrease- and either modify the task (spatially or
temporally) or demonstrate an entirely new task. In the following subsections
we present each module of the proposed system in detail.

2.2 Role allocation strategy

The automation level κ transitions the role of the robot from passively follow-
ing the user’s demonstrations to accurately following the reference trajectory
produced by the DMP. The variable Cartesian stiffness Kv of the robot is:

Kv = κ(t)kmaxIm×m (2)
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Fig. 1. Block diagram of the proposed system.

where kmax ∈ R>0 is the maximum desired stiffness for autonomous operation.
The rate of change κr of the automation level κ depends on the external inter-
action force Fh, on the tracking error p̃ and on the current value of κ(t). It was
originally introduced in our previous work [3] and is given here for completeness:

κ̇ =

max{κr, 0}, κ = 0
κr, 0 < κ < 1

min{κr, 0}, κ = 1
, with κ(0) = 0, (3)

κr = (
κ

fr
+ fmin)

(
1−

(
||Fh||
λ2

)3

− ||p̃||
λ1

)
. (4)

The design parameters λ1, λ2 affect the impact of the tracking error and of the
interaction force respectively on the rate of change. We utilize a power of 3 of
the force magnitude to highlight the importance of the interaction force on role
revoking beyond a threshold, reflected on the choice of λ2. For example, when
the robot moves autonomously with almost zero tracking error, the application
of an interaction force such that ||Fh|| > λ2 will revoke the leading role back
to the operator. The parameter fmin is a positive constant to induce a gain
increase when κ = 0, and fr is a scaling term.

While the level κ increases, the robot is gradually allocated with the leading
role. The transition rate κr depends on the current value of κ. This rate is initially
slow, requiring the user to demonstrate a few periods of the movement until the
frequency and waveform is learned. The rate increases with the increase of κ.
When the robot moves autonomously (κ = 1), a high interaction force reverts the
leading role back to the human for allowing modifications. The loss of passivity
that occurs because of the variable stiffness matrix is handled with energy tanks
as it is discussed in Sec. 2.5.

2.3 Adaptive frequency oscillators

To learn the basic frequency of the demonstrated movement, we utilize the adap-
tive frequency oscillators with Fourier approximation, proposed in [20]. An ob-
jective of progressive automation involves the ability of the robot to continue
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executing the demonstrated task autonomously after it has been encoded suffi-
ciently. Another objective involves the ability of the operator to intervene during
the autonomous execution and demonstrate any spatial or temporal modifica-
tion. Regarding the temporal modification, the frequency adaptations need to
stop and restart accordingly. To avoid using exteroceptive sensors such as EMG
[19] and to allow continuous and bidirectional transition, in contrast to unidirec-
tional switching as in [18], we propose the modification of the adaptation rules
according to the automation level κ.

The proposed adaptation is weighted by (1−κ) to smoothly stop the learning
when the robot is in the autonomous mode κ = 1 and to smoothly re-enable
it when the operator intervenes to make modifications. The oscillators are then
structured as:

φ̇φφ = (1− κ)(ω − a E sin(φφφ)), (5)

ω̇ = −(1− κ) a E sin(φφφ), (6)

E = diag (p− p̂) , (7)

where ω ∈ Rm is the vector of frequencies, φφφ ∈ Rm is the vector of the cor-
responding phases, a ∈ R is a coupling constant and E ∈ Rm×m is a diagonal
matrix with the error between the input signal p and the estimate p̂ ∈ Rm. The
vector of estimates p̂ = [p̂1, ..., p̂m]T is given by:

p̂i =

M∑
c=0

(αi,ccos(cφi) + βi,csin(cφi)), i = 1, 2, ...,m, (8)

where the parameter M is the number of Fourier components. The amplitudes
αi,c, βi,c are updated according to the following rule:

α̇i,c = (1− κ) η cos(cφi) ei, (9)

β̇i,c = (1− κ) η sin(cφi) ei, (10)

where η is the learning constant and the error ei is the ith diagonal element
of E. Notice that the adaptation rate of the parameters in (5), (6), (9), (10) is
reduced while the automation level increases (κ→ 1) and completely stops when
the robot is fully autonomous (κ = 1). An intervention by the operator thought
the application of an external force/torque causes the automation level to drop
and the adaptation of the oscillators to be re-enabled.

Parameters a, η determine the speed of convergence and the parameter M
determines the accuracy of the approximation. A sinusoidal input signal can be
accurately approximated with M=1. A more complex periodic signal requires
more components. If we encode the complex input signal from a demonstration
using less components than required, the system will learn only the strongest
frequency component which is sufficient in our case, since the proposed system
requires only the basic frequency. On the other hand, when more components
than required are utilized, some will either converge to the same frequency or to
zero frequency [20].
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In the simple case when the demonstrated movement is a circle on a plane
(m = 2), the vector ω will converge to approximately equal frequencies. However,
a slightly more complex demonstration such as the shape “8” on a plane, as the
one shown in Fig. 2, consists of two frequencies where one of them is twice
the value of the other. By selecting the minimum frequency for both of them
according to (1), the value of Ω can be used as a common clock for the motion
generation system in each coordinate. However, this can affect the accuracy of
the approximated trajectory, but as we demonstrate in the experiments, this is
not a problem when the frequency difference is not high. Moreover, this problem
can be resolved by utilizing more basis functions in the periodic DMP that we
present in the following subsection.

Fig. 2. Demonstrating kinesthetically a periodic wiping movement of shape “8” on a
surface.

2.4 Periodic DMP

In parallel with the learning of the frequency, the waveform of the demonstrated
trajectory is also learned with periodic DMP which produce the reference trajec-
tory pd to the impedance controller. This trajectory is specified by an attractor
landscape towards an anchor point g ∈ Rm and is governed by the phase Φ ∈ R
that is the common canonical system among the coordinates, given by:

Φ̇ = Ω, with Φ(0) = 0. (11)

The reference trajectory is produced by the periodic DMP according to:

ż = Ω

(
ay(βy(g − pd)− z) + r

∑N
j=1 wjΨj(Φ)∑N
j=1 Ψj(Φ)

)
(12)

ṗd = Ωz, (13)

where ay, βy are constants and r is the amplitude control parameter which in
this system is set to 1. Parameter N is the number of basis functions Ψ that are
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defined by:

Ψj(Φ) = exp(h(cos(Φ− cj)− 1)), ∀ j = 1, 2, ..., N (14)

where h, cj are the width and centres of the basis functions over a period.
The weights in matrix w ∈ Rm×N are updated online with recursive least

squares. Each weight vector wj ∈ Rm of the basis function Ψj is updated with
the Recursive Least Squares algorithm (RLS) [15]:

wj(t+ 1) = wj(t) + Ψj diag(Pj(t+ 1)) erj (t), (15)

where Pj ∈ Rm is the vector of inverse covariance associated to the weights wj

with a forgetting factor λ and with elements of Pj (i = 1, 2, ...,m):

Pi,j(t+ 1) =
1

λ

(
Pi,j(t)−

Pi,j(t)
2

λ
Ψj

+ Pi,j(t)

)
. (16)

The aim of the RLS is to minimize the error er, which in this work is weighted by
(1−κ) to smoothly stop the learning when the robot is in the autonomous mode
and to smoothly re-enable it when the operator intervenes to make modifications:

erj (t) = (1− κ)(fd(t)−wj(t)), (17)

where fd is the target trajectory shape:

fd =
p̈

Ω2
− ay(βy(g − p)− ṗ

Ω
). (18)

Notice in (17) that when the automation level is κ = 1, the error er is zero and
the adaptation of the DMP weights stops.

2.5 The proposed controller for progressive automation

To achieve progressive automation with variable robot stiffness, the following
Cartesian impedance is achieved, considering a n-dof manipulator with grav-
ity compensation, that imposes a desired Cartesian stiffness Kd ∈ R6×6 and
damping Dd ∈ R6×6 without reshaping the inertia:

Λx(q) ˙̃v + (Cx(q, q̇) + Dd) ṽ + Kdx̃ = Fh, (19)

where Fh ∈ R6 is the external force from the operator, q, q̇ ∈ Rn are the robot
joint position and velocity, x̃ ∈ R6 is the generalized tracking error described as
x̃ = [p̃T εe

T ]T with εe = vec(Q̃), where Q̃ = Q ∗Q−1
d is the quaternion error

between the desired orientation Qd and the current orientation Q of the robot

end-effector. The velocity error is described as ṽ = [ ˙̃p
T
ω̃T ]T where ω̃ = ω−ωd.

Within this paper, we consider a fixed orientation of the end-effector with a
constant Qd and ωd = 03×1. By setting the desired Cartesian inertia equal to
the robot’s inertia Λx, we avoid the direct feedback of Fh.
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For a constant desired stiffness Kd and Dd =
[
dpI3×3 0; 0 drI3×3

]
, it can

be easily proved that the system is passive with respect to the pair ṽ, Fh [10].
In this work we consider a constant orientation of the end-effector, hence we
choose a high constant torsional stiffness (with krotI3×3) but a variable stiffness
in the translation (2). Since Kd is now a variable matrix, then the system can
lose its passivity property [6]. This problem can be overcome by introducing the
varying stiffness Kv (with m = 3), of the translational components via a tank
energy system, as proposed in [1,6,21]. The concept is that a virtual bounded
energy is transferred from and to the dynamic system of the robot so that the
whole system is passive. Thus, the variable stiffness applied by the progressive
automation controller is defined as follows:

Kd =

[
βr(pt, v)Kv 03×3

03×3 krotI3×3

]
, (20)

where v = −p̃Kv
˙̃p and pt is the virtual tank energy described by:

ṗt = dp
µ(pt)

2
˙̃p
T ˙̃p + β(pt, v)p̃TKv

˙̃p. (21)

The functions µ(pt), β(pt), βr(pt) are defined in [10,11] and control the flow of
the energy between the energy tank and the robot so as pt belongs to C for all
t ≥ 0 with C = {pt ∈ R≥0 : pt ≤ pt} where pt > 0 is the upper limit of the
virtual energy.

The whole system can be written in the following state space form:

ṡ = H(s,Fh), s0 = s(0) ∈ Z (22)

where s = [ṽT ξT pt]
T ∈ Z, Z = {s : s ∈ R6 × (R3 × S3) × C} with ξ =

[p̃T Q̃T ]T and

H(s,Fh) =

Λ−1
x (− (Cx + Dd) ṽ −Kdx̃ + Fh)

Jxṽ

dp
µ(pt)

2
˙̃p
T ˙̃p + β(pt, v)p̃TKv

˙̃p

 (23)

where Jx = diag

(
I3×3 ,

1

2
JQ̃

)
∈ R7×6, with JQ̃ is the matrix which maps the

angular velocity error to
˙̃
Q. i.e., Q̇ = JQ̃ω̃ which is valid for ωd = 0, which is

true in our case as we consider a constant orientation.
Using the storage smooth function:

V =
ṽTΛxṽ

2
+ (Q−Qd)

T krot(Q−Qd) + pt, (24)

its time derivative yields:

V̇≤− ṽTDxṽ + FTh ṽ (25)
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while Dx = diag

(
dp
2

I3×3 , drI3×3

)
∈ R6×6. Hence, (23) is strictly output

passive under the exertion of the user force Fh with respect to the output ṽ (see
Definition 6.3 in [12]).

Notice that if the manipulator is redundant, (22) describes the Cartesian
behavior but not the nullspace behavior. However, introducing an extra control
signal like the one proposed in [17] the passivity in the redundant manipulator
can be guaranteed.

3 Experimental evaluation

To verify the effectiveness of the proposed method, an operator was asked
to demonstrate periodic movements to a 7-DOF KUKA LWR4+ robot, as it
is shown in Fig. 2. The operator demonstrated a movement until the robot
was able to execute it autonomously and then modified the learned task spa-
tially or temporally. In these experiments we only considered movement in the
translation components of the end-effector by keeping a constant orientation
(krot=100Nm/rad) and using the parameters of Table 1. The operator’s force
Fh was estimated from the robot’s internal torque sensors. Two series of ex-
periments were conducted, one with demonstration of free-space movements to
evaluate the ability of the system in encoding a planar periodic movement, and
another with a more practical application of progressively automating the wiping
of a surface while keeping a constant normal force1.

3.1 Free-space movements

In the first set of experiments, the user demonstrated periodic planar movements
without considering contact with the environment. For m=2, we chose a high
stiffness for the Z direction with KZ

v = kmax. The user initially demonstrated
four different planar movements throughout this experiment. The results of the
demonstrated tasks on the XY plane are depicted in Fig. 3. In particular, the
robot’s position p, the DMP trajectory pd, the adapted basic frequency Ω,
the automation level κ and the user’s force Fh are shown in Fig. 3a-e. At the
beginning of the experiment, the user started demonstrating a small circular
motion of Ω=2.4rad/s. After t=15s, when the DMP has successfully encoded
the trajectory and the frequency oscillators have extracted the basic frequency,
the automation level increases towards κ=1 and the adaptation stops. The user
then stops interacting with the robot, which continues to execute the circular
motion autonomously. At t1=24s the trajectory has been encoded by the system
as it is shown in Fig. 3f. At approximately t=34s the operator starts interacting
again with the robot and applies a force in order to demonstrate a circular
motion of bigger radius at another location. The application of the high force
(Fig. 3e) reduces the automation level at κ=0 and re-activates the adaptation

1 Video of the experiment: https://youtu.be/uWM8VlM5y-A

https://youtu.be/uWM8VlM5y-A
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until the system has learned the parameters for the new circular motion that is
shown in Fig. 3g with Ω=1.8rad/s. Similarly, at t=66s the user intervenes again
in order to increase the frequency of the circular motion to Ω=2.6rad/s (Fig.
3h). Finally, at t=96s the user intervenes to demonstrate a shape “8” movement.
While at the circular motions the frequency components are almost the same,
in this motion pattern the frequency ω2 in the Y coordinate is twice the ω1

(Fig. 3c). Nevertheless, the shape has been successfully encoded (Fig. 3i) with
the basic frequency of 1.1rad/s after just 3 demonstrated periods. During this
experiment, the state pt of the energy tank remains below the upper level pt=10
with βr(pt, v) = 1, so it is not illustrated. In the case the level of the tank
overflows, the term βr(pt, v) < 1 will cause reduction of the target stiffness to
maintain passivity.

Table 1. Parameters Values

Param Value Param Value Param Value

kmax 2500 α 50 N 30

fr 1 η 1 λ 0.999

fmin 0.01 M 1 ay 20

λ1 0.02m λ2 10N βy 5

3.2 Force controlled wiping task

In this experiment, the user’s objective was to progressively automate a surface
wiping task, while the robot applied a normal force to the surface with a sponge
attached to its wrist, as shown in Fig. 2. To this aim, a hybrid impedance/force
controller was implemented [19] by setting KZ

v =0N/m in the Z direction and by
adding the term Ff ∈ R6 in the left part of (19), which is a PI force controller
with a feed-forward:

Ff = [0, 0, FZf , 0, 0, 0]T , (26)

FZf = fsp + kP (FZh − fsp) + kI

∫
(FZh − fsp)dt, (27)

where kP=1, kI=1 are the gains of the PI controller, fsp=10N is the set-point
for the desired normal force and FZh is the reaction force along the Z direction
estimated by the robot.

The results of the wiping task are presented in Fig. 4. After the contact
of the robot with the environment is established at t=2.5s (Fig. 4f), the user
starts demonstrating at t=5s a periodic wiping pattern on the surface. The
proposed method achieves progressive automation within approximately 15s,
having learned the frequency and the waveform of the pattern successfully (Fig.
4c,g). The robot is at maximum stiffness after t=18s (with κ=1) and the user
stops interacting with the robot at 20s (Fig. 4e). Then, the robot continues
executing the task autonomously maintaining the desired force fsp.
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odic movements in 2D and then makes modification.
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Notice that in this experiment, only the XY components of the external
force Fh (Fig. 4e) and of the tracking error p̃ are considered for the role allo-
cation strategy of Eq. (4). While the robot moves autonomously and the user
has stopped interacting with it, non-zero forces appear in the XY components
of Fh because of the friction between the sponge and the surface (shown in
Fig. 4e for t>20s). To prevent these disturbances and the tracking errors they
produce from reducing the automation level κ, the parameters λ2, λ1 need to
be set higher than the values of the disturbances respectively. Also, notice that
the proposed method assumes knowledge of the surface orientation to correctly
define the position and force subspaces.

4 Conclusions

In this work we have proposed the progressive automation of periodic move-
ments, extending our previous work. Adaptive frequency oscillators and periodic
DMP are combined with a role allocation strategy to adjust the adaptation rate
and to seamlessly transition between kinesthetic robot guidance and autonomous
operation. The proposed method is verified experimentally with an operator
demonstrating periodic tasks in the free-space and in contact with the environ-
ment. In all of the experiments the robot was able to learn and autonomously
execute a task very quickly, within 15s to 20s of demonstration. The user was
able to intuitively determine when the robot had reached maximum stiffness
and could very easily intervene to make modifications. Future work includes the
achievement of progressive automation under uncertain surface orientation with
a thorough passivity analysis of the hybrid controller and the ability to learn
tasks that involve transitions between periodic and discrete movements.

Acknowledgement

This research is implemented through the Operational Program “Human Re-
sources Development, Education and Lifelong Learning” and is co-financed by
the European Union (European Social Fund) and Greek national funds.

References

1. Billard, A.G., Calinon, S., Dillmann, R.: Learning from Humans. In: Springer
Handbook of Robotics, pp. 1995–2014. Springer International Publishing (2016)

2. Caccavale, R., Saveriano, M., Finzi, A., Lee, D.: Kinesthetic teaching and at-
tentional supervision of structured tasks in humanrobot interaction. Autonomous
Robots (feb 2018)

3. Dimeas, F., Fotiadis, F., Papageorgiou, D., Sidiropoulos, A., Doulgeri, Z.: Towards
Progressive Automation of Repetitive Tasks Through Physical Human-Robot In-
teraction. In: Ficuciello, F., Ruggiero, F., Finzi, A. (eds.) Human Friendly Robotics.
Springer Proceedings in Advanced Robotics, vol. 7, pp. 151–163. Springer, Cham
(2019)



Progressive Automation of Periodic Movements 15

4. Do, M., Schill, J., Ernesti, J., Asfour, T.: Learn to wipe: A case study of structural
bootstrapping from sensorimotor experience. In: 2014 IEEE International Confer-
ence on Robotics and Automation (ICRA). pp. 1858–1864. IEEE (may 2014)

5. Ernesti, J., Righetti, L., Do, M., Asfour, T., Schaal, S.: Encoding of periodic and
their transient motions by a single dynamic movement primitive. IEEE-RAS In-
ternational Conference on Humanoid Robots pp. 57–64 (2012)

6. Ferraguti, F., Secchi, C., Fantuzzi, C.: A tank-based approach to impedance control
with variable stiffness. In: 2013 IEEE International Conference on Robotics and
Automation. pp. 4948–4953 (May 2013)

7. Gams, A., Ijspeert, A.J., Schaal, S., Lenarčič, J.: On-line learning and modulation
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20. Petrič, T., Gams, A., Ijspeert, A.J., Žlajpah, L.: On-line frequency adaptation and
movement imitation for rhythmic robotic tasks. International Journal of Robotics
Research 30(14), 1775–1788 (2011)

21. Talignani Landi, C., Ferraguti, F., Fantuzzi, C., Secchi, C.: A Passivity-Based
Strategy for Coaching in Human-Robot Interaction. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). pp. 3279–3284. IEEE (2018)


	Progressive Automation of Periodic Movements

